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It is shown that the Pais-Uhlenbeck oscillator with damping, considered by Nesterenko, is a special case

of a more general oscillator that has not only a first order, but also a third order friction term. If the

corresponding damping constants, � and �, are both positive and below certain critical values, then the

system is stable. In particular, if � ¼ ��, then we have the unstable Nesterenko’s oscillator.
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I. INTRODUCTION

The Pais-Uhlenbeck (PU) oscillator [1] is a toy model
for higher-derivative theories. The latter theories are very
important for quantum gravity, but because of the presence
of negative energies, they are generally considered as very
problematic, if not completely unsuitable for physics.
Negative energies arise from the wrong signs of certain
terms in the Ostrogradsky Hamiltonian. In a quantized
theory, such wrong signs can manifest themselves in the
presence of ghost states [2] that break unitarity. With an
alternative quantization procedure, based on a different
choice of vacuum [3–5], one has negative energy states,
just as in the classical higher-derivative theory, and no
ghost states.

Several authors have argued that the presence of nega-
tive energies in PU oscillator does not lead to inconsisten-
cies [6] (see also Ref. [7]). Those arguments hold for a free
oscillator, and are no longer valid if one includes an
interaction term that couples positive and negative energy
degrees of freedom. The interacting PU oscillator has to be
analyzed afresh. In Refs. [8–11] it has been found that for
small initial velocities and coupling constants there exist
islands of stability. Moreover, an example of an uncondi-
tionally stable interacting system was found [11]. This
system, which is a nonlinear extension of the PU oscillator,
is a close relative of a supersymmetric higher-derivative
system [12]. Further, if to the ordinary, linear, PU oscillator
we add a self-interaction term that is bounded from below
and from above, such as 1

4 sin
4x, then, as shown in

Ref. [13], such a system is stable for any value of initial
velocity, and is thus an example of a viable higher-
derivative theory.

But there remains an important issue that has to be
resolved. Every physical system in contact with an envi-
ronment undergoes dissipative forces. An ordinary oscil-
lator is subjected to a damping force that exponentially
diminishes the amplitude of oscillations. For the PU
oscillator, this could be different. Indeed, according to
Nesterenko [14], the PU oscillator with an external friction

force undergoes an exponential instability: the amplitude
grows into infinity.
In this paper, it will be shown that the friction force,

considered by Nesterenko, is a special case of a more
general friction force that, in general, does not cause the
exponential instability. The stability of such a system is
also preserved in the presence of an external time depen-
dent force.

II. PAIS-UHLENBECK OSCILLATOR
WITH DAMPING

Without damping, the Pais-Uhlenbeck oscillator satis-
fies the following forth order equation of motion:

�
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�
x ¼ 0: (1)

The latter equation can be generalized to include damping
terms:
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Explicitly we thus have
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If � ¼ �� we obtain the equation
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which can be written in the form
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Equation (5) is just the equation for the Pais-Uhlenbeck
oscillator in the presence of a friction force, considered by
Nesterenko [14].

The general solution of Eq. (2) is
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If �2 <!2
1, �

2 <!2
2, this is oscillatory function, and if �

and � are both positive, the amplitude of oscillations
exponentially decreases.

In particular, if � ¼ ��, the solution of (2) is
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For �2 <!2
1, !

2
2, the xðtÞ is oscillating function consisting

of a part with exponential growth and a part with exponen-
tial damping. Such behavior was found by Nesterenko
using a perturbative solution of Eq. (5). But as we see here,
Eq. (5) can be solved exactly through the steps (2)–(8), and
by taking � ¼ ��. Since Eq. (5) is equivalent to the system
of two oscillators with the damping constants of opposite
signs, it describes an unstable system.

In general, for positive � � �, Eq. (3) has stable solu-
tions, provided that j�j, j�j are sufficiently small, so that
all terms are oscillating and damped by e��t and e��t.

