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I. INTRODUCTION

In the last decade braneworld models formed a genuine
branch of research in high-energy physics. In particular,
the two papers of Randall and Sundrum [1,2] envisage
our Universe as a warped brane embedded into a five-
dimensional spacetime, the bulk. Several extensions and/
or modifications of this original setup have been proposed
in the literature. These extensions include, for instance,
other dimensions on the brane and in the bulk, the possi-
bility of additional fields in the bulk, and the consideration
of modified bulk gravity [3–5]. Among the possible mod-
ifications in the bulk gravity, the consideration of higher
derivative models was extensively analyzed (for compre-
hensive reviews in fðRÞ gravity see [6]). In Ref. [7] it is
shown that fðRÞ theories may help in avoiding the fine-
tuning problem of the Randall-Sundrum [1] model.
Besides, several interesting cosmological aspects of fðRÞ
braneworld models were investigated [8–10]. It was
also demonstrated recently that in the five-dimensional
fðRÞ braneworld model scope, it is possible to obtain a
model that solves the hierarchy problem without the ne-
cessity of a negative tension brane in the compactification
scheme [11,12].

When dealing with gravitational aspects of braneworld
models, one naturally faces the possibility of generalizing
the usual field equations on the brane. In fact, even for a
bulk respecting solely the general relativity theory, the
projected equations on the brane are modified leading to
subtle but important departures from standard scenarios.

Our aim in this work is to obtain the appropriate junction
conditions and the effective second field equations on a
3-brane embedded in a five-dimensional fðRÞ bulk. At this
point, some remarks on the previous literature are in the
order. The junction conditions for higher-order braneworld

models with a Gibbons-Hawking term were founded in
Ref. [13] and the according cosmological equations for the
fourth-order fðRÞ braneworld were obtained in [14]. In
these precise and encompassing papers, as well as in [7],
the junction conditions are obtained by means of the
conformal transformation relating fðRÞ and scalar-tensor
theories [15]. In fact, there are many advantages in the
conformal theory since the resulting field equations are
again of second order (with matter). As is well known,
the conformal transformation performs an isomorphism
between the space of solutions of the two conformally
related theories [16], providing a mathematical equiva-
lence between them. Besides, the physical content of the
theory must not depend on the conformal frame in which
the theory is formulated or presented [17]. Therefore, as we
shall obtain the effective projected equations for the most
general case (with matter on the brane), we prefer to
reobtain the junction conditions via the usual brute force
method. Only in Sec. III do we particularize, for simplicity,
our equations to the brane vacuum case, and therefore we
shall approach the effective field equations in a conserva-
tive and general way. Finally, we point out that this pro-
gram was carried out in Ref. [18]. Nevertheless, in [18],
and subsequently in [19], the same junction conditions
as in the general relativity case were used, which is, in
fact, only an (nonrigorous) oversimplification, since the
junction conditions depend on the embedding gravity
space. As we are interested in the effective second-order
(Einstein-like) brane gravitational equations, our proce-
dure towards the suitable junction conditions is well de-
fined. We remark, however, that for higher-order equations
on the brane, it is necessary to implement a more powerful
method to improve the junction conditions [20]. Recently,
the necessity of the new junction conditions was circum-
vented in some cosmological applications to the brane-
world case [21].
An important remark is needed here in order to avoid

any misunderstandings. In Ref. [22], the authors also use
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the Israel-Darmois junction conditions to study the same
problem. However, as the authors emphasize in their paper,
‘‘when fðRÞ ¼ R the junction conditions (3.10) do not
reduce to the familiar Israel conditions 34) as they have
to be supplemented by the condition of continuity of R.
What happens when fðRÞ ¼ �2�þ Rþ l2R2 þ � � �
when l ! 0 is that the bulk geometry may approach a
solution of the Einstein bulk equations (e.g., AdS) every-
where, to the exception of a region of size l in the vicinity
of the brane, so that when l becomes very small the thin
shell limit is no longer valid and the thickness of the brane
must be taken into account.’’ Here, we avoid a conformal
transformation as in Ref. [22] exactly because we do not
touch the problem of the brane having a thickness or not. If
the brane has a thickness, indeed there would appear a size
scale, and it would be very difficult to carry on a conformal
transformation. The fact that we both do not deal with a
brane thickness and do not make any conformal trans-
formation leads us to the constraint equations (32) and
(33), which reduce to the usual Israel-Darmois condition
when fðRÞ ¼ R (e.g., the GR case) and there is no need to
study the continuity of R through the brane. Therefore,
though both papers are dealing with the same subject, the
approaches are very different.

