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Multimegaton scale in under-ice and underwater detectors of atmospheric neutrinos with a few GeV

energy threshold (PINGU, ORCA) open up new possibilities in the determination of neutrino properties,

and in particular the neutrino mass hierarchy. With a dense array of optical modules it will be possible to

determine the inelasticity, y, of the charged current �� events in addition to the neutrino energy E� and the

muon zenith angle ��. The discovery potential of the detectors will substantially increase with the

measurement of y. It will enable (i) a partial separation of the neutrino and antineutrino signals, (ii) a

better reconstruction of the neutrino direction, (iii) the reduction of the neutrino parameters degeneracy,

(iv) a better control of systematic uncertainties, and (v) a better identification of the �� events. It will

improve the sensitivity to the CP-violation phase. The three-dimensional ðE�; ��; yÞ, �� oscillograms

with the kinematical as well as the experimental smearing are computed. We present the asymmetry

distributions in the E� � �� plane for different intervals of y and study their properties. We show that the

inelasticity information reduces the effect of degeneracy of parameters by 30%. With the inelasticity, the

total significance of establishing mass hierarchy may increase by (20–50)%, thus effectively increasing

the volume of the detector by a factor of 1.5–2.
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I. INTRODUCTION

Multimegaton scale atmospheric neutrino detectors
with a few GeV energy threshold have an enormous and
largely unexplored physics potential. These detectors are
sensitive to the oscillatory patterns due to the 1–3 mixing in
the neutrino energy-zenith angle (E� � ��) plane. The
patterns have several salient features, which include the
Mikheyev-Smirnov-Wolfenstein resonance peaks due to
oscillations in the mantle (E� � 6 GeV) and the core
(E� � 4 GeV) as well as the parametric enhancement
ridges at E� � ð4–12Þ GeV which are realized for the core
crossing neutrino trajectories (see [1] for a detailed descrip-
tion and [2] for a recent review and references). The patterns
differ for neutrinos and antineutrinos and strongly depend
on the type of neutrino mass hierarchy. In particular, the
indicated features appear in the neutrino channels in the
case of normal mass hierarchy (NH) and in the antineutrino
channels in the case of inverted hierarchy (IH) (in the two
neutrino approximation, inversion of the mass hierarchy is
equivalent to switching the neutrino and antineutrino oscil-
lation patterns). This opens up a possibility to establish the
neutrino mass hierarchy and also to measure the deviation
of the 2–3 mixing from maximal as well as the 1–3 mass
splitting. Once the hierarchy is established, one can con-
sider a possibility to measure the CP-violation phase.

Multimegaton detectors are expected to record of the
order of 105 events a year. Such a large statistics allows,

in principle, to compensate for shortcomings related to
flavor identification of events and reconstruction of their
energy and angular characteristics. With so high statistics,
one can select some particular events in certain kinematical
regions, which are most sensitive to a given neutrino
parameter, thus reducing the effect of degeneracy of
parameters, etc.
PINGU (Precision IceCube Next-Generation Upgrade)

[3], the IceCube DeepCore [4] augmented with
a denser instrumentation in its center, and ORCA
(Oscillation Research with Cosmics in the Abyss) [5]
projects are possible future realizations of these multime-
gaton scale detectors.
A simplified estimation of the sensitivity to the mass

hierarchy of the DeepCore (DC) experiment has been per-
formed in [6]. Due to the high energy threshold (>10 GeV),
DC has a low sensitivity to the resonance pattern and there-
fore to the hierarchy. The sensitivity of DC to deviation of
the 2–3 mixing from maximal has been explored in [7].
The idea to send a neutrino beam from Fermilab to

PINGU to determine the mass hierarchy has been elabo-
rated in [8].
A possibility to use PINGU and the atmospheric

neutrino flux for the identification of the neutrino mass
hierarchy (MH) and search for the CP-violation effects
was recently explored in [9]. The strategy is based on the
measurement of the E� � �� distribution of the sum of
muon neutrino and antineutrino events. The smearing of
the distribution over �� and E� has been performed that
takes into account the accuracy of reconstruction of the
neutrino energy and direction.
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The estimator of discovery potential S (the hierarchy
asymmetry) has been introduced [9], which allows one to
make quick evaluation of sensitivities of the detector to
neutrino mass hierarchy as well as to other parameters. For
the ij bin in the reconstructed neutrino energy (i) and
zenith angle (j), the asymmetry is defined as

S�;ij ¼
NIH

�;ij � NNH
�;ijffiffiffiffiffiffiffiffiffiffi

NNH
�;ij

q :

Here NNH
�;ij and N

IH
�;ij are the numbers of events in the ij bin

for the normal and the inverted mass hierarchies corre-
spondingly. The moduli of the asymmetry jS�;ijj gives the
statistical significance for the identification of the mass
hierarchy. The asymmetry allows one to explore in a
transparent way the dependence of sensitivities on the
experimental energy and angular resolutions, on degener-
acies of parameters and on various systematic errors. In [9]
it was shown that the hierarchy can be established at
ð3–10Þ� level after five years of operation of PINGU
depending on the energy and angular resolutions and on
the size of the systematic error.

A final answer concerning the sensitivity should follow
from the detailed Monte Carlo simulation of the distribu-
tions of events. That should take into account realistic
parameters of the detectors after their geometries are
determined. Then, in a simple approach, the sensitivity
can be obtained from the fit of the simulated distributions
with the distributions computed for the cases of normal
and inverted mass hierarchies. The fit can be done using
Poisson statistics without binning. Results of a ‘‘toy’’
Monte Carlo study for large volume detectors have been
presented in [10]. The physics potential of PINGU and
ORCAwas further explored in [10,11].

As it was discussed in [9], several factors dilute the
significance of the MH identification, although at the
probability level the effect of inversion of the hierarchy
is of the order 1. Indeed,

(i) the hierarchy asymmetry has opposite signs in differ-
ent kinematical regions. Therefore smearing over the
angle and energy E� � �� leads to a substantial
decrease of the observable effect. The smearing
originates from finite energy and angular resolutions
of the detector (experimental smearing) and due to
difference of the neutrino and muon directions
(kinematical smearing).

(ii) The hierarchy asymmetry has different signs for
neutrinos and antineutrinos. Therefore summing
up the neutrino and antineutrino signals leads to a
partial cancellation of the effect.

(iii) The presence of both �� and �e flavors in the

original atmospheric neutrino flux leads, in general,
to a suppression of oscillation effects. The suppres-
sion becomes weaker at high energies, where the �e

flux is small.

(iv) Current uncertainties of the oscillation parameters,
such as �m2

32 and �223, further reduce identification
power, since the effect of inversion of the mass
hierarchy can be partly mimicked by changes of
these parameters.

(v) The sample of �� events is contaminated by con-

tributions from �� and �e charged current (CC)
interactions and neutral current (NC) interactions
of all neutrino species. In particular, ��’s generated
via oscillations produce tau leptons, which decay
into muons in 18% of the cases, thus appearing as
�� events. Also �e and NC interactions can mimic

�� events due to muon-pion misidentification.

These events produce an additional effective smear-
ing of the oscillatory pattern.

All this renders the quest of the neutrino mass hierarchy
difficult. Some (probably modest) developments of tech-
nology are required. This includes the selection of certain
geometry of the detector, the upgrade of the optical mod-
ules, further developments of the time analysis of events,
etc. On the other hand, some particular ways to analyze the
information obtained can also improve the sensitivity.
In this connection, we explore improvements of the

sensitivity to the neutrino MH due to the measurement of
the inelasticity, y � 1� E�=E�, of the charged current ��

events. As we will show, this new ingredient in the analysis
enables us to alleviate some of the problems mentioned
above. In particular, it allows us to effectively separate the
�� and ��� signals, and thus to reduce the partial cancella-

tion of their contributions to the MH asymmetry. The idea
was mentioned in [12]. Using the inelasticity will also
enable to reduce the kinematical smearing effect and de-
generacy of parameters. It will lead to a better flavor
identification of the �� events.

