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We employ the diluted instanton liquid model and the Green-Kubo formula to investigate the shear

viscosity of the SU(2) light-flavor quark matter at finite temperature under an external strong magnetic

field ejBj �m2
�. We apply the Schwinger method to calculate the effect of the external magnetic field.

We find that the shear viscosity increases as temperature increases even beyond the transition temperature

T0 ¼ 170 MeV if temperature-dependent model parameters are used. On the other hand, with

temperature-independent ones the shear viscosity starts to drop when the temperature goes beyond T0.

Furthermore, we find that the presence of an external magnetic field will reduce the shear viscosity.

However, this effect is almost negligible in the chiral-restored phase even for a very strong magnetic field,

ejBj � 1020 gauss. We also compute the ratio of the shear viscosity and the entropy density �=s and our

results are well compatible with the other theoretical results for a wide temperature range. We also provide

the parametrization of the temperature-dependent ratio �=s from our numerical result as �=s ¼ 0:27�
0:87=tþ 1:19=t2 � 0:28=t3 with t � T=T0 for T ¼ ð100� 350Þ MeV when ejBj ¼ 0.
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I. INTRODUCTION

With the rapid development of heavy-ion collision
(HIC) experiments at the Relativistic Heavy-Ion Collider
at BNL and the Large Hadron Collider at CERN, the
properties of quark-gluon plasma (QGP) have been inten-
sively investigated. One of the most highlighted observa-
tions from those HIC experiments is that QGP behaves as
an almost perfect fluid characterized by a small value of its
shear viscosity. It has also been supported by several
calculations based on the viscous hydrodynamics [1] or
AdS/QCD models [2,3]. It implies that QGP is a strongly
coupled system [4]. Furthermore, the value of the ratio of
the shear viscosity and the entropy of QGP, �s , is close to

the Kovtun-Son-Starinets (KSS) bound [5]: �
s � 1

4� . The

viscous hydrodynamic simulation for the elliptic flow v2

with the Monte Carlo (MC)-Glauber initial condition re-
produces the Auþ Au collision data with �

s ¼ 1
4� . On the

contrary, the value �
s � 1

2� must be used to reproduce the

experimental data if the MC Kharzeev-Levin-Nardi initial
condition is adopted [1,6]. It indicates that the different
initial conditions of the hydrodynamic simulations give
different values of the shear viscosity. It is also worth
noting that in the current hydrodynamic simulations, the
value of the shear viscosity is always to be assumed to be
independent of temperature. To extract a more realistic
value of the shear viscosity from the hydrodynamical
simulations, one needs to know the temperature depen-
dence of the shear viscosity. In addition, the initial quan-
tum fluctuations, such as the color-charge fluctuation, also
cause an uncertainty in the extracted value of the shear

viscosity of QGP. [7]. For a recent status for the shear
viscosity, one may refer to Refs. [8,9].
The shear viscosity is able to be theoretically investi-

gated by the Green-Kubo formula in the linear response
theory [10–20]. Since QGP is a strongly coupled system,
its properties can only be studied via nonperturbative
methods in principle, such as low-energy effective QCD-
like models or lattice QCD (LQCD) simulations. From
the effective models, such as the Nambu-Jona-Lasinio
(NJL) model, the shear viscosity has been scrutinized
extensively as a function of temperature (T) and/or quark
chemical potential (�) [11,17,19]. The shear viscosity has
also been studied by LQCD simulations [21], dissipative
hydrodynamics [16,18], chiral perturbation theory (�PT)
[12], perturbative QCD (pQCD) [13], and holographic
models [2,3,22].
In addition to the shear viscosity of QGP, the effects of

the external magnetic field produced in the peripheral HIC
experiments have also attracted much attention [23].
Although the produced magnetic field is reduced by a
factor �104 after a short time �3 fm=c [24], its strength
is still very strong in the order of pion mass squared:
ejBj / m2

� � 1018 gauss. Such a strength is comparable
to the magnetic field of neutron stars. Recently people
have speculated that a strong external magnetic field may
generate the chiral magnetic effect and the chiral magnetic
wave which will generate P-odd and CP-odd domains in
QGP [25]. Furthermore, the chiral phase-transition tem-
perature T0 of the quark matter under a strong external
magnetic field is enhanced, i.e., the magnetic catalysis
[26]. It shows that the properities of the quark matter will
be modified by the strong external magnetic field. Hence it
is interesting to study the impact of the external magnetic
field on the shear viscosity of QGP.
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In this article, we investigate the shear viscosity of the
SU(2) light-flavor quark matter at finite temperature
under a strong magnetic field. For this purpose, we
employ the dilute instanton liquid model (DLIM) for
the light-flavor SU(2) sector [27,28]. This model mani-
fests the nontrivial quark-instanton interactions via the
quark zero mode, resulting in the natural UV regulator
by construction. Since we are interested in the system at
finite temperature, we modify the DLIM parameters,
such as the average inter(anti)instanton distance ( �R)
and (anti)instanton size ( ��), using the caloron solution
for the Yang-Mills equation with the trivial holonomy,
i.e., the Harrington-Shepard caloron [29,30]. By comput-
ing �R and �� as functions of T with the caloron solution,
we observe that they both decrease as temperature in-
creases [30,31]. At T � T0, where T0 indicate the chiral
phase-transition temperature, there appear about 10%
decreases in �R and �� in comparison to their values at
zero temperature. Using these results and the thermody-
namic potential of DLIM, we show that the chiral phase
transition is of second order (T0 � 166 MeV) and the
crossover (T0 � 170 MeV) in the chiral limit and the
finite-current quark mass case, respectively. It reprodu-
ces the correct universality class of the chiral restoration
patterns. Since the quark chemical potential is expected
to be small inside QGP created in HIC experiments, we
choose � ¼ 0 throughout the present work. As men-
tioned above, the Green-Kubo formula is employed to
compute the shear viscosity in terms of a quark spectral
function [11]. We construct a quark spectral function
with a finite width �� 1= �� motivated by the instanton
physics. The external magnetic-field effect is calculated
by the Schwinger method [32–34].

