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Chiral condensate in hadronic matter
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The finite temperature chiral condensate for 2 + 1 quark flavors is considered in the framework of the
hadron resonance gas model. This requires some dynamical information, for which two models are
employed: one based on the quark structure of hadrons combined with the Nambu—Jona-Lasinio approach
to chiral symmetry breaking, and one originating from gauge/gravity duality. Using these insights,

hadronic sigma terms are discussed in the context of recent first-principles results following from lattice
QCD and chiral perturbation theory. For the condensate, in generic agreement with lattice data it is found
that chiral symmetry restoration in the strange quark sector takes place at higher temperatures than in the
light quark sector. The importance of this result for a recently proposed dynamical model of hadronic

freeze-out in heavy ion collisions is outlined.
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I. INTRODUCTION

Spontaneous chiral symmetry breaking is, apart from
color confinement, the most important physical aspect of
strong interactions. The fact that one observes mass split-
tings of chiral partners in the hadron spectrum and that pions
have properties attributed to Goldstone bosons strongly
suggests that chiral symmetry is spontaneously broken in
the vacuum. These, and other theoretical arguments [1],
imply that in the vacuum there exists a chiral condensate
giving rise to an expectation value of the bilinear fermionic
operator /. Dynamical details of this phenomenon,
which is inherently nonperturbative in nature, are part of
the long-standing problem of strong interactions, but in the
course of time different model mechanisms for all its differ-
ent aspects have been developed.

As temperature and/or baryon density is increased, ther-
mal hadron excitations, because of their quark substructure,
will affect the vacuum condensate, causing its melting and
eventually vanishing at the transition line to the chirally
symmetric phase. Microscopic quantification of this phe-
nomenon comes from first-principles lattice QCD (1QCD)
simulations and confirms the intuitive predictions [2].

To get physical insight into this effect for low tempera-
tures (and densities) one can use the hadron resonance
gas (HRG) model [3], which was previously successfully
applied to give a physical interpretation of IQCD data [2,4]
as well as a description of the abundances of particles
produced in heavy ion collisions at very different center-
of-mass energies [5,6] in terms of freeze-out parameters.
The assumption underlying this approach is that for
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conditions below the QCD transition line, the system is
composed of noninteracting hadronic degrees of freedom,
and so the partition function is that of an ideal mixture of
free quantum gases. To have a reliable physical description
of the system, one needs to take into account all hadron
resonances with masses up to ~2 GeV.

To calculate the condensate in this framework it is
necessary to know the dependence of hadron masses on
the current quark masses. This, apart from the Goldstone
boson octet, is not straightforward to determine and either
requires some assumptions about the underlying dynamics
or is the result of a phenomenological fit. Approaches to
this which can be regarded as based on first principles are
chiral perturbation theory (ChPT) [7], lattice QCD simu-
lations [8] and Dyson-Schwinger equations (DSE) [9,10].
They provide a consistent picture of hadrons with a reliable
account of the quark mass dependence. However, in the
ChPT framework there are still large uncertainties con-
cerning, for example, the nucleon strange sigma term [11],
for which, when different orders of approximation are
considered, even the sign is not clear [12].

This article explores the consequences of various hadron
mass formulas proposed recently and compares them with
the results mentioned above.

One set of mass formulas which was used in the analysis
reported here comes from a new model based on quark
counting and is a generalization of what was proposed by
Leupold [13] a few years ago. In Leupold’s scheme, hadron
masses were assumed to be linear in the current quark
masses. This approach was used (and generalized) in
Ref. [14]. In the present work a further step is taken: it is
assumed that the dependence of hadron masses on the
current quark mass arises solely due to the dependence of
constituent masses of valence quarks. The response of
these constituent masses to the change in the current quark
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mass is determined based on the Nambu—Jona-Lasinio
(NJL) model [15-17]. In this way a fairly good description
of the hadronic sigma terms is obtained. The only flaw is
that the sea quark contributions are neglected entirely,
which, for example, leads to the vanishing of the nucleon
strange sigma term.