The paper is organized as follows. In Sec. II, we describe
the �� events, their detection characteristics, relevant kine-

matics and cross sections. In Sec. III, possible improve-
ments of the sensitivity to the mass hierarchy and other
neutrino parameters due to the inelasticity measurements
are discussed. In Sec. IV, we compute the three-
dimensional distributions of events in the reconstructed
neutrino energy, E�, the muon zenith angle, ��, and y

variables, which take into account the kinematical smear-
ing. We explore the properties of these 3D distributions and
find the corresponding hierarchy asymmetry plots. In
Sec. V, we present results of smearing of the distributions
over the finite experimental resolutions of observables: the
muon and hadron cascade energies and the muon angle.
We then compute the total significance of identification of
the mass hierarchy and its dependence on the possible
accuracy of the measurements of the energies and angles
(experimental smearing). We estimate how the measure-
ments of inelasticity reduce the effect of degeneracy of
the mass hierarchy and mass splitting �m2

32. Section VI

contains a discussion of the results and outlook.
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II. �� EVENTS AND INELASTICITY

A. �� events

In this paper we concentrate on the �� events induced by

the charged current weak interactions:

�� þ N ! �þ h; (1)

where h refers to the hadron system in the final state.
Observables associated to the reaction (1) are the energy
of the muon E�, its direction characterized by the zenith

and azimuth angles �� and ��, and the cascade energy

(the total energy in hadrons), Eh.
At the energies we consider, from a few GeV up to

�30 GeV, the cascade direction is not meaningful on an
event basis. Indeed, the cascade energy is shared in a
variable mixture between light mesons and heavier had-
rons, which leads to a highly random and anisotropic
Cherenkov photons emission. Contrary to muons, the en-
ergy release from cascades is approximately ‘‘pointlike,’’
given the sparsely instrumented detector arrays under
investigation.

The reconstruction of the �� event consisting of

recorded photons (hits) from the combined emission
from a vertex shower and a muon track in this case, can
be performed well at low energy using prescriptions in
[13]. The visible cascade energy, the muon track length
(i.e., its energy), and incoming muon direction can be
extracted. Moreover, the impact of the short scattering
length of Cherenkov photons for a dense detector in ice
is expected to be rather mild as it will be argued later. As
most hits are undelayed, a good reconstruction accuracy of
the muon incoming direction as well as a clear separation
of the shower and muon signatures are expected.

Thus, the set of observables fE�; ��;��; Ehg constitutes
a rather exhaustive description of the CC �� interaction.

The original neutrino energy is determined through

E� ¼ Eh þ E� �mN; (2)

where mN is the nucleon mass.

B. Inelasticity and kinematics of the process

The inelasticity y is defined as

y � E� � E�

E�

: (3)

Let us consider the angle between the neutrino and the
produced muon, �. The square of the transfer momentum
q2 equals

q2 � ðp� � p�Þ2 ¼ �2E�ðE� � jp�j cos�Þ þm2
�;

so that Q2 � �q2 equals

Q2 ¼ 2E�E�

�
1� jp�j

E�

cos�

�
�m2

�:

This gives

cos� ¼ E�

jp�j
�
1�Q2 þm2

�

2E�E�

�
: (4)

In terms of the Bjorken variable

x � Q2

2ðpNqÞ ¼
Q2

2mNðE� � E�Þ
we have

Q2 ¼ 2xymNE�;

where we used (3). Insertion of this expression into (4)
gives

cos� ¼ E�

jp�j
�
1� 2xymNE� þm2

�

2E�E�

�
: (5)

Notice that with a decrease of p�, cos� ! �1 when

x ! 0, 1. We can rewrite (5) as

cos� ¼ 1� 2xy�ðE�; x; yÞ;
where

�ðE�; x; yÞ ¼
m2

� þ 2mNE�xy� 2E�ðE� � jp�jÞ
4E�xyjp�j :

Here E� ¼ E�ðE�; yÞ and p� ¼ p�ðE�; yÞ. If p� � E� �
m�, we obtain neglecting m�

�ðE�; yÞ � mN

2E�

:

Let us find the limits in which c� � cos� changes.

Varying x, we obtain for x ¼ 0 that c� � E�=jp�j> 1,

so that cmax
� ¼ 1. For not very small jp�j (and we will

consider jp�j>mN) the minimal value of c� corresponds

to x ¼ 1:

cmin
� ¼ E�

jp�j
�
1� 2mNðE� � E�Þ þm2

�

2E�E�

�

� E�

jp�j
�
1� 2mN

E�

�
1� E�

E�

��
; (6)

or sin�min =2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ymN=E�

q
.

For a given muon direction, the neutrino direction is
determined by the angle � and the azimuthal angle � with
respect to the plane formed by the muon momentum and
axis x. It is straightforward (see Appendix A) to find the
relation between the neutrino zenith angle �� and the muon
zenith angle ��:

c� ¼ c�c� þ s�s�c�; (7)

where c� � cos��, c� � cos��, and c� � cos�.

According to (7) for fixed � the maximal and minimal
values of c� correspond to c� ¼ �1 and equal
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cmax
� ¼ cos ð�� � �Þ; cmin

� ¼ cos ð�� þ �Þ: (8)

C. Cross sections

In our calculations of Secs. IV and V we will use the
deep inelastic scattering (DIS) cross section only. We
neglect the contributions of the single pion production
and quasielastic scattering processes. This will lead to
conservative estimations of sensitivities, as the reduced
momentum transfer translates into a smaller angle between
the muon and the neutrino directions. In any case the
relative importance of these processes becomes negligible
above� 5 GeV, and below� 5 GeV, detector resolutions
and effective volumes are strongly limited.

The differential CC cross sections of the � and �� DIS on
an isonucleon N ¼ 1

2 ðnþ pÞ equal
d2�CC

�

dxdy
ðE�;x;yÞ

¼G2
FmNxE�

	
½ðqþs�cÞþð1�yÞ2ð �q� �sþ �cÞ�; (9)

d2�CC
��

dxdy
ðE�;x;yÞ

¼G2
FmNxE�

	
½ð �q� �sþ �cÞþð1�yÞ2ðqþs�cÞ�; (10)

where q � uþ dþ sþ c, �q � �uþ �dþ �sþ �c, and the
quark densities u ¼ uðx;Q2Þ, etc., are described by the

CTEQ5 parton distribution functions in the standard MS
scheme [14], valid down to Q2 � 1 GeV2.

The limits of x integration of the cross sections are in the
interval fxmin ; xmax g ¼ fxðc� ¼ 1Þ; 1g, and y integration

runs from 0 to ymax ¼ 1�m�=E�.

Integrating the cross sections (9) and (10) over x we
obtain

d�CC
�

dy
¼ ½�a0 � a1ð1� yÞ2�10�38 cm2 E�

1 GeV
;

d� ��CC

dy
¼ ½�b0 � b1ð1� yÞ2Þ�10�38 cm2 E�

1 GeV
;

where a0 ¼ 0:72, a1 ¼ 0:06, b0 ¼ 0:09, and b1 ¼ 0:69.
Then the normalized inelasticity distributions equal

p� � � 1

��

d��

dy
� a0 þ a1ðy� 1Þ2

a0 þ a1=3
; (11)

p �� � � 1

� ��

d� ��

dy
� b0 þ b1ðy� 1Þ2

b0 þ b1=3
: (12)

Here, we have dropped the very weak E� dependence in the
range of interest and considered the limit m� ! 0.

D. Number of events

The number of neutrino and antineutrino events in the
case of NH, NNH

� , and NNH
�� in a given ij bin of the size

�i cos ��, �jE� equals

NNH
� ¼

Z
�i cos ��

d cos ��
Z
�jE�

dE�

NH
� ðE�; cos��Þ;

and for NNH
�� one needs to substitute 
NH

� ! 
NH
�� . Here


NH
� � 2	NAniceVeffT�

CC�0
�

�
PNH
�� þ 1

r
PNH
e�

�
; (13)


NH
�� � 2	NAniceVeffT ��CC ��0

�

�
�PNH
�� þ 1

�r
�PNH
e�

�
: (14)

In (13) and (14),

r � �0
�

�0
e

; �r �
��0
�

��0
e

are the flavor ratios, where �0
� ¼ �0

�ðE�; ��Þ are the neu-
trino fluxes at production; PNH

�� and �PNH
�� are the �� ! ��

oscillation probabilities for neutrinos and antineutrinos.
VeffðE�Þ is the effective volume of a detector, 
ice is the
ice density, NA is the Avogadro number, and T is the
exposure time.
For the effective mass of the detector we take [9]


iceVeffðE�Þ ¼ 14:6� ½log ðE�=GeVÞ�1:8 Mt:

We keep the same effective volume as in [9] in spite of
several recent reevaluations for two reasons: (i) for easier
comparison of results with those in [9] and some other
publications, and (ii) because the final configuration of the
detectors are not yet determined. If the effective volume
(which also depends on the criteria of selection of events)
is reduced by factor of 3–4, the significance for the same
exposure period will be reduced by a factor of 1.7–2.0.
Expressions for the inverted mass hierarchy are obtained

with substitution NH ! IH. Recall that in the 2� approxi-
mation, when effects of 1–2 mixing and mass splitting are
neglected, there are relations between the probabilities for
normal and inverted hierarchies

PNH
�� ¼ �PIH

��; PIH
�� ¼ �PNH

��: (15)

That is, an inversion of the mass hierarchy is equivalent to
switching neutrinos and antineutrinos. In the three neutrino
mixing context, the relations (15) are not exact (see, e.g.,
Fig. 2 in [9]), especially for the core crossing trajectories.

