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The extremely small accelerations of objects required for the onset of modified Newtonian dynamics, or

modified Newtonian dynamics (MOND), makes testing the hypothesis in conventional terrestrial labo-

ratories virtually impossible. This is due to the large background acceleration of Earth, which is

transmitted to the acceleration of test objects within an apparatus. We show, however, that it may be

possible to test MOND-type hypotheses with experiments using a conventional apparatus capable of

tracking very small accelerations of its components but performed in locally inertial frames such as

artificial satellites and other freely falling laboratories. For example, experiments involving an optical

interferometer or a torsion balance in these laboratories would show nonlinear dynamics and displacement

amplitudes larger than expected. These experiments may also be able to test potential violations of the

strong equivalence principle by MOND and to distinguish between its two possible interpretations

(modified inertia and modified gravity).
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The asymptotic flatness of galaxy rotation curves in
spiral galaxies and the related apparent mass discrepancy
according to Newtonian dynamics led to the proposal of
dark matter [1]. Dark matter has also been inferred from
observations of apparent magnitudes of Type Ia superno-
vae at large redshifts within the standard Freedman-
Robertson-Walker cosmological paradigm and could
account for as much as about 28% of the mass-energy
density of the observable Universe [2]. Although several
dark matter candidates have been proposed, including
weakly interacting massive particles, axions, etc., none
has been directly observed so far.

Another proposal known as modified Newtonian dynam-
ics (MOND) postulates the modification of the law of
gravity to

a�ða=a0Þ ¼ GM

r2
; (1)

where a is the acceleration of an object at a distance r
from a gravitating mass M; the function � is such that
�ða=a0Þ ¼ 1 when a � a0 (Newtonian regime) and
¼ a=a0 when a � a0 (deep MOND regime); and a0 �
1:2� 10�10 m=s2 is a characteristic, acceleration parame-
ter separating the two regimes [3]. If the acceleration of a
system a is written as a ¼ 10na0, then we define n � 1 as
the Newtonian regime; n � 0 as the onset of MOND;1 and
n � 0 as the fully, or deep, MOND regime. For circular
motion, it follows from Eq. (1) that in the deep MOND
regime, v4 ¼ a0GM, which is a constant and resembles the
baryonic Tully-Fisher relation. Recent observations from
gas-rich galaxies match this relation well with the above

value of a0 [5]. This undoubtedly suggests the importance
of independent tests of MOND, both in the realm of
astrophysical observations and in the laboratory.
Equation (1) is consistent with at least two interpreta-

tions: the first, in which Newton’s second law of motion is
modified (modified inertia)

~F ¼ m~a�

�j ~aj
a0

�
� m~aN; (2)

and the second, in which ~F ¼ m~a remains intact, while
only for gravity the acceleration a is given by the new law
Equation (1) (modified gravity) [6]. Note that m in Eq. (2)

is the inertial mass and that ~F can be gravitational or a
nongravitational force, and if the first interpretation is
correct, then deviations from Newtonian dynamics should
be observed (in the MOND regime) for any force, not
necessarily gravitational. In fact a couple of attempts to
test the first interpretation with mechanical oscillators
did not report any deviations from Newton’s second law
down to accelerations of 3� 10�11 m=s2 [7] and
5� 10�14 m=s2, respectively [8], i.e., up to 2000 times
lower than a0, from which one may be tempted to conclude
that the MOND paradigm, or at least its first interpretation,
is incorrect. Note, however, that the large centripetal ac-
celeration of Earth, far exceeding a0 (except at the poles) is
transmitted to the apparatus, making it virtually impossible
to test the MOND paradigm in conventional laboratories
fixed rigidly to Earth, regardless of the sensitivity of the
apparatus.2 However, Eq. (2) may be tested, e.g., in space-
crafts, at a distance of 0.1 light years or more from our Sun,
such that its acceleration is a0 or less. In addition, we note
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1An often used function is �ðxÞ ¼ x=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
[4].