This paper is structured as follows: in the next section
we briefly review the scalaron in the bulk. In Sec. III we
obtain the junction conditions for the fðRÞ bulk gravity
without using the conformal transformation method. It is
shown that in the appropriate limit, we recover the usual
Israel-Darmois equations. Moving forward we obtain the
effective second-order projected field equations on the
brane. In Sec. IV we implement several necessary con-
straints in the bulk fðRÞ gravity and study the correspond-
ent implications on the brane equations in order to set a
physically acceptable and viable model. Finally, in the
Conclusion we summarize our main results and give a
simple example of how to apply the general projection to
a specific (toy) model.

II. FIELD EQUATIONS AND THE EXTRA
SCALAR DEGREE OF FREEDOM

An interesting aspect observed in a fðRÞ theory of
gravity is an emerging scalar degree of freedom. This
property results straightforwardly from the modification
of gravity and allows us to set a dynamical equivalence
of these theories with scalar-tensor ones, in particular
Brans-Dicke gravity. Such equivalence is verified in both
variational formalisms, metric and Palatini. Within the
metric approach, this correspondence has already been
widely discussed in the literature [23]. From the viewpoint
of the Palatini formalism, this feature has been analyzed
in Ref. [24].

The gravitational field equations in the metric formalism
for a five-dimensional bulk in a fðRÞ gravity are given by

f0ðRÞRAB�1

2
gABfðRÞþgABhf0ðRÞ�rArBf

0ðRÞ¼k25TAB;

(1)

where A ¼ 0; . . . ; 4, f0ðRÞ ¼ dfðRÞ=dR and k25 is the five-
dimensional gravitational coupling constant. The extra
scalar degree of freedom mentioned above which arises
in fðRÞ gravity can be observed when we take the trace of
the above equation, which reads

f0ðRÞR� 5

2
fðRÞ þ 4hf0ðRÞ ¼ k25T: (2)

We verify that the trace of the field equations has a com-
pletely different meaning from the one it has within general
relativity theory. In the latter case, the trace of the field
equations is a mere algebraic relation involving the Ricci
scalar R and the trace of the energy-momentum tensor T.
On the other hand, in the context of a fðRÞ gravity in the
metric formalism, the trace of the corresponding field
equations, given by Eq. (2), is a dynamical equation, scalar
field-like, with f0 ¼ f0ðRÞ playing the important role of the
scalar field emerging as a consequence of the modified
gravity. This scalar field is commonly called a scalaron
[25]. In other words, this is a further scalar degree of
freedom (propagating across the entire bulk), to which
the modification of the general relativity theory gives
rise. Equation (2) can be written as

hf0 �
�
5f

8
� f0R

4

�
¼ 1

4
k25T: (3)

Let us notice that such an equation has the usual form of a
Klein-Gordon-type equation for a scalar field �, which is

h�� dV

d�
¼ S; (4)

where V corresponds to a potential associated with the
scalar field and S is a source term. Let us recall that
the mass of the scalar field is obtained through the
second derivative of the potential evaluated at a minimum
of the field,

m2
� ¼ d2Vð�Þ

d�2

���������¼�min

: (5)

For Eq. (3) we have an effective potential, Veff , associ-
ated with the scalaron, defined as

dVeff

df0
¼

�
5f

8
� f0R

4

�
: (6)

As previously performed in [26], by means of such
expression, we can obtain the mass of the scalaron by
considering that its minimum lies at high curvature
regimes, where it is assumed that jf00Rj � 1. Since general
relativity correctly describes the phenomena observed in
the Universe at high redshifts, when the high curvature
approximation is important, it is reasonable to choose
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f0 ¼ 1 as the minimal value of the scalaron. So, by adopt-
ing such approximation and using Eqs. (5) and (6), the
scalaron mass will be

m2
f0 �

3

8

1

f00
; (7)

which imposes positiveness for the second derivative of
fðRÞ, i.e, f00 > 0, in order to guarantee a tachyon-free
theory. This is the first constraint to be satisfied by a viable
fðRÞ in our model.