The second approach considered in this paper is the
use of baryon mass formulas which were obtained in a
large-N [18] holographic model of QCD due to Sakai and
Sugimoto [19]. The last ten years have witnessed a lot of
progress coming from gauge/gravity duality, allowing for
valuable insights into the dynamics of strongly coupled
gauge theories. Recent developments have made it possible
to study in a quasianalytical way theories which have very
realistic properties. The spectrum of mesons and chiral
symmetry breaking in the chiral limit was studied in
Ref. [19], and static baryon properties (such as masses,
magnetic moments or charge radii) [20,21] were found to
be in qualitative agreement with experiment. Also, form
factors [21] agree quite well with the data. Further progress
was made with the extension to finite current quark masses
[22] (see Ref. [23] for an alternative construction), where
for example Gell-Mann-Oakes-Renner relations for the
pseudoscalar octet have been demonstrated. The impact
of finite current quark masses on the spectrum of nucleon
octet and delta decuplet baryons has been considered in the
two-flavor case [24] and for 2 + 1 flavors [25] with non-
trivial results. The leading-order corrections are propor-
tional to the squares of Goldstone boson masses and
determined in a similar way to the leading order of ChPT
[12]. The results are in good agreement with the data and
other theoretical expectations in the light quark sector,
while the contribution of the strange quark is overestimated
by the model. It is very likely that going beyond the
leading order in the expansion in powers of the current
quark masses will give more reasonable results (as is
the case in ChPT). Also, at leading order, vector mesons
were argued not to receive mass corrections from finite
current quark mass [24]. The mass formulas obtained in
Refs [24,25] make it possible to estimate sigma terms,
including those for the nucleon octet and delta decuplet.
This is then used to calculate the chiral condensate in the
framework of the HRG model, and the results are com-
pared with calculations based on chiral perturbation theory.

In the context of DSE studies [9,10], sigma terms for the
two light quark flavors have been considered. In addition to
the nucleon and delta baryons, vector mesons were in-
cluded. Due to the p — w7 and p — 7 — @ couplings,
one gets a sigma term of the p meson. The w meson has
no pion loop dressing, and therefore only w — p7 cou-
pling remains. Since in the DSE approach strange sigma
terms were not included yet, we do not use these results as
a base for calculating the chiral condensates of interest. We
will only use it as a reference point to other calculations.

The importance of the hadronic contribution to the
melting of the chiral condensate was appreciated in a
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model for the freeze-out stage of heavy ion collisions,
where it was related to the Mott-Anderson delocalization
of hadrons [14]. The model is based on assumptions for
hadron-hadron interactions and on the evolution of the
matter formed in heavy ion collisions. The main point is
that freeze-out phenomena are assumed to take place in the
hadronic phase and are entirely attributed to the hadron
dynamics. In general, each hadron is assigned a medium
dependent radius r,(T, wg), which is then related in a
universal way to the chiral condensate. Hadron-hadron
reactions are described by the Povh-Hiifner law [26], and
in consequence the cross section is determined by the
medium dependence of the condensate. As the temperature
decreases, the mean time between the interactions is getting
larger, since it is inversely proportional to the reaction cross
section and hadron density (in the relaxation time approxi-
mation). At some point the reaction rate becomes smaller
than the rate of expansion, and reactions between hadrons
stop changing the final composition. The freeze-out

parameters ,ué and T/ are determined by the equality of
both time scales. However, in Ref. [14] only the light quark
condensate was considered, so one of the possible improve-
ments of the model is to include also the strange sector. This
is one of the motivations for the present studies.

The organization of the paper is as follows: in Sec. II the
generic theoretical setup is described and the relevant quan-
tities used in further calculations are defined. This section
also reviews some thermodynamic quantities computed in
the HRG model and highlights their very good agreement
with lattice computations. These considerations do not
require any detailed assumptions about hadron dynamics.
On the other hand, the computation of the chiral condensate
strongly depends on hadron mass formulas expressed in
terms of current quark masses, as discussed in Sec. III.
This dependence is captured by the hadronic sigma terms.
In Sec. IV we describe our baseline, which comes from
results obtained within ChPT as the low-energy effective
theory of QCD. In Sec. V, hadron mass formulas based on
their constituent quark structure are presented and con-
trasted with a previously established parametric depen-
dence [27,28] and with first-principles results. Section VI
contains novel results following from the Sakai-Sugimoto
holographic model together with a discussion in the light of
lowest-order ChPT results. Section VII contains conclu-
sions, some discussion and possible open directions.