2Some authors have argued that MOND can perhaps be tested
on Earth at certain very precise locations and for very short
periods of time [9].
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that the strong equivalence principle (SEP), which asserts
that all locally inertial frames are perfectly equivalent
[10–12], also guarantees testability of MOND in experi-
ments done in freely falling, i.e., locally inertial frames,
provided accelerations within the apparatus do not exceed
a0. Although some observations related to open clusters
and some theoretical formulations of MOND suggest a
potential violation of the SEP [3] (manifesting in the
form of the so-called external field effect [13]), these
have not been verified by independent observations, a fully
satisfactory mechanism of these violations (including a
covariant formalism) remains to be understood, and quan-
titative predictions of anomalous accelerations within our
solar system due to the external field effect seem to depend
on the interpretation, be sensitive to the � function used,
and disagree with observations at least in some cases [13].
On the other hand, decades of careful testing have failed
to detect any violation of the SEP anywhere [14].
Accordingly in this paper, we will not adhere to any
specific theoretical formulation of MOND and will not
rule out the possibility that the SEP may still hold. This
is not inconsistent with any observation or fundamental
theoretical principle to our knowledge. We then propose
tests of the MOND paradigm for systems with internal
accelerations in the regime a � a0 while the system as a
whole is falling freely in a gravitational field with a g value
that is much larger than a0. This effectively gets rid of
Earth’s acceleration. The sensitivity levels achieved in
experiments described in Ref. [8] will suffice for these
experiments. Examples of such freely falling laboratories
include ‘‘drop tubes,’’ such as the one in the NASA facility
in Cleveland, Ohio; artificial satellites orbiting Earth, in-
cluding, for example, the proposed Galileo Galilei satellite;
and space-based missions orbiting the Sun and far away
from Earth, such as the Herschel Space Observatory [15].3

Possible logical outcomes include (i) failure to detect
MOND, either supporting the conclusion of certain theo-
ries that the background acceleration g � a0 renders a
system Newtonian, or that the first interpretation (if involv-
ing only nongravitational forces) or perhaps the paradigm
itself is wrong; (ii) effects predicted by MOND are indeed
detected, providing strong and independent evidence in its
favor as well as for the SEP; and (iii) some deviations from
Newtonian predictions are detected, which may be used to
quantify the extent of SEP violations. Later, we will show
that such experiments may also distinguish between the two
interpretations of MOND. Thus, they seem to be something
worth pursuing with technology already at hand.

With this aim, we first consider Eq. (2), relating to the
first MOND interpretation, to a test mass m suspended as
a harmonic oscillator with spring constant k ¼ m!2

0,

subjected to a periodic force with angular frequency
! � !0 and displacement from equilibrium x, in a freely
falling laboratory,

m
d2x

dt2
�

�
1

a0

d2x

dt2

�
¼ F sin ð!tÞ: (3)

Note that the forces involved are all nongravitational in
nature, and the displacement according to Newtonian me-
chanics (� ¼ 1) will be given by

xNðtÞ ¼ � F

m!2
sin ð!tÞ: (4)

The above describes, for example, the apparatus in Ref. [7]
near the sensitivity limit, with a driving frequency in
the range of several hundred Hertz. Interestingly, it also
describes modulated laser beam (with power Pm) driven
mirrors attached to the test masses in the Laser
Interferometer Gravitational Wave Observatory (LIGO)
gravitational wave detector, for which F ¼ 2Pm=c [17] 4

(the position is determined in both the above systems
by interferometric methods). With numbers close to the
LIGO values, Pm ¼ 30 mW and m ¼ 16 kg, the
Newtonian acceleration amplitude is aNamp

� F=m ¼
1:25� 10�11 m=s2 � a0, well within the MOND re-
gime.5 Therefore, we write the MOND equation of motion
derived from Eqs. (2) and (3):

a ¼ d2x

dt2
¼ sgnðsin ð!tÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0

F

m
j sin ð!tÞj

s
; (5)

where the sgn function takes care of the two signs of the
acceleration, and the absolute sign inside the square root
follows from the definition of �. Since the rhs of Eq. (5) is
periodic with period 2�=!, it is most easily solved by

writing a Fourier series as follows: sgnðsin ð!tÞÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij sin ð!tÞjp ¼ A0=2þ
P1

n¼1½An cos ðn!tÞ þ Bn sin ðn!tÞ	,
with A0 ¼ 0 since the average hsgnðsin ð!tÞÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij sin ð!tÞjp i ¼ 0 over a period, and An ¼ 0 8 n > 0
from the odd nature of the function. Integrating twice gives

xMðtÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0F=m

p
!2

X1
n¼1

�
Bn

n2
sin ðn!tÞ

�
; (6)

where the subscript M signifies MOND. In this case, the

amplitude of displacement is given by xMamp
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a0F=m
p

B1=!
2, ignoring the n2 suppressed higher har-

monics.6 Note that the 1=!2 scaling as in the Newtonian

3We note that the proposed experimental tests of MOND with
the Laser Interferometer Space Antenna pathfinder also assume a
specific formulation, namely, the nonrelativistic limit of the
TeVeS theory [16].

4We are assuming this auxiliary laser beam is almost parallel
to the main beam.

5The amplitude of motion xNamp
¼ aNamp

=!2 would equal
1:3� 10�18 m at a frequency of � 500 Hz, in agreement with
the specification reported in Ref. [17].

