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We derive the evolution equations for a system of neutrinos interacting among themselves and with a

matter background, based upon the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy. This theoretical

framework gives an (unclosed) set of first-order coupled integro-differential equations governing the

evolution of the reduced density matrices. By employing the hierarchy, we first rederive the mean-field

evolution equations for the neutrino one-body density matrix associated with a system of neutrinos and

antineutrinos interacting with matter and with an anisotropic neutrino background. Then, we derive

extended evolution equations to determine neutrino flavor conversion beyond the commonly used mean-

field approximation. To this aim we include neutrino-antineutrino pairing correlations to the two-body

density matrix. The inclusion of these new contributions leads to an extended evolution equation for the

normal neutrino density and to an equation for the abnormal one involving the pairing mean field. We

discuss the possible impact of neutrino-antineutrino correlations on neutrino flavor conversion in the

astrophysical and cosmological environments, and possibly upon the supernova dynamics. Our results can

be easily generalized to an arbitrary number of neutrino families.
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I. INTRODUCTION

Oscillations between quantum states is a widespread
phenomenon, appearing in different physical contexts,
like the Rabi oscillations in optics, or the K0 � �K0 and
neutrino oscillations in particle physics. The propagation
in a medium can produce resonant conversion between
quantum states, such as when neutrinos change their flavor
while traveling in a star, or when photons modify their
polarization in a birefringent medium. The basic oscilla-
tion phenomenon can be modified sometimes in surprising
ways, if the interaction with a medium introduces com-
plexity. The study of how neutrinos change their flavor in
stellar environments and in the early universe has uncov-
ered numerous such examples. Complexity arises from the
nonlinear and the many-body character of the problem.

Neutrinos are elementary particles having nonzero mix-
ings, as first conjectured by Pontecorvo [1] and discovered
in 1998 by Super-Kamiokande [2]. Numerous experiments
have contributed to the measurement of the neutrino mix-
ing angles and squared-mass differences that shape the way
they change their flavor while traveling [3]. In particular,
precisely known are the neutrino mixing angles of the
Maki-Nakagawa-Sakata-Pontecorvo (MNSP) matrix that
relates the interaction (flavor) to the propagation (mass)

eigenstate basis [4], the squared-mass difference values
and one sign, while the other sign remains unknown (the
hierarchy problem). Addressing the question of the value
of the (Dirac or Majorana) CP violating phases is one of
the major future goals, jointly with the determination of the
neutrino absolute mass and of the neutrino (Dirac or
Majorana) nature [5].
Astrophysical and cosmological environments produce

copious amounts of neutrinos. Therefore, a precise knowl-
edge of neutrino flavor conversion in media is required, to
assess e.g. the neutrino impact on the supernova dynamics
and on (stellar or primordial) nucleosynthesis processes, to
interpret the signal associated with solar neutrinos, to pre-
dict the one produced by core-collapse supernovae, or to
understand how neutrinos change their flavor while travers-
ing the Earth. It is experimentally established that the origin
of the solar neutrino deficit is a resonant flavor conversion
induced by neutrinos interacting with matter. This is the
well-known Mikheev-Smirnov-Wolfenstein (MSW) effect
[6,7]. More precisely, the MSWeffect produces a deficit of
the high energy (8B) neutrinos, while averaged vacuum
oscillations account for the one of low energy (7Be, pp
and pep) �. While the MSW effect is the reference phe-
nomenon to understand how neutrinos change their flavor in
media, various other phenomena impacting flavor conver-
sion can occur, depending on the specific environment
under consideration. For example, Pantaleone first pointed
out the presence of a nonlinear refractive index due to the
neutrino interaction with other neutrinos whenever the
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neutrino number density is large [8]. This is relevant for
neutrino evolution in the early universe, in core-collapse
supernovae, and for low energy neutrinos produced in
accretion-disk black-hole scenarios. Indeed, simulations
implementing the neutrino-neutrino interaction show the
emergence of newphenomena as pointed out by Samuel [9],
that can be interpreted as the synchronization of effective
spins [10], a flavor [11] or gyroscopic pendulum [12], or a
magnetic resonance phenomenon [13] (see e.g. [14] for a
review). Features associatedwith the explosion dynamics of
a core-collapse supernova, such as the presence of shock-
waves and of turbulence, produce new interference phe-
nomena, likemultipleMSWresonances [15] and eventually
depolarization [16,17]. The spectral and location changes of
the supernova neutrino fluxes impact supernova observa-
tions and are currently being investigated. In the cosmo-
logical context, neutrino flavor conversion is also important
at the epoch of big bang nucleosynthesis (see e.g. [18,19]
for a review). Numerous works have investigated for ex-
ample the effects of mixings among active flavors [20–22],
with a possible nonzero leptonicCP violating phase [23,24]
or between active and sterile neutrinos [24–27] on the
primordial element abundance(s).

Numerous works have aimed at formulating theoreti-
cally the equations of motion that describe the evolution
of particles with mixings in a medium. The MSW effect is
usually accounted for, by using an effective Hamiltonian
that is linear in the weak coupling constant, and depends
upon the matter number density [5]. In [8] a generalization
of the neutrino evolution equations is made in a similar
way, to implement interaction of neutrinos with them-
selves. Pantaleone already emphasizes the complexity in-
herent with the nonlinearity and the many-body character
of the problem. Reference [9] has given a mean-field equa-
tion including such interaction terms. Reference [28] has
first derived evolution equations for neutrino density ma-
trices including a collision term. References [29,30] have
derived neutrino evolution equations beyond themean-field
approximation and including two-body collision termswith
the ‘‘molecular chaos’’ assumption that neglects the build-
ing up of correlations in the collision term. Such Boltzmann
equations are formulated in terms of matrices of neutrino
densities. Reference [31] has also derived the neutrino
Boltzmann evolution equation using first quantization, hav-
ing in mind the case of the early universe. Reference [32]
has generalized the equations of [30] to the three flavor case
(without the collision terms) and made the angular depen-
dence more explicit. Many-body aspects, and the possible
breakdown of the one-body description, have been dis-
cussed in Refs. [33–35], using the spin-spin analogy in
simplified models. Liouville equations for neutrino distri-
bution matrices are derived in [36]. An algebraic approach
to the neutrino propagation in media is given in [37] and the
evolution of the many-body problem is formulated as a
coherent-state path integral. This allows one, in particular,

to calculate corrections to the mean-field equations as a
determinant coming from the path integral [37]. The alge-
braic based formulation is further employed in [38], where
the neutrino Hamiltonian of the many-body system (with
mixings and the neutrino-neutrino contribution but without
the matter term) is put in connection with the (reduced)
Bardeen-Cooper-Schrieffer pairing Hamiltonian describ-
ing superconductivity. It is pointed out that the correspond-
ing constants of motion show the exact solvability of the
problem.
The present work formulates the problem of the neutrino

evolution, in terms of reduced density matrices, using the
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hier-
archy [39–42]. This replaces the Liouville Von-Neumann
equation for the many-body density matrix describing the
full many-body problem, by an (unclosed) set of coupled
integro-differential equations for the reduced density
matrices. Using this theoretical framework, we derive the
equations of motion for a system of neutrinos, traveling in a
mediummade of ordinary matter, and interacting with each
other. First we show that truncating the hierarchy at lowest
order produces the mean-field equations for the one-body
density matrix, commonly used in the literature, to imple-
ment the neutrino interaction with matter and with neutri-
nos. Next, we focus on the neutrino evolution description
beyond the mean-field approximation and include for the
first time neutrino-antineutrino pairing correlations to the
two-body density matrix. Such bilinear products have been
neglected so far, based upon the argument that their expec-
tation value over free states typically oscillate fast around
zero. However, since the neutrino evolution equations
are often nonlinear, it is worthwhile to investigate their
possible impact on neutrino flavor evolution in a medium.
We show that the inclusion of neutrino-antineutrino pairing
correlations leads to extended time-dependent mean-field
equations both for the normal and for an abnormal neutrino
density matrix. Finally we conclude by discussing the
possible implications of these contributions for neutrino
flavor conversion in the astrophysical and cosmological
environments.
The manuscript is organised as follows. Section II

presents the theoretical framework of the BBGKY hier-
archy, its lowest order truncation that furnishes the
mean-field approximation and the evolution equation for
the two-body correlation function. In Sec. III we rederive
the mean-field neutrino evolution equations including
both the coupling to matter (the MSW contribution) and
to neutrinos themselves (the �� interaction term). We dis-
cuss the relationship with the equations commonly used in
the literature. Section IV introduces the contribution from
� �� pairing correlations to the two-body correlation func-
tion. Our extended mean-field equations for the normal and
abnormal neutrino density matrices, involving the normal
and pairing mean fields, are presented. Section V includes a
discussion and our conclusions.
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II. THE THEORETICAL FRAMEWORK

A. The BBGKY hierarchy

In numerous contexts one is interested in determining
the dynamics of a system made up of N interacting
particles, such a gas of weakly interacting neutrinos, or
an ensemble of strongly interacting nucleons in a nucleus
or in a collision among nuclei. The Hamiltonian for such
a system of N-particles, interacting through a two-body
interaction, reads

Ĥ ¼X
k

Ĥ0ðkÞ þ
X
k<k0

V̂ðk; k0Þ (1)

comprising the one-body Ĥ0 kinetic and the two-body V̂
interaction terms. The k, k0 indices run over single-particle
quantum states, identified by single-particle properties like
momentum, flavor, helicity, isospin, etc. The system’s
evolution is determined by solving the Schrödinger equa-
tion for the many-body quantum state jc ðtÞi in case of a
pure state or, more generally, the Liouville Von-Neumann

equation for the many-body density matrix D̂:

i
dD̂

dt
¼ ½Ĥ; D̂�; (2)

with Ĥ given by Eq. (1) (here we take ℏ ¼ c ¼ 1). In the
BBGKY hierarchy1 theoretical framework [39–42], one
introduces the s-reduced density matrix �̂1...s defined as

�̂1...s ¼ N!