The numerical results for the shear viscosity are given as
functions of temperature as well as the strength of the
external magnetic field with the temperature-dependent
parameters, ��ðTÞ and �RðTÞ (TDP), and the temperature-
independent parameters, ��ð0Þ and �Rð0Þ (TIP). With TIP,
the shear viscosity increases as temperature increases up to
T0, then decreases smoothly. On the contrary, the shear
viscosity keeps increasing beyond T0 for TDP. We also
observe the tendency for the external magnetic field to
reduce the shear viscosity due to the enhancement of the
SB�S, i.e., the magnetic catalysis. In the chiral limit, the
magnetic-field effect on the shear viscosity vanishes when
T goes beyond T0. This is why the magnetic field effect is
proportional to the constituent quark mass squared in our
model, and the constituent quark mass vanishes when the
system is in the chiral restored phase. However, in the finite
quark-mass case, we observe that the shear viscosity con-
tinues to be reduced by the presence of the magnetic field
even for T > T0, but this effect fades away gradually from
T � 220 MeV. In general, the effect from the magnetic
field on the shear viscosity is less than 10% for ejBj &
100m2

� � 1020 gauss.

We also present our result for the ratio of the shear
viscosity and the entropy density �=s as a function of
temperature and the strength of the external magnetic
field. We find that �=s decreases smoothly and ap-
proaches the KSS bound for TDP, whereas the TIP result
undershoots the bound. Moreover, the effects from the
magnetic field become almost negligible beyond T0,
although the effects are still visible below T0. We
also compare our result for �=s with other theoretical
estimations from the NJL model, LQCD, and �PT, result-
ing in qualitatively good agreement. Typical values
for the shear viscosity at T ¼ T0 are given as � ¼
0:02 GeV3 and �=s ¼ 0:29 from the present model for
T ¼ ð100� 350Þ MeV and ejBj ¼ 0.
The present work is organized as follows. In Sec. II, we

introduce our theoretical framework for computing the
shear viscosity of quark matter. The numerical results
and relevant discussions are given in Sec. III, and the final
section is devoted to the summary and future perspective.

II. THEORETICAL FRAMEWORK

In this section we briefly introduce our theoretical
framework, including the Green-Kubo formula, the finite-
width quark spectral function, the Schwinger method, and
the DLIM thermodynamic potential.

A. Shear viscosity at finite temperature

The static shear viscosity � is defined according to the
Green-Kubo formula [11],

� ¼ � @

@!
Im½��

Rð!Þ�j!¼þ0; (1)

where ��
R stands for the retarded (R) quark correlation

function and! is the frequency of the system. The retarded
correlation function is related to the correlation function as
follows:

�
�
Rð!Þ ¼ ��ði!MÞji!M!!þi�: (2)

Here !M is the fermionic Matsubara (M) frequency.�� is
the time-ordered tensor current correlator,

��ði!MÞ ¼ �
Z 1=T

0
d�e�i!M�

�
Z

drh0jT ½Jxyðr; �Þ; Jxyð0; 0Þ�j0i;

Jxy ¼ i

2
½ �c ð�y@xc Þ � ð@x �c Þ�yc �; (3)

where � and c stand for the Euclidean time and the quark
field, respectively. T denotes the temperature. One can
evaluate �� with the full quark propagator S by using
the fermionic Matsubara formula with !n ¼ ð2nþ 1Þ�T,
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��ði!MÞ ¼ T
Z d3k

ð2�Þ3
X1
n¼1

Trc;f;�½kx�ySði!M þ i!n; kÞkx�ySði!n;kÞ�

¼ �
I dz

2�i

Z d3k

ð2�Þ3 nFðzÞTrc;f;�½kx�ySði!M þ z;kÞkx�ySðz; kÞ�: (4)

The trace runs over the color (c), flavor, (f), and Lorentz (�) indices. From the first line to the second line in Eq. (4), we
have employed the fact that the poles of the Fermi-Dirac distribution,

nFðzÞ ¼ 1

1þ ez=T
; (5)

are located at z ¼ ið2nþ 1Þ�T. The relation between the free-quark spectral function �0 and the quark propagator
is given as

Sðk0; kÞ ¼
Z 1

�1
d!

