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The formulas directly connecting parton distribution functions and fragmentation functions at the next-

to-leading-order QCD with the same quantities at the leading order are derived. These formulas are

universal, i.e., have the same form for all kinds of parton distribution functions and fragmentation

functions, differing only in the respective splitting functions entering there.
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The extraction of parton distribution functions (PDFs)
and fragmentation functions (FFs) from the experimental
data is one of the important tasks of the modern hadron
physics. The most simple and transparent way to do it is the
QCD analysis of the data on measured asymmetries and
cross sections in leading-order (LO) QCD. One of the main
advantages of such an analysis is that the central values and
uncertainties of measured asymmetries and cross sections
directly propagate to the central values and errors of PDFs
and FFs extracted from these data in LO QCD (see, for
instance, Fig. 3 in Ref. [1]). At the same time, the situation
with the next-to-leading-order (NLO) analysis is much
more difficult because, instead of simple algebraic equa-
tions (see, for example, Eq. (2) in Ref. [1]), one deals there
with complex integral equations (like, for instance,
Eqs. (10)–(13) in Ref. [2]) for finding the PDFs (FFs) in
which we are interested. The standard way to solve this
problem is to apply the QCD analysis based on the fitting
procedure (see Ref. [2] and references therein). However,
there are unavoidable ambiguities inherent in a fitting
procedure that become especially important when the
quality of the fitted data is rather bad (a small number of
points with large errors). These are arbitrariness in the
choice of the functional form (with a lot of varied parame-
ters) of the fitted PDFs and FFs at the initial scale and
also ambiguities in the error band calculation (ambiguities
related to the deviation of the �2 profile from the quadratic
parabola and to the choice of ��2 determining the uncer-
tainty size—see the discussion on this subject in Ref. [2]).
Thus, it seems to be very useful if one could obtain NLO
(NNLO, . . .) results on PDFs/FFs using the respective LO
results as an input, without loosing, thereby, all advantages
of LO analysis.

We start with some necessary notation and definitions.
For the flavor nonsinglet and singlet quantities, we intro-
duce the notation QNS and V ¼ ðQS;GÞ, where QNS can be
either qNS (nonsinglet combinations of quark densities);
�qNS (nonsinglet combinations of helicity PDFs); combi-
nations of transversity PDFs �Tqð �qÞ � h1q; �q; . . . ; or D

h
NS

(a ‘‘nonsinglet’’ combination of FFsDh
q), . . . , whileQS can

be qS;�qS;D
h
S; . . . ; G can be g;�g;Dh

g; . . . . In this nota-

tion, the DGLAP evolution equations (see Ref. [3] for
review) look like

Q2dVðQ2; xÞ=dQ2 ¼ ð�s=2�Þ½Pð0ÞðxÞ þ ð�s=2�ÞPð1ÞðxÞ
þOð�2

sÞ� � VðQ2; xÞ; (1)

and analogously for QNS with the replacement Pðx; �sÞ !
Pðx; �sÞ ¼ Pð0ÞðxÞ þ ð�s=2�ÞPð1ÞðxÞ þOð�2

sÞ. Here, P is
a 2� 2 matrix with the elements Pqq, Pqg, Pgq, Pgg, and

the splitting functions for unpolarized PDFs and helicity
PDFs can be found in Ref. [4], for transversity PDFs—in
Ref. [5], for FFs—in Ref. [6] and references therein.
Following Ref. [7] it is convenient to define the evolu-

tion operators E and E (2� 2 matrix with the elements
Eqq, Eqg, Egq, Egg) as

QNSðQ2; xÞ ¼ EðQ2; xÞ � QNSðQ2
0; xÞ;

VðQ2; xÞ ¼ EðQ2; xÞ � VðQ2
0; xÞ:

(2)

Here, we are interested in the initial conditions1

EðQ2 ¼ Q2
0; xÞ ¼ �ð1� xÞ;

EðQ2 ¼ Q2
0; xÞ ¼ 1�ð1� xÞ;

(3)

which allow us to evolve QNS and V from the initial scale
Q2

0 to an arbitrary scale Q2. It is also convenient to use,

following Ref. [7], the evolution variable t ¼ ð2=�0Þ�
ln ð�sðQ2

0Þ=�sðQ2ÞÞ instead of the standard variable

ln ðQ2=�2Þ. Besides, we introduce the notation
AjLO � Â; AjNLO � A; (4)

for any quantity A at LO and NLO, respectively.
From now on, we consider only the nontrivial singlet

case. The transition to the simple nonsinglet case will be
easily done in the end of calculations by making the
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1We do not consider the asymptotic conditions [7] EðEÞ !
ÊðÊÞ as Q2 ! 1 (see Eq. (5.57) in Ref. [7]) since we deal only
with particular realization (2) of the general conditions given by
Eqs. (5.18) in Ref. [7].
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replacement of the matrices with the respective commuting
quantities.