II. HADRON RESONANCE GAS MODEL

The hadron resonance gas model implements the idea
[3] that QCD thermodynamics in the hadronic phase can be
described as a multicomponent ideal hadron gas. For very
low temperatures the dominant degrees of freedom are
pions and kaons, and due to the Goldstone theorem their
interactions are weak. Therefore, in the first approximation
they can be considered as free particles. As the temperature
and/or density is increased, contributions from heavier
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hadrons become important. Because strong interactions are
of finite range in the thermodynamical limit of infinite
volume V — oo, the grand canonical potential' can be
expressed as a sum of contributions from free hadrons [29]:

AT {pid) = Qo + Qpra (T, {14). (D

In the above formula, () is the vacuum part, whose de-
tailed form is irrelevant for the following considerations,
and the medium-dependent part contains contributions
from mesons and baryons:

Qura (T, {w}) = Qu(T, {u;}) + Qp(T, {n;}). (2

Here {uw;} is the set of chemical potentials corresponding to
conserved charges such as baryon number B, electric
charge Q, isospin /5 and strangeness S. The free meson
contribution reads

Tin(1 — zye BEm), (3)

T {lu’z}) ZdM (2 )3

while the free baryon contribution is

Qp(T{pn}) = ng Gn )3T1n(1+z3e BEs),  (4)

= 4/k? + m?, and dj and d); count the degener-
acy of hadrons. Fugacities are defined by

2 = exp (ﬁZXM ) 5)

where the index a runs over all conserved charges in the
system, X¢ is the corresponding charge and 8 = 1/T is
the inverse temperature. Although inclusion of chemical
potentials is straightforward in the HRG approach, for
much of this paper they are all set to zero. The residual
repulsive interactions can be taken into account, e.g., by
the van der Waals excluded volume corrections [30].

All thermodynamic quantities, such as equations of state
for pressure and energy density, as well as material prop-
erties such as the speed of sound, can be obtained from the
grand canonical thermodynamical potential Q(7, {u;}). In
the following, let us discuss in more detail the case of
vanishing chemical potentials. The pressure is given by

and the energy density is

_ABOT, {u; = 0))]
9B '

Figure 1 shows the equations of state as obtained for the
HRG and compares it with recent IQCD simulations [31]
normalized to 7%, the Stefan-Boltzmann behavior of a
massless ideal gas. There is clearly an excellent agreement

where E;

)

'Since only homogeneous systems are considered here, the
symbol () denotes the grand canonical potential as usually
defined in statistical mechanics divided by the volume.
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FIG. 1 (color online). Energy density and pressure for the
HRG compared to 1QCD data [31]. The upper limit for the
mass of hadrons included in the calculation is m,,, =2 GeV.

for temperatures up to ~170 MeV, which means that the
dominant effect in that range of temperatures comes from
the excitation of hadronic degrees of freedom rather than
from their interactions. This is a very well-known effect
[2,4]. Agreement for higher temperatures can be obtained
when medium modifications of hadronic states are taken
into account. For example, in Ref. [32] it was demonstrated
that the inclusion of state-dependent hadronic width I';,(T)
taken on the inverse collision time of the Mott-Anderson
freeze-out [14] and the proper introduction of quark-gluon
degrees of freedom based on the Polyakov-loop extended
Nambu—Jona-Lasinio (PNJL) model nicely reproduces lat-
tice QCD data in the whole temperature range.
The velocity of sound is given by

_dp _&etp(de
Cy = (dT) ’ (8)

where the second equality holds only for zero chemical
potentials. Its temperature dependence is shown in Fig. 2
for the HRG model compared to 1QCD data [31].

