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We search for the flavor-changing neutral-current decays B ! Kð�Þ� ��, and the invisible decays J=c !
� �� and c ð2SÞ ! � �� via B ! Kð�ÞJ=c and B ! Kð�Þc ð2SÞ, respectively, using a data sample of 471�
106 B �B pairs collected by the BABAR experiment. We fully reconstruct the hadronic decay of one of the B

mesons in the �ð4SÞ ! B �B decay, and search for the B ! Kð�Þ� �� decay in the rest of the event. We

observe no significant excess of signal decays over background and report branching fraction upper limits

of BðBþ ! Kþ� ��Þ< 3:7� 10�5, BðB0 ! K0� ��Þ< 8:1� 10�5, BðBþ ! K�þ� ��Þ< 11:6� 10�5,

BðB0 ! K�0� ��Þ< 9:3� 10�5, and combined upper limits of BðB ! K� ��Þ< 3:2� 10�5 and BðB !
K�� ��Þ< 7:9� 10�5, all at the 90% confidence level. For the invisible quarkonium decays, we report

branching fraction upper limits of BðJ=c ! � ��Þ< 3:9� 10�3 and Bðc ð2SÞ ! � ��Þ< 15:5� 10�3 at

the 90% confidence level. Using the improved kinematic resolution achieved from hadronic reconstruc-

tion, we also provide partial branching fraction limits for the B ! Kð�Þ� �� decays over the full kinematic

spectrum.

DOI: 10.1103/PhysRevD.87.112005 PACS numbers: 13.20.He, 13.20.Gd, 14.40.Nd

I. INTRODUCTION

Flavor-changing neutral-current transitions, such as
b ! s� ��, are prohibited in the standard model (SM) at
tree-level. However, they can occur via one-loop box or
electroweak penguin diagrams, as shown in Fig. 1. They
can occur also in the SM via a quarkonium resonance state
b ! sc �c, c �c ! � ��, where the c �c decay is mediated by a
virtual Z0 boson (Fig. 2). This latter decay process has the
same final state as b ! s� �� with an additional constraint
from the on-shell c �cmass. Both the b ! s� �� and c �c ! � ��
decay rates are expected to be small within the SM, with
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**Now at Universidad Técnica Federico Santa Maria,
Valparaiso, Chile 2390123.

SEARCH FOR B ! Kð�Þ� �� AND . . . PHYSICAL REVIEW D 87, 112005 (2013)

112005-3

http://dx.doi.org/10.1103/PhysRevD.87.112005


branching fractions estimated to be BðBþ!Kþ� ��Þ¼
BðB0!K0� ��Þ¼ ð4:5�0:7Þ�10�6, BðBþ!K�þ� ��Þ¼
BðB0!K�0� ��Þ¼ ð6:8þ1:0

�1:1Þ�10�6 [1], and BðJ=c !
� ��Þ ¼ ð4:54� 10�7Þ �BðJ=c ! eþe�Þ [2]. The b !
s� �� rates are predicted with smaller theoretical uncertain-
ties than those in the corresponding b ! s‘þ‘� modes due
to the absence of long-distance hadronic effects from
electromagnetic penguin contributions.

Various new-physics scenarios exist that could signifi-
cantly enhance the b ! s� �� branching fractions, as well as
modify the expected SM decay distributions of sB �
q2=m2

B, where q2 is the squared magnitude of the four-
momentum transferred from the B meson to the neutrino
pair, and mB is the B meson mass. Some of these scenarios
predict massive particles that could contribute additional
loop diagrams with similar amplitudes as those in the SM,
such as nonstandard Z0 couplings with supersymmetric
(SUSY) particles [1], fourth-generation quarks [3], anoma-
lous top-charm transitions [4], or a massive U(1) gauge
boson Z0 [1,5]. Since b ! s� �� has two final-state neutri-
nos, other sources of new physics can also contribute to the
experimental signature of a kaon and missing four-
momentum, such as low-mass dark-matter (LDM) candi-
dates [1,6–8], unparticles [9], right-handed neutrinos [5],
or SUSY particles [10]. Models with a single universal
extra dimension also predict higher decay rates [11].

The decays J=c ! � �� and c ð2SÞ ! � �� provide
additional windows for new-physics searches. In
spontaneously-broken SUSY, a c �c resonance can decay
into a pair of goldstinos via either a virtual Z0 in the
s-channel or a c-squark exchange in the t-channel [2]
(Fig. 2). The contribution of a massive SU(2) gauge boson
Z0, introduced in the left-right SUSY model, could sup-
press the decay rates up to an order of magnitude [2].

Conversely, a low-mass U(1) gauge boson U could en-
hance the invisible decay rates of quarkonium states by
several orders of magnitude by coupling to LDM particles
[12,13]. The U boson could decay into a pair of spin-1=2
Majorana (��), spin-1=2 Dirac (� ��), or spin-0 (’’) LDM
particles.
We search for B ! K� �� and B ! K�� ��, and for