ðN � sÞ! trsþ1...ND̂; (3)

trsþ1 indicating that we are tracing over the sþ 1 particle,

and replaces Eq. (2) for D̂, by an unclosed equation
for �̂1...s:

i
d�1...s

dt
¼ ½HðsÞ; �1...s� þ trsþ1½Vð1...sÞ

sþ1 ; �1...sþ1�; (4)

where2

�1...s ¼ hays . . . ay1a1 . . .asi (5)

denotes the s-body density matrix components.3 The as
and ays correspond to the particle annihilation and creation
operators for a particle in the quantum state s, respectively.
In particular, the one-body and two-body matrix elements
components are

�1 ¼ hay1a1i; (6)

�12 ¼ hay2ay1a1a2i: (7)

In Eq. (4) HðsÞ is the Hamiltonian of the subsystem of s

interacting particles, while Vð1...sÞ
sþ1 ¼ P

kVðk; sþ 1Þ with

k ¼ 1 . . . s. This equation is unclosed since the �1...s evo-
lution is coupled to the one of the ðsþ 1Þ-reduced density
�1...sþ1, via the two-body interaction. The BBGKY hier-
archy (4) can easily be deduced by applying successive
traces to Eq. (2) and using the property

�1...s¼ 1

N�s
trsþ1�1...sþ1¼ N!

ðN�sÞ! trsþ1;...ND: (8)

More explicitly Eq. (4) can be written as a hierarchy of
equations of motion for the one-body �1 to the s-reduced
�1...s density matrix components4:

8>>>>>><
>>>>>>:

i _�1 ¼ ½H0ð1Þ; �1� þ tr2½Vð1; 2Þ; �12�
i _�12 ¼ ½H0ð1Þ þH0ð2Þ þ Vð1; 2Þ; �12� þ tr3½Vð1; 3Þ þ Vð2; 3Þ; �123�
..
.

i _�1...s ¼
hP

s
k¼1 H0ðkÞ þ

P
s
k0>k¼1

Vðk; k0Þ; �1...s

i
þP

s
k¼1 trsþ1½Vðk; sþ 1Þ; �1...sþ1�

: (9)

Solving Eq. (9) is completely equivalent to determining
the exact evolution for D̂ Eq. (2). The advantage of the
BBGKY framework is that it furnishes a hierarchy of
evolution equations for the reduced density matrices
of increasing order, so that one can test different approx-
imations, by going at a higher truncation level in the
hierarchy.

1. The mean-field approximation
for the evolution equations

Let us consider the first equation of the BBGKY
hierarchy:

i _�1 ¼ ½H0ð1Þ; �1� þ tr2½Vð1; 2Þ; �12�: (10)

One can separate the correlated from the uncorrelated5

contribution of the two-body density matrix6:
1See e.g. Ref. [43].
2Note that we do not write explicitly ‘‘hat’’ over the creation

and annihilation operators through the whole manuscript, not to
overburden the text.

3Note that we denote with �̂1...s the operators, while we
indicate the density matrix components with �1...s or �ð1 . . . sÞ.

4Note that from now on we will denote d=dt with a dot.

5We will also use ‘‘linked’’ and ‘‘unlinked’’ to denote the
correlated and uncorrelated contributions, respectively.

6Note that here �2 ¼ �1ð2Þ is the one-body density matrix
associated with particle 2.
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�12 ¼ �1�2 þ c12; (11)

where c12 is the two-body correlation function. If one deals
with identical fermionic particles the uncorrelated contri-
bution �1�2 has to be replaced by �1�2ð1� P12Þ, with P12

being the operator that exchanges particle 1 with particle 2,
to properly account for the antisymmetrization. Inserting
Eq. (11) in Eq. (10), one obtains

i _�1 ¼ ½H0ð1Þ; �1� þ tr2½Vð1; 2Þ; �1�2� þ tr2½Vð1; 2Þ; c12�:
(12)

Here, since no approximation is made, the dynamical
equation for the one-body density is exact.

Now, neglecting the correlated contribution to the two-
body correlation function, one gets

i _�1 ¼ ½H0ð1Þ; �1� þ tr2½Vð1; 2Þ; �1�2� (13)

or, equivalently,

i _�1 ¼ ½h1ð�Þ; �1� (14)

with h1ð�Þ ¼ H0ð1Þ þ �1ð�Þ and �1ð�Þ ¼ tr2ðVð1; 2Þ�2Þ
being the mean-field acting on particle 1. This is the
so-called mean-field approximation.

Writing such an equation more explicitly, it reads

i _�1;ij � ½H0ð1Þ þ �1ð�Þ; �1�ij ¼ 0 (15)

with

�1;ijð�Þ ¼
X
mn

vðim;jnÞ�2;nm: (16)

The mean-field potential is built up from a complete set
of one-body density matrix components for particle
2 �2;nm, each contributing with the matrix element7

vðim;jnÞ ¼ himjV12jjni, with jn (im) incoming (outgoing)

single-particle states. From Eq. (16) one can see the de-
pendence of our mean field on the one-body density asso-
ciated with particle 2, while in some cases the interaction
itself might also have an explicit dependence on �. To
solve Eq. (15) one has to assign the state of the many-
body system at initial time, which can be either a correlated
state or a product of independent single-particle states.
In the latter case, the condition inherent to Eq. (15), i.e.
c12 ¼ 0, ensures that it stays as such at any time.
It is worthwhile to mention that a first-order evolution

equation for the one-body density matrix associated with a

given D̂ can also be obtained by applying the Ehrenfest
theorem:

i _�1;ij ¼ h½ayj ai; Ĥ�i; (17)

with �1;ij ¼ hayj aii and Ĥ given by Eq. (1) (in second

quantization). In particular, Eq. (15) is recovered when
neglecting the correlated contribution to the two-body
density matrix [44].

2. Beyond the mean-field approximation

Our main goal will be to discuss contributions beyond
the mean-field approximation given by Eq. (14), to the
evolution equations for a system of relativistic neutrinos
that interact among themselves and with matter. To this
aim a useful reformulation of Eq. (9) is given by a hier-
archy of evolution equations for the correlation functions
(details of the demonstration can be found in Ref. [45]),
where only linked terms are shown to remain. Such a
reformulation has the advantage that higher-order contri-
butions are expected to decrease with increasing rank [45].
In this context, the mean-field equation (14) is unchanged;
while one gets for the two-body correlation function [45]

i _c12 ¼ ½h1ð�Þ þ h2ð�Þ; c12� þ ð1� �1Þð1� �2ÞVð1; 2Þ�1�2ð1� P12Þ � ð1� P12Þ�1�2Vð1; 2Þð1� �1Þð1� �2Þ
þ ð1� �1 � �2ÞVð1; 2Þc12 � c12Vð1; 2Þð1� �1 � �2Þ þ tr3½Vð1; 3Þ; ð1� P13Þ�1c23ð1� P12Þ�
þ tr3½Vð2; 3Þ; ð1� P23Þ�2c13ð1� P12Þ� (18)

with h1ð�Þ (h2ð�Þ) the mean fields acting on particles 1 (2),
respectively, and P13 (P23) is the operator that exchanges
particle 1 (2) with 3 [see Appendix A for an explicit
formulation of Eq. (18)]. Such an equation contains three
main contributions coming from two-body interactions.
Retaining the second and third term on the right-hand
side of Eq. (18), and making the molecular chaos assump-
tion that the buildup of correlations due to collisions is
negligible, one gets a collision term with incoming
and outgoing particles described by free particle states

(see e.g. [46]). Such a term gives rise to a Boltzmann
equation.8 The ð1� �1Þð1� �2Þ factor9 ensures the appro-
priate statistics (no contribution if the final single-particle
states are already occupied). The fourth and fifth terms on

7Note that in case of identical particles the matrix elements are
antisymmetrized, i.e. ~vðim;jnÞ ¼ himjV12jjni � himjV12jnji.

8Note that a Boltzmann equation for a system of neutrinos and
antineutrinos is derived in [29,30] and in [31]. Such evolution
equations include a collision term as required in the context of
the early universe. In core-collapse supernova simulations, full
transport equations for neutrinos (but without the inclusion of
mixings) are usually employed in the dense region where neu-
trinos are trapped (see e.g. [47–51]).