Qualitatively, in the HRG model, the increase for low
temperatures is related to the appearance of a large number
of light degrees of freedom. When heavier hadrons are
excited, they contribute considerably to the energy density
but almost nothing to the pressure, which leads to the
characteristic dip. For high temperatures, because the num-
ber of states included is finite, there is an approximately
constant behavior approaching the massless gas limit ¢Z =
1/3 only for very high temperatures. On the other hand, for
1QCD the dip is an indicator of the crossover transition. For
a first-order transition, the sound velocity should be strictly
zero. For high temperatures, lattice data approach the
massless limit, which is consistent with the interpretation
of deconfinement to a massless quark-gluon medium.
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FIG. 2 (color online). Squared sound velocity for HRG
compared to 1QCD data [31]. The upper limit for the mass of
hadrons included in the calculation is m,,, = 2 GeV.

The importance of the speed of sound for the phenome-
nology of heavy ion collisions was noticed, e.g., by
Florkowski et al. [33,34] in the context of the HBT puzzle.

III. CHIRAL CONDENSATE AND SIGMA TERMS

Using the standard formula for the chiral condensate

_ o 0T, {u)
@) =— —
my

(€))

one obtains the quark-antiquark condensate in the light and
strange flavor sectors, respectively:

0Qura(T, {1:})

(ag) = @ao +——, - : (10)
q
(5s) = (3s)y + —GQHRgfnT’ twid) (11)

The derivatives are taken with respect to the current quark
masses and lead to the generic formulas

o o
(qa)=<qq + Z—an(T, {mip) + Z_an(T’ {wid),
v Mg B Mg

(12)

O'M O'B
(8s) = (Fs)y + D ——ny (T, {mi}) + D~ ng(T, {u;}),
m m B Ms
(13)
where the scalar densities of mesons and baryons have
been introduced as

d o0
ny(T, {w}) = 2—7::12];) dk

A

m 1
RM 14
Ey zj/ ePEv — 1 (14)

mpg 1

— 15
Ep z3'ePEs + 1 (1%

d 00
oI, i) = 5 5 fo dkk?
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and the response of hadron masses to changes in the current
quark mass of flavor f = u, d, s, ..., gy ; is captured by the

hadron sigma terms

amh
Thus, for every hadron state, there are different sigma
terms related to contributions from quark flavors constitut-
ing the hadron.

The above formulas are valid for the noninteracting gas.
In the light flavor sector, effects of meson-meson and
pion-nucleon interactions as described by ChPT were
implemented in Ref. [35].

In the following, isospin symmetry is assumed, setting
the light quark masses m, = m, = m; = 5.5 MeV and
the light quark condensate (iiu), = (dd), = {Gq)o =
(—240)> MeV?. Analysis based on 1QCD and QCD sum
rules together with the low-energy theorem for the correla-
tion functions allows one to estimate the ratio of strange to
light quark condensates to be 0.8 = 0.3 [36]. (Other esti-
mates give 0.75 = 0.12 [37], but note also recent explicit
lattice calculations [38].) One can understand this hierarchy
of condensates using the spectral representation of the
expectation value for the quark of current mass m  [39,40],

p(A)
A2+ m}% ’
and noting that the spectral integral is increasingly sup-
pressed with the higher current quark mass, thus lowering
the value of the quark condensate. Furthermore, the char-
acteristic length scale related to the quark-antiquark con-
densate can be taken as 1/m > which is smaller for greater
masses. This implies that the medium effect—expressed as
screening length—will affect heavier quark condensates at
higher temperatures. This can also be understood as arising
from the fact that the contribution to the strange quark
condensate—and its melting—comes from strange had-
rons, which are fewer in number than hadrons containing
light quarks.