III. THE APPROPRIATE JUNCTION CONDITIONS
AND THE PROJECTION SCHEME

The junction conditions ‘‘measure’’ (via their extrinsic
curvature) how a codimension-one hypersurface is em-
bedded into a given bulk. When the embedding space
gravity is given by the general relativity theory, the junc-
tion conditions are the usual Israel-Darmois matching
[27,28]. Here we shall derive the appropriate conditions
for a bulk in the framework of a fðRÞ gravity.

Equation (1) may be recast into a more familiar form,
reading

RAB � 1

2
gABR ¼ ~Tbulk

AB ; (8)

where

~Tbulk
AB ¼ 1

f0ðRÞ
�
k25TAB �

�
1

2
Rf0ðRÞ � 1

2
fðRÞ

þhf0ðRÞ
�
gAB þrArBf

0ðRÞ
�
: (9)

Following the standard approach, we start from the
Gaussian equation relating the brane curvature tensor
�R�
��� to its higher-dimensional counterpart

�R�
��� ¼ RA

BCDh
�
Ah

B
�h

C
�h

D
� þ K�

�K�� � K�
�K��; (10)

where h�� is the brane metric, related to the bulk metric

by gAB ¼ hAB þ nAnB, with nA an ortonormal vector
in the extra dimension direction and K�� ¼ hA�h

B
�hrAnB

as the extrinsic curvature of the 3-brane. With the aid of
Eqs. (9) and (10), it is simple to obtain the Einstein tensor
on the brane,

�G�� ¼ 2

3

�
~Tbulk
AB hA�h

B
� þ

�
~Tbulk
AB nAnB � ~Tbulk

4

�
h��

�
þKK��

�K�
�K�� � 1

2
h��ðK2 �K��K��Þ �E��; (11)

where E�� ¼ CA
BCDnAn

ChB�h
D
� , the usual projection of the

five-dimensional Weyl tensor ðCA
BCDÞ encoding genuine

extradimensional gravitational effects.
It is conceivable, for projection scheme purposes, to

decompose the bulk stress tensor into TAB ¼ ��gAB þ
SAB��ðyÞ, where � is the five-dimensional cosmological

constant, SAB is the stress tensor on the brane, the Dirac
distribution localizes the brane along the extra dimension,1

and � is a constant parameter with dimension of length
introduced here in order to allow SAB to have the same
dimension of TAB. Moreover, the brane energy-momentum
tensor is also decomposed in a similar fashion, S�� ¼
�	h�� þ 
��, in which 	 is the brane tension and 
��

stands for matter on the brane. From Eq. (9) and the above
decomposition of the stress tensors, it is easy to see that
the first three terms appearing in the right-hand side of
Eq. (11) are

��� � ~Tbulk
AB hA�h

B
� þ ~Tbulk

AB nAnBh�� � 1

4
~Tbulkh��

¼ � 1

f0ðRÞ
�
2k25�þ ðRf0ðRÞ � fðRÞÞ þ 2hf0ðRÞ

� 5k25�f0ðRÞ
4

�rArBf
0ðRÞnAnB

�
h��

þ 1

f0ðRÞ rArBf
0ðRÞhA�hB�; (12)

in such way that

�G�� ¼ 2

3
��� þ KK�� � K�

�K�� � 1

2
h��ðK2 � K��K��Þ

� E��: (13)

So far, the obtained equations agree with Sec. II of
Ref. [18]. However, from now on, we shall generalize the
usual junction conditions in order to accomplish the fðRÞ
bulk gravity and determine the extrinsic curvature terms in
the projection procedure. On general grounds, we are
assuming that the normal derivative of K�� may become

large when compared with its variations along the brane
dimensions [29]. Therefore, the relevant discontinuity is
computed from ½K��� ¼ Kþ

�� � K�
��, where K�

�� means

the limit of K�� approaching the brane from the � side.