2�

�0ð!;kÞ
k0 �!

: (6)

Hence we express the shear viscosity in terms of the quark spectral function �0ðkÞ,

� ¼ �NcNf

2
lim
!!þ0

Z dk0
2�

d3k

ð2�Þ3
½nFðk0 þ!Þ � nFðk0Þ�

!
k2x Tr�½�0ðk0 þ!; kÞ�y�0ðk0; kÞ�y�

¼ �NcNf

2

Z dk0
2�

d3k

ð2�Þ3 n
0
Fðk0Þk2x Tr�½�0ðk0; kÞ�y�0ðk0; kÞ�y�: (7)

Here n0F ¼ @nFðzÞ
@z . If we adopt the spectral function associated with the free-quark propagator with a current quark mass m

given in Ref. [35], then

�0ð!; kÞ ¼ 2�sgn½!�ð�0!� � � kþmÞ	ð!2 � k2 �m2Þ: (8)

This quark spectral function satisfies the normalization condition 1
2�

R
�ð!; kÞd! ¼ �0 [11] as shown in the Appendix.

Because of the 	 function in the spectral function in Eq. (8), the shear viscosity for the free quark at the mean-field level
becomes zero, i.e., lim �!0

R
d!fð!Þ	ð!þ �Þ	ð!Þ ¼ 0 as long as fð!Þ is a regular function. To overcome this difficulty,

we introduce a finite width for the quark spectral function, as in Refs. [11,17]. Thus, we replace the delta function in Eq. (8)
with a Gaussian functions with a finite width,

	ð!2 � k2 �m2Þ ¼ 	ð!2 � E2Þ ! 1

2
ffiffiffiffiffiffiffi
2�

p
Ek�

�
exp

�
�ð!� EkÞ2

2�2

�
þ exp

�
�ð!þ EkÞ2

2�2

��
� F ð!; kÞ;

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

k

q
; Mk ¼ M0ðTÞ

�
2

2þ ��2ðTÞk2
�
2n
:

(9)

Note that �� 1= �� is the width for the Gaussian function.
It is worth mentioning that Mk presents the nonlocal

(momentum-dependent) interaction of the quarks. In the
instanton model, the Dirac equation for a quark can be
solved in the presence of the (anti)instanton ensemble
[27,28]. Assuming that the fermionic zero mode dominates
the low-energy phenomena, one can obtain the zero-mode
solution and perform the Fourier transform of this solution,
which results in the momentum-dependent effective quark
mass. It is also called the constituent quark mass since
essentially it is same as the quark mass in the naive
constituent quark models. Physically, this momentum de-
pendence can be understood by the nontrivial interactions
between the quarks and the instantons via the zero mode,
i.e., the delocalization of the quark zero mode [27]. The
parameter n in Eq. (9) will be determined by reproducing

the correct value of the chiral condensate. Note that the
constituent quark mass at zero virtuality M0 and average
(anti)instanton size �� are functions of temperature here.
They will be discussed in detail later. Combining Eqs. (8)
and (9), we arrive at the expression for the finite-width
(FW) quark spectral function,

�0 ! �FWð!; kÞ
¼ 2�sgn½!�ð�0!� � � kþ �MkÞF ð!; kÞ: (10)

Note that the current quark mass m has been replaced by
the momentum-dependent effective quark mass �Mk ¼
Mk þm to regulate the quark-loop integral. �FW also
satisfies the normalization condition for the quark spectral
function as shown in the Appendix. The chiral condensate
can be related to the spectral function in Minkowski space,
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h �qqi ¼ �iNc

Z d4p

ð2�Þ4 Tr�½Sðp0;pÞ�

¼ iNc

Z d!d4p

ð2�Þ5 Tr�

�
�FWð!;pÞ
p0 �!

�
: (11)

Performing the Wick rotation for the temporal direction
and integrating over ð!; ik0;kÞ, one is led to

h �qqi ¼ �8Nc

Z d4k

ð2�Þ4
Z 1

0
d!

�MkF ð!; kÞ
k20 þ!2

: (12)

The vacuum values for �� and �R were estimated by
the LQCD simulation [ð ��; �RÞ � ð0:36; 0:89Þ fm] [36], the
variational method [ð ��; �RÞ � ð0:35; 0:95Þ fm] [27], and
the phenomenological way [ð ��; �RÞ � ð1=3; 1Þ fm] [37].
Among them, we choose the phenomenological values
for our numerical calculation. Note that the value of M0

at T ¼ 0 is determined by reproducing various low-energy
constants with the instanton parameters [27]. For instance,
using M0 � 300 MeV, one obtains the pion weak-decay
constant F� � 93 MeV, which is very close to its empiri-
cal value, F� ¼ 93:2 MeV [38]. Employing these vacuum
values forM0, ��, and �R to reproduce the empirical value of
the chiral condensate h �qqi � �ð250 MeVÞ3 in the chiral
limit [27], we choose n ¼ 2 in Eq. (9). This choice gives
h �qqi � �ð239 MeVÞ3 from Eq. (12) in the finite current
quark-mass case, which is comparable to the empirical
value. Throughout the present work we will use n ¼ 2.