9This factor as well as the ð1� �1 � �2Þ one come from the
linked contribution of the trace term over the third particle.
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the right-hand side of Eq. (18) implement contributions
from the correlated part of the two-body correlation func-
tion. It is on this term that we will focus later on. In
particular we will consider cases involving both particles
and antiparticles. In such systems, one might have possible
contributions from the expectation values of the product
operators of the type akbl and a

y
k b

y
l . Such bilinear products

include particle-antiparticle correlations that can be seen as
correlations of the pairing type. These terms have been
neglected so far, based on the argument that their expec-
tation value (over free states) typically oscillate fast around
zero, hayð ~p; tÞbyð ~p0; tÞi (see e.g. [30,36]). Finally, the
three-body terms give the contribution from the two-body
interaction among three particles, obtained by tracing
over the third particle. We will neglect these higher order
correlations here. Since, in this work, we focus on the
inclusion of � �� contributions to c12, we will not consider
the collision and the three-body terms. Our evolution equa-
tion for the two-body correlation function is

i _c12 ¼ ½h1ð�Þ þ h2ð�Þ; c12� þ ð1� �1 � �2ÞVð1; 2Þc12
� c12Vð1; 2Þð1� �1 � �2Þ: (19)

B. The application to neutrinos

We are here mainly interested in discussing the neutrino
evolution and flavor conversion when neutrinos propagate
in an astrophysical environment, or in the early universe.
While the BBGKY hierarchy is generally employed for
systems of interacting particles without mixings, we here
consider that the density matrices in Eq. (4) are associated
with mixed particles. Note that a ‘‘matrix of densities,’’
generalizing the usual occupation numbers, is commonly
used in the literature (see e.g. [29,30]). More explicitly, in
the three flavors case the neutrino density matrix reads

�� ¼
hay��;i

a��;ii hay��;j
a��;ii hay��;k

a��;ii
hay��;i

a��;ji hay��;j
a��;ji hay��;k

a��;ji
hay��;i

a��;ki hay��;j
a��;ki hay��;k

a��;ki

0
BBBB@

1
CCCCA: (20)

The off-diagonal (or coherent) terms are nonzero to encode
the presence of neutrino mixings. The neutrino occupation
number for a given ��;i flavor state is given by the diagonal

element of the density matrix hay��;i
a��;ii, with N�� ¼P

ihay��;i
a��;ii the total occupation number. The definition

in Eq. (20) can easily be extended to the case of arbitrary
neutrino families, to account for the presence of both
sterile and active neutrinos.

Since the systems we are interested in involve both
particles and antiparticles, one introduces a density matrix
���, in a way analogous to Eq. (20), but replacing the
particle operators ay, a with the antiparticle by, b ones
[30]. For the sake of clarity concerning the convention used
in the present work, we give its explicit expression:

��� ¼
hby��;i

b��;ii hby��;jb��;ii hby��;k
b��;ii

hby��;i
b��;ji hby��;j

b��;ji hby��;k
b��;ji

hby��;i
b��;ki hby��;j

b��;ki hby��;k
b��;ki

0
BBBB@

1
CCCCA: (21)

To implement the antiparticle degrees of freedom, we
consider the usual expansion of the neutrino fields in the
Schrödinger picture

�ð ~xÞ ¼ X
h

Z d3 ~p

ð2�Þ32Ep

½að ~p; hÞu ~p;he
i ~p� ~x

þ byð ~p; hÞv ~p;he
�i ~p� ~x�: (22)

The summation is over the helicity h states, the integration
over the momenta ~p of the (anti)particles and u ~p;h (v ~p;h)

are the usual Dirac spinors, Ep being neutrino energy. Note

that in such an expression the particle creation and anni-
hilation operators are associated with states of a given mass
for which the usual anticommutation rules are properly
defined. In the present manuscript we employ10

fað ~p; hÞ; ayð ~p0; h0Þg ¼ ð2�Þ32Ep�
3ð ~p� ~p0Þ�hh0 (23)

and

fað ~p; hÞ; að ~p0; h0Þg ¼ 0: (24)

The single-particle states associated with neutrino mass
eigenstates are

jmi ¼ aymji (25)

with ji being the vacuum state defined by amji ¼ 0. The
flavor eigenstates are related to the mass eigenstates
through j��i ¼ P

iU
�
�ij�ii (i and � correspond to an

arbitrary number of neutrino families), where U is the
Maki-Nakagawa-Sakata-Pontecorvo unitary matrix. In
three flavors, the MNSP matrix depends upon three neu-
trino mixing angles that have been measured, one Dirac
and two Majorana unknown phases [3]. Since the appro-
priate anticommutation rules only hold for the mass
eigenstates operators, Eqs. (23) and (24) require special
attention (see e.g. Ref. [36] for a discussion). This subtlety
is sometimes avoided by writing the fields Eq. (22) for
massless neutrinos, as done e.g. in Ref. [30]. As discussed,
for example, in Refs. [36,52], it is not possible to rigor-
ously build up a Fock space for flavor states since the
neutrino flavor creation and annihilation operators do not
satisfy the canonical anticommutation rules Eqs. (23) and
(24). Indeed, as shown in Ref. [52], one can define
an approximate Fock space by introducing neutrino
‘‘weak-particle states’’ that depend upon the specific

10Similar relations hold for the antiparticle annihilation bð ~p; hÞ
and creation byð ~p0; h0Þ operators.
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weak process under consideration. However, in the limit of
relativistic neutrinos, the anticommutation relations (23)
and (24) also approximately hold for flavor states. Since
this is a good approximation for our cases of interest (solar
and supernova neutrinos, cosmological neutrinos at the
epoch of big bang nucleosynthesis), we make the assump-
tion that an approximate Fock space for our flavor states
can be built. It is worthwhile to mention that extending our
results without making this approximation does not intro-
duce extra conceptual difficulties. In much the same way
as done in Ref. [52] for the muon decay case, but in the
mean-fields expressions, one should retain an explicit
dependence on the mixing matrix elements in the calcu-
lation of the interaction matrix elements, depending on the
specific weak process under consideration.11

Finally, it is worthwhile to remind the reader that, while
the BBGKY theoretical framework is based upon the den-
sity matrix formalism, the evolution equations (9) can be
formulated as a hierarchy for many-body Greens’ func-
tions as done in Ref. [53]. In particular, in the equal time
limit, when only linked contributions are retained, these
two formalisms are completely equivalent. Note that while
historically BBGKY was developed to describe the evolu-
tion of nonrelativistic systems of N-particles, the hierarchy
also applies to a system of relativistic particles (as of
interest here). In this case Eqs. (9) are replaced by an
infinite set of equations.

III. NEUTRINOS EVOLVING IN A MEDIUM
IN THE MEAN-FIELD APPROXIMATION

We now take the example of neutrinos interacting with
the electrons, protons, and neutrons composing a medium
to show how the formalism presented in Sec. II can be used
to rigorously derive well-known neutrino evolution equa-
tions. We just sketch the main lines of the derivation.12 The
assumption that is usually made is that our system of
neutrinos interacting with a medium can be described at
lowest order as a system of independent particles, so that
implicitly the problem reduces to following the evolution
of a single-particle at a time and calculating the evolution
of the associated one-body density matrix.

Let us consider the BBGKY hierarchy truncated in
the mean-field approximation given by Eq. (14). The
Hamiltonian Eq. (1) for our case of interest in the flavor
basis reads

Hf ¼ UHmU
y þHint; (26)

where U is the MNSP unitary matrix relating the
neutrino flavor basis to the mass eigenstate basis (with

eigenenergies Ei). The first Hm ¼ diagðEiÞ contribution
is the propagation term, while the second one Hint corre-
sponds to the two-body interaction between a neutrino and
another particle.

A. The mean field associated with neutrino interaction
with matter (MSW case)

To follow the one-body density matrix evolution given
by Eq. (15), one needs to determine the mean field (16)
created by the background particles and acting on the
‘‘test’’ neutrino. The interaction term Hint corresponds to
the charged- or neutral-current Hamiltonian describing the
neutrino interaction with the medium.We take the example
of the charged-current interaction on electrons, where Hint

is given by13

HCC¼GFffiffiffi
2

p
Z
d3 ~x½ ��e�	ð1��5Þ��e

�½ ���e
�	ð1��5Þ�e�;

(27)

where GF is the Fermi coupling constant and with the
fields � given by Eq. (22). This requires calculating the
matrix elements for neutrino-electron scattering v�e;e

im;jn ¼
h�eiemjHCCj�ejeni with the interaction Hamiltonian (27).

One gets

��e
ð�eÞ ¼ GFffiffiffi

2
p X

he;h
0
e

Z d3 ~p

ð2�Þ32Ep

Z d3 ~p0

ð2�Þ32Ep0

� ð2�Þ3�3ð ~pþ ~k� ~p0 � ~k0Þ
� ½ �u�e

ð ~k; h�eÞ�	ð1� �5Þu�e
ð ~k0; h0�e

Þ�
� ½ �ueð ~p; heÞ�	ð1� �5Þueð ~p0; h0eÞ�
� haye ð ~p; hÞaeð ~p0; h0Þi: (28)

The summation over the m, n single-particle states in
Eq. (16) becomes here a sum over the electron helicity
states and an integration over momenta (Fig. 1).
The key quantity to define is the expectation value of the

aye ð ~p; hÞaeð ~p0; h0Þ operator, over the electron background14
characteristic of the considered medium15:

�e
~p0h0; ~ph � haye ð ~p; hÞaeð ~p0; h0Þi: (29)

The assumption of a homogeneous and unpolarized
medium corresponds to

11To implement this correction, one should keep in mind that
we deal with the process amplitudes, and not amplitude squares
as in [52].
12A different derivation of the mean-field equations accounting
for the neutrino interaction with a medium is given e.g. in [5].