J=c ! � �� and c ð2SÞ ! � �� via B ! Kð�ÞJ=c and B !
Kð�Þc ð2SÞ, respectively, where Kð�Þ signifies a charged or
neutral K or K� meson [14]. We use a technique in which
one B meson is exclusively reconstructed in a hadronic
final state before looking for a signal decay within the rest
of the event. Since the four-momentum of one B meson is
fully determined, the missing mass resolution on the two
final-state neutrinos and the suppression of background are
improved with respect to other reconstruction techniques.
Several previous searches for B ! K� �� and B ! K�� ��

have been performed by both the BABAR and BELLE
collaborations [15–19]. Currently, the most stringent pub-
lished upper limits at 90% confidence level (CL) are
BðBþ ! Kþ� ��Þ< 1:3� 10�5 [15] and BðB ! K�� ��Þ<
8� 10�5 [16]. TheBðBþ ! Kþ� ��Þ limit was determined
using semileptonic-tag reconstruction, which produces
samples that are statistically larger and independent
of those produced using the hadronic-tag reconstruction
employed in this search. The BðB ! K�� ��Þ limit was a
combination of two BABAR analyses, one using
semileptonic-tag reconstruction and the other using
hadronic-tag reconstruction.
A J=c ! � �� search via c ð2SÞ ! �þ��J=c

was performed by the BES collaboration, which set
an upper limit at 90% CL of BðJ=c ! � ��Þ< 1:2�
10�2 �BðJ=c ! �þ��Þ [20]. This article presents the
first search for J=c ! � �� using the hadronic-tag recon-
struction of a B meson decay. A search for c ð2SÞ ! � ��
has not been performed previously.

II. THE BABAR DETECTOR AND DATA SAMPLE

This search uses a data sample of 471� 3 million B �B
pairs, corresponding to an integrated luminosity of
429 fb�1 collected at the �ð4SÞ resonance [21]. The data
were recorded with the BABAR detector [22] at the
PEP-II asymmetric-energy eþe� storage rings. The
charged-particle tracking system consists of a five-layer
double-sided silicon vertex tracker and a 40-layer drift
chamber, both coaxial with a 1.5 T solenoidal magnetic
field. Charged kaons and pions are distinguished by spe-
cific ionization energy-loss measurements from the track-
ing system for lower momentum particles, and by
measurements from a ring-imaging Cherenkov radiation
detector for higher momentum particles. A CsI(Tl) elec-
tromagnetic calorimeter is used to reconstruct photons of
energy greater than 20 MeV and to identify electrons.
Muon identification is provided by the instrumented
flux return of the magnet. Particle identification (PID)

FIG. 2. Lowest-order Feynman diagrams of (from left to right)
the SM decay c �c ! � ��, the SUSY decay c �c into a pair of
goldstinos (~g) via a c-squark in the t-channel, and the SUSY
decay c �c ! ~g �~g via a virtual Z0 in the s-channel.

FIG. 1. Lowest-order SM Feynman diagrams for b ! s� ��
transitions. The virtual top quark provides the dominant contri-
bution in each case.
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algorithms are trained to identify charged particle types by
using 36 input parameters including momentum, polar and
azimuthal angles, the Cherenkov angle, and energy-loss
measurements [23]. We employ PID criteria that select Kþ
mesons with an efficiency greater than 85% and with
approximately 1% misidentification probability for pions
and muons.

Signal and background decays are studied using
Monte Carlo (MC) samples simulated with Geant4 [24].
The simulation includes a detailed model of the BABAR
detector geometry and response. Beam-related background
and detector noise are extracted from data and are overlaid
on the MC simulated events. Large MC samples of generic
B �B and continuum (eþe� ! �þ�� or eþe� ! q �q, where
q ¼ u, d, s, c) events provide ten times the number of
�ð4SÞ ! B �B and eþe� ! c �c events as in the data sample,
and four times the number of other continuum decays. The
�ð4SÞ ! B �B signal MC samples are generated with one B

meson decaying via B ! Kð�Þ� ��, with and without the c �c
resonances, while the other Bmeson decays according to a
model tuned to world averages of allowed decay channels.

The sB distributions for B ! Kð�Þ� �� decays within signal
MC samples are generated initially using a phase-space
model, and then reweighted using the model from Ref. [1],
henceforth referred to as ABSW. Within B ! K�� ��
decays, this model is also used to reweight the helicity-
angle distribution between the signal B and the Kþ or K0

flight directions in the K� rest frame. The helicity ampli-
tudes for the decay channels B ! K�J=c and B !
K�c ð2SÞ are generated using values taken from a
BABAR measurement [25].

III. ANALYSIS METHOD

Event selection for both the B ! Kð�Þ� �� and B !
Kð�Þc �c, c �c ! � �� searches begins by fully reconstructing
a Bmeson (Btag) in one of many hadronic final states, �B !
SX�

had, where S is a ‘‘seed’’ meson (Dð�Þþ, Dð�Þ0, Dð�Þþ
s , or

J=c ) and X�
had is a collection of at most five mesons,

composed of charged and neutral kaons and pions with a
net charge of �1. This method, which was used also in
Ref. [26], reconstructs additional modes with respect to

previous hadronic-tag B ! Kð�Þ� �� analyses [16,17], and
results in approximately twice the reconstruction
efficiency. The D seeds are reconstructed in the decay
modes Dþ ! K0

S�
þ, K0

S�
þ�0, K0

S�
þ�þ��, K��þ�þ,

K��þ�þ�0, KþK��þ, KþK��þ�0; D0 ! K��þ,
K��þ�0, K��þ�þ��, K0

S�
þ��, K0

S�
þ���0, KþK�,

�þ��, �þ���0, and K0
S�

0. Additional seeds are recon-

structed as D�þ ! D0�þ, Dþ�0; D�0 ! D0�0, D0�;
D�þ

s ! Dþ
s �; Dþ

s ! �½! KþK���þ, K0
SK

þ; and

J=c ! eþe�, �þ��. The K0
S candidates are recon-

structed via their decay to �þ��.
Well-reconstructed Btag candidates are selected

using two kinematic variables: �E ¼ EBtag
� ffiffiffi

s
p

=2 and

mES ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=4� ~p2

Btag

q
, where EBtag

and ~pBtag
are the energy

and momentum vector of the Btag candidate, respectively,

in the eþe� center-of-mass (CM) frame and
ffiffiffi
s

p
is the total

energy of the eþe� system. The value of �E, which peaks
at zero for correctly reconstructed B mesons, is required to
be between �0:12 and 0.12 GeV or within two standard
deviations around the mean for a given X�

had mode, which-

ever is the tighter constraint. If more than one Btag candi-

date is reconstructed, the one in the mode with the highest
purity (fraction of candidates that are correctly recon-
structed within a given Btag decay mode) is chosen. If there

are multiple candidates with the same purity, the one with
the smallest j�Ej is selected.
After requiring that the event contains between one and

three charged tracks not used in the Btag reconstruction

(‘‘signal-side’’ tracks), the purity of each mode is recalcu-
lated, and only the Btag modes that have a recalculated

purity greater than 68% are retained. This results in a total
of 448 final states. This purity value was optimized by
maximizing the figure of merit [27]