Taking into account all the ingredients discussed so far,
we arrive at the following concise expression for the shear
viscosity:

� ¼ NcNf

2�2T

Z
dk0d

3knFðk0Þ½nFðk0Þ � 1�
�F 2ð!; kÞk2x½2k2y þ k2 �M2

k�: (13)

B. Temperature dependencies of �� and �R

Here we explain briefly how to modify �� and �R as
functions of T. Details can be found in Ref. [31]. This
derivation uses the caloron distribution with trivial holon-
omy, i.e., the Harrington-Shepard caloron [29,30]. An
instanton distribution function for arbitrary Nc and Nf

can be written with a Gaussian suppression factor as a
function of T and an arbitrary instanton size � for pure
Yang-Mills theory [30],

dð�; TÞ ¼ CNc
�b

RS
̂
Nc|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

C

�b�5 exp ½�ðANc
T2 þ �
�n ��2Þ�2�:

(14)

We note that the CP-invariant vacuum was taken into
account in Eq. (14), and we assumed the same analytical
form of the distribution function for both the instanton and
anti-instanton. Note that the instanton number density
(packing fraction) N=V � n � 1= �R4 and �� have been

taken into account as functions of T implicitly. For
simplicity, we take the numbers of the anti-instanton and
instanton to be the same, i.e., NI ¼ N �I ¼ N. We also
assigned the constant factor on the right-hand side of
the above equation as C for simplicity. The abbreviated
notations are also given as


̂¼�b ln½�RS�cut�; �
¼�b ln½�RShRi�;

CNc
¼ 4:60e�1:68�RSNc

�2ðNc�2Þ!ðNc�1Þ! ; ANc
¼1

3

�
11

6
Nc�1

�
�2;

�¼27

4

�
Nc

N2
c�1

�
�2; b¼11Nc�2Nf

3
: (15)

Note that we defined the one-loop inverse charges 
̂ and �

at certain phenomenological cutoffs �cut and hRi � �R.�RS

denotes a scale depending on the renormalization scheme,
whereas V3 stands for the three-dimensional volume.
Using the instanton distribution function in Eq. (14), we
are able to compute the average value of the instanton size
��2 as follows [39]:

��2ðTÞ ¼
R
d��2dð�; TÞR
d�dð�; TÞ ¼ ½A2

Nc
T4 þ 4� �
�n�12 � ANc

T2

2 �
�n
;

(16)

where � ¼ ðb� 4Þ=2. It can be easily shown that Eq. (16)
satisfies the following asymptotic behavior [39]:

lim
T!0

��2ðTÞ ¼
ffiffiffiffiffiffiffiffiffiffi
�
�
�n

s
; lim

T!1 ��2ðTÞ ¼ �

ANc
T2

: (17)

Here, the second relation of Eq. (17) indicates a correct
scale-temperature behavior at high T, i.e., 1= �� � � / T.
Substituting Eq. (16) into Eq. (14), the caloron distribution
function can be evaluated further,

dð�; TÞ ¼ C�b�5 exp ½�F ðTÞ�2�;

F ðTÞ ¼ 1

2
ANc

T2 þ
�
1

4
A2
Nc
T4 þ � �
�n

�1
2
:

(18)

The instanton packing fraction n can be computed self-
consistently using the following equation:

n
1
�F ðTÞ ¼ ½C�ð�Þ�1�; (19)

where we replaced NT=V3 ! n, and �ð�Þ stands for the
Gamma function with an argument �. Note that C and �

can be determined by Eqs. (16) and (19) with the vacuum
values for n � ð200 MeVÞ4 and �� � ð600 MeVÞ�1: C �
9:81� 10�4 and �
 � 9:19. Finally, in order to estimate the
T dependence ofM0, one needs to consider the normalized
distribution function, defined as follows:

dNð�; TÞ ¼ dð�; TÞR
d�dð�; TÞ ¼

�b�5F �ðTÞ exp ½�F ðTÞ�2�
�ð�Þ :

(20)
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Here, the subscript N denotes the normalized distribution.
For brevity, we want to employ the large-Nc limit to
simplify the expression for dNð�; TÞ. In this limit,
dNð�; TÞ can be approximated as a 	 function,

lim
Nc!1dNð�; TÞ ¼ 	½�� ��ðTÞ�: (21)

The numerical result for ��ðTÞ is given in panel (a) in Fig. 1.
This result shows that the average (anti)instanton size
smoothly decreases with respect to temperature. It indi-
cates that the instanton ensemble becomes diluted and the
nonperturbative effects via the quark-instanton interactions
are diminished as T increases. At T ¼ ð150� 200Þ MeV,
which is close to the chiral phase-transition temperature,
the instanton size decreases by about ð10� 20Þ% in com-
parison to its value at T ¼ 0. Considering that the instanton
size corresponds to the scale parameter of the model, i.e.,
the UV cutoff mass, �� � 1=�, the temperature-dependent
cutoff mass is a clearly distinctive feature in comparison to
other low-energy effective models, such as the NJL model.
In addition, we also show the temperature dependence of
the average (anti)instanton number density or (anti)instan-
ton packing fraction, N=V, in panel (a) of Fig. 1. Similarly,
the instanton number density decreases as temperature
increases since the instanton ensemble is diluted. We will
use these two temperature-dependent quantities for com-
puting the shear viscosity in Eq. (13).