These considerations can be made more precise by the
following construction [30]: consider the brane as a time-
like surface intersected orthogonally by geodesics. In a
given coordinate system, it is possible to set the brane at
y ¼ 0, in agreement with the previous decomposition of
the bulk stress tensor. Hence, it is possible to write nA ¼
@Ay. Moreover, it is quite convenient to define another
coordinate system, say z�, installed upon the brane such
that the hypersurface may be parametrized as xA ¼ xAðz�Þ.
In this vein, it is possible to define the soldering Jacobian
eA� ¼ @xA=@z�, tangent to the curves belonging to the

brane. Note that, by construction, eA�nA ¼ 0 and thus, eA�
shall act as a projector onto the brane directions. Now, it is

1We note, by passing, that the functional form of TAB could
also be complemented via the addition of a bulk matter. In
particular, the junction conditions to be derived in what follows
allow one to do so.
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well known that, with the help of the Heaviside distribution
�ðyÞ, the bulk metric may be decomposed into different
metrics on both sides of the infinitely thin brane by [31]
gAB ¼ �ðyÞgþAB þ�ð�yÞg�AB. The terms g�AB mean the
metric in the � side and the �ðyÞ distribution obey the
rules �2ðyÞ ¼ �ðyÞ, �ðyÞ�ð�yÞ ¼ 0 and d�ðyÞ=dy ¼
�ðyÞ, which makes the calculations quite manageable.

By decomposing the metric via the Heaviside distribu-
tion, all the relevant geometrical quantities may be ob-
tained. For instance, the first derivative of the metric
reads gAB;C ¼ �ðyÞgþAB;C þ�ð�yÞg�AB;C þ �ðyÞ½gAB�nC,
leading to the imposition of the Darmois junction condi-
tion, ½gAB� ¼ 0, since the product �ðyÞ�ðyÞ (which would
appear in the connection) is not defined in the distributional
calculus. It is important to note that the Darmois condition
guarantees the continuity of its tangential derivatives.
Therefore, the only possible discontinuity of the metric
derivative shall be along the extra dimension, ½gAB;C� ¼
�ABnC, where the �AB tensor will not appear in the final
condition.

Following this line it is possible to connect the delta part
of the Einstein tensor in the brane with the delta part of the
decomposition ~Tbulk

AB ¼ �ðyÞ ~Tþ
AB þ�ð�yÞ ~T�

AB þ �ðyÞ ~TAB

[31]. Now, by construction, we have ~Tbulk
AB eA�e

B
� ¼ ~T�� in

such a way that Eq. (9) reads

~T�� ¼ 1

f0ðRÞ
�
k25S�� �

�
1

2
Rf0ðRÞ � 1

2
fðRÞ þhf0ðRÞ

�
h��

þ eA�e
B
�rArBf

0ðRÞ
�
: (14)

Note that in this last equation the first term is given by S��

(the stress tensor on the brane) and not by T��, since one

must respect the constraint ~T��n
� ¼ 0. Now, since the

geometrical part of the Israel matching condition is not

modified, the delta part of the Einstein tensor will be the
same as the standard case [31]. Therefore, the appropriate
junction condition reads straightforwardly

½K��� ¼ ��

�
~T�� � 1

3
h��

~T

�
; (15)

with ~T�� given by Eq. (14). Hence, it is possible to express

the jump of the extrinsic curvature in terms of the brane
stress tensor plus corrections coming from the fðRÞ bulk. It
is given by

½K��� ¼ � �

f0ðRÞ
�
k25

�
S�� � 1

3
h��S

�

þ 1

6
h��½Rf0ðRÞ � fðRÞ� þ eA�e

B
�rArBf

0ðRÞ
�
;

(16)

whose trace reads

½K� ¼ �

3f0ðRÞ ½k
2
5S� 2Rf0ðRÞ þ 2fðRÞ � 3hf0ðRÞ�: (17)

Note that by taking fðRÞ ¼ R (f0ðRÞ ¼ 1), we recover the
usual general relativity case, as expected.
From Eqs. (15) and (16), it is possible to complete the

projection procedure, writing down Eq. (13) on the brane.
In order to implement it, we notice that the Z2 symmetry
imposes the condition nþA ! �n�A , leading to Kþ

�� !
�K�

�� [32]. Therefore, it is possible to calculate the

extrinsic curvature terms of Eq. (13) on the brane (hence-
forth, we suppress the label �, since the dependence
of K�� in Eq. (13) is quadratic). The calculation of the

extrinsic curvature terms is easy but tedious. We will
suppress some details and furnish the main results in terms
of the brane stress tensor. They are