III. IMPACT OF INELASTICITY
DETERMINATION: QUALITATIVE PICTURE

A. Inelasticity and separation of neutrino
and antineutrino signals

The hierarchy asymmetries in the neutrino and anti-
neutrino channels have opposite signs. In fact, in the
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expressions for the difference of numbers of events for NH
and IH (see [9]) all the terms are proportional to the factors
(1� ��) and (1� �e), where

�� � ��CC ��0
�

�CC�0
�

is the ratio of cross sections and fluxes of the muon anti-
neutrinos and neutrinos at the production, and �e is defined
similarly. The ratios �� and �e depend on neutrino energy

and direction and equal approximately 0.4–0.6. The � and
�� contributions to the number of events partially cancel
each other. So, in this case the MH determination relies
on the nonequal � and �� fluxes and cross sections. The
separation of the neutrino and antineutrino signals allows
us to further reduce the cancellation and therefore to
enhance the significance. As follows from Eqs. (11) and
(12), the average value of y is 50% larger for � than for ��.
Therefore we can use the inelasticity to separate the � and
�� signals.
One possible procedure is to determine for each bin

(a large number of events will allow us to do this) the
fraction of neutrino and antineutrino events by fitting its y
distribution:

(1) Select small enough bins in the neutrino energy-
zenith angle plane, so that the oscillatory structures
due to certain mass hierarchy are not averaged out
(the bin size should be eventually optimized). The
number of neutrino and antineutrino events in each
bin equals

N �� ¼ N� N� ¼ Nð1� �Þ; (16)

where� is the fraction of antineutrino events and we
have omitted the bin indices.

(2) Measure the y distribution of these events.
(3) Fit the measured distribution with

p� ��ðy; �Þ ¼ ð1� �Þp�ðyÞ þ �p ��ðyÞ; (17)

where p�ðyÞ and p ��ðyÞ are given in (11) and (12),
thus, determining the fraction �.

A possible enhancement of the sensitivity to the hier-
archy due to the separation of the � and �� signals can be
estimated in the following way. In the described procedure
there are two independent observables: the total number of
events, N ¼ N� þ N ��, and � extracted from the y distri-
bution with the accuracy �. In general,

� � �ffiffiffiffi
N

p ; (18)

where � ¼ �ð�;NÞ. The error � can be estimated using
the method of moments. As we have two parameters, �
and �, to extract, it is sufficient to calculate the first
and second y moments of p� ��ðy; �Þ given in Eq. (17).
Using expressions (11) and (12), we obtain the average
inelasticity hyi:

hyð�Þi ¼
Z

yp� ��ðy; �Þdy � 0:494� 0:174�: (19)

The mean deviation �2
�y � hð �y� hyiÞ2i of the average �y

value after N measurements from the true value hyi is

� �yð�;NÞ2 ¼ �yð�Þ2
N

¼ 1

N

�Z
y2p� ��ðy; �Þdy� hyð�Þi2

�

� 1

N
ð0:084þ 0:010�� 0:030�2Þ: (20)

From Eq. (19) and following a measurement of �y,
we obtain a measured value ~�. The average value � is
given by

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð~�� �Þ2i

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihð �y� hyiÞ2ip
0:174

¼ 5:75
ffiffiffiffiffiffi
�2

�y

q
: (21)

Substituting �2
�y from Eq. (20), we obtain

�ð�;NÞ � �ffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:115�� 0:362�2

p
; (22)

where � ¼ 1:66.
If � is not close to 1 (for all practical purposes � & 0:5),

� weakly depends on � and we can use Eq. (18).
A detailed investigation of �ð�;NÞ by means of

the maximum likelihood method confirms the estimate
Eq. (22) for large N. For N & 100, this method shows a
slight improvement with increasing � with respect to the
method of moments. It is worthwhile to further explore this
approach.
Let us find the errors �� and � �� in the determination of

N� and N ��. According to Eq. (16), variations of N� can be
written as

N� ¼ ð1� �ÞN � N� ¼ ð1� �Þ ffiffiffiffi
N

p � N�:

The variations N and � are independent and therefore
they sum up squared:

�2
� ¼ ð1� �Þ2N þ ð�Þ2N2;

�2
�� ¼ �2N þ ð�Þ2N2:

(23)

Assuming that the measured quantities ~N and ~� are
respectively distributed according to Poisson with mean
N and Gaussian with mean �, and standard deviation �,
the exact variance calculation of N�; ��ð~�; ~NÞ leads to the

same result as in Eq. (23), provided that N � �2.
Using (18), we have for NH

��ffiffiffiffiffiffiffiffiffiffi
NNH

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �Þ2 þ �2

q
;

� ��ffiffiffiffiffiffiffiffiffiffi
NNH

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

q
:

(24)

The hierarchy asymmetries in the neutrino and antineu-
trino channels can then be written as

S� ¼ NIH
� � NNH

�

��

; S �� ¼ NIH
�� � NNH

��

� ��

: (25)
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Here we assume that NH is the true hierarchy and therefore
the corresponding number of events is what is measured.

If S �� and S� are independent, the total significance
equals

S
sep
tot ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2� þ S2��

q
:

It can be rewritten using Eqs. (25) and (24) as

Sseptot ¼ 1ffiffiffiffiffiffiffiffiffiffi
NNH

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNIH

� � NNH
� Þ2

ð1� �Þ2 þ �2
þ ðNIH

�� � NNH
�� Þ2

�2 þ �2

s
:

For the significance without �� �� separation we would
have

jStotj ¼
��������NIH

� þ NIH
�� � NNH

� � NNH
��ffiffiffiffiffiffiffiffiffiffi

NNH
p

��������:

Therefore the enhancement factor R � S
sep
tot =jStotj due to

separation of the neutrino and antineutrino signals equals

R ¼ 1

1� ��fP

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ �2

ð1� �Þ2 þ �2
þ ð��fPÞ2

s
:

(26)

Here

��fP ¼ �NIH
�� � NNH

��

NIH
� � NNH

�

;

and

fP �
�PNH
�� � �PIH

�� þ 1
�r ð �PNH

e� � �PIH
e�Þ

PIH
�� � PNH

�� þ 1
r ðPIH

e� � PNH
e� Þ :

If �r ¼ r, in the 2� approximation we would have fP ¼ 1.
In Eq. (26) the minus sign in the denominator of the first

factor reflects the partial cancellation of the hierarchy
asymmetries from the neutrino and antineutrino channels.
The second factor describes the reduction of enhancement
due to the error in the separation of the neutrino and
antineutrino signals. The expression is valid if � is not
very close to 0 or 1.

Notice that the enhancement factor R does not depend
explicitly on the number of events. The number of events
is mainly encoded in ��fP and in �. The value of �

changes from bin to bin. For � ¼ 0:50 (0.32), �� ¼ 0:4,

and fP ¼ 1 we obtain R ¼ 1:05 (1.01).
The enhancement factor is very close to unity. However,

a slight improvement on the determination of � leads to a
substantial increase of R. A 10% decrease of � leads to
R ¼ 1:15 (1.10) for � ¼ 0:50 (0.32).

Notice that according to (25), the ratio

S ��

S�
¼ �fp��

��

� ��

is negative and � and �� asymmetries have opposite signs.