"sigi

1
2n� þ

ffiffiffiffiffiffiffiffiffiffi
N

bkg
i

q ; (1)

where the number of sigmas n� ¼ 1:28 corresponds to a

one-sided Gaussian limit at 90% CL, "
sig
i is the total signal

efficiency, and N
bkg
i is the expected number of background

events, with i representing one of the signal decay chan-
nels. All other selection criteria discussed henceforth were
optimized simultaneously using this same figure of merit.
The signal region of the Btag candidate is defined as

5:273<mES < 5:290 GeV=c2 (Fig. 3), since correctly re-
constructed B mesons produce a peak in this region near
the nominal B-meson mass. The Btag candidates that are

incorrectly reconstructed (‘‘combinatorial’’ events), which
result from continuum events or are due to particles
assigned to the wrong B meson, produce a distribution
that is relatively uniform below the mES signal region
and decreases toward the kinematic limit within it.
Approximately 0.3% of signal MC events and 12.0 million
data events contain a Btag that is reconstructed using the

above requirements and found to be within the mES signal
region.
Since Bmesons are spin zero and are produced with low

momentum in the CM frame (� 0:32 GeV=c), their decay
products are more isotropically distributed than non-B �B
background. For example, j cos 	Tj, where 	T is the angle
in the CM frame between the Btag thrust [28] axis and the

thrust axis of all other particles in the event, has a uniform
distribution for B �B events but peaks near one for contin-
uum events. Continuum background is suppressed by using
a multivariate likelihood selector based on six event-shape
variables. These consist of j cos 	Tj, the cosine of the angle
between ~pBtag

and the beam axis, the magnitude of the Btag
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thrust, the component of the Btag thrust along the beam

axis, the angle between the missing momentum vector
( ~pmiss) and the beam axis, and the ratio of the second-to-
zeroth Fox-Wolfram moment [29] computed using all
charged and neutral particles in the event. The multivariate
selector requires

LB �
Q

j P BðxjÞ
Q

j P BðxjÞ þ
Q

j P qðxjÞ> 53%; (2)

where P qðxjÞ and P BðxjÞ are probability density functions
determined from MC that describe continuum and signal-
like B �B events, respectively, for the six event-shape vari-
ables xj. The LB requirement, which was optimized with

other selection criteria using Eq. (1), also improves the
agreement between data and MC by suppressing unmod-
eled continuum backgrounds.

In the sample of selected Btag candidates, signal events

are chosen such that a single Kð�Þ candidate can be recon-
structed within the rest of the event and no additional

charged tracks remain in the event. The sum of the Kð�Þ
and Btag candidate charges must equal zero. Since signal

decays have two final-state neutrinos, these events are
required to have missing energy greater than zero, where
the missing energy is defined as the CM energy minus all
detected calorimeter deposits from charged and neutral

particles in the event. For B ! Kð�Þ� ��, the signal decays
are reconstructed in six channels: Bþ ! Kþ� ��; B0 !
K0� �� where K0 ! K0

S; Bþ ! K�þ� ��, where K�þ !
Kþ�0 and K�þ ! K0

S�
þ; and B0 ! K�0� ��, where

K�0 ! Kþ�� and K�0 ! K0
S�

0. For c �c ! � ��, the same

six signal channels are employed with an additional re-

quirement that the Kð�Þ momentum is consistent with a

two-body decay, either B ! Kð�ÞJ=c or B ! Kð�Þc ð2SÞ.
The J=c and c ð2SÞ mesons then decay into a pair
of neutrinos, thus yielding the same final states as for

B ! Kð�Þ� ��.
We reconstruct K0

S ! �þ�� decay candidates using

two tracks of opposite charge, which originate from a
common vertex and produce an invariant mass within
�7 MeV=c2 of the nominal K0

S mass [30]. The PID for

each track must be inconsistent with that for an electron,
muon, or kaon. The �0 candidates are reconstructed from
pairs of photon candidates with individual energies greater
than 30 MeV, a total CM energy greater than 200 MeV, and
a �� invariant mass between 100 and 160 MeV=c2. All
Kþ candidates must satisfy the PID criteria for a kaon.
Reconstructed K� candidates are required to have an

invariant mass within �70 MeV=c2 of the nominal K�
mass [30]. A K�þ ! K0

S�
þ candidate combines a K0

S

candidate with a track that satisfies the PID criteria for a
pion. If more than one K�þ ! K0

S�
þ candidate can be

reconstructed in an event, the one with the mass closest
to the nominal K�þ mass is chosen. A K�0 ! Kþ��
candidate combines one track that satisfies the PID criteria
for a kaon with one that is inconsistent with the PID criteria
for an electron, muon, or kaon. In an event containing aKþ
(K0

S) candidate and no additional signal-side tracks, K� !
Kþ�0 (K0

S�
0) candidates are reconstructed if the invariant

mass of a �0 candidate and the Kþ (K0
S) candidate falls

within the K� mass window; otherwise the event is con-
sidered for the Kþ (K0

S) signal channel. If more than one

K�þ ! Kþ�0 or K�0 ! K0
S�

0 candidate can be recon-

structed, the one with the highest energy �0 candidate is
chosen.