In terms of quantities t and E, the DGLAP equations are
rewritten in LO as

d

dt̂
Êðt̂; xÞ ¼ Pð0Þ � Êðt̂; xÞ; (5)

while in NLO they look like

d

dt
Eðt;xÞ¼

�
Pð0ÞðxÞþ�s

2�
RðxÞþOð�2

sÞ
�
�Eðt;xÞ; (6)

where

RðxÞ � Pð1ÞðxÞ � �1

2�0

Pð0ÞðxÞ: (7)

The solution of Eq. (5) with the initial condition (3)

Êðt̂ ¼ 0; xÞ ¼ 1�ð1� xÞ reads [7]

Êðt̂;xÞ¼ExpðPð0ÞðxÞt̂Þ

¼1�ð1�xÞþ t̂Pð0ÞðxÞþ t̂2

2!
Pð0ÞðxÞ�Pð0ÞðxÞþ��� ;

(8)

while to solve the NLO equation (6), one can apply the
elegant method of Ref. [7] based on the analogy with the
perturbative quantum mechanics (see Eqs. (5.47)–(5.54) in
Ref. [7]). Operating in this way, one obtains the general
solution of Eq. (6) in the form [for a moment, we omit x
dependence and �ð1� xÞ]

EðtÞ ¼
�
ÊðtÞ �

�
1þ �sðQ2

0Þ
2�

Z t

t0
d�e��0�=2Êð��Þ

�R � Êð�Þ
�
� Êð�t0Þ

�
� Eðt0Þ: (9)

Putting t0 ! 1 in Eq. (9), one reproduces the solution
(Eq. (5.54) in Ref. [7]), satisfying the boundary condition

E ! Ê as t ! 1. In turn, putting t0 ¼ 0 in Eq. (9), one
gets the solution

EðtÞ¼
�
1þ�sðQ2Þ

2�

Z t

0
d�e�0�=2Êð�Þ�R�Êð��Þ

�
� ÊðtÞ;

(10)

satisfying the boundary condition (3) with which we deal.
The key point to proceed is the condition that all PDFs

and FFs should take the same values in LO and NLO
(as well as in NNLO, . . .) as Q2 ! 1:

QNSðQ2 ! 1; xÞ ¼ Q̂NSðQ2 ! 1; xÞ;
VðQ2 ! 1; xÞ ¼ V̂ðQ2 ! 1; xÞ:

(11)

Although this asymptotic condition seems to be intui-
tively clear, let us argue it in some detail because of its
great importance for what follows.
Imagine that two researchers analyze in LO (the first)

and NLO (the second) the same ‘‘ideal’’ data—the data
available with tremendous statistics even in the Bjorken
‘‘sublimit’’ (such high Q2 values are accessible that the
Bjorken scaling violation becomes invisible even within
extremely small uncertainties on measured asymmetries
and cross sections). For determinacy and simplicity, let us
suppose that they analyze the imaginary ideal polarized
semi-inclusive DIS (SIDIS) data on pion production and
extract the valence helicity PDFs �uV , �dV from the
proton and deuteron difference asymmetries (see Ref. [8]
and references therein) measured in the Bjorken sublimit.

The first uses LO formulas A�þ���
p �ð4�uV��dVÞ=

ð4uV�dVÞ and A�þ���
d � ð�uV þ�dVÞ=ðuV þ dVÞ (i.e.,

performs the analysis analogous to one of COMPASS [9]),
and the second uses their NLO generalization (Eqs. (6–10)
in Ref. [8]). Besides, for self-consistency, both imaginary
researches do not use the existing parametrizations on uV ,
dV but extract these quantities themselves (as well as the
integrated over cut in z difference2D1 �D2 of favored and
unfavored pion FFs) using the same SIDIS data on pion
production averaged over spin and studying the quantities

F�þ
2pðd;3He;...Þ � F��

2pðd;3He;...Þ, where in both LO and NLO only,

uV , dV and D1 �D2 survive. It is obvious that all terms
with convolutions � (see Eqs. (6–10) in Ref. [8]) distin-
guishing NLO and LO equations for finding �uV , �dV ,
and uV , dV , D1 �D2 just disappear as one approaches the
Bjorken limit, so that, comparing the results on these
quantities obtained in the Bjorken sublimit, both research-
ers could not discriminate between them.
So, let us pass to limit Q2