For ideal separation, � ¼ 0, we would have

R ¼ 1

1� ��fP

1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

ð1� �Þ2 þ ð��fPÞ2
s

:

It gives R ¼ 3:6 (3.2) for � ¼ 0:50 (0.32). This number
can be considered as the maximal possible enhancement.
Notice that the estimations presented above differ from

the estimations in the case in which the numbers of �� and

��� events are measured independently (in our previous

consideration these numbers correlate). In the latter,
�� ¼ ffiffiffiffiffiffi

N�

p
,� �� ¼ ffiffiffiffiffiffi

N ��

p
, and the enhancement factor equals

R ¼ 1

1� ��fP

1ffiffiffiffi
�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

1� �
þ ð��fPÞ2

r
:

If fP ¼ 1 and �� � 0:5, we obtain R ¼ 2:4 for � ¼ 0:32.

The above estimations have been done for a single bin
and one should average the enhancement factor over all the
bins. Since R depends weakly on N, the estimation for
�� 0:5 gives a good idea about the overall enhancement.
Notice that the weak enhancement factor we obtain is

due to the error of the separation parameter, �. This is
confirmed by exact computations in Sec. V.

B. Inelasticity and reconstruction
of neutrino direction

The dominant source of sensitivity loss for the determi-
nation of the neutrino mass hierarchy follows from the
angular smearing of the oscillograms [9], and in particular,
the kinematical smearing due to the angle between the
neutrino and muon directions. Indeed, according to (5),

sin 2 �

2
� Q2

4E�E�

� mNxy

2E�

: (27)

From this relation with hxi � 0:3 we find that the average
angle which characterizes the kinematical smearing is

h�i � 0:75ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�=GeV

p
ffiffiffiffiffiffiffiffiffiffiffiffi
y

1� y

s
: (28)

Then for the average values y� � 0:5 and y �� � 0:3 it

equals h��i�0:75=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�=GeV

p
and h� ��i�0:5=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�=GeV

p
.

Using these estimations we find that �c� is larger than
the region of the same sign hierarchy asymmetry for
E� < 6 GeV.
According to (27), interactions with small y correspond

to small scattering angles. Thus, the selection of events
with small y reduces the interval of possible values of �.
For instance, for a sample with y < 0:3, the average
inelasticity is about hyi � 0:14. Then according to (28)
the average angle between the muon and neutrino incom-

ing directions equals h�i � 0:13=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�=GeV

p
. The sample

however retains about 30% of neutrino and 55% of anti-
neutrino events, thus having lower statistics.
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At small y, the angular reconstruction error of the muon
itself is small, as the muon carries most of the neutrino
energy and there are fewer hits from the cascade, which
otherwise worsen the reconstruction of the muon direction.

However, at small y, the difference of cross sections of
neutrinos and antineutrinos becomes smaller (they are
equal at y ¼ 0). Therefore the separation of the neutrino
and antineutrino signal becomes difficult, and the cancel-
lation of neutrino and antineutrino signals in the hierarchy
asymmetry becomes stronger.

For large y, on the other hand, the contribution of �� is
strongly suppressed, which eliminates the �� �� cancella-
tion. But for events with large y the reconstruction of the
neutrino direction is very poor. Furthermore, identification
of the �� events becomes difficult (see below).

C. Inelasticity, systematic errors,
and degeneracy of parameters

In [9], the method is mainly based on the differential
measurement of the neutrino-induced muon flux from dif-
ferent incoming directions and at various energies, avoid-
ing some sources of systematic uncertainties (especially the
correlated ones). The approach adopted in this paper goes a
step beyond with the additional sensitivity to the �� � ���

admixture, or y, providing the method an even stronger
immunity to sources of systematic uncertainties.

The degeneracy of the neutrino parameters reduces sig-
nificantly the sensitivity to the mass hierarchy [9]. The
problem may be alleviated, but not avoided, in the future
by more precise measurement of neutrino parameters in
MINOS, T2K, NOvA, and in reactor experiments. The use
of inelasticity in analyses will reduce the impact of degen-
eracies. Indeed, effects of uncertainties, e.g. in �m2

32 and

�23, are nearly the same for � and ��, while the y distribu-
tions for � and �� are different. Therefore measurements of
inelasticity will allow us to somehow separate the effects.
A quantitative study of the corresponding improvements
will be given in Sec. V.

D. Inelasticity and identification of �� events

As discussed in [9], tau neutrinos contaminate the ��

sample by about 5% contribution. The oscillation effect on
this contribution differs from the one on the true �� events.

This leads to a kind of additional smearing, which cannot be
neglected. The inelasticity observable enables us to further
suppress the number of �� ! � events in a sample because
of the specific vertex kinematics of tau neutrino interac-
tions: rather large showers are produced and the angle
between the muon and tau neutrino is large, as the muon
is sharing energy with two other neutrinos. Therefore this
class of events has on average a rather large effective y, and
restricting an analysis to small ywill allow us to disentangle
at least partly the �� contribution. Quantitative analysis of
this suppression is beyond the scope this paper.

For large y, due to the low energy of the muons, the
probability of misidentification of the �� events with the

CC �e;� events as well as the NC events of all neutrino

species becomes large. Indeed, there can be confusion
between the charged pions and muons as they both have
a long decay length (�	� � 56 m at 1 GeV) and propagate
with low energy loss rate (the dominant ionization energy
loss limits their range to &5 m per GeV). However, the
energy distributions of muons and pions strongly differ: the
simulation with GENIE [15] of 10 GeV �� interactions

shows that the most probable E	� is of the order of a few
100 MeV, so that E	� � 1 GeV is already unlikely high.
The reaction favors events with higher 	 multiplicity
rather than events with higher 	 energies.

IV. 3D DISTRIBUTIONS AND OSCILLOGRAMS

As we saw in the previous section the separation of the
neutrino and antineutrino signals requires measurements of
the y distribution in a wide range of y, and especially for
large y, where the difference of the neutrino and anti-
neutrino cross section is maximal. On the other hand,
good reconstruction of the neutrino directions requires
selection of events with small y. In a sense, improvements
of the sensitivity due to �� �� separation and narrowing
the angular distribution are incompatible. Small y’s are
preferred also for the identification of the �� events and

the disentanglement of the �� from �e;� events. Therefore,

one expects that the best sensitivity to the neutrino mass
hierarchy is for the intermediate range of y. Here the
interplay of different effects occurs, which requires a com-
bined description using the differential characteristics in y
and also in x since the angle depends on x too.

A. Densities of events: Oscillograms for different y

The density of the �� events as a function of E�, c�, y

equals

nNH� ðE�; c�; yÞ ¼ 1

2	

Z 1

cmin
�

dc�
Z 2	

0
d�

d2�CC
�

dc�dy

� 
NH
� ðE�; c�Þ
�CC

� ðE�Þ
;

where
NH
� is defined in (13), c� is given in (7), and the lower

limit of integration cmin
� is defined in (6). Similar expres-

sions can be written for antineutrinos and for the IH case.
Using the relation Eq. (7), we change the integration

variables, d� ! dc�:

nNH� ðE�;c�;yÞ¼ 1

	

Z 1

cmin
�

dc�
d2�CC

�

dc�dy
ðxðc�Þ;yÞ

�
Z cmax

�

cmin
�

dc�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðc�;c�;c�Þ
q 
NH

� ðE�;c�Þ
�CC

� ðE�Þ
:

(29)
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Here

h � ðs�s�Þ2 � ðc� � c�c�Þ2;

and 1=
ffiffiffi
h

p
is essentially the Jacobian of transition to new

variables according to (7). The limits of integration cmax
�

and cmin
� will be specified later. Notice that appearance of

an additional factor 2 in the expression (29) is due to
twofold ambiguity at the transition from � to c�.

Let us make another change of the integration variable:
c� ! x. Using the equality

d2�CC
�

dc�dy
dc� ¼ d2�CC

�

dxdy
dx;

we obtain from (29)

nNH� ðE�; c�; yÞ ¼ 1

	

Z xmax

xmin

dx
Z cmax

�

cmin
�

dc�
d2�CC

�

dxdy

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðc�; c�; c�Þ

q 
NH
� ðE�; c�Þ
�CC

� ðE�Þ
:

Here xmin ;max correspond to the values c�ðE�; x; yÞ ¼ �1.