III. PRESENCE OFAN ARBITRARY
EXTERNAL FORCE

To the right-hand side of the homogeneous equation (2)
we can add an arbitrary time dependent force fðtÞ:�
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In the absence of damping, � ¼ � ¼ 0, the general
solution to the latter equation can be expressed as [14]

xðtÞ ¼ x0ðtÞ þ
Z 1

�1
Gðt� t0Þfðt0Þdt0: (12)

Here x0ðtÞ is the general solution of the homogeneous
equation (1)

x0ðtÞ ¼ C1 cos!1tþ C2 sin!1t

þ C3 cos!2tþ C4 sin!2t; (13)
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By inserting (16) into (14), we obtain the following
for t > 0:
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As an example let us first consider the force

fðtÞ ¼ a cos!1tþ b cos!2t; (18)

to which there corresponds the spectral density

~fð!Þ ¼ a
ffiffiffiffiffiffiffi
2�

p
2

½�ð!�!1Þ þ �ð!þ!1Þ�

þ b
ffiffiffiffiffiffiffi
2�

p
2

½�ð!�!2Þ þ �ð!þ!2Þ�: (19)

Then Eq. (12) gives
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The same solution of Eq. (11) can be obtained also by using
the Mathematica command DSolve.
The amplitude in Eq. (20) increases linearly with t. This

was the case without damping. If we include damping, we
find the following general solution of Eq. (11):
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where x0ðtÞ is now the general solution of the homogene-
ous equation (2) [see Eq. (9)]. For positive � and �,
satisfying �2 <!2

1, �
2 <!2

2, the function xðtÞ has the
oscillating exponentially decreasing part x0ðtÞ [Eq. (9)],
and the oscillating part due to the external force (18).
Notice that now, differently than in Eq. (20), the amplitude
does not linearly increase with t.
More generally, if the spectral density is localized

around !2
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2 according to
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then
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fðtÞ ¼ e�t2

4cða cos!1tþ b cos!2tÞ; (23)

and solutions to Eq. (11) are stable, oscillating functions
even in the absence of damping. This can be verified by
solving Eq. (11) numerically, using the command NDSolve
in Mathematica. Examples of solutions are given in Fig. 1.
We see that nothing unphysical happens with the classical
displacement xðtÞ. It displays decent oscillatory behavior.
Quantum behavior of the propagator has been recently
investigated by Ilhan and Kovner [10].

IV. CONCLUSION

We have clarified the important point raised by
Nesterenko and found that the Pais-Uhlenbeck oscillator
with external friction force is not necessarily unstable. It
can be stable because, in general, the Pais-Uhlenbeck
oscillator has not only one, but two damping terms: a
term with the first and a term with the third derivative of
the displacement xðtÞ with respect to the time t. If the
corresponding damping constants, � and �, are both posi-
tive and lower than the critical values determined by !2

1,
!2

2, then the system is stable in the sense that it oscillates
with exponentially decreasing amplitude. In particular, if
� ¼ ��, then the third order term vanishes and we have
the oscillator that has only the first derivative damping term
considered by Nesterenko [14]. Such a ‘‘damping’’ term
causes the exponential growth of the oscillator’s amplitude.
Nesterenko’s conclusion that the theories with higher de-
rivatives suffer exponential instability holds only in the
latter particular case. In general, such theories can be stable
because the third order damping term provides the mecha-
nism that prevents the exponential instability.
We have also analyzed the Pais-Uhlenbeck oscillator

that experiences an arbitrary external force fðtÞ. For the
force whose spectral density is sharply localized around!2

1

and !2
2, we have found the exact general solution whose

amplitude linearly increases with time if � ¼ � ¼ 0 and
decently oscillates if �> 0, �> 0. For a force whose
spectral density has a Gaussian (and not the physically
unrealistic �-like) distribution around !2

1 and !2
2, we

obtain stable, oscillating solutions even in the absence of
damping.
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FIG. 1 (color online). Solution of the undamped Pais-
Uhlenbeck oscillator (� ¼ � ¼ 0) in the presence of an external
force with the spectral density localized around !2

1 ¼ 1 and

!2
2 ¼ 1:5 according to (22) for two different values of the width

parameter c. We took the constants a ¼ b ¼ 1, and the initial
conditions xð0Þ ¼ 1, _xð0Þ ¼ 0:2, €xð0Þ ¼ �0:7, x

:::ð0Þ ¼ 0:5.
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