C. Temperature dependencies of the effective quark
mass M0 and the entropy density s

As in Ref. [31], the leading 1=Nc contribution of the
DLIM thermodynamic potential per volume at zero quark
chemical potential can be written as follows:

�LIM¼N

V

�
1� ln

N

VM

�
þ2�2

�2NcNf

Z 1

0

d3k

ð2�Þ3 ½Ekþ2T ln½1þe�
Ek
T ��; (22)

where  represents a Lagrange multiplier to exponentiate
the effective quark-instanton action and M stands for an
arbitrary mass parameter to make the argument for the
logarithm dimensionless. � stands for the isosinglet scalar
meson field corresponding to the effective quark mass. In
the large-Nc limit, we have the relation 2�2 ¼ N=V [31].
The gap equation can be derived from Eq. (22) by differ-
entiating �LIM by the Lagrange multiplier ,

@�LIM

@
¼ 0 ! Nf

�M0

N

V
� 2NcNf

�
Z 1

0

d3k

ð2�Þ3 F
4
k

M0

Ek

�
1� 2e�

Ek
T

1þ e�
Ek
T

�
¼ 0: (23)

Note that one can write the instanton packing fraction in
terms of the effective quark mass M0 and �� [27],

N

V
¼ C0NcM

2
0

�2 ��2
: (24)

The value of C0 is in (1=3� 1=4) for 1= �� � 600 MeV,
M0 � ð300� 400Þ MeV, and N=V � ð200� 260 MeVÞ4
for vacuum [40]. We choose C0 ¼ 0:27 to reproduceM0 ¼
ð340� 350Þ MeV at ðT;�Þ ¼ 0 in the chiral limit. The
numerical results for M0 as a function of T are given in
panel (b) of Fig. 1 for the zero and finite current quark
mass: m ¼ 0 (solid) and m ¼ 5 MeV (dotted). These re-
sults indicate the correct universal patterns for the phase-
transition pattern like those of the Ising model, i.e., the

FIG. 1 (color online). Average (anti)instanton size �� � 1=� ½fm� and (anti)instanton packing fraction ðN=VÞ1=4 ½GeV� as functions
of T, computed from the Harrington-Shepard caloron distribution [29,30] in panel (a). Effective quark mass at zero virtuality, M0

computed from Eq. (23) as functions of T for m ¼ 0 (solid) and m ¼ 5 MeV (dot), signaling the second-order and crossover chiral
phase transitions, respectively, in panel (b). The vertical lines indicate the chiral phase-transition temperatures T0 ¼ ð166; 170Þ MeV
for m ¼ ð0; 5Þ MeV.
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second-order chiral phase transition for the massless quark
and the crossover for the finite quark mass. Here we choose
the current quark mass to be about 5 MeV: mu � md �
m ¼ 5 MeV. From these numerical results, the transition
temperatures for the two cases are T0 � ð166; 170Þ MeV
for m ¼ ð0; 5Þ MeV. The transition temperatures are indi-
cated by the thin solid vertical lines in panel (b) of Fig. 1.
Since we are interested in the ratio of the shear viscosity
and the entropy density �=s, we derive the entropy density
s as follows:

s � � @�LIM

@T
: (25)

From the effective thermodynamic potential in Eq. (22),
we obtain the entropy density within the present model,

s � �
�
@

@T

N

V

��
1� ln

�
N

V�4

��

þ 4NcNf

Z d3k

ð2�Þ3
�
ln

�
1þ e�Ek=T

�
þ Ek

T
nFðEkÞ

�
:

(26)

In deriving Eq. (26), we assume that 2�2 � N=V and
M � �4 as in the leading 1=Nc, since � is only the scale
parameter of the present model. The logarithm term
ln ½� � �� in the first square bracket on the right-hand side
of Eq. (26) gives a small contribution to the entropy
density. As understood in panel (a) of Fig. 1, the (anti)
instanton number density N=V is a function of tempera-
ture, so that its derivative with respect to T in the first term
on the right-hand side of Eq. (26) is finite in general within
the present model. The detailed calculations for these
quantities will be given in a separate article [41].