In turn, the limits of integration over c� correspond to
h ¼ 0, i.e., to the borders of the interval of the positivity
condition: h 	 0. Indeed, the expression for h can be
rewritten as

h ¼ �½c� � cos ð�� � �Þ� � ½c� � cos ð�� þ �Þ�;

where � ¼ �ðx; y; E�Þ is determined in Eq. (4). Then the
limits cmax

� ¼ cos ð�� � �Þ and cmin
� ¼ cos ð�� þ �Þ fol-

low immediately.
Changing the order of integrations over x and c�,

we obtain

nNH� ðE�;c�;yÞ
¼ 1

	

Z
j�����j
�0

dc�

NH
� ðE�;c�Þg�ðE�;y;c�;c�Þ; (30)

where

g�ðE�; y; c�; c�Þ � 1

�CC
� ðE�Þ

Z xþ

x�
dx

d2�CC
� ðE�; x; yÞ
dxdy

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2�s

2
� � ðc� � c�c�Þ2

q : (31)

Here s� and c� are functions of E�, x, and y. The function

g� does not depend on the mass hierarchy and essentially
plays the role of the kinematic smearing function.

Writing similar expressions for IH and ��, we obtain the
densities of the events for NH and IH:

nNH;IHðE�; c�; yÞ
¼ nNH;IH� ðE�; c�; yÞ þ nNH;IH�� ðE�; c�; yÞ
¼ 1

	

Z
j�����j
�0

dc�½
NH;IH
� ðE�; c�Þg�ðE�; y; c�; c�Þ

þ 
NH;IH
�� ðE�; c�Þg ��ðE�; y; c�; c�Þ�: (32)

Introducing 
NH � 
NH
� þ 
NH

�� , we can rewrite the expres-
sion in (32) as

nNHðE�; c�; yÞ
¼ 1

	

Z
j�����j
�0

dc�

NHðE�; c�ÞGðE�; y; c�; c�Þ;

where

GðE�; y; c�; c�Þ � g�

NH
�


NH
þ g ��


NH
��


NH
:

The function G can be immediately compared with the
Gaussian smearing function, which was used in [9] embed-
ding both kinematic and experimental resolution effects.
Let us find the limits of integration over x in Eq. (31).

According to Eq. (5)

xðc�Þ ¼
2E�ðE� � jp�jc�Þ �m2

�

2mNE�y
;

which imposes the lower and upper bounds to x:

x� ¼ xðcos ð�� � ��ÞÞ:
For a given �� and ��, the minimal angle between the

muon and the neutrino is � ¼ j�� � ��j. The maximal

angle � is given by c�;max ¼ cos ð�� þ ��Þ.
The integration over c� in Eq. (30) runs from

cosð��þ�0Þ to cosð����0Þ, where c�0
¼c�ðE�;x¼1;yÞ

and �� � �0 is restricted by the interval 0� 	.

B. Kinematical smearing function

According to Eq. (30), the functions g�; ��ðE�; y; c�; c�Þ
in (31) can be considered as the smearing functions over
the neutrino angle. Figure 1 shows dependence of g� and
g �� on c� for several values of c� and y.

The smearing functions differ from the Gaussian func-
tion assumed in [9]. They have two peaks with a local
minimum in between; there are no exponential tails; the
central parts are at c� � c�. The asymmetry of the peaks

becomes stronger with c� approaching �1; the width of

the functions increases with y. The functions g are similar
for neutrinos and antineutrinos. As expected, for antineu-
trinos the overall normalization decreases with the increase
of y, whereas for neutrinos normalization changes weakly.
The properties of g�; �� can be readily understood from

the expression for h. Indeed, g�; �� have inverted (and also

smoothed) shapes with respect to that of
ffiffiffi
h

p
. In particular,

MATHIEU RIBORDYAND A. YU. SMIRNOV PHYSICAL REVIEW D 87, 113007 (2013)

113007-8



peaks of g�; �� correspond to zeros of h, the minima of g�; ��
correspond to the maxima of h, etc.

The function h can be rewritten as

h ¼ s2� � ðc2� þ c2�Þ þ 2c�c�c�;

which is obviously symmetric with respect to the
interchange

c� $ c�:

As a consequence, g�; �� also obeys this symmetry.

Introducing

r � 2�xy ¼ 2sin 2 �

2
;

we can present h as

h ¼ 2rð1� c�c�Þ � r2 � ðc� � c�Þ2:
Then defining the difference � � c� � c�, we have

hð�Þ ¼ s2�ð2r� r2Þ � ð�þ rc�Þ2:
So, h, as function of �, is an inverted parabola with its
maximum shifted to � ¼ �rc�. In agreement with Fig. 1,

hð�Þ is not symmetric with respect to � ¼ 0 or c� ¼ c�,

and the minimum of g�; �� is shifted with respect to c� ¼ c�.

This also leads to a difference in the heights of the peaks.

Zeroes of h are at

� ¼ �rc� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2�ð2r� r2Þ

q
:

According to (8), in terms of angles, the zeros of h are
given by cos �� ¼ cos ð�� � �Þ. So, the width of the

smearing function increases with �. In turn, according to
(28), � / ffiffiffi

y
p

, and consequently, the width increases with

y, as we mentioned before.
It is easy to understand the appearance of peaks in

g�; ��ðc�Þ at the borders of the allowed interval using the

following graphical representation. The neutrino vector is
on the surface of the cone with angle � and axis along the
muon momentum. With change of �, the neutrino vector
moves on the surface of the cone. The maximum and
minimum of c� given by (8) correspond to the neutrino
vector situated in the plane formed by the muon vector and
the axis z and the neutrino vector is moving perpendicu-
larly to this plane. Therefore around these positions the
z projection of the neutrino vector does not change appre-
ciably, and so the integration over � leads to bigger
contribution.

C. Oscillograms for different values of y

We will use the general formulas obtained in the pre-
vious sections to compute the oscillograms and asymmetry
distributions for different values of y. The functions


NH;IH
�; �� ðE�; c�Þ are taken from [9].

Figure 2 shows the E� � cos �� binned distribution of

the hierarchy asymmetry with the inelasticity (y depen-
dence) and kinematical smearing taken into account.
Different panels in this figure correspond to different y
intervals fymin ; ymax g. The asymmetry in these intervals has
been computed in the following way. We first used very
small y bins�y � ðymax � ymin Þ. We computed the asym-
metry in each of these small bins Sk ¼ Sðyk; E�; cos��Þ
and then the total asymmetry in the interval fymin ; ymax g as
Stot ¼

ffiffiffiffiffiffiffiffiffiffiffiP
S2k

q
(the sum runs over all small y bins in the

interval fymin ; ymax g), and the sign is the same as for the
dominant contribution. In practice the summation over
small bins was substituted by integration:

Sðymax ; ymin ; E�; cos��Þ ¼
�Z ymax

ymin

dy
ðnIH � nNHÞ2

nNH

�
1=2

:

Here nNH;IH is the number of events in the bin�E��cos ��
given in (32).
The first panel of Fig. 2 corresponds to fymin ; ymax g ¼

f0; 1g, the others to various intervals with ymax � ymin ¼
0:2. The first panel is the sum of contributions described in
other panels. As we see, the biggest contribution comes
from the intermediate region y 2 f0:3; 0:7g. Indeed, at
small y the hierarchy asymmetry is suppressed due to
strong cancellation of the nearly equal contributions from
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60

70

g
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FIG. 1. The angular smearing functions for neutrinos (upper
panel) and antineutrinos (bottom panel) for E� ¼ 10 GeV and
different values of c� (numbers at the curves). Solid, dashed, and
dotted curves are respectively for y ¼ 0:2, y ¼ 0:5, and y ¼ 0:8.
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neutrinos and antineutrinos (recall that at y� 0 the � and ��
cross sections become equal). At large y, the asymmetry is

suppressed due to strong smearing over the angle between

muon and neutrino. With the increase of y, the region

of strong asymmetry first shifts smaller E� and larger

cos��, and then move to larger E� and cos �� ¼ �1.

The region expands in a horizontal ( cos��) direction

for small y.
The total significance (given by integration over the first

panel with 0 
 y 
 1) equals

FIG. 2 (color online). The hierarchy asymmetry distributions after the kinematical smearing for various inelasticity ranges and for
one year of exposure.
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jStotj ¼
�Z

dc�
Z

dE�

Z 1

0
dy

ðnIH � nNHÞ2
nNH

�
1=2

: (33)

For exposure T ¼ 1 year, this leads to jStotj ¼ 8:43.
If the y dependence is not used, the densities of events

should be integrated over y before computing S. This gives

jSinttotj ¼
�Z

dc�
Z

dE�

ðR1
0 dyðnIH � nNHÞÞ2R

1
0 dyn

NH

�
1=2

: (34)

For one year of exposure we obtain from (34) jSinttotj ¼ 7:11,
which is about 15% smaller than in the case when the y
distribution is used according to Eq. (33).