13The effective low energy approximation is sufficient for
the applications envisaged.
14Here we make the assumption that the contributions from the
neutrino and the electron backgrounds can be factorized in D̂,
i.e. that modifications of the electron background coming from
the interaction with neutrinos can be neglected.
15Note that in this and in the following section, we denote the
single-particle density �1;kl as �kl to simplify notations. If a
particle is identified by helicity and momentum, then �kl reads
�e

~ph; ~p0h0 for an electron background, for example.
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�e
~p0h0; ~ph ¼ ð2�Þ32Ep�hh0�

3ð ~p� ~p0Þ�e
~p: (30)

Equation (29) constitutes, for example, a good approxima-
tion for the case of the Sun. Using Eqs. (29) and (30) the
total electron number is

Ne ¼ 2V
Z d3 ~p

ð2�Þ3 �
e
~p; (31)

where the factor of 2 comes from the summation over the
electron helicity states, and V is the quantization volume.
In Eq. (28), by tracing over the spinors, implementing that
neutrinos have only one possible helicity state, and assum-
ing the electron background is homogeneous, unpolarized,
and isotropic, one gets for the mean-field Eq. (16)

��e
ð�eÞ ¼ ð2�Þ32Ek�

3ð ~k� ~k0Þ ffiffiffi
2

p
GFne; (32)

where ne ¼ Ne=V is the electron number density. In
Eq. (32) the � function ensures that the momentum of
the neutrino propagating in the electron medium is un-
changed, as a consequence of homogeneity. The prefactor
ð2�Þ32Ek is present because of the chosen normalization of
the (anti)particle anticommutation relations Eqs. (23) and
(24). Our result (32) is the mean-field contribution to the
neutrino Hamiltonian, corresponding to neutrino inter-
action with matter, that is linear in the weak coupling
constant and depends upon the number densities of the
particles composing the medium. We find the well-known
low energy effective Hamiltonian (see e.g. [5]) that can
give rise, if neutrinos propagate adiabatically in a medium,
to a resonant16 flavor conversion—the Mikheev-Smirnov-
Wolfenstein effect [6,7].

The procedure just outlined can be applied to the
neutral-current �e scattering on electrons, to the charged-
and neutral-current ��e scattering on electrons, of �e or ��e

on positrons, as well as neutral-current scattering on
protons and neutrons, giving the expected results. In par-
ticular, it is immediate to show that, when dealing with

antiparticles, the associated mean-field � depends upon
matrix elements that involve the by and b operators
(instead of the particle operators), introducing a minus
sign. For example, for the case of ��e evolving in an
electron background, one obtains the expected result

���e
ð�eÞ ¼ �ð2�Þ32Ek�

3ð ~k� ~k0Þ ffiffiffi
2

p
GFne: (33)

B. The mean field associated with
neutrino self-interactions

The second case we are going to consider, in the mean-
field approximation, is when the (anti)neutrino is evolving
in a background of � and ��. This case is of interest since
recent studies have shown the important role of the
neutrino-neutrino interaction, for instance, in a core-
collapse supernova, and the variety of new flavor conver-
sion phenomena that can arise, when implementing this
contribution in the neutrino Hamiltonian (see e.g. [14]
for a review). A series of works have discussed the
neutrino evolution equation in presence of such terms
[8,9,30–32,37,38,54]. Note that the role of such terms
was first pointed out in the context of the early universe
[55]. Here we just sketch the derivation of these equations,
following the same procedure as for the MSW case (more
details are given in Appendix B).
The neutrino-neutrino mean field depends this time on

the effective low energy neutral-current Hamiltonian:

HNC¼ GF

2
ffiffiffi
2

p
Z
d3 ~x½ ���e

�	ð1��5Þ��e
�½ ���y

�	ð1��5Þ��y
�;

(34)

with �y ¼ �e, �	 or �
. From Eq. (16) one gets for the

mean field ���;��ð��Þ with ��; �� ¼ �e; �	; �
 (or the

corresponding antineutrinos)

���;��ð��Þ ¼ GF

2
ffiffiffi
2

p
Z d3 ~p

ð2�Þ32Ep

Z d3 ~p0

ð2�Þ32Ep0

� ð2�Þ3�3ð ~pþ ~k� ~p0 � ~k0Þ
� ½ �u��

ð ~k; h�Þ�	ð1� �5Þu��
ð ~k0; h0�Þ�

� ½ �u��
ð ~p; h�Þ�	ð1� �5Þu��

ð ~p0; h0�Þ�
� hay��

ð ~p; h�Þa��
ð ~p0; h0�Þi (35)

and requiring the expectation value

�
��;��

~p0h0; ~ph � hay��
ð ~p; h�Þa��

ð ~p0; h0�Þi (36)

corresponding to a homogeneous and unpolarized system

�
��;��
~p0h0; ~ph ¼ ð2�Þ32Ep�hh0�

3ð ~p� ~p0Þ���;��
~p : (37)

The key difference with the case of the electron back-

ground is that the quantity �
��;��
~p0h0; ~ph has diagonal and

FIG. 1. Neutrino interaction with electrons and the corre-
sponding mean-field associated with the electron background.
In the evolution equations, the mean field acting on a single
neutrino state is build up from the summation of the electron
single-particle states [see Eqs. (16), (28), and (32)].

16The occurrence of such a resonant phenomenon depends
upon neutrino properties (energies, mixing angles, squared-
mass differences value, and sign) and the specific matter number
density profile for the system under consideration.
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off-diagonal terms (Fig. 2). As a consequence the mean
field acting on a �e, for example, has both diagonal
���;��ð��Þ and off-diagonal ���;��ð��Þ contributions. One
recognizes in the mean-field contributions that the diagonal
one is associated with forward scattering without flavor
exchange, while the off-diagonal contribution is associated
with forward scattering ‘‘with flavor exchange’’ (the
Pantaleone diagram [8]). We emphasize that in our deriva-
tion we do not directly start with an effective Hamiltonian
having these terms, as done e.g. in Ref. [37]. Here these
contributions naturally arise when considering the weak
interaction term, using the density matrix Eq. (20) and
calculating � (or, in other words, closing the loop). By
implementing that neutrinos have one helicity state only,
tracing over the spinors, in case the neutrino background
is homogeneous and anisotropic, one gets for the off-
diagonal contribution the following expression:

���;��ð��Þ ¼ ð2�Þ32Ek�
3ð ~k� ~k0Þ ffiffiffi

2
p

GF

�
Z d3 ~p

ð2�Þ3 �
��;��
~p ð1� ~̂p � ~̂kÞ (38)

with ~̂p ¼ ~p=j ~pj and ~̂k ¼ ~k=j ~kj. A similar expression holds
for the diagonal one if �� ¼ ��, except for an extra factor

of 2. In the case of an isotropic medium the angular term

cos� ~k ~p ¼ ~̂k � ~̂p averages out, and one recovers the same

result as Eq. (32). If the background includes antineutrinos
as well, one needs to add the contribution from ���, but with

a minus sign. By adding up the two contributions the total
neutrino-neutrino mean field reads17

�ð��; ���Þ¼ ð2�Þ32Ek�
3ð ~k� ~k0Þ ffiffiffi

2
p

GF

�X
��

Z d3 ~p

ð2�Þ3 ð���; ~p� ���
��; ~p

Þð1� ~̂p � ~̂kÞ; (39)

where here ���; ~p ( ���
��; ~p

) stands for the density matrix

Eq. (20) [Eq. (21)], and�� refers to a neutrino that is initially

born in the� flavor. In fact, one has to sum over all neutrino
flavors present in the system. Note that in Eq. (39) the trace
term, trð���; ~p � ���

��; ~p
Þ, has been subtracted.

C. Neutrino evolution equations in
the mean-field approximation

With the results of Eqs. (32) and (39), the mean-field
Eqs. (15) and (16) for the density matrix (20) describing
the neutrino evolution in a medium becomes explicitly

i _� ¼ ½hð�Þ; �� (40)

with

hð�Þ¼UHmU
yþHmat

þ ffiffiffi
2

p
GF

X
��

Z d3 ~p

ð2�Þ3 ð���;p� ���
��;p

Þð1� ~̂p � ~̂kÞ; (41)

where Hmat ¼ diagð ffiffiffi
2

p
GFne; 0; 0Þ. A similar equation

holds if an antineutrino is traveling instead of a neutrino:

i _�� ¼ ½ �hð ��Þ; ��� (42)

with18

�hð ��Þ¼U�HmU
T�Hmat

� ffiffiffi
2

p
GF

X
��

Z d3 ~p

ð2�Þ3 ð�
�
��;p� ����;p

Þð1� ~̂p � ~̂kÞ: (43)

Note that in Eqs. (40)–(43) � and �� have two indices in
flavor, but only one in momentum as a consequence of
homogeneity. In case the quantum state at initial time is an
independent particle state, the one-body density matrices
(20) and (21) can be replaced by single-particle one-body
densities. In the neutrino case, the diagonal elements �i

directly give the neutrino survival probabilities j�ij2 �i

being the neutrino amplitude for flavor i, while the
off-diagonal ones �ij are the mixing terms �i�j

FIG. 2. The figure shows, in a pictorial way, the interaction
terms and the corresponding mean fields Eq. (38) associated with
the neutrino-neutrino interaction. The mean field acting on a
single neutrino state is build up from the summation of the
single-particle states that make up the background. The two
contributions correspond to the diagonal part of the mean-field
���;��

, arising from the usual scattering terms (upper figures),

and the off-diagonal part ���;��
Eq. (36) (lower figures) asso-

ciated with Pantaleone off-diagonal refractive index. The diago-
nal contribution to the mean-field ���;��

has an extra term

coming from neutrinos of the same flavor � running in the
loop. Both the diagonal and the off-diagonal mean field receives
similar contributions from antineutrinos, instead of neutrinos, in
the loop Eq. (39).