Once the Btag and Kð�Þ are identified, the signal events

are expected to contain little or no additional energy within
the calorimeter. However, additional energy deposits can
result from beam-related photons, hadronic shower frag-
ments that were not reconstructed into the primary particle
deposit, and photons from unreconstructed D� ! D�=�0

transitions in the Btag candidate. Only deposits with energy

greater than 50 MeV in the rest frame of the detector are
considered, and the sum of all such additional energy
deposits (Eextra) is required to be less than a threshold value
(Ei). The values of Ei, given in Table I and depicted in
Fig. 4, were optimized with the other selection criteria but

TABLE I. Threshold values Ei for the Eextra variable in each of
the signal channels, determined using Eq. (1). The channels in
brackets refer to the K� decay products.

Channel Kþ K0 ½Kþ�0� ½K0
S�

þ� ½Kþ��� ½K0
S�

0�
Ei [GeV] 0.11 0.28 0.18 0.29 0.31 0.33

]2 [GeV/cESm

5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

)2
E
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FIG. 3 (color online). The mES distribution for the Btag candi-
dates in data (points) and in the expected combinatorial back-
ground as predicted by the MC (shaded). This distribution
includes only the charged and neutral Btag candidates that pass

the purity restrictions, the multivariate continuum suppression,
and a requirement of one to three signal-side tracks. The data
within the mES sideband region is used to extrapolate the
expected number of combinatorial background events within
the signal region.
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were allowed to differ between signal channels. For
events within the Kþ signal channel, calorimeter deposits
identified as kaon shower fragments are not included in the
Eextra sum. A fragment candidate is defined as a neutral
calorimeter deposit whose momentum vector, when
compared to that of the signal track, is separated by
polar and azimuthal angles (relative to the beam axis
and in the rest frame of the detector) of �	 and

��, respectively, such that rclus < 15	, where rclus �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�	Þ2 þ 2

3 ðQK � ��� 8	Þ2
q

and QK ¼ �1 is the K�

charge. The rclus and fragment candidate definitions were
optimized using studies of truth information in the signal
MC samples. The recovery of these kaon shower fragments
improves the final signal efficiency in the Kþ channel by
about 13%. This procedure was explored for the other
signal tracks, but the effect was small.

The searches for B ! Kð�Þ� �� and for c �c ! � �� via B !
Kð�Þc �c diverge in the final step of the signal selection,
which involves restricting the kinematics of the decay.
The value of sB is calculated as ðpBsig

� pKð�Þ Þ2=m2
B, where

pKð�Þ is the four-momentum of the Kð�Þ candidate, and pBsig

is the expected signal B four-momentum with an energy offfiffiffi
s

p
=2, the nominal B-meson mass, and a momentum vector

pointing opposite the Btag momentum. For B ! Kð�Þ� ��,
the signal region optimized for maximum SM sensitivity is
0< sB < 0:3 for all six signal channels. This corresponds

to a Kð�Þ momentum greater than about 1.8 ð1:7Þ GeV=c in
the signal B rest frame for B ! K� �� (B ! K�� ��) events.
Partial branching fractions over the full sB spectrum are
also provided for sensitivity to new-physics scenarios that

modify the kinematic distributions for B ! Kð�Þ� ��. For
c �c ! � �� via B ! Kð�Þc �c, the invariant mass of the two

neutrinos m� �� �
ffiffiffiffiffiffiffiffiffiffiffiffi
sBm

2
B

q
is expected to correspond to the

mass of the J=c (3:097 GeV=c2) meson or to that of the
c ð2SÞ (3:686 GeV=c2) meson. Signal events are selected
within three standard deviations around the nominal c �c
masses, which results in windows of 3:044<m� �� < 3:146
ð3:019<m� �� < 3:175Þ GeV=c2 for the B ! KJ=c (B !
K�J=c ) channels, and 3:650<m� �� < 3:724 ð3:627<
m� �� < 3:739Þ GeV=c2 for the B ! Kc ð2SÞ (B !
K�c ð2SÞ) channels.
To avoid experimenter bias, all the above selection

criteria and values were optimized using the MC before
looking at any data events within the Eextra and mES signal
regions.

IV. BACKGROUND AND BRANCHING
FRACTION EXTRACTION

The total number of background events Nbkg
i in the

signal region has two components: N
peak
i is the number of

expected background events having a correctly recon-
structed Btag candidate and hence peaking within the mES

signal region, and Ncomb
i is the number of expected com-

binatorial background events, including both continuum
events and B �B events with an incorrectly reconstructed
Btag candidate. To reduce the dependence on MC simula-

tions, the number of Ncomb
i events is extrapolated directly

from the observed data events within the mES sideband
region, defined as 5:200<mES < 5:265 GeV=c2 and de-
picted in Fig. 3. The shape of the combinatorial mES

distribution is estimated using MC samples of continuum
events and of B �B events reconstructed with the wrong
charge.