The following comments are in order.
(i) The kinematical smearing strongly reduces the total

significance: for the ideal reconstruction of the
neutrino energy and direction we would obtain
jS�þ ��

tot j ¼ 23:7 in one year even without y informa-
tion. This number can be considered as a maximal
achievable significance. It should be compared with
jSinttotj ¼ 7:11 obtained from (34). Note that jStotj ¼
8:43 can be obtained with an ideal detector having
perfect resolutions (see Sec. V).

(ii) The increase of significance by about 15% with y
distribution is better than the one predicted from our
qualitative discussion in Sec. III using � derived
from the method of moments. This is probably
related to the fact that the characteristics of the y
distribution are more fully exploited.

Note also that in our treatment the cross sections have
been restricted to the DIS approximation, and thus exhibit
cutoffs at small y, a region of good angular resolution.
Therefore a more complete description of the cross sec-
tions will recover the events in the small y region, further
enhancing the significance.

V. SIGNIFICANCE OF DETERMINATION OF
MASS HIERARCHY WITH INELASTICITY

In the previous section we have taken into account the
kinematical smearing; the integration over the angle
between the neutrino and muon, �. Besides this, one
should perform the experimental smearing over the
observables: the energy of muon and cascade as well as
the direction of muon due to finite experimental energy and
angular resolutions.

A. Experimental resolution functions

We present here the significance of the identification of
the mass hierarchy, considering various scenarios for the
widths ��;hðE�; yÞ and �c ðE�; yÞ of the energy and angu-

lar resolution functions. We use the notation ~x for the
reconstructed value of the observable x.

1. Energy resolution

We assume the Gaussian energy resolution functions of
the cascade and muon with widths �h and �� correspond-

ingly. Then the neutrino energy resolution is itself the
Gaussian function (sum of two normal distributions):

gE�
ð ~E�; E�Þ ¼ 1ffiffiffiffiffiffiffi

2	
p

�E�

exp

�
� 1

2

ð ~E� � E�Þ2
�2

�

�
(35)

with width

��ðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

� þ �2
h

q
;

which depends on y.
We consider two cases for the energy resolution of

muons and cascades:
(i) ��;h ¼ bE�;h, which gives �� ¼ bE� �

bð1� yÞE� and �h ¼ bEh � byE�, so that

��ðyÞ ¼ bE�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2yþ 2y2

q
;

(ii) ��;h ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
bE�;h

p
, then

�� ¼ ffiffiffiffiffiffiffiffiffi
bE�

p
;

which has the same form as ��;h. We make here a reason-

able simplification that b is the same for cascades and
muons. In fact, this is true only if we assume that most
of the energy of the cascade is visible like for a muon.
More likely, it has a bit smaller Cherenkov photon yield per
GeV and is subject to greater event-by-event fluctuations.
In the case (i), we use b ¼ 0:3 in order to compare with

the results from [9]. In the case (ii), we take b in the
range 0:35 
 b 
 0:7, which is derived from an esti-
mated number of detected photons nhit=GeV � 1–3 [16].
Equation (26) in [16] predicts nhit=GeV � 1:5 for a mean
distance of about 10 m between the Cherenkov light emit-
ter and an optical module of the IceCube type. The range is
extended in the mentioned limits, because the precise
topology and technology (for instance, the photo-detection
efficiency and area of the optical modules) of a dense array
are not yet precisely known.
We then obtain the energy resolution given by the sta-

tistical uncertainty of the number of expected hits:

��;h ¼
ðE�;hnhit=GeVÞ

nhit=GeV

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0:35; 1gE�;h

q
� f0:6; 1gpE�;h: (36)

2. Inelasticity resolution function

The inelasticity distribution gyðE�; yÞ can be der-

ived straightly from E�;h distributions, g�;hð ~E�;h; E�;hÞ
described above. We show in Appendix B that it is nearly
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Gaussian in most cases of interest. It deviates from
Gaussian, showing enhanced tails, when E� and Eh are

both small. In our computations we use the Gaussian
function with width

�y ¼ 1p
2

�
Eh þ �h

Eh þ �h þ E� � ��

� y

�
: (37)

Notice that we could perform smearing using immedi-
ately E� and Eh without introducing y, and if needed,

introduce ~y after smearing.

3. Angular resolution

The angle c between the true and the recon-
structed muon directions is described by the normalized
distribution

gc ¼ 2c

�2
c

exp

�
� c 2

�2
c

�
; (38)

which is derived from the 2D Gaussian distribution. The
interval c 
 �c encloses 63%, and gc peaks at �c =

p
2.

The width �c is generically a function of E�, which has

the form [13]

�c ¼ c 0

ffiffiffiffiffiffiffi
mN

E�

s
:

Here c 0 depends on the detector medium (ice, water) and
its topology. The IceCube detector is sparsely instrument-
ing a medium of relatively short scattering length.
Therefore a large number of photons will not travel on a
straight path between the Cherenkov light emission point
and the detection location. On the contrary in ANTARES
(and similarly in ORCA), the photons are detected unde-
layed. This is the main reason why IceCube has worse
angular resolution than the ANTARES detector. Therefore,
we consider c 0 values in a range reflecting common
angular resolutions achieved in water and by a sparse array
in ice. Note, however, that one reasonably expects a sub-
stantially improved angular resolution in ice with a smaller
and denser array (PINGU), i.e., a global reduction of scale:
in this case the short scattering length will be of relative
importance and many Cherenkov photons will be unde-
layed in reaching the optical modules that are closest to
their emission point.

The angular resolution of an event with 60 hits is about
5� in IceCube and better than 2� (nhit=GeV � 1:5) in
ANTARES. Therefore 15� & c 0 & 30�. The range 1 

nhit=GeV 
 3 leads to 8:5� & c 0 & 40�.

The smearing function for the zenith angle of muon
gðc�; ~c�Þ can be computed using the smearing function

for c (38) as

gðc�; ~c�Þ ¼ 1

	

Z 	

j���~��j
gc ðc Þdcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~s2�s
2
c � ð~c�cc � c�Þ2

q : (39)

The denominator here appears similarly to that at the
variable change � ! c� performed in Eq. (29). The func-
tion gðc�; ~c�Þ is normalized, which follows from normal-

ization of gc .

Figure 3 shows the angular smearing function gðc�; ~c�Þ
for c 0 ¼ 15� and several values of ~c�. Notice that

gc ðc�; ~c�Þ~s� is not symmetric and it increasingly

deviates from the normal distribution, when approaching
�� ¼ 180�.

B. Distributions with experimental smearing

We calculate the distribution of events smeared over
the experimental resolution functions. We convert the 3D
distributions in the parameter space E� � y� c� into

observed parameters space ~��, ~E�, ~y convoluting n with

the resolution distributions for E�, y, and c :

n̂IH;NH�; �� ð~��; ~E�; ~yÞ ¼ nIH;NH�; �� ð��; E�; yÞ  ðgc gyg�Þ:

The convolution is performed sequentially in the order
indicated in the last brackets. The smearing functions are
taken according to Eqs. (35), (39), and (37) (the width of

Gaussian function for gy). Values of n
IH;NH
�; �� outside region

1<E�=GeV< 20 and for �� < 90� are set to the values

taken at the boundaries.
Integrating over the bins, we obtain the binned

oscillogram:

Nijkð~c�i; ~E�j; ~ykÞ ¼
Z
binðijkÞ

d~c�d ~E�d~yn̂
IH;NH
�; �� ð~��; ~E�; ~yÞ:

The smeared distributions in the plane E� � cos�� for

different intervals of y and different resolutions are shown
in Figs. 4–6.
In comparison with Fig. 2, the overall scale of asymme-

tries is reduced by a factor of �2, which quantifies the
effect of experimental smearing. The position and shape of
the regions of strong asymmetry follow to a large extent
those in Fig. 2.