KK�� ¼� �2

12½f0ðRÞ�2
�
k45SS�� � k45

3
h��S

2 þ 5k25
6

h��S½Rf0ðRÞ � fðRÞ�þ k25Se
A
�e

B
�rArBf

0ðRÞ � 2k25S��½Rf0ðRÞ � fðRÞ�

� 1

3
h��½Rf0ðRÞ � fðRÞ�2 � 2½Rf0ðRÞ � fðRÞ�eA�eB�rArBf

0ðRÞ � 3k25S��hf0ðRÞ þ k25h��Shf0ðRÞ

� 1

2
h��½Rf0ðRÞ � fðRÞ�hf0ðRÞ � 3hf0ðRÞeA�eB�rArBf

0ðRÞ
�
; (18)

K�
�K�� ¼ �2

4f0ðRÞ
�
k45

�
S��S�� � 2

3
SS�� þ 1

9
h��S

2

�
þ k25

3
S��½Rf0ðRÞ � fðRÞ� � k25

9
Sh��½Rf0ðRÞ � fðRÞ�

þ k25ðS��eA� þ S��e
A
�ÞeB�rArBf

0ðRÞ � 2

3
k25Se

A
�e

B
�rArBf

0ðRÞ þ 1

36
h��½Rf0ðRÞ � fðRÞ�2

þ 1

3
½Rf0ðRÞ � fðRÞ�eA�eB�rArBf

0ðRÞ þ eA�e
B
�rCrAf

0ðRÞrCrBf
0ðRÞ

�
; (19)

K2¼ �2

36f0ðRÞ
�
k45S

2�4k25S½Rf0ðRÞ�fðRÞ��6k25Shf0ðRÞþ12hf0ðRÞ½Rf0ðRÞ�fðRÞ�þ4½Rf0ðRÞ�fðRÞ�2þ9ðhf0ðRÞÞ2
�
;

(20)
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and

K��K�� ¼ �2

4f0ðRÞ
�
k45

�
S��S�� � 2

9
S2
�
� k25

3
S½Rf0ðRÞ � fðRÞ� þ 2k25S

��eA�e
B
�rArBf

0ðRÞ � 2k25
3

Shf0ðRÞ

þ 1

9
½Rf0ðRÞ � fðRÞ�2 þ 1

3
½Rf0ðRÞ � fðRÞ�hf0ðRÞ þ rArBf0ðRÞrArBf

0ðRÞ
�
: (21)

Now, from Eqs. (20) and (21), it is possible to calculate the scalar part of the extrinsic curvature terms in Eq. (13). Taking
into account the decomposition S�� ¼ �	h�� þ 
��, we have

K2 �K��K�� ¼ �2

4f0ðRÞ
�
k45

�

2

3
� 2	


3
þ 4	2

3
� 
��
��

�
� k25

9
ð
� 4	Þ½Rf0ðRÞ � fðRÞ� þ ðhf0ðRÞÞ2

þhf0ðRÞ½Rf0ðRÞ � fðRÞ� þ 1

3
½Rf0ðRÞ � fðRÞ�2 � 2k25


��eA�e
B
�rArBf

0ðRÞ �rArBf0ðRÞrArBf
0ðRÞ

�
:

(22)

In a similar fashion, the remaining extrinsic curvature terms of Eq. (13) are given by

KK�� � K�
�K�� ¼ � �2

4f0ðRÞ
�
k45

�

��
�� þ 1

3


��

�
� 1

3
k25
��ð2k25	þ ½Rf0ðRÞ � fðRÞ� þ 3hf0ðRÞÞ

� 1

3
eA�e

B
�rArBf

0ðRÞðk25
þ 2k25	þ ½Rf0ðRÞ � fðRÞ� þ 3hf0ðRÞÞ

þ h��

3

�
k45
	� k45	

2 þ k25
2

½Rf0ðRÞ � fðRÞ� � k25	½Rf0ðRÞ � fðRÞ�

� 1

4
½Rf0ðRÞ � fðRÞ�2 � k25	hf0ðRÞ þ k25
hf0ðRÞ � 1

2
½Rf0ðRÞ � fðRÞ�hf0ðRÞ�

þ k25ð
��eA� þ 
�� e
A
�ÞeB�rArBf

0ðRÞ þ eA�e
B
�rCrAf

0ðRÞrCrBf
0ðRÞ

�
: (23)

The last two equations allow one to bound all the extrinsic curvature terms in Eq. (13) by means of the brane stress-
tensor components, as well as fðRÞ and its derivative terms. We shall write it explicitly, since these terms encode the
junction condition departure from the usual case. Hence, organizing similar terms for convenience, we have