The number of N
peak
i events is estimated from generic

B �B MC samples. Over half of Npeak
i is found to be from

B ! Dð�Þ‘� (‘ ¼ e or �) decays in which no lepton can-

didate is identified in the event and the Kð�Þ is a daughter of
the D or D� meson. One particular peaking background in

the B ! Kð�Þ� �� search is Bþ ! �þ��, with �þ !
Kð�Þþ��, which has the same final state as the signal decay
[31]. Exclusive Bþ ! �þ�� MC samples, assuming a
branching fraction of ð1:65� 0:34Þ � 10�4 [30], indicate
that this background constitutes less than 15 (5)% of the
total background in the Bþ ! Kþ� �� (Bþ ! K�þ� ��)
channel.
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FIG. 4 (color online). The Eextra distribution over the full sB
spectrum in the (from top to bottom) Kþ, K0, K�þ, and K�0
channels after applying all other signal selection criteria. The
expected combinatorial (shaded) plus mES-peaking (solid) back-
ground contributions are overlaid on the data (points). The B !
Kð�Þ� �� signal MC distributions (dashed) have arbitrary normal-
ization. Both the B ! Kð�Þ� �� and c �c ! � �� searches select
events to the left of the vertical line that corresponds to the Ei

value of that channel, as given in Table I.
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Since both N
peak
i and "

sig
i are determined from MC

samples, we normalize the MC yields to the data to account
for differences between data and MC, such as from the Btag

reconstruction and the modeled branching fractions of Btag

modes within the MC. This normalization is performed
before applying the full signal selection in order to have a

large background-to-signal ratio; looser Kð�Þ mass win-
dows and Eextra selection requirements are used such that
the number of background events is approximately 60 times
larger than the final background contribution, over the full
sB spectrum. The peaking background component in the
B �B MC is then normalized to the number of data events
that peak within the mES signal region. This peaking yield
normalization is performed separately for charged and
neutral Btag candidates, and results in the scaling of all

signal and background MC samples by 1:027� 0:039
ð1:017� 0:044Þ for charged (neutral) Btag candidates.

The signal branching fractions are calculated using

B i ¼ Nobs
i � ðNpeak

i þ Ncomb
i Þ

"
sig
i NB �B

; (3)

where NB �B ¼ 471� 106 is the total number of B meson
pairs in the data sample and Nobs

i is the number of data
events within the signal region. The total signal efficiency

"sigi includes that of the Btag reconstruction and is deter-

mined separately for each of the signal channels i. Since
misreconstructed events from other signal channels con-

tribute to Npeak
i , the branching fractions of all signal chan-

nels are determined simultaneously by inverting a 6� 6
efficiency matrix "ij, which describes the probability that a

signal event of process i is reconstructed in signal channel
j. Branching fraction limits and uncertainties are computed
using a mixed frequentist-Bayesian approach described in

Ref. [32], with the systematic uncertainties on Nbkg
i and

"sigi modeled using Gaussian distributions. To combine the
results of signal decay channels, we find the Bi value that
maximizes a likelihood function defined as the product of
the Poisson probabilities of observing Nobs

i events.

V. SYSTEMATIC STUDIES

To verify the modeling of "
sig
i andN

bkg
i , a control sample

of B ! D‘� events is selected. In place of a signal K�
candidate, the events are required to contain a recon-
structed D0 ! K��þ, D� ! Kþ����, or D�!K0

S�
�

candidate with an invariant mass within �35 MeV=c2 of
the nominal D-meson mass values [30]. The event must
have one additional track that satisfies the PID criteria of
either an electron or muon. All other reconstruction and
signal selection requirements are retained. The resulting
yields in the data agree with MC expectations, assuming
the well-measured branching fractions of B ! D‘� [30],
within the 7% (12%) statistical uncertainty of the data in
the 0< sB < 0:3 (J=c or c ð2SÞ mass) region.

The control sample is used to determine the systematic
uncertainties due to the MC modeling of the Eextra variable

within data. Additional uncertainties on Npeak
i and "sigi are

due to the K0
S and K

� mass reconstruction windows, the �0

reconstruction, and the uncertainties in the branching frac-
tions [30] of the dominant backgrounds contributing to

N
peak
i . The uncertainty on Ncomb

i is dominated by the side-
band data statistics. Other systematic uncertainties, such as
those from PID, tracking, Btag reconstruction, NB �B, and the

assumption that charged and neutral B �B pairs are produced
at equal rates, are all accounted for by the normalization of
the MC peaking yields. Because the peaking yield in data
depends on the extrapolated shape of the combinatorial
Btag background, the normalization scale factors are

TABLE II. Summary of systematic uncertainties that are
shared by the B ! Kð�Þ� ��, J=c ! � ��, and c ð2SÞ ! � ��
searches. All values are relative uncertainties in %. The channels
in brackets refer to the K� decay products.

Source Kþ ½Kþ�0� ½K0
S�

þ� K0 ½Kþ��� ½K0
S�

0�
"
sig
i normalization 3.5 3.5 3.5 8.9 8.9 8.9

N
bkg
i normalization 2.3 2.3 2.3 6.0 6.0 6.0

K0
S reconstruction � � � � � � 1.4 1.4 � � � 1.4

K� reconstruction � � � 2.8 2.8 � � � 2.8 2.8

�0 reconstruction � � � 3.0 � � � � � � � � � 3.0

Eextra 4.5 6.0 6.5 6.0 6.0 6.5

TABLE III. Summary of systematic uncertainties that differ
between the B ! Kð�Þ� ��, J=c ! � ��, and c ð2SÞ ! � ��
searches, and the total systematic uncertainties for each signal
channel. All values are relative uncertainties in %. The total
systematic uncertainties are determined by adding in quadrature
each relevant uncertainty, including those listed in Table II.