D. Shear viscosity under a strong external
magnetic field

Here, we briefly discuss how to calculate the influence of
an external magnetic field field on the quark matter.
Following the Schwinger method, we apply the minimal
gauge substitution to the covariant derivative, i@� !
iD� ¼ i@� þ ieqA�. By doing this, the momentum-

dependent effective quark mass can be expanded in terms
of the electric charge of the quark, which gives us the
following expression for OðeqÞ [42]:

Mk ! Mk þ i

2
ð� � FÞ ~Mk;

~Mk ¼ � 32M0 ��
2

ð2þ ��2k2Þ5 ; for n ¼ 2:

(27)

For convenience, we choose the specific configuration for
the external magnetic field to be

B ¼ ðBx; By; BzÞ ¼ ð0; B0 sin �B; B0 cos �BÞ; (28)

where �B is an arbitrary angle. It has been verified that
choosing an arbitrary field configuration does not generate
any qualitative difference. Considering the fact that 1 G ¼
1:95� 10�14 MeV2 in the natural units and m2

� � 1018 G
in terms of the pion mass m� � 140 MeV, it is quite
convenient to employ the following parametrization for
the magnetic field: eB0 ¼ nBm

2
�. As for nB ¼ 1, the

strength of the magnetic field is comparable to that of the
magnetar. If nB becomes about (10� 100), it can be com-
pared to the strong magnetic field observed at the peripheral
heavy-ion collisions at Relativistic Heavy-Ion Collider [24].
Combining all these ingredients, we have a simple ex-

pression for the shear viscosity as a function of ðT; B0Þ up
to Oðe2qÞ,

�ðT; B0Þ ¼
X

q¼u;d

Nc

2�2T

Z
dk0d

3knFðk0Þ½nFðk0Þ � 1�

�F 2ðkÞk2x½2k2y þ k2 �M2
k þ 3ðeqB0Þ2 ~M2

k�;
(29)

where the summation runs over the light flavors u and d.
Corresponding electrical quark charges are ðeu; edÞ ¼
ðþ2=3;�1=3Þe, in which e denotes the unit electrical
charge e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4��EM

p
in the natural unit. Note that the

magnetic field effect comes only from 3ðeqB0Þ2 ~M2
k, which

is proportional to M2
0ðTÞ as shown in Eq. (27).

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present and discuss our numerical
results of the shear viscosity. In Fig. 2, the shear viscosity is
presented as a functions of T under the external magnetic
field B0 ¼ nBm

2
� in the chiral limit (a) and in the case of

finite current quark mass m ¼ 5 MeV (b). The thick and
thin lines indicate those with T-dependent parameters and
T-independent parameters, respectively. The vertical lines
shown in both panels denote the transition temperatures T0.
For TDP, the shear viscosity starts from zero and keeps

increasing as T increases, whereas it decreases beyond T0

for TIP. This observation suggests that the T dependencies
of the parameters of our model generate significant effects
on the shear viscosity. It is worth noting that similar
behavior was also observed in the NJL-model calculation
[11], although they considered a small quark chemical
potential � ¼ 10 MeV and they treated the finite width
for the quark spectral function as a free parameter. The
difference between the TDP and TIP cases can be ex-
plained as follows. A system with weaker interactions
between its constituents has a larger value of the shear
viscosity. In the TDP case, the interquark interactions
become weaker, indicated by the fact that the DLIM
parameters decrease as T increases. However, in the TIP
case, the interquark interactions remain strong enough
even when T goes beyond T0. This results in the decrease
of the shear viscosity with respect to T.
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Furthermore, the shear viscosity becomes smaller
under the strong magnetic field for both cases of m ¼
ð0; 5Þ MeV. This tendency can be explained by the en-
hancement of SB�S, in terms of the magnetic catalysis
[43]. In our theoretical framework, the magnetic field
contribution is proportional to ~M2

k / M2
0ðTÞ, as shown in

Eqs. (27) and (29). M0 is the order parameter of the chiral
restoration phase transition. Hence, the magnetic-field con-
tribution disappears beyond T0 in the chiral limit as shown
in panel (a) of Fig. 2, due to the nature of the second-order
chiral phase transition shown in panel (b) of Fig. 1. The
magnetic-field effect remains finite even beyond T0 in the

case of the finite current quark mass as in panel (b) of
Fig. 2. This is due to the crossover pattern of the chiral
restoration there. At very high temperatures such as T *
220 MeV, the magnetic-field effect almost vanishes even
in the finite current quark mass case. Near the transition
temperature T0 � 170 MeV, the shear viscosity becomes
approximately � � 0:02 GeV3 for all cases.
In the literature, the ratio of the shear viscosity and the

entropy density �=s has been considered as an important
physical quantity. Hence we also present our result for �=s
here. First, in the left panel of Fig. 3, we depict the entropy
density using Eq. (26) for TDP (solid) and TIP (dash).

FIG. 2 (color online). (a) Shear viscosities � in the chiral limit as functions of T for different strengths for the static external
magnetic field eB0 ¼ nBm

2
� for nB ¼ 0 (solid), 50 (dotted), and 100 (dashed) with the T-dependent parameters (TDP, thick) and

T-independent parameters (TIP, thin). (b) The same curves with m ¼ 5 MeV. The vertical lines indicate the chiral phase-transition
temperatures T0 ¼ ð166; 170Þ MeV for the (left, right) panels.