17Note that the contribution coming for the antineutrino density

matrix is ��� if one employs the definition ��ij ¼ hbyj bii (see

Appendix B). If one defines such a quantity as ��ij ¼ hbyi bji
then the contribution appearing in the evolution equations de-
pends upon ��, instead of ���.
18Note that, according to our definition for �� Eq. (21), anti-
neutrinos do not transform the same way as neutrinos under U.
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(and similarly for antineutrinos). We conclude here by
emphasizing that the evolution equations (40)–(43) we
find are in agreement with those of Refs. [30,37,54], com-
monly used in the investigation of solar, of supernova
neutrinos, and of the low energy neutrinos in accretion-
disks black-hole scenarios.

IV. NEUTRINO-ANTINEUTRINO
PAIRING CORRELATIONS

A. The extended neutrino dynamical equations

Our main goal is to obtain the evolution equations,
beyond the mean-field approximation, for a system of
neutrinos and antineutrinos evolving in an environment,
taking into account possible � �� pairing correlations. The
latter correspond to the following linked contribution to the
two-body density matrix Eq. (11):

c��;�0�0 � hay
�0b

y
�0 ihb�a�i ¼ ��

�0�0���; (44)

where the quantities ��� and ��
�0�0 are called the abnormal

densities. Imposing that the pair products conserve
individual lepton numbers, only products of operators
associated with the same flavor, such as a��

b��
, and the

corresponding Hermitian conjugates, are admitted. Since
neutrinos have mixings, one can have contributions from
products involving neutrino-antineutrino pairs with differ-
ent flavors. More generally, e.g. if the total lepton number
is not conserved, one could have correlations associated
with the pair product operators like a��a��

(and similarly

for antineutrinos). We note that the expectation values19

hayai, hbybi, hbai, and haybyi naturally appear as
components of the field correlation function h� ��i.
So far, neutrino-antineutrino correlations have been

neglected20 (see e.g. Refs. [29,30,36]). For example, in
the formulation of Ref. [36], they correspond to the
rapidly oscillating cross terms between the positive-
and negative-frequency parts of the quantum density
function i�lm

ij ¼ hN�l
iðyÞ ��m

j ðzÞi, where the �ðyÞ and

��ðzÞ are the neutrino and antineutrino quantum field
operators.
Two perspectives are possible to investigate the impact

of the neutrino-antineutrino correlations on the neutrino
evolution. The first is to assume that such correlations are
nonzero at initial time, e.g. at the neutrino sphere in a
supernova, from previous interactions among neutrinos in
the dense supernova region, where they are trapped. The
second possibility is to study whether such terms can be
dynamically produced through the interactions. However
this is more demanding, since one has to retain the collision
term in the two-body correlation function Eq. (18) as well.
In this manuscript we adopt the first perspective. We
will see below that, according to our extended evolution
equations if their contribution is zero at initial time it is
zero at all times. Therefore, in this case, the mean-field
approximation given by Eqs. (40)–(43) is correct [if for the
considered system, the collision term can also be neglected
in Eq. (18)]. This is the approximation that is usually
implicitly made.
Let us now discuss how the neutrino evolution

Eqs. (40)–(43) have to be extended to implement pairing
correlations between � and ��. In this case, the evolution of
the system is determined by using the first two equations of
the BBGKY hierarchy Eq. (9). By substituting Eq. (44) in
Eq. (19) one obtains the evolution equation for the abnor-
mal density (and its complex conjugate), while from the
first equation of the BBGKY hierarchy and Eq. (11), we
obtain the evolution equation for the normal density. We
finally get the extended evolution equations:

8>>>>><
>>>>>:

i _�ijð1Þ ¼ ½hð1Þ; �ð1Þ�ij þP
m
ð�im�

�
jm � �im�

�
jmÞ

i _��klð2Þ ¼ ½ �hð2Þ; ��ð2Þ�kl þ
P
m
ð�mk�

�
ml � �mk�

�
mlÞ

i _�ik ¼ P
m
ðhimð1Þ�mk þ hkmð2Þ�imÞ þ �ik �

P
m
ð�imð1Þ�mk þ ��kmð2Þ�imÞ

; (45)

where here the indices i, j stand for ��, ��; k, l for ���, ���

with�,� that vary over the different electron, muon, and tau
flavor states. For the sake of clarity, in Eqs. (45) we show
explicitly the dependence on particle 1 and particle 2 of the
quantities. Obviously, in our extended equations one has to
determine the evolution of the normal density associated with
a neutrino (particle 1) and an antineutrino (particle 2) to
determine the neutrino-antineutrino pair evolution in � and
��.We emphasize that the newevolutionEqs. (45) can also be
derived by using the Ehrenfest theorem and determining the
first-order evolution equations for the abnormal density:

i _�ik ¼ h½bkai; Ĥ�i (46)

and for the normal one using Eq. (17).

19Note that the spinor products are not usually modified in our
cases of interest.
20Note that, in the context of baryogenesis via leptogenesis, the
authors of Ref. [56] have emphasized the role of neutrino-
antineutrino correlations, in a quantum field theory approach,
including the Boltzmann collision term but within a simplified
neutrino model. An extension of the mean-field Eqs. (40)–(43)
including neutrino-antineutrino mixings is considered in
Ref. [57] in presence of nonzero transition magnetic moments
and in Ref. [58] due to the neutrino interaction with scalars.
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The expression for the abnormal mean field is

�ik ¼
X
jl

vðik;jlÞ�jl (47)

and of its complex conjugate

��
ik ¼

X
jl

vðjl;ikÞ��
jl: (48)

One can see that such expressions are analogous to the one
for the mean-field � Eq. (16), but with the abnormal
density � replacing the normal density �, and by summing
over the initial (or final) single-particle states instead of
over a final and initial single-particle state.

We note that Eqs. (45) can be cast in an elegant and
compact matrix form:

i _R ¼ ½H ;R�; (49)

where we have introduced the generalized density R,

R ¼ � �

�y 1� ���

 !
(50)

that depends upon both the normal densities for the neu-
trinos and the antineutrinos and the abnormal density. The
generalized Hamiltonian H governing the evolution is
given by

H ¼ h �

�y � �h�

 !
: (51)

It comprises the mean-field Hamiltonians for the neutrinos
and the antineutrinos, as well as the abnormal mean
field.

B. The abnormal mean field

Let us now compute the expression of the abnormal
mean-field �. First, the expression for the mean-field h
( �h�) acting on a neutrino (antineutrino) is given by
Eqs. (41) and (43). To derive an explicit expression for �
Eq. (47) and �� Eq. (48), one needs to calculate the matrix
element vðij;klÞ associated with the neutral-current inter-

action of a neutrino with an antineutrino. One obtains the
following expression for the off-diagonal components of
the abnormal field (see Fig. 3):

��
��; ���

ð��
�Þ ¼ � GF

2
ffiffiffi
2

p
Z d3 ~p

ð2�Þ32Ep

Z d3 ~k

ð2�Þ32Ek

� ð2�Þ3�3ð ~pþ ~k� ~p0 � ~k0Þ
� ½ �u��

ð ~k; h�Þ�	ð1� �5Þu��
ð ~k0; h0�Þ�

� ½ �v��
ð ~p0; h0�Þ�	ð1� �5Þv��

ð ~p; h�Þ�
� hay��

ð ~k; h�Þby��
ð ~p; h�Þi: (52)

The explicit expression of the abnormal field Eq. (52)
depends on the properties of the background:

�
�� ����
~kh�; ~ph�

¼ hay��
ð ~k; h�Þby��

ð ~p; h�Þi: (53)

Different assumptions can be made on the expectation

value of the correlator ay��
ð ~k; h�Þby��

ð ~p; h�Þ and its com-

plex conjugate. In order to remain as general as possible,
various options are considered in the following. We give
the results for ��

��; ���
while similar expressions hold for

���; ���
as well as for the diagonal contributions of the

abnormal mean-field ���; ���
and its complex conjugate

��
��; ���

(only the final results are presented here, while

more details on their derivation can be found in
Appendix C). In particular, for the calculation of the latter,
two contributions need to be added:

��
��;i; ���;j

ð��
�Þ ¼ 2�

�ðeqÞ
��;i; ���;j

ð��
�Þ þ �

�ðuneqÞ
��;i; ���;j

ð��
�Þ (54)