KK�� � K�
�K�� � 1

2
ðK2 � K��K��Þ ¼ � �2

4f0ðRÞ
�
k45

�

��
�� þ 1

3


�� þ 1

6

2 � 1

2
h��


��
��

�

� 1

3
k25
��ð2k25
��	þ ½Rf0ðRÞ � fðRÞ� þ 3hf0ðRÞÞ

� 1

3
eA�e

B
�rArBf

0ðRÞðk25
þ 2k25	þ ½Rf0ðRÞ � fðRÞ� þ 3hf0ðRÞÞ
þ k25ð
��eA� þ 
�� e

A
�ÞeB�rArBf

0ðRÞ þ eA�e
B
�rC �rAf

0ðRÞrCrBf
0ðRÞ

þ 1

3
h��

�
2k45	
þ k45	

2 þ 1

3
k25
½Rf0ðRÞ � fðRÞ� � 1

3
k25	½Rf0ðRÞ � fðRÞ�

þ 1

4
½Rf0ðRÞ � fðRÞ�2 þ ½Rf0ðRÞ � fðRÞ�hf0ðRÞ � k25	hf0ðRÞ þ k25
hf0ðRÞ

þ 3

2
ðhf0ðRÞÞ2 � 3k25


��eA�e
B
�rArBf

0ðRÞ � 3

2
rArBf0ðRÞrArBf

0ðRÞ
��
: (24)

Now it is possible to write down the effective gravitational field equation on the brane. Thus from Eqs. (12) and (24),
Eq. (13) reads
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�G�� ¼ ��effh�� þ k45
�� þ k25Geff
�� þ 1

f0ðRÞ rArBf
0ðRÞhA�hB� þGeffe

A
�e

B
�rArBf

0ðRÞ

� k25
4½f0ðRÞ�2 ð


�
�e

A
� þ 
�� e

A
�ÞeB�rArBf

0ðRÞ � 1

4½f0ðRÞ�2 e
A
�e

B
�rCrAf

0ðRÞrCrBf
0ðRÞ � E��; (25)

where

Geff ¼ �2

12½f0ðRÞ�2 ½2k
2
5	þ ½Rf0ðRÞ � fðRÞ� þ 3hf0ðRÞ�; (26)


�� ¼ � �2

4½f0ðRÞ�2
�

��
�� þ 1

3


�� þ 1

6
h��


2 � 1

2
h��


��
��

�
; (27)

and

�eff ¼ �2

4½f0ðRÞ�2
�
2

3
k45	
þ

1

3
k45	

2 þ 1

9
k25
½Rf0ðRÞ � fðRÞ� � 1

9
k25	½Rf0ðRÞ � fðRÞ� þ 1

12
½Rf0ðRÞ � fðRÞ�2

þ 1

3
½Rf0ðRÞ � fðRÞ�hf0ðRÞ � k25

3
	hf0ðRÞ þ k25

3

hf0ðRÞ þ 1

2
ðhf0ðRÞÞ2 � k25


��eA�e
B
�rArBf

0ðRÞ

� 1

2
rArBf0ðRÞrArBf

0ðRÞ
�
þ 2k25�þ ½Rf0ðRÞ � fðRÞ� þ 2hf0ðRÞ � 5k25�f0ðRÞ

4
�rArBf

0ðRÞnAnB: (28)

In the next section we shall implement a few important conditions coming from braneworld models. These constraints
supplement the covariant approach of this section, leading to well-defined five-dimensional braneworld models within
fðRÞ gravity. Now, we just note in passing an important output encoded in Eq. (26)—that the fðRÞ bulk gravity is felt on the
Newtonian effective constant. Thus, in order to guarantee a positive Geff , it is necessary that2

2k25	þ ½Rf0ðRÞ � fðRÞ� þ 3hf0ðRÞ> 0: (29)

Therefore, Eq. (30) is the first nontrivial constraint that must be respected by a gravitationally viable braneworld model in
the fðRÞ bulk context.