6This is further justified by the fact that all even-n Bn har-
monics are zero, by symmetry considerations.
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case is retained. Thus, the ratio of the displacement ampli-
tudes for the deep MOND to the Newtonian cases is

xMðampÞ

xNðampÞ
¼

ffiffiffiffiffiffiffiffiffiffi
a0
F=m

s
B1 ¼

ffiffiffiffiffiffiffiffiffiffiffi
a0

aNamp

s
B1 � 3:1B1 (7)

for the previously quoted parameter values. A straightfor-
ward numerical computation gives B1 ¼ 1:11, B3 ¼ 0:16,
B5 ¼ 0:07, etc. For this the amplitude for MOND is more
than thrice the Newtonian value, as illustrated in Fig. 1.
Such a discrepancy would be easily detected by the LIGO
interferometer, which can be linearly calibrated to within
2% [17]. Also if the beam power, and hence the driving
force, can be varied, then nonlinear behavior can also be
verified if the best fit curve of a plot of log ðxMðampÞÞ vs
log ðF=mÞ is a straight line with slope þ0:5 in the deep
MOND regime (the corresponding curve for the
Newtonian should have slope þ1). Finally, Fourier analy-
sis would show non-Newtonian harmonic peaks at odd-
integer multiples of the fundamental.

Next we consider another highly sensitive tool histori-
cally used for testing fundamental physical principles,
namely, the torsion balance [18], but once again operated
in a free falling state. Note that both gravitational and
nongravitational forces are involved in this instrument. In
its simplest construction, two small spheres each of massm
at the ends of a beam of length L, itself of negligible mass,
are suspended from its center by a wire of torsion coeffi-
cient � (the latter involved a nongravitational force). When
a bigger mass M, is brought near each small mass, gravi-
tational forces between the masses cause an angular dis-
placement �ðtÞ from its equilibrium position (� ¼ 0) which
after several oscillations eventually settle down to a
constant value � ¼ �s.

7 Then from Eqs. (1) and (2) (the
first/modified inertia interpretation of MOND) and
Hooke’s law, it follows that

GMmL

r2
� �� ¼ I

d2�

dt2
�

�L
2

d2�
dt2

a0

�
(8)

& �s ¼ GMmL

�r2
; (9)

where I ¼ mL2=2 is the moment of inertia of the balance
and r is the center-to-center distance between small and big
mass at equilibrium. While for the second/modified gravity
interpretation in the deep MOND regime, one has

mL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0GM=r2

q
� �� ¼ I

d2�

dt2
(10)

& �s ¼ mL

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0GM=r2

q
: (11)

Thus, if the first interpretation is correct, then the dynamics
differs significantly from Newtonian while the settling
point remains the same, whereas for the second interpre-
tation, the dynamics remains Newtonian while the system
settles down further away from the origin. In either case,
there is something new which can be potentially tested. For
example, in a log ð�sÞ vs log ðMÞ plot, a slope of 1 would
mean the modified inertia interpretation (or no MOND at
all), while a slope of 0.5 would point toward MOND and its
modified gravity interpretation.
In a terrestrial laboratory, a small platform freely falling

in an evacuated chamber could serve as a sufficient locally
inertial frame. Small amounts of motion created intention-
ally to test MOND would be relative to this frame. It is
crucial though that there be no other sources of accelera-
tion down to levels well below a0. For example, an object
falling through residual gases at 10�8 Torr pressure will
experience a velocity-squared-type drag acceleration [19],
achieving levels near a0 after a 10 m drop. If absolute
pressure in a vertical, tubular vacuum chamber is held
under ultrahigh vacuum conditions, near 10�10 Torr, then
drag effects will be negligible.
A drop-test experiment taking perhaps several seconds

poses severe challenges for a torsion balance. In the appa-
ratus used by Gundlach et al. [8], the period of the balance
was 795 s. With a quality factor of 5000, there is simply not
enough time for the instrument to settle down. The weight-
less environment also causes unique challenges for the
torsion balance. Some of these challenges may be solved
by using a second fiber located below the balance.
Alternatively, the larger masses and beam may be mag-
netically levitated, with a slight perturbation of a symmet-
ric confining potential giving rise to a torsion coefficient
[20]. We note that for space-based tests of the equivalence
principle, the torsion balance has been ruled out in favor of
a concentric cylinders approach [21].
We note that the balance used in Ref. [8] exceeded the

sensitivity threshold for MOND tests by almost 4 orders of
magnitude, which provides some room to trade off sensi-
tivity in favor of exploring designs that might be more
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FIG. 1 (color). Steady-state response function xðtÞ for deep
MOND (solid) and Newtonian (dotted) with the same driving
force. A test mass of 16 kg is driven at 500 Hz with a force
amplitude of 2� 10�10 N.