Source Kþ ½Kþ�0� ½K0
S�

þ� K0 ½Kþ��� ½K0
S�

0�
B ! Kð�Þ� ��

N
peak
i B’s 2.8 2.8 2.8 2.8 2.8 2.8

sB resolution 3.6 3.6 3.6 3.6 3.6 3.6

Total N
peak
i syst. 6.8 8.9 8.8 9.7 10.0 10.9

Total Ncomb
i syst. 2.3 2.3 2.3 6.0 6.0 6.0

Total "
sig
i syst. 6.7 8.8 8.8 11.4 11.7 12.4

J=c ! � ��
N

peak
i B’s 3.5 3.5 3.5 3.5 3.5 3.5

m� �� resolution 1.1 2.1 0.4 0.7 0.3 1.3

Total N
peak
i syst. 6.2 8.6 8.4 9.3 9.6 10.5

Total Ncomb
i syst. 2.3 2.3 2.3 6.0 6.0 6.0

Total "sigi syst. 5.8 8.3 8.0 10.8 11.1 11.9

c ð2SÞ ! � ��
N

peak
i B’s 2.8 2.8 2.8 2.8 2.8 2.8

m� �� resolution 0.8 2.4 1.0 0.9 1.8 3.1

Total N
peak
i syst. 5.8 8.5 8.1 9.1 9.5 10.7

Total Ncomb
i syst. 2.3 2.3 2.3 6.0 6.0 6.0

Total "
sig
i syst. 5.8 8.4 8.1 10.9 11.2 12.2
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re-evaluated by varying the method used to extrapolate this

shape. The resulting variations on the final N
bkg
i and "

sig
i

values are taken as the systematic uncertainties due to the
normalization.

Due to the approximately 1.0% resolution on the sB
measurement around sB ¼ 0:3, an uncertainty is evaluated

within the B ! Kð�Þ� �� signal region. Similarly, the reso-
lution on m� �� contributes to uncertainties within the

J=c ! � �� and c ð2SÞ ! � �� signal regions. Only the

systematic uncertainties due to the N
peak
i branching frac-

tions and to sB or m� �� differ between the B ! Kð�Þ� ��,
J=c ! � ��, and c ð2SÞ ! � �� searches. The systematic
uncertainties are summarized in Tables II and III; the
former lists the uncertainties shared by the searches, while
the latter lists those that differ.

VI. RESULTS FOR B ! Kð�Þ� ��

Figure 5 shows the observed data yields, expected back-
ground contributions, and SM signal distributions over the
full sB spectrum. Tables IV and V summarize the number
of observed data events within the sB signal region (0<

sB < 0:3), expected backgrounds, B ! Kð�Þ� �� signal effi-
ciencies, branching fraction central values, and branching
fraction limits at the 90% CL. Combining the signal chan-
nels, we determine upper limits of BðB ! K� ��Þ< 3:2�
10�5 and BðB ! K�� ��Þ< 7:9� 10�5. Since we see a
small excess over the expected background in the Kþ
channel, we report a two-sided 90% confidence interval.
However, the probability of observing such an excess
within the signal region, given the uncertainty on the
background, is 8.4% which corresponds to a one-sided
Gaussian significance of about 1:4�. Therefore, this excess
is not considered significant.
Using the same procedure as when combining signal

decay channels, the B ! K� �� branching fraction central
values are combined with a previous semileptonic-tag
BABAR analysis that searched within a statistically inde-
pendent data sample [15]. We obtain combined BABAR
upper limits at the 90% CL of

BðBþ ! Kþ� ��Þ< 1:6� 10�5;

BðB0 ! K0� ��Þ< 4:9� 10�5; and

BðB ! K� ��Þ< 1:7� 10�5:

(4)

The combined central value is BðB ! K� ��Þ ¼
ð0:8þ0:7

�0:6Þ � 10�5, where the uncertainty includes both
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FIG. 5 (color online). The sB distribution for (from top to
bottom) Bþ ! Kþ� ��, B0 ! K0� ��, Bþ ! K�þ� ��, and B0 !
K�0� �� events after applying the full signal selection. The ex-
pected combinatorial (shaded) plus mES-peaking (solid) back-
ground contributions are overlaid on the data (points). The signal
MC distributions (dashed) are normalized to branching fractions
of 20� 10�5 for Bþ ! Kþ� �� and 50� 10�5 for the other
channels. Events to the left of the vertical lines are selected to
obtain SM-sensitive limits, while the full spectra are used to
determine partial branching fractions.

TABLE IV. Expected B ! K�� �� background yields N
bkg
i ¼ N

peak
i þ Ncomb

i , signal efficiencies "
sig
i , number of observed data events

Nobs
i , resulting branching fraction upper limits at 90% CL, and the combined upper limits and central values, all within the 0< sB <

0:3 region. Uncertainties are statistical and systematic, respectively. The channels in brackets refer to the K� decay products.

Bþ ! ½Kþ�0�� �� Bþ ! ½K0
S�

þ�� �� B0 ! ½Kþ���� �� B0 ! ½K0
S�

0�� ��
N

peak
i 1:2� 0:4� 0:1 1:3� 0:4� 0:1 5:0� 0:8� 0:5 0:2� 0:2� 0:0

Ncomb
i 1:1� 0:4� 0:0 0:8� 0:3� 0:0 2:0� 0:5� 0:1 0:5� 0:3� 0:0

N
bkg
i

2:3� 0:5� 0:1 2:0� 0:5� 0:1 7:0� 0:9� 0:5 0:7� 0:3� 0:0

"
sig
i ð�10�5Þ 4:9� 0:2� 0:4 6:0� 0:2� 0:5 12:2� 0:3� 1:4 1:2� 0:1� 0:1

Nobs
i 3 3 7 2

Limit <19:4� 10�5 <17:0� 10�5 <8:9� 10�5 <86� 10�5

BðBþ=0 ! K�þ=0� ��Þ ð3:3þ6:2þ1:7
�3:6�1:3Þ � 10�5 ð2:0þ5:2þ2:0

�4:3�1:7Þ � 10�5

Limit <11:6� 10�5 <9:3� 10�5

BðB ! K�� ��Þ ð2:7þ3:8þ1:2
�2:9�1:0Þ � 10�5

Limit <7:9� 10�5
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statistical and systematic uncertainties. These combined
results reweight the sB distribution to that of the ABSW
theoretical model (dashed curve in Fig. 5), which decreases
the signal efficiencies published in Ref. [15] by approxi-
mately 10%. The B ! K�� �� central values also can be
combined with the semileptonic-tag results from a pre-
vious BABAR search [16]. In order to obtain approximate
frequentist intervals, the likelihood functions in the pre-
vious search are extended to include possibly negative
signals. We obtain combined BABAR upper limits at the
90% CL of

BðBþ ! K�þ� ��Þ< 6:4� 10�5;

BðB0 ! K�0� ��Þ< 12� 10�5; and

BðB ! K�� ��Þ< 7:6� 10�5:

(5)

The combined central value is BðB ! K�� ��Þ ¼
ð3:8þ2:9

�2:6Þ � 10�5.