Another important quantity, an approximate order
parameter for the deconfinement phase transition, is the
Polyakov loop. It is very well studied in 1QCD, and
recently it has been addressed within the HRG framework
[41]. Good agreement with the lattice data was found in the
temperature range 150 MeV <7 < 190 MeV.

o (16)

(Grqs) = —2my ﬁ dA (17)

IV. HADRON MASSES IN CHIRAL
PERTURBATION THEORY

As explained above, the finite-temperature behavior of
chiral condensates in the HRG approach is determined by
the sigma terms, which express the dependence of hadron
masses on the current quark masses. A very important
approach to this problem is provided by chiral perturbation
theory. This approach is most effective in the pseudoscalar
sector, since in the limit of vanishing quark masses these
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TABLE I. Sigma terms for the lowest-lying baryons in the leading-order ChPT in MeV.
N A 3 =1 A 3 =N Q-

oy, 36.2 19.9 10.8 27.8 —1.08 15.6 331 —8.96
gy 162 438 591 317 789 523 729 935

states are massless Goldstone bosons of spontaneously
broken chiral symmetry. The importance of the chiral
perturbation theory results for the sequel is twofold.
Firstly, in the following section they are used to compute
sigma terms for the pseudo-Goldstone bosons—the model
introduced there is used for the remaining hadronic states.
Secondly, it is a natural point of reference for calculations
carried out in Sec. VI, where a detailed comparison with
the holographic approach is described.

In the case of the Goldstone boson octet, the relevant
mass formula is the Gell-Mann-Oakes-Renner (GMOR)
relation, which takes the form [42]

2

s - K’;Z—) = —Galm, +mg),  (18)
2 —_ _
f%m%(l — K%) = — M(mq +my). (19)

These formulas include next-to-leading-order corrections
expressed in terms of the parameter « = 0.021 = 0.008
[36]. If one assumes (5s); = 0.8(7q)y, f» = 92.4 MeV,
fx = 113 MeV (which gives fx/f,= 1.22 [43]) and
my = 138 MeV, then one finds (m, +mg)/m;~1.040 as
compared to the lattice choice, (m, + m,) /m, = 1.036 [2].

Taking the derivative of the above equations with respect
to the light quark masses, one finds

(Gq) (Ga)o m2
=— ~— 14+2c-7) (20
am, f%(1—2k'}’—§r’ 1z ( Kfz) =

2
omy

w

and similarly, for the derivatives of the kaon mass with
respect to m, (and my),

__ {@q) + (Ss)
IMgs f%(l - 2#}’-})

= S 2
~ _{4g) * sk +2<”>° (1 + 2Km—2'(>. 1)
2fk [

In ChPT, mass formulas for the ground-state baryons can be
alsocomputedinthe Ny = 2 [44]and Ny = 2 + 1 cases [12].
At lowest order, the shift due to the finite current quark mass is
proportional to the square of the Goldstone boson mass [12].
The lowest-order contributions to the baryon masses read

My=My— Y égymd, (22)
d=mK

2
amy

where £p 4, are expressed in terms of the parameters of the
low-energy Lagrangian. Sigma terms following from this

formula are listed in Table I. In Sec. VI, these results will
compared with the holographic mass formulas.

Higher-order contributions are given by the loop correc-
tions to baryon self-energies and are evaluated using differ-
ent regularization schemes. All of them are carefully
compared to the recent lattice data. It is interesting to
note that the strange nucleon sigma term turns out to be
negative at next-to-leading order (NLO), o = —4 MeV
[12], which means that the nucleon mass decreases if the
strange quark mass is raised. On the other hand, different
ChPT studies give at N°LO o =~ 130 MeV [11], which
means that higher-order corrections can be relevant and the
existing answers must be regarded as somewhat tentative.
First-principles lattice simulations with Ny =2+ 1
dynamical quark flavors give o = 49 = 25 MeV [45].

In this context, an interesting quantity to look at is the
strangeness content of the nucleon, which was estimated in
the form [7]

__ Aplssip)
(plau + dd|p)

2 1 -1 9
= ﬁ(m%{ - 5m%,) m, 2N <021, (23)
O N 0

A

where |p) is a nucleon state of momentum p. This is
similar to the famous Wroblewski factor [46] introduced
in heavy ion and pp collisions for quantifying strangeness
production. For the SU(3) symmetric case, y = 1; while
when there are no strange quark pairs, y = 0. The second
equality of Eq. (23) is quite generic and relies only on the
Hellman-Feynman theorem and tree-level GMOR rela-
tions. Its importance lies in the fact that making some
statement about the nucleon strange sigma term is in fact
equivalent to making a statement about the strangeness
contribution to the nucleon.