7Some damping is assumed to be present.
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suitable for drop testing. One important technical issue that
must be raised is that the balance used in Ref. [8] uses
feedback to eliminate, as much as possible, the twist in the
supporting fiber. Testing MOND requires motion, so one
should design an angle-of-deflection balance and avoid the
use of (negative, proportional) feedback [22]. This will
likely decrease the signal-to-noise ratio as well as exacer-
bate drift issues in the fiber.8 The period of oscillation may
also become lower [22]. Even so, we feel that there is
enough room to implement a stiffer system (thicker wire)
with a faster response time while still having the capability
to test MOND. Moreover, since a high-quality factor is not
essential in testing MOND, as even just several oscillations
as shown in Fig. 1 would suffice, modest levels of damping
could reduce the practical response time substantially. One
could also explore a sort of compromised feedback system,
which uses negative, proportional feedback with lower
gain levels, thus allowing the fiber to twist somewhat and
still keeping the beneficial aspects of the feedback,
i.e., monitoring the less noisy feedback signal, reduced
drift, and faster response time. Even if the feedback cuts
the actual motion down by � 90% the tradeoff may be
worth it.

For a spacecraft-based approach, we note that torques
applied to the fiber due to the attraction of the test masses to
the source masses would also act on the freely falling
satellite. A spacecraft design with source masses rigidly
connected to a satellite frame designedwith high cylindrical
symmetry about the fiber axis would reduce this problem.

For terrestrial drop tests of MOND, one should look for a
test-mass apparatus with a faster response time. We pro-
pose a rather novel test mass, located at the end of a
micromachined cantilever, with 0.5 mm length and 2 �m
thickness, serving as the oscillator fixed to the platform.
We intend the driving force to be provided by a laser beam
(as for the LIGO mirrors [17]) also fixed to the platform
and bouncing off a reflective surface on the cantilever.
Calculations suggest a 25 mW laser beam modulated at
10 Hz can exert enough force to cause cantilever accelera-
tion levels of about a0. Displacement measurements can be
made by reflecting another laser beam off the cantilever
and using interference techniques, similar those used in
atomic force microscopy. We note that such cantilevers
with optically reflective surfaces are available commer-
cially. The above setup would closely resemble that of
Ref. [7] and should be classified as an interferometric
apparatus, albeit with a novel test mass. The proposed
instrument should be compact and rigid in order to limit
the detrimental effects of mechanical transients produced
during the release process. The release mechanism must
also be carefully designed to minimize the creation of

unwanted rotational motion, in particular, with angular
velocity components perpendicular to the plane of test-
mass motion. A good design would have the cantilever
deflection in the horizontal plane. We note that precision
tests under terrestrial free fall conditions have been
conducted to test the weak equivalence principle [23].
Our dropping mechanism could closely resemble the mo-
torized platform used in these tests. We note that this
apparatus also has the advantage of being both simple
and inexpensive, especially as compared to the LIGO
apparatus.
A microcantilever interferometer apparatus could also

succeed if operated inside of an artificial satellite. The use
of high thermal conductivity alloys in combination with a
compact design would also minimize the adverse effects of
the radiometer effect due to temperature differences in the
residual gas inside the spacecraft [21]. These differences
are caused by the infrared radiation from Earth and can
also be minimized by implementing multilayer passive
thermal shielding. For an atmospheric drag of about
10�2 m=s2 (typical for low Earth orbits of about 300 km,
and falling off exponentially [19]), the compact interfer-
ometer apparatus could succeed if placed inside of, and
mechanically decoupled from the inside of, an orbiting
spacecraft. Drag levels below a0 could be achieved if the
residual gas pressure inside the spacecraft is 10�8 Torr
[21]. The mechanical decoupling would have to be tempo-
rary, involving a repetitive release-and-catch mechanism.
The time available before requiring a catch process could
be extended by use of ion thrusters to cancel the atmos-
pheric drag [21]. Thrusters could also compensate for the
relative rotation of the stabilized spacecraft after a release.
The small physical dimensions of the cantilever results in a
small cross section for cosmic ray events. However, the
small size means that events that do occur may be very
disruptive [24]. We would need to implement pulse dis-
crimination techniques to filter out any cosmic ray events.
Similarly, the small physical dimensions of the cantilever
means tidal effects can be easily reduced to almost negli-
gible values of the order of about 10�16 m=s2 by aligning
the platform and plane of oscillation of the cantilever
perpendicular to Earth’s gravitational field [25]. We em-
phasize that although a number of technical issues includ-
ing the ones stated abovemay need to be addressed in detail
[26], the two experiments we propose in freely falling
frames appear to be within the reach of already existing
technology or some adaptations thereof. These would be
capable of detecting discrepancies from Newtonian dy-
namics, with one of them able to test the first interpretation,
while the other would be capable of testing both interpre-
tations. Thus, they deserve further study.

We thank M. Milgrom and M. Walton for useful
correspondence, the referees and editors for their useful
comments and suggestions, as well as NSERC, Canada, for
support.

8Some of these issues apply to the LIGO interferometer
mentioned above i.e., feedback on the test mass mirror would
have to be eliminated in order to test MOND.
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