¼X
k;l

h
2v�;�

ðkl;ijÞ�
�
��;k; ���;l

þv�;�
ðkl;ijÞ�

�
��;k; ���;l

i
(55)

as can be seen from Eq. (48). The first contribution��ðeqÞ
��;i; ���;j

comes from the two amplitudes for the process of neutrino-
antineutrino scattering and annihilation for equal flavors
(see Fig. 3) that summed give a factor of 2 times an
expression similar to the one shown in Eq. (52):

FIG. 3. The figure shows, in a pictorial way, the interaction of
a neutrino with an antineutrino and the corresponding abnormal
mean-field �� Eq. (48) which is build up from the sum of single-
particle neutrino-antineutrino states. Its expression is analogous
to the one of the normal mean field by replacing the normal
density by the abnormal one � and by summing over the final
(initial in �) states. The contributions shown correspond to the
diagonal component ��

��; ���
Eq. (56) (upper figures), and to the

off-diagonal one ��
��; ���

Eq. (52) (lower figures). Note that

the diagonal abnormal mean field also receives a contribution
from a term where neutrinos of the same flavor � run in the loop.
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�
�ðeqÞ
��; ���

ð��
�Þ ¼ � GF

2
ffiffiffi
2

p
Z d3 ~p

ð2�Þ32Ep

Z d3 ~k

ð2�Þ32Ek

� ð2�Þ3�3ð ~pþ ~k� ~p0 � ~k0Þ
� ½ �u��

ð ~k; h�Þ�	ð1� �5Þu��
ð ~k0; h0�Þ�

� ½ �v��ð ~p0; h0�Þ�	ð1� �5Þv��
ð ~p; h�Þ�

� hay��
ð ~p; h�Þby��

ð ~p; h�Þi: (56)

The second contribution to �
�ðuneqÞ
��; ���

comes from different

flavors than � running in the loop (Fig. 3). Let us now
perform an explicit calculation of the pairing mean field,
depending on the background properties.

The requirement that the background through which
neutrinos are traveling is homogeneous, is fulfilled, if we
impose that the neutrino and the antineutrino have opposite
momentum in the expectation values of the neutrino-
antineutrino pair operators. This corresponds to

�
�� ����
~k; ~p

¼ ð2�Þ32Ek�
3ð ~pþ ~kÞ��� ����

~p (57)

and we take h� ¼ �1 and h� ¼ þ1. Note that the

quantities �
�� ����
~p (or ��� ����

~p ) are related to the neutrino-

antineutrino pair number density

~��� ���� ¼
Z d3 ~p

ð2�Þ3 �
�� ����
~p (58)

in a way analogous e.g. to the electron number densities
[see Eq. (31)]. From Eq. (52), by employing the procedure
discussed in Secs. III A and III B for the normal fields, one
obtains that the abnormal mean field in spherical coordi-
nates reads

��
��; ���

ð��
�Þ¼�Nð ~k0; ~p0Þ ffiffiffi

2
p

GF

�
Z d�dpd�

ð2�Þ3 ½ð1þcos�cos�0Þcosð�0 ��Þ
þ iðcos�þcos�0Þsinð�0 ��Þ
þsin�sin�0�sin�p2�

�� ����
~p (59)

with Nð ~k0; ~p0Þ ¼ ð2�Þ32Ek0�
3ð ~p0 þ ~k0Þ. Note that in case

there is cylindrical symmetry only the last term remains:

���; ���
ð��

�Þ ¼ �Nð ~k0; ~p0Þ ffiffiffi
2

p
GF

�
Z d cos �dp

ð2�Þ2 sin � sin �0p2�
�� ����
~p : (60)

The expression Eq. (59) gives in Cartesian coordinates is

��
��; ���

ð��
�Þ¼�Nð ~k0; ~p0Þ ffiffiffi

2
p

GF

Z d3 ~p

ð2�Þ3

� ½dRð ~p; ~p0Þþ idIð ~p; ~p0Þ�
j ~pjj ~p0j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
xþp2

y

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02
x þp02

y

q �
�� ����
~p (61)

with

dRð ~p; ~p0Þ ¼ ðj ~pjj ~p0j þ pzp
0
zÞðpxp

0
x þ pyp

0
yÞ

þ ðp2
x þ p2

yÞðp02
x þ p02

y Þ (62)

and

dIð ~p; ~p0Þ ¼ ðpzj ~p0j þ pz0 j ~pjÞðp0
ypx � pxp

0
yÞ: (63)

So far we have neglected the neutrino masses so that �
and �� have definite helicities. Let us now consider the case
that e.g. h� ¼ h� ¼ þ1 or �1:

�
�� ����
~k; ~p

¼ ð2�Þ32Ek�h�;h��
3ð ~pþ ~kÞ��� ����

p : (64)

While such a contribution is possible, we expect the cor-
responding abnormal field to be suppressed by a factor
ðm=EÞ2, E being the neutrino energy. For this specific
derivation, since one is sensitive to the neutrino masses,
the calculation has to be performed by working in the
neutrino mass eigenstate basis. Following this procedure,
one finds

��
�i0 ; ��j0 ð��

�Þ¼ ð2�Þ32
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei0
k0E

j0
p0

r
�3ð ~p0þ ~k0Þ GF

2
ffiffiffi
2

p

�
Z d3 ~k

ð2�Þ3
mi0mi

Ei0
k0E

i
k

eið�0��Þð1�cos� ~̂k ~̂k
0 Þ��i ��j�

~k
;

(65)

where here the notation Ei0
k0 indicates the energy of a

neutrino with mass mi0 and momentum k0.

C. The three-flavor neutrino case

We conclude by giving the expressions of the extended
dynamical equations for three neutrino flavors. In this case
the abnormal density is defined as

�� ¼
hb�e

a�e
i hb�	

a�e
i hb�


a�e
i

hb�e
a�	

i hb�	
a�	

i hb�

a�	

i
hb�e

a�

i hb�	

a�

i hb�


a�

i

0
BBB@

1
CCCA (66)

and its complex conjugate as

��
� ¼

hay�e
by�e

i hay�e
by�	

i hay�e
by�


i
hay�	

by�e
i hay�	

by�	
i hay�	

by�

i

hay�

by�e

i hay�

by�	

i hay�

by�


i

0
BBB@

1
CCCA: (67)

Equation (45) gives the following set of equations21:

21Note that here the quantities depend upon only one momen-
tum index.
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8>>>>>>>>><
>>>>>>>>>:

i _�����
¼ ½h; ������ þ

P
i
½���; ��i�

�
��; ��i

� ���; ��i
��

��; ��i
�

i _������
¼ ½ �h; ������� þ

P
i
½��i; ���

��
�i; ���

� ��i; ���
��

�i; ���
�

i _��� ���
¼ P

i
h���i

��i ���
þ h ����i

����i
þ ���; ��� �

P
i
½��i; ���

��;�i
þ ���;�i ����;�i

�
i _��

�� ���
¼ P

i
h����i

��
�i ���

þ h�����i
��
���i

þ ��
��; ���

�P
i
½��

�i; ���
��
�;�i

þ ��
��;�i ��

�
��;�i

�

; (68)

where the indices �, �, i ¼ e, 	, 
, h ( �h) is given by
Eq. (41) [Eq. (43)] for neutrinos (antineutrinos), while the
�� and ��

� are given by Eqs. (66) and (67).
In order to determine the neutrino flavor evolution, one

needs to assign initial conditions for the normal and
abnormal densities, i.e. �0 ¼ �ðt ¼ 0Þ, ��0 ¼ ��ðt ¼ 0Þ,
and �0 ¼ �ðt ¼ 0Þ for the extended mean-field Eq. (49)
with (50) and (51). In the case of core-collapse supernova
neutrinos, such an assignment could be done by extracting
the relevant information from realistic simulations of the
dense region where neutrinos are trapped that would
include the relevant correlations. Otherwise, a guess
that one can make is to assume that the system is approxi-
mately described at initial time by a ‘‘stationary state’’
of the extended mean-field Hamiltonian Eq. (51); while
the system is driven out of such a solution at later
times [59].

Finally, we would like to point out that, in the applica-
tion of our equations to the case of supernova neutrinos, the
conditions Eqs. (57) and (64) cannot be met, strictly speak-
ing. In fact, in the region outside the neutrinosphere, where
the density becomes low enough, all neutrinos and anti-
neutrinos start free streaming. However, in the region just
before the neutrinosphere and at its boundary the presence
of collisions might produce nonzero neutrino-antineutrino
correlations as we consider here. It is this intermediate
region, that we are interested in, where one goes from the
regime where neutrinos are trapped requiring a Boltzmann
treatment, and the one where only forward scattering
becomes relevant and the mean-field approximation given
by Eqs. (40)–(43) constitutes a good approximation. The
presence of �� �� correlations in this transition region
might indeed play a role from the point of view of the
supernova dynamics, or eventually modify neutrino flavor
conversion when neutrinos start free streaming.