Since certain new-physics models suggest that enhance-
ments are possible at high sB values, we also report model-
independent partial branching fractions (�Bi) over the full
sB spectrum by removing the low-sB requirement. The
�Bi values are calculated in intervals of sB ¼ 0:1, using

Eq. (3) (with the Nobs
i , Npeak

i , Ncomb
i , and "sigi values found

within the given interval) multiplied by the fraction of the
signal efficiency distribution inside that interval. Figure 6
shows the partial branching fractions. The signal efficiency
distributions are relatively independent of sB, which are
also illustrated in Fig. 6. To compute model-specific values
from these results, one can sum the central values within
the model’s dominant interval(s) (with uncertainties added
in quadrature) and divide the sum by the fraction of the
model’s distribution that is expected to lie within the same
sB intervals. These partial branching fractions provide

TABLE V. Expected B ! K� �� background yields N
bkg
i ¼

N
peak
i þ Ncomb

i , signal efficiencies "
sig
i , number of observed

data events Nobs
i , resulting branching fraction upper limits at

90% CL, the central values Bi, and the combined upper limits
and central value, all within the 0< sB < 0:3 region. Lower
limits at 90% CL are also reported, as discussed in the text.
Uncertainties are statistical and systematic, respectively. The
B0 ! K0� �� efficiency accounts for BðK0 ! K0

SÞ and BðK0
S !

�þ��Þ [30].
Bþ ! Kþ� �� B0 ! K0� ��

N
peak
i 1:8� 0:4� 0:1 2:0� 0:5� 0:2

Ncomb
i 1:1� 0:4� 0:0 0:9� 0:4� 0:1

Nbkg
i

2:9� 0:6� 0:1 2:9� 0:6� 0:2

"
sig
i ð�10�5Þ 43:8� 0:7� 3:0 10:3� 0:2� 1:2

Nobs
i 6 3

Bi ð1:5þ1:7þ0:4
�0:8�0:2Þ � 10�5 ð0:14þ6:0þ1:7

�1:9�0:9Þ � 10�5

Limits ð>0:4; <3:7Þ � 10�5 <8:1� 10�5

BðB ! K� ��Þ ð1:4þ1:4þ0:3
�0:9�0:2Þ � 10�5

Limits ð>0:2; <3:2Þ � 10�5

)
-5

10×
B

ra
nc

hi
ng

 F
ra

ct
io

n 
(

-0.5

0

0.5

1

1.5

2
νν+K→+B(a)

Bs
0 0.2 0.4 0.6 0.8 1

)
-4

10 ×
 (

si
g

ε

0

5

10

)
-5

10×
B

ra
nc

hi
ng

 F
ra

ct
io

n 
(

-6

-4

-2

0

2

4

6

8
νν0K→0B(b)

Bs
0 0.2 0.4 0.6 0.8 1

)
-4

10 ×
 (

si
g

ε

0

2

4

6

)
-5

10 ×
B

ra
nc

hi
ng

 F
ra

ct
io

n 
(

-4

-2

0

2

4

6

8 νν+K*→+B(c)

Bs
0 0.2 0.4 0.6 0.8 1

)
-4

10 ×
 (

si
g

ε
0

0.5

1

1.5

)
-5

10×
B

ra
nc

hi
ng

 F
ra

ct
io

n 
(

-4

-2

0

2

4

6
νν0K*→0B(d)

Bs
0 0.2 0.4 0.6 0.8 1

)
-4

10×
 (

si
g

ε

0
0.1
0.2
0.3
0.4

FIG. 6. The central values (points with 1� error bars) of the
partial branching fractions �Bi versus sB, for (a) B

þ ! Kþ� ��,
(b) B0 ! K0� ��, (c) Bþ ! K�þ� ��, and (d) B0 ! K�0� ��. The
subplots show the distribution of the final signal efficiencies
within each sB interval (histogram with error bars) and over the
full sB spectra (dotted line). The partial branching fractions are
provided only within the intervals that are unaffected by the
kinematic limit at large sB.
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FIG. 7 (color online). The constraints at 90% CL on 
 and � of
Eq. (6) for sensitivity to new physics with right-handed currents.
The B ! K� �� (diagonal shading) and B ! K�� �� (grey shading)
excluded areas are determined from the upper and lower limits of
this B ! Kð�Þ� �� analysis (solid curves) and from the most-
stringent upper limits from previous semileptonic-tag analyses
[15,16] (dashed curves). The dot shows the expected SM value.
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branching fraction upper limits for several new-physics
scenarios at the level of 10�5.