IV. CONSTRAINING AND ENABLING fðRÞ PROJECTED BRANEWORLDS

In order to better appreciate the relevant constraints that must be respected for a theoretically and physically
interesting model, we shall look at the simplest case of the vacuum on the brane, e. g., 
�� ¼ 0. In this case, equations (25)

and (28) give

�G�� ¼ ��effh�� þ 1

f0ðRÞ rArBf
0ðRÞhA�hB� þGeffe

A
�e

B
�rArBf

0ðRÞ � 1

4½f0ðRÞ�2 e
A
�e

B
�rCrAf

0ðRÞrCrBf
0ðRÞ � E��;

(30)

with

�eff ¼ �2

4½f0ðRÞ�2
�
1

3
k45	

2 � 1

9
k25	½Rf0ðRÞ � fðRÞ�þ 1

12
½Rf0ðRÞ � fðRÞ�2 þ 1

3
½Rf0ðRÞ � fðRÞ�hf0ðRÞ � k25

3
	hf0ðRÞ

þ 1

2
ðhf0ðRÞÞ2 � 1

2
rArBf0ðRÞrArBf

0ðRÞ
�
þ 2k25�þ ½Rf0ðRÞ � fðRÞ�þ 2hf0ðRÞ � 5k25�f0ðRÞ

4
rArBf

0ðRÞnAnB:
(31)

In general, when dealing with fðRÞ gravity-based braneworld models, there are two types of physical inputs that may be
accomplished by a well-defined model: on the one hand, there are constraints coming from braneworld theory (such as the
aforementioned positivity of the brane tension) and, on the other hand, there are additional conditions arising from the

2The brane tension 	 is the proper vacuum energy for isotropic branes. This reinforces the fact that 	 is a positive parameter [12].
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requirement of a viable fðRÞ gravity model, which are
necessary to fit experimental and observational data.
Obviously, the implementation of the former type of con-
ditions is indeed necessary. However, the direct use of the
fðRÞ constraints in our case is a naive approach, since these
constraints are valid for usual four-dimensional fðRÞ cos-
mological models, and we are dealing with fðRÞ gravity in
the bulk. Besides, the obtained field equation ((30), for
instance) is quite different from the standard case. In this
vein, our approach here is to follow the clue of the brane-
world constraints and complement it with some additional
conditions appearing in the fðRÞ theory, without making
reference to any particular model.

In the final part of Sec. II, we mentioned that the brane
tension should be positive; also, in order to get an attractive
gravity on the brane we must impose that Geff > 0. We can
use Eq. (2) to remove hf0ðRÞ and express (30) solely in
terms of the constants, fðRÞ and its derivatives with respect
to R. In doing so we have

1

4
Rf0 þ 7

8
fþ 15

4
k25j�j þ 2k25	 > 0: (32)

In pursuit of a physically interesting braneworld model,
it is conceivable to insist on having an AdS bulk.
Therefore, one shall write� ! �j�j. Besides, the minute-
ness of �eff (it shall be lower than 10�120) is well known
and may be associated with an important constraint.

Let us follow a similar procedure in (31) by using
(1) and (8) in order to remove the terms of the derivatives
of fðRÞ with respect to the coordinates, i.e.,
1
2rArBf0ðRÞrArBf

0ðRÞ, rArBf
0ðRÞnAnB and hf0ðRÞ,

ending up with an equation depending only on fðRÞ and
its derivatives. With such an upper bound in Eq. (31), the
resulting constraint reads

1

3
k25	� 1

36
k25	Rf

0 þ 5

72
k25	fþ 1

32
f2 þ 1

6
k25j�jf0R

þ 5

24
fk25j�j þ 1

8
f02R2 þ 5

8
k25j�j2 þ 1

�2
f02k25j�j

þ 3

�2
f03Rþ 1

2

f02f
�2

� 5

12
k25	j�j � 1

2
f02RABR

AB

þ 5f03k25j�j
�2

� 4f03

�2
RABn

AnB ¼ 0: (33)

The point to be stressed here is that any five-dimensional
braneworld model based upon an AdS fðRÞ bulk must
respect Eqs. (32) and (33) in order to guarantee a well-
defined model from the gravitational point of view. Of
course, Eqs. (32) and (33) are rather nontrivial, and it is
not expected that they could be satisfied by chance. We
remark, in passing, that in the general relativity limit, none
of the constraints impose any bound on the curvature
scalar, as expected.