V. DISCUSSION AND CONCLUSIONS

In the present work, we have derived the neutrino evo-
lution equations in a medium composed of matter and
eventually of neutrinos, having in mind environments
that produce copious neutrino amounts such as the Sun,
core-collapse supernovae, accretion disks around black
holes, or the early universe. In particular, observations
of such neutrinos require a precise understanding of the
corresponding neutrino number fluxes and spectra, their
modifications through such media, and their specific

signatures both in solar and supernova neutrino detectors,
as well as on stellar, or primordial, nucleosynthesis
abundances.
In the astrophysical environments the neutrino flavor

evolution is essentially treated in the mean-field approxi-
mation. While this is a good description in the case of solar
neutrinos, the investigation of neutrino flavor evolution in
core-collapse supernovae might require going beyond. For
example, in the transition between the dense region where
neutrinos are trapped, and the neutrinosphere where they
start free streaming, many-body correlations might have
sizeable effects and impact flavor conversion. The physical
argument to support the mean-field assumption is that the
MSW resonances occur in the outer layers of the star,
because of the large neutrino mass-squared differences,
and that the MSW effect is well accounted for in the
mean-field approximation. However, this picture—well
separating the region where flavor conversion occurs and
the very dense one where the mean-free path characterizes
neutrino propagation—has been modified by recent theo-
retical studies. The inclusion of the neutrino-neutrino in-
teraction in the treatment of the neutrino propagation,
within the mean-field approximation has shown that sig-
nificant flavor modification can occur in a region close to
the neutrinosphere [14], with a possible impact on nucleo-
synthesis [60] and maybe on the explosion dynamics.
Reference [61] furnishes an example showing that a careful
treatment of the transition region might be necessary, even
from the point of view of the neutrino emission. Therefore,
although the first investigations show that flavor conversion
occurs out of the relevant region to influence the shock
waves (see e.g. [62]), it might still be too early to draw
definite conclusions.
In the context of core-collapse supernovae, a significant

step forward beyond the mean-field approximation in the
investigation of neutrino flavor conversion would require
the solution of the Boltzmann equation implementing neu-
trino masses and mixings. Such numerical simulations are
demanding, and appear still ahead also within realistic
supernova simulations. The situation is different in the
context of the early universe, since collisions are an essen-
tial ingredient bringing neutrino plasma to equilibration,
while the mixings bring the system close to flavor equili-
bration. The neutrino history is usually determined by
solving the Boltzmann equation for particles with mixings,
or approximate versions of it.
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Several works have addressed many-body aspects of the
problem of neutrino flavor evolution focusing either on the
theoretical formulation and the inherent symmetries [38],
or on possible implications in schematic models (see e.g.
[35]). In the present work we have adopted a novel per-
spective with respect to previous works and employed
the BBGKY hierarchy as a theoretical framework to go
beyond the mean-field approximation, in a realistic treat-
ment of the neutrino interactions with matter and among
themselves. In particular we have included contributions
that have not been implemented so far. The BBGKY
hierarchy formulation offers a natural truncation scheme
with respect to the order of correlations. Such a formula-
tion is equivalent to a description in terms of Green’s
function in the equal time limit. In particular, the
BBGKY hierarchy furnishes a theoretical scheme to go
from a many-body treatment to an effective one-body
treatment. We have included, for the first time, novel � ��
correlations of the pairing type. We have obtained coupled
nonlinear evolution equations for the normal and abnormal
densities, that depend upon the normal and pairing mean
fields. The explicit expression for such mean fields has
been obtained using the usual low energy limit for the
charged- and neutral-current interactions.

The abnormal densities involve the expectation values
of the bilinear products of the neutrino and antineutrino
operators. Such pairs correspond to neutrinos with the
same lepton number, while different individual lepton
numbers can appear because of the presence of mixings,
giving rise to off-diagonal contributions of the abnormal
density. Further conditions are imposed to the neutrino-
antineutrino pairs, in the calculation of the abnormal mean
fields, depending on the specific properties of the back-
ground that neutrinos are traversing. Requiring that the
neutrino-antineutrino pairs have opposite momentum
corresponds to a homogeneous medium. For this case we
have derived a pairing mean field with different helicity
conditions for the pairs. In particular, if one considers
contributions from states of positive (negative) helicity
for the neutrinos (antineutrinos), the pairing mean field
turns out to depend on the ratio, of the neutrino mass
over its energy, squared (as one expects). Although tiny,
such off-diagonal contributions might give nontrivial
effects. More generally one could consider the general
case of an inhomogeneous background. The price to pay
is that one should retain two indices in momentum in the
evolution equations and all the normal and abnormal quan-
tities involved.

A hypothesis made in the present work is that the
abnormal densities are nonzero at initial time; while
nonzero expectation values for these bilinear operator
products can arise by implementing the collision term
in a Boltzmann treatment. Such a collision term is not
accounted for here. However we have been discussing
that, in principle, following the BBGKY hierarchy one

has the complete evolution equation for the two-body
correlation function for our system of neutrinos and anti-
neutrinos including both the collision term (also called the
Born terms) and the terms dependent on the two-body
correlation function (also called the PP terms) that have
been assumed to depend upon the abnormal density only in
the present work. The three-body correlation function con-
tribution is expected to give higher order corrections.
Therefore the framework discussed here could also be
employed to investigate the relevance of the linked
contributions of the two-body correlation function, that
have made the object of the present work, for the case
of cosmological neutrinos, at the epoch of big bang
nucleosynthesis.
Obviously, the procedure we have been describing and

employing for our calculations is very general. While it has
been used to derive dynamical equations for a system of
neutrinos propagating in a medium of ordinary matter and
neutrinos, applying the procedure to more general cases is
straightforward. For example, one can consider that matter
is made up of other particles, or that it presents nonstandard
interactions. Also, our results can be used for an arbitrary
number of neutrino families and, in particular, to account
for the presence of sterile neutrinos.
Finally, in the present manuscript, we have been focus-

ing on the formal aspects implied by the two-body corre-
lations of the neutrino-antineutrino type, and how to
implement them in extended evolution equations. Clearly
numerical calculations are required to assess the impact of
such correlations, or, more generally, of linked contribu-
tions of the two-body density matrix (or correlation
function) on neutrino flavor conversion in a medium such
as a core-collapse supernova, on nucleosynthesis and may
be the dynamics of these explosive phenomena, or on
cosmological neutrinos at the epoch of primordial nucleo-
synthesis (within a Boltzmann treatment). Further inves-
tigations might tell us if these contributions can engender
surprising features, or novel mechanisms, in this fascinat-
ing domain.
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APPENDIX A: EVOLUTION EQUATION FOR THE
TWO-BODY CORRELATION FUNCTION

For the sake of clarity we give here an explicit formu-
lation of Eq. (18). Writing the explicit dependence of
each quantity on the single-particle configurations, such
an equation reads
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i _cðik;jlÞ ¼ ½h1ð�Þ þ h2ð�Þ; c12�ðik;jlÞ (A1)

þ ½ð1� �1 � �2ÞVð1; 2Þ�1�2ð1� P12Þ�ðik;jlÞ � ½ð1� P12Þ�1�2Vð1; 2Þð1� �1 � �2Þ�ðik;jlÞ (A2)

þ ½ð1� �1 � �2ÞVð1; 2Þc12�ðik;jlÞ � ½c12Vð1; 2Þð1� �1 � �2Þ�ðik;jlÞ (A3)

þ X
m¼n

½Vð1; 3Þ; ð1� P13Þ�1c23ð1� P12Þ�ðikm;jlnÞ (A4)

þ X
m¼n

½Vð2; 3Þ; ð1� P23Þ�2c13ð1� P12Þ�ðikm;jlnÞ; (A5)

where the different contributions are

ðA1Þ ¼ X
r

½ðt1 þ �1Þircðrk;jlÞ � cðik;rlÞðt1 þ �1Þrj þ ðt2 þ �2Þkrcðir;jlÞ � cðik;jrÞðt2 þ �2Þrl�;

ðA2Þ ¼ X
rs

�
vðik;rsÞ�1;rj�2;slð1� PjlÞ � ð1� PrsÞ�1;ir�2;ksvðrs;jlÞ �

X
m¼n

½�1;imvðnk;rsÞ�1;rj�2;slð1� PjlÞ

� ð1� PrsÞ�1;ir�2;ksvðrs;mlÞ�1;nj þ �2;kmvðin;rsÞ�1;rj�2;slð1� PjlÞ � ð1� PrsÞ�1;ir�2;ksvðrs;jmÞ�2;nl�
�
;

ðA3Þ ¼ X
rs

�
vðik;rsÞcðrs;jlÞ � cðik;rsÞvðrs;jlÞ �

X
m¼n

½�1;imvðnk;rsÞcðrs;jlÞ � cðik;rsÞvðrs;mlÞ�1;nj þ �2;kmvðin;rsÞcðrs;jlÞ

� cðik;rsÞvðrs;jmÞ�2;nl�
�
;

ðA4Þ ¼ X
rs

X
m¼n

½vðim;rsÞð1� PrsÞ�1;rjcðks;lnÞð1� PjlÞ � ð1� PrsÞ�1;ircðkm;lsÞð1� PikÞvðrs;jnÞ�;

ðA5Þ ¼ X
rs

X
m¼n

½vðim;rsÞð1� PrsÞ�2;rlcðis;jnÞð1� PjlÞ � ð1� PrsÞ�2;krcðim;jsÞð1� PikÞvðrs;lnÞ�:

APPENDIX B: DERIVATION OF
THE NORMAL MEAN FIELD

For completeness, we write down intermediate results in
the calculation of the normal fields for the case of neutrinos
interacting with antineutrinos, while the same procedure
leads to all the expressions of the normal mean fields given
in Sec. III. Let us consider the case of the off-diagonal
contribution of � Eq. (38), but associated with neutrino of
flavor �� traversing a medium of antineutrinos of a differ-
ent flavor �� (Fig. 2):