0 ! 1 in Eq. (2) using the

asymptotic condition (11). Then, on the one hand (NLO
evolution),

VðQ2; xÞ ¼ Eðt ! �1; xÞ � VðQ2
0 ! 1; xÞ

¼ Eðt ! �1; xÞ � V̂ðQ2
0 ! 1; xÞ; (12)

and, on the other hand (inverse LO evolution),

V̂ðQ2
0 ! 1; xÞ ¼ Êðt̂ ! 1; xÞ � V̂ðQ2; xÞ: (13)

Combining Eqs. (12) and (13), one obtains

VðQ2; xÞ ¼
�
lim
Q2

0!1
Eðt; xÞ � Êð�t̂; xÞ

�
� V̂ðQ2; xÞ: (14)

Using Eqs. (8) and (10) and the relation
lim Q2!1ð�s=�̂sÞ ¼ 1, we arrive at the connection formula

between NLO and LO flavor singlet PDFs (FFs)V and V̂ at
the same finite Q2 value,

2On the simultaneous determination of valence PDFs and
D1 �D2 from the SIDIS data see, for example, Ref. [10].
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VðQ2; xÞ ¼
�
1�ð1� xÞ � �sðQ2Þ

2�

Z 0

�1
d�e�0�=2Êð�; xÞ �RðxÞ � Êð��; xÞ

�
� Exp

�
� 2

�0

ln
�sðQ2Þ
�̂sðQ2ÞP

ð0ÞðxÞ
�
� V̂ðQ2; xÞ;

(15)

where all dependence on the unreachable infinite point Q2
0 just cancels out.

In the nonsinglet case, the relation (15) is significantly simplified. The terms Êð�; xÞ � Expð�Pð0ÞðxÞÞ and Êð��; xÞ
cancel out each other in the integrand, and one easily obtains

QNSðQ2; xÞ ¼
�
�ð1� xÞ þ �sðQ2Þ

2�

�
�1

�2
0

Pð0ÞðxÞ � 2

�0

Pð1ÞðxÞ
��

� Exp

�
� 2

�0

ln
�sðQ2Þ
�̂sðQ2ÞP

ð0ÞðxÞ
�
� Q̂NSðQ2; xÞ: (16)

Equations (15) and (16) connecting flavor singlet and
nonsinglet quantities in NLO with the same quantities in
LO is the main result of the paper. Let us briefly discuss
their practical use.

There are not any problems with the application of
Eq. (16), and the task of reconstruction of NLO nonsinglet
quantities from LO ones is reduced just to the trivial
calculation of the integrals entering the convolutions �.
Indeed, the parameter � � �ð2=�0Þ ln ð�s=�̂sÞ is very
small even at the minimal (the lower boundary of the
experimental cut on Q2 is usually about 1 GeV2) really
available Q2 values, so that one can achieve very good
accuracy keeping only a few first terms in the expansion

Expð�Pð0ÞðxÞÞ ¼ �ð1 � xÞ þ �Pð0ÞðxÞ þ ð�2=2!ÞPð0ÞðxÞ �
Pð0ÞðxÞ þ � � � Certainly, the same statement holds for the

term Expð�Pð0ÞðxÞÞ in Eq. (15), but there arises an addi-
tional problem of how to deal with the integral over �. As
usual, the problem is easily solved in the space of Mellin
moments. Notice that theQ2 independent integral over � in
Eq. (15) just coincides3 with the quantity�UðxÞ in Ref. [7]
(see Eq. (5.45) in Ref. [7]), which enters the solution of

DGLAP with the boundary conditions lim Q2!1EðEÞ ¼
ÊðÊÞ (see footnote 1). Then, applying the inverse Mellin

transformation, one easily obtains instead of Eq. (15) the
formula suitable4 for numerical calculations:

VðQ2; xÞ ¼
�
1�ð1� xÞ þ �sðQ2Þ

2�

Z Cþi1

C�i1
dn

x�n

2�i
UðnÞ

�

� Expð�ðQ2ÞPð0ÞðxÞÞ � V̂ðQ2; xÞ; (17)

where a 2� 2 matrix UðnÞ � R
1
0 dxx

n�1UðxÞ is given by

Eq. (5.41) in Ref. [7].
In summary, the formulas allowing one to transform LO

parton distribution and fragmentation functions to NLO
ones are derived. To obtain these formulas, we use as an
input only the DGLAP evolution equations and the asymp-
totic condition that PDFs (FFs) at different QCD orders
become the same in the Bjorken limit. Because of the
universality of this input, the connection formulas are
also universal, i.e., they are valid for any kind of PDFs
(FFs) with which we deal. Besides, it is obvious that,
operating in the same way, one can also establish the
connection of PDFs (FFs) at LO (as well as at NLO)
with these quantities at any higher QCD order (NNLO,
NNNLO, . . .), and the only restriction here is the knowl-
edge of the respective splitting functions.
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