This paper addresses obtaining the effective gravita-
tional equations on the 3-brane, coming from a five-
dimensional fðRÞ theory. In contrast to the previous work

related to this issue [18], we see that our results—encoded
in Eqs. (26), (30), and (31)—are quite different from those
obtained in [18] [see Eqs. (19)–(24)]. The reason for such a
discrepancy, as previously remarked, rests upon the fact
that we generalize the junction conditions instead of using
the same conditions as general relativity. As shown in the
end of [18], a spherically symmetric solution may be used
to explain the galaxy rotation curves, while some cosmo-
logical solution would be used to describe an accelerated
Universe. Equipped with the proper effective equations
found here, we believe it is also possible, although very
difficult, to find suitable fðRÞ models whose solutions in
some regime describe the aforementioned behaviors. In
fact, bearing in mind the essence of induced-gravity ef-
fects, it is expected, on general grounds, that at early times
the usual cosmological behavior of the Universe is re-
stored, while at late times the standard results are no longer
recovered and, for instance, acceleration can be driven by
extra-dimensional gravity effects [33].
We conclude this section by calling attention to a promi-

nent difference encompassed in Eq. (26), associated with a
dynamical curvature. Roughly speaking, a time-dependent
scalar of curvature model would lead to a possible variation
of the gravitational constant. Of course, the recent astro-
physical data suggest the very constancy of the Newtonian
gravitational constant. However, possible fractional varia-
tions [34] are currently under investigation. The best model
independent bound on such a fractional variation is
achieved by lunar ranging measurements, establishing
ð4� 9Þ � 10�13 yr�1 [35]. Obviously, it is a quite strin-
gent constraint, but the point concerning our approach is
that it could encompass such a variation.

V. FINAL REMARKS

In this paper we have explored the viability of achieving
a gravitationally consistent braneworld scenario in the
framework of fðRÞ theory. For this purpose, we have
worked in the most general context without considering
any particular model in order to derive the appropriate
junction conditions to obtain a prescription for how to
project the effective second-order equations on a 3-brane
embedded in a five-dimensional bulk. Besides providing a
rigorous derivation of the junction conditions, our main
result here is that any five-dimensional braneworld model
based upon an AdS fðRÞ bulk must respect Eqs. (32) and
(33) in order to guarantee a well-defined and gravitation-
ally viable model.
Finally, let us give a brief example of how to apply

Eqs. (32) and (33) to a particular (toy) model. Let us
consider a case in which we are dealing with a theory of
gravity consisting of a small modification on general
relativity: fðRÞ ¼ Rþ ’ðRÞ, ’ðRÞ � R. It is reasonable
to single out models obeying this condition, since it is
expected that an arbitrary fðRÞ not be so different from
general relativity, which ensures the fulfilment of the
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viability conditions listed in [26]. By adopting such an
assumption, we will be led to the following approximations:

f2 ¼ R2

�
1þ 2’

R

�
; (34)

f02 ¼ 1þ 2’0; (35)

f03 ¼ 1þ 3’0; (36)

and

f02f ¼ R

�
1þ 2’0 þ ’

R

�
: (37)

So, we will get a linear form for (33), which reads

�
a1R

2 þ a2Rþ a3 � RABR
AB � 12

�2
RABn

AnB
�
d’

dR

þ ðb1 þ b2RÞ’þ c1R
2 þ c2Rþ c3 � 1

2
RABR

AB

� 4

�2
RABn

AnB ¼ 0; (38)

with the constants a1, a2, a3, b1, b2, c1, c2, and c3 given by

a1 � 1

4
; a2 � 1

6
k25j�j � 1

36
k25	þ 10

�2
; a3 � 17

�2
j�j; b1 � 1

16
; b2 � 5

72
k25	þ 5

24
k25j�j þ 1

2�2
;

c1 � 5

32
; c2 � 3

72
k25	� 3

8
k25j�j þ 7

2�2
; c3 � 1

3
k25	þ 5

8
k45j�j2 þ 6k25

�2
j�j � 5

12
k25	j�j:

(39)

Equation (38) can be solved in the case in which the scalars

RABR
AB and RABn

AnB are expressed as functions of the

Ricci scalar R. Such an equation represents an important

condition of viability for models possessing the functional

form fðRÞ ¼ Rþ ’ðRÞ and obeying the constraint

’ðRÞ � R. Apart from that, it is quite conceivable to

implement a typical warped line element, expressing

RABR
AB and RABn

AnB in terms of the warp factor. In this

vein, the resulting differential equations for the warp factor

in the coefficient of d’=dR and in the second term of

Eq. (38) may be used to classify warped spaces according

to the correction ’.
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