���;��ð ���Þ ¼ �
Z d3 ~p

ð2�Þ32Ep

Z d3 ~p0

ð2�Þ32Ep0

GF

2
ffiffiffi
2

p

�
Z

d3 ~xeið ~pþ ~k� ~p0� ~k0Þ� ~x

� ½ �u��ð ~k; h�Þ�	ð1� �5Þu��
ð ~k0; h0�Þ�

� ½ �v��
ð ~p0; h0�Þ�	ð1� �5Þv��

ð ~p; h�Þ�
� hby��ð ~p; hÞb��

ð ~p0; h0Þi: (B1)

Note the minus sign that comes from the fact that there are
antineutrinos in the background. Implementing that the
expectation value over the background,

��
��;��
~p0h0; ~ph � hby��

ð ~p; hÞb��ð ~p0; h0Þi; (B2)

satisfies

��
��;��
~p0h0; ~ph ¼ ð2�Þ32Ep�hh0�

3ð ~p� ~p0Þ ����;��
p ; (B3)

one gets

���;��ð ���Þ ¼ �Nð ~k; ~k0Þ GF

2
ffiffiffi
2

p
Z d3 ~p

ð2�Þ32Ep

��
��;��
p

� ½ �u��
ð ~k;�Þ�	ð1� �5Þu��0 ð ~k;�Þ�

� ½ �v ���0 ð ~p;þÞ�	ð1� �5Þv ���
ð ~p;þÞ� (B4)

with Nð ~k; ~k0Þ ¼ ð2�Þ3�3ð ~k� ~k0Þ. By using the well-known
trace relations

�u��
ð ~k; hÞ�
ð1� �5Þu��0 ð ~k; hÞ
¼ Tr½u��0 ð ~k; hÞ �u��

ð ~k; hÞ�
ð1� �5Þ�

¼ Tr

�
ð6kþm�Þ

�
1þ �5sðkÞ

2

�
�
ð1� �5Þ

�
¼ 2ðk
 �m�s
ðkÞÞ (B5)

with
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s
ðkÞ ¼ h

m�

�
j ~kj; Ek

~k

j ~kj
�
;

the expression becomes22

���;��ð ���Þ ¼ �Nð ~k; ~k0Þ GF

2
ffiffiffi
2

p
Z d3 ~p

ð2�Þ32Ep

� 4½k
 �m�s
ðkÞ�½p
 þm ��s

ðpÞ� ����;��

p

¼ �Nð ~k; ~k0Þ GF

2
ffiffiffi
2

p
Z d3 ~p

ð2�Þ32Ep

� 4½k � p�m�m ��sðkÞ � sðpÞ
�m�sðkÞ � pþm ��k � sðpÞ� ����;��

p ; (B6)

which finally gives for relativistic neutrinos the known
relation

���;��ð ���Þ¼�2Ek0Nð ~k; ~k0Þ ffiffiffi
2

p
GF

Z d3 ~p

ð2�Þ3 ð1� k̂ � p̂Þ ����;���
p

(B7)

with ��
��;���
p ¼ ��

��;��
p .

APPENDIX C: DERIVATION OF
THE ABNORMAL MEAN FIELD

For the sake of clarity we give here more intermediate
steps in the calculation of the abnormal mean fields.
Let us first consider the homogeneous case with neutrinos
(antineutrinos) described only by negative (positive) helic-
ity eigenstates. The off-diagonal contribution to the pairing
potential is

��
��ð ~k0;�Þ; ���ð ~p0;þÞ ¼ �

Z d3 ~k

ð2�Þ32Ek

Z d3 ~p

ð2�Þ32Ep

� GF

2
ffiffiffi
2

p
Z

d3 ~xeið ~pþ ~k� ~p0� ~k0Þ� ~x

� ½ �u��ð ~k;�Þ�	ð1� �5Þu��
ð ~k0;�Þ�

� ½ �v��
ð ~p0;þÞ�	ð1� �5Þv��

ð ~p;þÞ�
� hay��ð ~k;�Þby��

ð ~p;þÞi: (C1)

Implementing the homogeneity condition Eq. (57) and
performing a Fierz transformation results in

��
��ð ~k0;�Þ; ���ð� ~k0;þÞ

¼ þð2�Þ3�3ð ~p0 þ ~k0Þ GF

2
ffiffiffi
2

p
Z d3 ~k

ð2�Þ32Ek

� ½ �u��
ð ~k;�Þ�	ð1� �5Þv ���

ð� ~k;þÞ�
� ½ �v ���

ð� ~k0;þÞ�	ð1� �5Þu��
ð ~k0;�Þ���� ����

~k
:

(C2)

The above expression can be evaluated using the
following definitions. We use the chiral representation.
The four-component spinors can be expressed as

uðk; hÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ hj ~kj

q
�hð ~kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E� hj ~kj
q

�hð ~kÞ

0
B@

1
CA; (C3)

vðk; hÞ ¼ �h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� hj ~kj

q
��hð ~kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eþ hj ~kj
q

��hð ~kÞ

0
B@

1
CA; (C4)

with the two-component helicity eigenstate spinors given
in spherical coordinates (polar angle � and azimuthal
angle �) by

�þð ~kÞ¼
cos�2

sin�
2e

i�

 !
; ��ð ~kÞ¼

�sin�
2e

�i�

cos�2

 !
; (C5)

which satisfy the useful relations

�þð� ~kÞ ¼ �ei���ð ~kÞ; ��ð� ~kÞ ¼ e�i��þð ~kÞ:
(C6)

By using the Dirac gamma matrices

�0¼ 0 �1

�1 0

 !
; ~�¼ 0 ~�

� ~� 0

 !
; �5¼ 1 0

0 �1

 !

(C7)

and the Pauli spin matrices

~� ¼
 

0 1

1 0

 !
; i

0 �1

1 0

 !
;

1 0

0 �1

 !!
; (C8)

one obtains for the space component of the first spinor
product in Eq. (C2)

�u��
ð ~k;�Þ ~�ð1��5Þv ���

ð� ~k;þÞ
¼4E�y�ð ~kÞ ~���ð� ~kÞ
¼4Eðcos�cos�� isin�;cos�sin�þ icos�;�sin�Þ

(C9)

22Note that we show terms with (effective) masses while we
have considered relativistic neutrinos and neglected such con-
tributions in the calculations.
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¼ 4E

j ~kj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q ðkxkz � ikyj ~kj; kzky þ ikxj ~kj;�ðk2x þ k2yÞÞ;

(C10)

while the time component ð�	 ¼ �0Þ vanishes. The second
spinor product �v ���

ð� ~k0;þÞ�	ð1� �5Þu��
ð ~k0;�Þ gives

simply a complex conjugate of the above result.
Substituting these expressions into the Eq. (C2) one
obtains the results Eqs. (59) and (65).

Since for the calculation of the abnormal field Eq. (65)
we also use the following type of spinor products

S1 ¼ �u�a
ð ~k;þÞ�	ð1� �5Þv ��b

ð� ~k;þÞ (C11)

and

S2 ¼ �u�a
ð ~k;�Þ�	ð1� �5Þv ��b

ð� ~k;�Þ; (C12)

where a and b refer to given neutrino mass eigenstates, we
give the results for the time and the space components:

�u�að ~k;þÞ�0ð1� �5Þv ��b
ð� ~k;þÞ

¼ �2ma

ffiffiffiffiffiffi
Eb

Ea

s
e�i� (C13)

¼ �2ma

ffiffiffiffiffiffi
Eb

Ea

s
kx � ikyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q ; (C14)

�u�a
ð ~k;þÞ ~�ð1� �5Þv ��b

ð� ~k;þÞ

¼ 2ma

ffiffiffiffiffiffi
Ed

Eb

s
e�i�ðsin � cos�; sin � sin�; cos �Þ (C15)

¼ 2ma

ffiffiffiffiffiffi
Ed

Eb

s
kx � ikyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q ~k

j ~kj : (C16)

Similarly for the time and space components of S2 one
obtains

�u�a
ð ~k;�Þ�0ð1� �5Þv ��b

ð� ~k;�Þ

¼ �2mb

ffiffiffiffiffiffi
Ea

Eb

s
eþi� (C17)

¼ �2mb

ffiffiffiffiffiffi
Ea

Eb

s
kx þ ikyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q ; (C18)

�u�a
ð ~k;�Þ ~�ð1��5Þv ��b

ð� ~k;�Þ

¼�2mb

ffiffiffiffiffiffi
Ea

Eb

s
eþi�ðsin�cos�;sin�sin�;cos�Þ (C19)

¼ �2mb

ffiffiffiffiffiffi
Ea

Eb

s
kx þ ikyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q ~k

j ~kj : (C20)

In the last expressions we have employed the following
relativistic expressions for the spinors:

uðk;�Þ � ffiffiffiffiffiffi
2E

p � m
2E ��ð ~kÞ
��ð ~kÞ

0
@

1
A; (C21)
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2E
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� m

2E �þð ~kÞ

0
@

1
A; (C22)
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2E

p m
2E��ð ~kÞ
��ð ~kÞ

0
@

1
A; (C23)
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2E

p �þð ~kÞ
m
2E�þð ~kÞ

0
@

1
A: (C24)
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