FIG. 3 (color online). (a) Entropy density s as a function of T for with the T-dependent parameters (TDP, thick) and T-independent
parameters (TIP, thin). (b) The ratio of the shear viscosity and entropy density �=s in the same manner with the left panel, with different
strengths of the external magnetic fields, nB ¼ ð0; 50; 100Þ, given in the (solid, dash, dot-dash) lines. We also show the theoretical results
from Meyer (LQCD) [21] (square), Iwasaki (NJL) [17] (circle), Sasaki (NJL) [19] (triangle), and Chen (�PT) [12] (diamond). The
parametrization of the TDP curve for nB ¼ 0 in Eq. (30) is also givenwith the solid nabla. Detailed explanations for these theoretical values
are given in the text. The vertical lines indicate the chiral phase-transition temperatures T0 ¼ 170 MeV for the (left, right) panels, while the
horizontal one in the right panel stands for the lower bound of the QGP shear viscosity, i.e., the KSS bound �=s ¼ 1=ð4�Þ � 0:08.
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Since we are interested only in the cases with the finite
current quark mass, we choose m ¼ 5 MeV, as mentioned
before. We find that the value of s is smoothly increasing
with respect to T for both cases. The result for TDP is
always larger than for TIP. This can be easily explained by
the fact that the first term on the right-hand side of Eq. (26)
becomes zero for the TIP case. Note that here we set the
external magnetic field to zero since we have verified that
the magnetic field contribution to the entropy density is
negligible.

In the right panel of Fig. 3, we have shown the numerical
results for the ratio �=s as functions of T for TDP (thick)
and TIP (thin), with different strengths of the magnetic
field. The present model scale is about � � 600 MeV
since it corresponds to the nonperturbative QCD region.
Therefore, we confine our discussion to a temperature not
much farther beyond the chiral transition, i.e., Tmax ¼
350 MeV. The magnetic field dependence of �=s comes
only from the numerator �. The horizontal and vertical
lines stand for the chiral transition temperature T0 ¼
170 MeV and the KSS-bound value �=s ¼ 1=ð4�Þ �
0:08, respectively. The curves of �=s of the TDP case
decrease smoothly and approach the KSS bound as T
increases. Those for the TIP case behave similarly but
decrease faster with respect to T. Note that the TIP curves
undershoot the KSS bound at T � 270 MeV. This implies
that it is necessary to take the temperature dependence of
the model parameters into consideration. The effect of the
magnetic field is sizable below the chiral transition, and
then becomes negligible beyond T0. Near the transition
point, we observe only a few percent changes in the ratio
�=s due to the magnetic field.

In the right panel of Fig. 3, the other theoretical
estimations for the ratio �=s are also presented for com-
parison. In Ref. [21], the Monte Carlo simulation of the
two-point correlations in the pure SU(3) gauge were been
employed to compute the ratio with the nonperturbatively
normalized operators. It gives�=s ¼ ð0:134; 0:102Þ at T ¼
ð1:65; 1:24ÞT0. This result is represented by the solid
square. The TDP curves are well compatible with their
value at T � 335 MeV, while the TIP curves undershoot
the value.

The effective models such as the NJL model have
also been used for estimating the ratio. In Ref. [17],
it was reported that �=s � ð1=4�� 0:9Þ at ðT;�Þ ¼
ð200; 10Þ MeV, depending on the finite width of the quark
spectral function. Averaging their values over the finite
width, we have �=s � 0:25, and this is represented by the
solid circle in the left panel of Fig. 3. It lies between the TDP
andTIP curves. In a previousworkwith the same theoretical
framework [11], the shear viscosity increases slowly with
the larger quark chemical potential. Hence the depicted
point in the right panel is supposed to be lowered at
� ¼ 0. Nevertheless, the change from �¼ð10!0ÞMeV
will not be substantial in the present discussion.

Employing the NJL model, Ref. [19] explored the trans-
port coefficients near the chiral phase transition. Their
result of the ratio �=s � 0:5 at T � 170 MeV. This value
is depicted in the right panel of Fig. 3 with the solid
triangle. It is comparable with the TIP curves but it is
larger than the TDP curves by about 50%. Note that the
temperature dependencies of the �=s curves in Ref. [19]
are similar to ours when T < T0. However, their curves
turn slightly upwards when T � T0 and are no longer
similar to our results. In Ref. [12] they computed �=s by
using �PT below the chiral transition temperature. They
estimated �=s as a decreasing function of T with a typical
value �=s ¼ 0:6 at T ¼ 120 MeV with 50% uncertainty.
We depict this value with the solid diamond with the error
bar in the right panel of Fig. 3. It matches with the TDP
curves well. There are other theoretical estimations for�=s
for the high-T (T * 450 MeV) regions from LQCD and
pQCD [13,14,44,45], and those results can not be repro-
duced in our model here. Their results are usually larger
than ours by (5� 10) times. It is because of this that our
model is essentially unapplicable at very high temperatures
since the instanton physics becomes irrelevant there.
Finally, we provide a simple parametrization of the ratio

�=s as a function of T. Since many theoretical approaches
for the QGP dynamics have used a T-independent �=s
value [1], this parametrization would help to construct
more realistic models of QGP. Taking into account that
the magnetic-field effects are negligible for T > T0 as
shown in the right panel of Fig. 3, we just parametrize
the numerical result for nB ¼ 0. Employing a simple ana-
lytic form, one is led to

�

s
¼ 0:27� 0:87

t
þ 1:19

t2
� 0:28

t3
;

T ¼ ð100� 350 MeVÞ;
(30)

where we use the notation t ¼ T=T0 with T0 ¼ 170 MeV.
In the right panel of Fig. 3, the values given according to
Eq. (15) are denoted by the solid nabla symbols.