0.5 0.0 0.5
c

2

4

6

8

0.95

0.8

0.5 0.2 0.1

g 15o c c

FIG. 3 (color online). Angular smearing function in cos�� for
�c ¼ 15� and several values of ~c�.
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C. Estimations of the total significance

Total significances with the experimental smearing are
calculated using Eqs. (33) and (34) with replacement
n ! n̂. Table I presents the total significance after one
year of exposure for several experimental resolution

scenarios, including the one with only kinematical

smearing.
For comparison we also compute the significances

obtained immediately from the neutrino oscillograms,

which corresponds to exact reconstruction of the neutrino

FIG. 4 (color online). The hierarchy asymmetry distribution in the (E� � cos ��) plane for different intervals of the inelasticity and
for one year of exposure. The experimental smearing of the distributions was performed with the energy and angular resolutions
�E ¼ ffiffiffiffiffiffiffiffiffiffi

0:7E
p

, c 0 ¼ 20�.
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energy and direction. If � and �� distributions are measured

independently, we would have jS�totj ¼ 46:8, jS ��
totj ¼ 43:8,

and the total significance jStotj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijS�totj2 þ jS ��

totj2
p ¼ 64:1.

The latter is about 3 times larger than the total significance

in the case when � and �� signals are not separated jS�þ ��
tot j ¼

23:7, in agreement with our qualitative result in Sec. III.

In the realistic case of partial separation of the � and ��
signals, which takes place when y information is included,
and after the kinematical smearing the significance
decreases strongly down to 8.43 after one year (so that

after three years of exposure we would have jS3 yrtot j ¼
14:6). This number further reduces down to jS3 yrtot j � 6:1

FIG. 5 (color online). The same as in Fig. 4 with �E ¼ ffiffiffiffiffiffiffiffiffiffi
0:7E

p
and c 0 ¼ 40�.
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after the experimental smearing in our worst case scenario

(��;h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:7E�;h

p
, �c ¼ 40�).

Systematic uncertainties likely play a relativelymild role
in degrading these results, as the measurements are differ-
ential from neighboring locations (bins in E� and c�), and

the systematic uncertainties between neighboring bins with
different asymmetries are strongly correlated. In addition,

the y distribution must be a superposition of the y distribu-
tions of neutrino and of antineutrino events, strongly con-

straining its shape and providing information related to the

systematic effect in the y dimension. However, we have

also found negligible degradation of the significance (about

1%) if introduced as in [9], at the level of 10%. This is due

to the small bin size of our oscillograms.

FIG. 6 (color online). The same as in Fig. 4 with �E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
0:35E

p
and c 0 ¼ 10�.
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Figure 7 shows the dependence of the significance on the

upper limit of integration over y for the case ��;h ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:35E�;h

p
and c 0 ¼ 20� and for kinematical smearing

only. The dashed curves are for y-integrated significances.
According to Fig. 7, the increase of the significance is

sustained up to higher y for curves including experimental
smearing. This is due to the contribution to the asymmetry
from larger E�, whose relative importance in smearing
decreases. Also the difference between y-differential and
y-integrated significances is relatively small after the
experimental smearing.

D. �m2
32 degeneracy

The effect of an inversion of the mass hierarchy
(especially at large energies) is rather similar to a shift of
the oscillation probabilities in the energy scale (see [9]).
This is equivalent to a change of�m2

32. Therefore the effect

of hierarchy can be partly mimicked by a change of �m2
32.

Indeed, the pattern of distribution of the quantity

S � NNHð�m2
32 þ Þ � NNHð�m2

32Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NNHð�m2

32Þ
q (40)

in the E� � c� plane is rather similar for certain values of

the shift parameter, , to the hierarchy asymmetry pattern:

SMH � NIHð�m2
32Þ � NNHð�m2

32Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NNHð�m2

32Þ
q : (41)

Since �m2
32 is known with some error, this parameter

degeneracy degrades the sensitivity to the mass hierarchy.
To quantify the effect the following significance has been
computed in [9]:

SMH� � NIHð�m2
32 þ Þ � NNHð�m2

32Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NNHð�m2

32Þ
q ; (42)

where  has been considered as a free parameter. This
would correspond to NH as the true hierarchy and �m2

32 as

the true value. The true distribution NNHð�m2
32Þ is then

fitted by IH distribution with arbitrary values of �m2
32. It

has been found in [9] that the minimum SMH�
min is reached

for  � �0:5�ð�m2
32Þ, where �ð�m2

32Þ is the present 1�
accuracy of determination of �m2

32 from the global fit [17].

The minimal value (for one year of exposure and no
inelasticity information) SMH�

min ¼ 3:8 should be compared

with SMH�ð ¼ 0Þ ¼ 6:0, thus showing reduction of the
significance by a factor of 1.6.
Future measurements at accelerators will reduce the

error by a factor of 2, which means that no significant
improvement is expected.
Let us show how information about inelasticity (or use

of 3D distributions) may help. As we mentioned before, the
effect of a �m2

32 change is nearly the same for neutrinos

and antineutrinos, whereas y distributions are different.
We construct the distribution S;int and the residual

asymmetry plot S;int � SMH;int which can be rewritten
according to (40) and (41) as

S;int � Sint ¼ �NIHð�m2
32Þ � NNHð�m2

32 � Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NNHð�m2

32Þ
q :

After substitution ð�m2
32 � Þ ! �m2

32 this residual asym-

metry essentially coincides with the quantity SMH� (42)
computed in [9].
On the left panels of Figs. 8 and 9, we respectively

show the plots for the asymmetry Sint and for the residual
asymmetry S;int � Sint for an ideal detector after kine-
matical smearing only. We take  � �0:5�ðj�m2

32jÞ ¼
�6� 10�5 eV2, which corresponds to the maximal degen-
eracy effect according to [9]. On the right panels of
Figs. 8 and 9, we present respectively the asymmetry Sint

and the residual asymmetry S;int � Sint after application of

the experimental smearing. We used �E ¼ ffiffiffiffiffiffiffiffiffiffi
0:7E

p
, and

c 0 ¼ 20� as a realistic experimental resolution.

TABLE I. The total significance of identification of the neu-
trino mass hierarchy for different experimental smearing scenar-
ios and for one year of exposure. Stot refers to analysis with
inelasticity, whereas Sinttot refers to the y integrated distributions
analysis. The upper line with �E ¼ c 0 ¼ 0 corresponds to the
kinematical smearing only.

�E c 0 jStotj jSinttotj jStotj=jSinttotj
0 0 8.43 7.11 1.19ffiffiffiffiffiffiffiffiffiffiffiffiffi
0:35E

p
10� 5.44 4.90 1.11ffiffiffiffiffiffiffiffiffiffiffiffiffi

0:35E
p

20� 5.10 4.66 1.10

0.3E 20� 4.40 3.98 1.11ffiffiffiffiffiffiffiffiffiffi
0:7E

p
20� 4.19 3.87 1.08ffiffiffiffiffiffiffiffiffiffi

0:7E
p

40� 3.52 3.26 1.08

0.2 0.4 0.6 0.8 1.0
y'

2

4

6

8

Sy y'

FIG. 7. Dependence of the significance on the upper limit of
integration over y. Thin and thick curves respectively correspond
to kinematical smearing only and to experimental smearing
included. Solid and dashed curves respectively show Stot
and Sinttot.
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The total significance of determination of the
mass hierarchy can be computed using the residual asym-
metry as

SinttotðMH� Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

dE�

Z
dc�ðS;int � SintÞ2

s

for the distributions without y information, and

StotðMH� Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

dE�

Z
dc�

Z
dyðS � SÞ2

s

with y distribution. For  � �0:5�ðj�m2
32jÞ and after one

year of exposure we obtain SinttotðMH� Þ ¼ 4:23. This
should be compared with Sinttot ¼ 7:11 without degeneracy
effect (see Table I). So, the degeneracy effect found in such
corresponds closely to the one found in [9]. With the y
distribution, we obtain SMH�

tot ¼ 6:03 (Stot ¼ 8:43). Thus,
the total significance is enhanced by �43% using the
inelasticity.

After the experimental smearing described above we
find

SinttotðMH� Þ ¼ 1:93; StotðMH� Þ ¼ 2:42

(without degeneracy we would have Sinttot ¼ 3:87 and
Stot ¼ 4:19, see Table I). The significance enhancement
is reduced to about 25%.
These results mean that the necessary exposure to ascer-

tain the mass hierarchy with an ideal detector is a factor of
2 larger if y is not exploited. For the detector with the
above-mentioned experimental resolutions, this factor is
not as large but it is still significant, about 1.55. The addi-
tional relative power of the inelasticity, as we already
noticed from the numbers in Table I, is greater, when
detector resolutions are better.