The B ! Kð�Þ� �� decays are also sensitive to the short-
distance Wilson coefficients jC�

L;Rj for the left- and right-

handed weak currents, respectively. These couple two
quarks to two neutrinos via an effective field theory point
interaction [33]. Although jC�

Rj ¼ 0 within the SM, right-
handed currents from new physics, such as non-SM Z0

penguin couplings, could produce nonzero values. Using
the parameterization from Ref. [1],


 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jC�

Lj2 þ jC�
Rj2

q

jC�
L;SMj

; � � �ReðC�
LC

��
R Þ

jC�
Lj2 þ jC�

Rj2
; (6)

the B ! K�� �� upper limits from this search improve
the constraints from previous searches on the Wilson-
coefficient parameter space, as shown in Fig. 7. The B !
K� �� lower limit provides the first upper bound on � and
lower bound on 
. These constraints are consistent with the
expected SM values of 
 ¼ 1 and � ¼ 0.

VII. RESULTS FOR c �c ! � ��

In the search for c �c ! � ��, Fig. 8 shows the m� ��

distribution of the observed data yields, expected back-
ground contributions, and SM signal distributions.
Tables VI and VII summarize the background contribu-
tion values and signal efficiencies within the J=c and
c ð2SÞ invariant mass regions. The tables also report the
combined branching fraction central values and the
branching fraction upper limits at 90% CL for J=c !
� �� and c ð2SÞ ! � ��. The signal efficiencies account for

the B ! Kð�ÞJ=c and B ! Kð�Þc ð2SÞ branching fractions
and their errors, which are taken from Ref. [30]. The data
yield is consistent with zero observed c �c ! � �� signal
events in all channels.
The combined upper limits for the charmonium branch-

ing fraction values are determined to be

BðJ=c ! � ��Þ
BðJ=c ! eþe�Þ< 6:6� 10�2 and

Bðc ð2SÞ ! � ��Þ
Bðc ð2SÞ ! eþe�Þ< 2:0;

(7)

where BðJ=c ! eþe�Þ and Bðc ð2SÞ ! eþe�Þ are taken
from Ref. [30]. With the addition of a new-physics U
boson, these ratios would be proportional to jfcVc�;’j,
where c�;’ and fcV are the U couplings to the LDM

particles � or ’ and to the c-quark respectively [13]. The
J=c decay ratio yields upper limits at 90% CL of
jfcVc�;’j< ð3:0; 2:1; 1:5Þ � 10�2 for spin-1=2 Majorana

and spin-1=2 Dirac LDM particles, respectively. These
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FIG. 8 (color online). The m� �� �
ffiffiffiffiffiffiffiffiffiffiffiffi
sBm

2
B

q
distribution for

(from top to bottom) Bþ ! Kþc �c, B0 ! K0c �c, Bþ ! K�þc �c,
and B0 ! K�0c �c events after applying the full signal selection.
The expected combinatorial (shaded) plus mES-peaking (solid)
background contributions are overlaid on the data (points). The
signal MC distributions (dashed) are normalized to Bðc �c ! � ��Þ
values of 2% for the Kþ channel, 10% for the K0 channel, and
5% for the K� channels.

TABLE VI. Expected J=c ! � �� background yields Npeak
i and Nbkg

i , signal efficiencies "sigi , number of observed data events Nobs
i ,

and the resulting branching fraction central value and upper limit at 90% CL, all within them� �� invariant mass region corresponding to

the J=c mass. Uncertainties are statistical and systematic, respectively. The Ncomb
i yields are calculable as N

bkg
i � N

peak
i .

J=c ! � ��
Channel Kþ K0 K�þ ! Kþ�0 K�þ ! K0

S�
þ K�0 ! Kþ�� K�0 ! K0

S�
0

N
peak
i

0:4� 0:2� 0:0 0:7� 0:3� 0:1 0:8� 0:3� 0:1 0:4� 0:2� 0:0 2:6� 0:5� 0:3 0:6� 0:2� 0:1

N
bkg
i

0:5� 0:2� 0:0 0:7� 0:3� 0:1 0:8� 0:3� 0:1 0:8� 0:3� 0:0 2:8� 0:5� 0:3 0:6� 0:2� 0:1

"
sig
i ð�10�8Þ 95:3� 4:4� 5:5 19:3� 1:0� 2:1 20:9� 1:5� 1:7 12:4� 0:8� 1:0 36:2� 1:9� 4:0 1:8� 0:2� 0:2

Nobs
i 1 0 1 0 0 1

BðJ=c ! � ��Þ ð0:2þ2:7þ0:5
�0:9�0:4Þ � 10�3

Limit <3:9� 10�3
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limits are comparable with those obtained by BES for
J=c ! � ��, in c ð2SÞ ! �þ��J=c [20].

VIII. SUMMARY

In conclusion, we have searched for the decays B !
K� �� and B ! K�� ��, as well as J=c ! � �� and c ð2SÞ !
� �� via B ! Kð�ÞJ=c and B ! Kð�Þc ð2SÞ, recoiling from a
hadronically reconstructed B meson within a data sample
of 471� 106 B �B pairs. We observe no significant signal in
any of the channels and obtain upper limits at the 90% CL
of BðB ! K� ��Þ< 3:2� 10�5, BðB ! K�� ��Þ< 7:9�
10�5, BðJ=c ! � ��Þ< 3:9� 10�3, and Bðc ð2SÞ !
� ��Þ< 15:5� 10�3. The branching fraction central values
and upper limits are consistent with SM predictions. We

report B ! Kð�Þ� �� branching fraction limits in Tables IV
and V, and c �c ! � �� branching fraction limits in Tables VI
and VII. These results include the first lower limit in the
Bþ ! Kþ� �� decay channel, the most stringent published
upper limits using the hadronic-tag reconstruction tech-
nique in the B0 ! K0� ��, Bþ ! K�þ� ��, and B0 !
K�0� �� channels, and the first upper limit for c ð2SÞ !
� ��. We also present partial branching fraction values for

B ! Kð�Þ� �� over the full sBspectrum in Fig. 6 in order to
enable additional tests of new-physics models.
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