IV. SUMMARYAND FUTURE PERSPECTIVES

In summary, we have employed the diluted instanton
liquid model and the Green-Kubo formula to investigate
the shear viscosity of the SU(2) light-flavor quark matter at
finite temperature under an external magnetic field. The
effect of an external magnetic field has been calculated by
the Schwinger method. Since the shear viscosity becomes
zero when the free quark spectral function is adopted, we
choose a quark spectral function with a finite width moti-
vated by the instanton model. We use the chiral condensate
value at zero temperature to determine the only free
parameter in this quark spectral function. The important
observations of our results are as follows.
(i) Our model is different from usual local-interaction

models because several parameters in our model, such
as the average instanton size and the inter-instanton
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distance, are subjected to temperature. Our treatment
of these parameters is corroborated by the fact that our
effective thermodynamic potential in the large-Nc

limit generates the correct chiral restoration patterns,
i.e., the second-order and the crossover phase transi-
tions for m ¼ 0 and m � 0, respectively.

(ii) We find that the external magnetic field reduces �
due to the magnetic catalysis, i.e., the quarks are
coupled more strongly in the presence of the mag-
netic field. This effect is sizable below the chiral
transition temperature T0 ¼ ð166; 170Þ MeV for
m ¼ ð0; 5Þ MeV. However, it becomes negligible
when the temperature goes beyond T0. We also
obtain a typical value for the shear viscosity near
T0, which is � ¼ 0:02 GeV3.

(iii) We observe that the T-dependent parameters, ��ðTÞ
and �RðTÞ, play an important role beyond T0, which
causes� to continue to increase. In contrast,� starts
to decrease after T0, if the T-independent parame-
ters are chosen. The ratio of the shear viscosity and
the entropy density, �=s, has been computed in the
finite current quark mass. It has been shown to
be a monotonically decreasing function of T ¼
ð100� 350Þ MeV. Furthermore, we find that �=s
undershoots the KSS bound, �=s ¼ 1=ð4�Þ, for
TIP. On the other hand, �=s approaches the KSS
bound for TDP. At T0 ¼ 170 MeV, we find a
typical value for the ratio of �=s ¼ 0:29 in our
present model.

(iv) Our numerical results of �=s for TDP are well
comparable with other theoretical estimations,
such as the NJL model, LQCD, and �PT for T ¼
ð100� 350Þ MeV. However, we fail to reproduce
the values from LQCD and pQCD at very high T.
This is not surprising since the present model is well
applicable for the low-energy regions only. We

also parametrize the numerical result of �=s in a
simple polynomial form as a function of t ¼ T=T0

for B ¼ 0.
Encouraged by our results obtained here—which agree

well with the empirical data—we would like to extend our
study to other QGP transport coefficients, such as the bulk
viscosity and the heat conductivity [46–48]. Moreover, it
would be interesting to take into account the external
electric field, which turns out to be considerably strong in
heavy-ion collisions. Thus, the external electric field may
cause considerable change in the transport coefficients. We
also note that if the inverse magnetic catalysis—shown in
the recent LQCD simulations at finite T [49–52]—is taken
into account the sea-quark contributions (as a backreaction
from the quarks to the non-Abelian gauge fields) in the
present conclusion about the decrease of the shear viscos-
ity in the presence of the magnetic field is likely to be
changed. To include this mechanism in our model is very
challenging and it is obviously out of the scope of this
article. The related works are in progress and will appear
elsewhere.
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APPENDIX

The quark spectral function is normalized as follows:

1

2�

Z 1

�1
�FWðw; kÞdw ¼

Z 1

�1
sgnðwÞðw�0 � �Þ

2
ffiffiffiffiffiffiffi
2�

p
E�

�
exp

�
�ðw� EÞ2

2�2

�
þ exp

�
�ðwþ EÞ2

2�2

��
dw

¼
Z 1

�1
sgnðwÞðw�0 � �Þ

2
ffiffiffiffiffiffiffi
2�

p
E�

�
exp

�
�ðw� EÞ2

2�2

�
þ exp

�
�ðwþ EÞ2

2�2

��
dw: (A1)

Replacing the integral variable as w	 E � w	, Eq. (A1) is led to

Z 1

�1

�
sgnðwþ � EÞ½ðwþ � EÞ�0 � ��

2
ffiffiffiffiffiffiffi
2�

p
E�

exp

�
� w2þ

2�2

�
þ sgnðw� þ EÞ½ðw� þ EÞ�0 � ��

2
ffiffiffiffiffiffiffi
2�

p
E�

exp

�
� w2�
2�2

��
dw

¼ sgnð�EÞð�E�0 � �Þ
2E

þ sgnðEÞðE�0 � �Þ
2E

¼ �ð�E�0 � �Þ
2E

þþðE�0 � �Þ
2E

¼ �0; (A2)

which satisfies the spectral-function normalization condition.
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