VI. DISCUSSION AND CONCLUSIONS

Multimegaton scale under-ice and underwater detectors
of atmospheric neutrinos with low (a few GeV) energy
thresholds open up new possibilities for the determination

FIG. 8 (color online). Asymmetry plots Sint with the kinematical smearing only (left) and after application of the experimental

smearing �E ¼ ffiffiffiffiffiffiffiffiffiffi
0:7E

p
, �c ¼ 20�

ffiffiffiffiffi
mp

E�

q
(right), for one year of exposure.

FIG. 9 (color online). Residual asymmetry plots (S;int � Sint) with the kinematical smearing only (left) and after application of the

experimental smearing �E ¼ ffiffiffiffiffiffiffiffiffiffi
0:7E

p
, �c ¼ 20�

ffiffiffiffiffi
mp

E�

q
(right), for one year of exposure.

IMPROVING THE NEUTRINO MASS HIERARCHY . . . PHYSICAL REVIEW D 87, 113007 (2013)

113007-17



of neutrino properties. This includes the neutrino mass
hierarchy, the deviation of the 2–3 mixing from maximal
and high accuracy measurement of �m2

32.

With a dense array of optical modules, it will be possible
to identify different atmospheric neutrino events, and in
particular, the �� CC events and determine their character-

istics. For the �� events, it will be possible to measure

not only the energy and the direction of the muon, but
also the energy of the accompanying hadron cascade. The
latter then determines the inelasticity. With y, one can
construct the three-dimensional distributions of events
in ðE�; cos��; yÞ.

In this paper, we have explored various improvements of
sensitivity to the mass hierarchy, which will be possible
with the inclusion of the inelasticity in the analysis. The
results can be summarized in the following way.

(1) Inelasticity measurements provide a certain sensi-
tivity to separate signals from neutrinos and anti-
neutrinos. This, in turn, reduces the cancellation of
the neutrino and antineutrino contributions to the
hierarchy as well as to CP-violation effects.
We find that, in the ideal case of complete separation
or independent measurement of � and �� signals,
the significance of the hierarchy determination
increases by a factor of �2:2–3. However, finite
accuracy of the separation (extraction of the pa-
rameter �) reduces the effect down to (20–30)%.
The best separation is in the range of large y where,
however, the angular smearing becomes strong and
the effect of mass hierarchy is averaged out.

(2) The selection of events with small y allows one to
reduce the angle between the neutrino and muon
directions and therefore reduce the kinematical
smearing, which is very strong at low energies in
the resonance region where the effect of mass hier-
archy at the probability level is the biggest one.
However, for small y, the effective separation of
the � and �� contributions worsen, and moreover,
the statistics decreases with cut in y. So, for fixed
exposure, the overall gain is rather modest.
Separation of the � and �� improves with an increase
of y, while the neutrino angle reconstruction im-
proves with a decrease of y. Therefore the analysis
of these improvements should be done simulta-
neously. This requires study of the 3D distributions
of events, which takes into account both separation
and reduction of kinematical smearing automatically.

(3) We have computed the 3D oscillograms of the ��

events with the kinematical smearing (for this the
kinematics of the �� CC interactions has been taken

into account precisely). We then found the 2D asym-
metry distribution in the E� � cos �� plane for

different intervals of y. The main contribution
to the identification of the hierarchy follows
from the intermediate range y ¼ 0:3–0:7, and the

contributions from intervals y ¼ 0:8–1:0 and
y ¼ 0–0:2 are small. The inelasticity enhances the
total significance of determination of the mass hier-
archy by about 20%, which is consistent with our
semiqualitative analysis provided that a slight
decrease of � is achieved.

(4) We then performed smearing of the distributions
over the observables: the energies of muon and
cascade as well as the angle of muon. We used the
Gaussian smearing functions assuming different
widths and their dependences on energy. The ex-
perimental smearing further diminishes the total
significance by a factor of 1.5–2.4 depending on
the energy and angular resolutions. The inclusion
of the inelasticity leads to an increase of the total
significance by (8–11)% after application of the
experimental smearing: the stronger the smearing,
the weaker the significance increase.

(5) Inversion of the mass hierarchy and variations of
other parameters have different effects on the y
distribution of events. This means that inelasticity
measurements will alleviate the degeneracy of the
hierarchy with �23 and �m

2
32. Without y distribution

the degeneracy with �m2
32 reduces the significance

by a factor of �1:7. The inelasticity measurements
increase the total significance by 43% before the
experimental smearing and by 25% with a specific
reasonable experimental smearing scheme.

(6) The mass hierarchy and the systematic errors affect
the y distribution differently. Therefore measure-
ments of inelasticity will likely help to reduce the
impact of systematic uncertainties.

(7) The contamination of the �� event sample with

other flavors leads to a suppression of the oscillation
effects. The selection of events with not too large y
will help discriminate �� CC events from events of

other types and therefore mitigate the loss of fea-
tures in the oscillatory pattern.

(8) All in all, we expect that the inclusion of the
inelasticity of the interaction in the analysis will
increase the significance by (20–50)%, which is
equivalent to an increase of the exposure time or
effective volume by a factor of 1.5–2.

(9) It is not excluded that more sophisticated analysis
will lead to an even stronger enhancement effect.

The next step in the enhancement of the discovery
potential of the multimegaton scale detectors could be
related to some information about the direction of the
cascade using detailed time information about the develop-
ment of events. Also the inclusion of other types of events
(cascades without muons) in the analysis will reinforce the
discovery potential.
The inclusion of the inelasticity as an ingredient in the

data analyses may become necessary in order to unambig-
uously conclude on the mass hierarchy in the near future.
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APPENDIX A: VARIABLE CHANGE � ! c�

Consider a muon with vector � ¼ ðs�; 0; c�Þ. The

matrix associated to the rotation � around the � axis is

R�ð�Þ ¼
c�c

2
� þ s2� �c�s� s2�=2s2�

c�s� c� �s�s�

s2�=2s2� s�s� c2� þ c�s
2
�

0
BB@

1
CCA:

We consider a neutrino vector �0 at an angle � also in the
plane x-z. A possible vector is �0 ¼ ðs�0

; 0; c�0
Þ, with �� ¼

�� þ �. We use the matrix to generate revolution vector

set f�ð�Þg� around the muon trajectory,

�ð�Þ ¼ R�ð�Þ�0 ¼
c�c�s� þ s�c�

s�s�

�c�s�s� þ c�c�

0
BB@

1
CCA:

The z component of the vector � can be associated to c�,
c� ¼ �c�s�s� þ c�c� therefore d� ¼ dc�=s�s�s�,

with s�s�s� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2�s

2
� � ðc�c� � c�Þ2

q
.

APPENDIX B: SMEARING FUNCTION FOR y

We use the notation �� � E� � ~E�, �h � Eh � ~Eh,

and the simplified relation y ¼ Eh=ðE� þ EhÞ. In order

to obtain the y distribution, we introduce z � E�=Eh,

so that y ¼ 1=ð1þ zÞ. Consequently, z ¼ 1=y� 1 and
dz ¼ �dy=y2. Let us denote by Pzð~zÞ the distribution of
~z. Then the y distribution is given by

Pyð~yÞ ¼ 1

~y2
Pzð1=~y� 1Þ:

In turn, the distribution of ratio z can be found from

Pzð~zÞ ¼
Z

ghð ~Eh; EhÞg�ð ~E�;E�Þ
�
E�

Eh

� ~z

�
dEhdE�:

The integration gives

Pzð~zÞ ¼ e
� �2

h

2�2
h

� �2�

2�2�

2	ð�2
h þ �2

�~z
2Þ2j���

2
h þ �h�

2
�~zj

�
0
@2�h��ð�2

h þ �2
�~z

2Þj���
2
h þ �h�

2
�~zj

þ ffiffiffiffiffiffiffi
2	

p
e

ð���2
h
þ�h�

2
�~zÞ2

2�2
h
�2�ð�2

h
þ�2�~z2Þð���

2
h þ�h�

2
�~zÞ2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

h þ �2
�~z

2
q

erf

0
@ j���

2
h þ �h�

2
�~zjffiffiffi

2
p

�h��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

h þ �2
�~z

2
q

1
A
1
A:

The y distribution obtained in this way is nearly Gaussian
in most cases of interest. It starts to deviate from Gaussian,
showing enhanced tails, when E� and Eh are both small.

This is illustrated Fig. 10 for the energy resolution widths
��;h ¼ p

E�;h.
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