V. CONSTITUENT QUARK PICTURE

The model described in this section is based on the
valence quark structure of hadrons and is a nontrivial
generalization of the formulas used in Ref. [14] for the
light quark condensate (following earlier work by Leupold
[13]). This model is also compared with a another ap-
proach, which gives a parametric dependence of hadron
masses on the pion mass [27,28] and was previously used
for the calculation of both light and strange quark con-
densates [47]. In these two models, mass formulas are in
principle given for all the hadron states, and so the sums
over mesons (M) and baryons (B) which appear in the
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HRG model take into account all states up to mass
~2 GeV.

The scenario introduced here assumes that baryon and
meson masses scale as

mB:(3_NS)Mq+NsMs+KB’ (24)

mM=(2—NS)Mq+NSMS+KM. (25)

Equation (24) is used for all baryonic states, while Eq. (25)
is used for all mesons except pions and kaons, for which
the GMOR relations of the previous section are employed.
The quark masses in mass formulas (24) and (25) are the
dynamical (constituent) ones and are denoted by M, for the
light quarks and by M| for the strange quark. The parame-
ter N; measures the strangeness content of the hadron, and
the quantities g, ), depend on the state, but not on the
current quark masses. For the open strange hadrons, N; is
simply the number of strange (antistrange) quarks. For
hidden strange mesons—such as, for example, the 7 or
h, state—it is modified by the squared modulus of the
coefficient of the §s contribution to the meson wave func-
tion. There are two possible wave function assignments
related to the flavor singlet i, = Vlg(ﬁu + dd + §s) and
flavor octet g = \/ig(zlu + dd — 25s) wave functions for
the hidden strange mesons. The strangeness-counting
parameters Nﬁo) = 2/3 for the singlet and Nﬁg) = 4/3 for
the octet have been adopted.

It is easy to see that the baryon octet Gell-Mann-Okubo
relation 3M, + Ms = 2(My + Mz) is translated into a
constraint on the state-dependent contributions: 3k, +
ks = 2(ky + Kk=).

Two further simplifying assumptions are made: excited
states are assumed to have the same flavor structure in their
wave functions as their respective ground states, and any
possible mixing between octet and singlet states (such as
1 — n' mixing) is neglected.

The dynamical (constituent) quark masses M, and M,
appearing in Egs. (24) and (25) are a way of partially
accounting for the dynamics of strong interactions. For
the purposes of computing the condensates, only the de-
pendence of these constituent masses on the current quark
masses is relevant. This dependence is taken from the NJL
model, where the dynamically generated mass changes by
AM, = 12.5 MeV as the quark mass is turned on from
zero in the chiral limit to m, = 5.5 MeV [438]. This gives
the nucleon sigma term o, = 37.5 MeV. For the strange
quark mass, the value of the dynamical quark mass is
M, = 587.4 MeV for m, = 140.7 MeV, which gives
AM, = 227.4 MeV [49]. This valence quark counting
implies that the strange contribution to the nucleon is
zero, which is an approximation hard to control. For the
A baryon, which has one strange quark, the same argu-
ments as above lead to the estimate ¢ = 252.9 MeV. The
resulting sigma terms are shown in Figs. 3 and 4.
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FIG. 3 (color online). Light sigma terms calculated with the
constituent quark picture.

In principle, the scaling of Egs. (24) and (25) will be
corrected by various effects such as contributions of the sea
quarks, which one would expect to give a logarithmic
correction In (m,/Aqcp)* at the one-loop order.

At this point it is interesting to consider another way to
quantify the dependence of hadron masses on the explicit
breaking of chiral symmetry, i.e., on the pion mass squared.
Let us define the quantities A;, by

omy _ An 26)

2
amﬂ. my,

The rationale for doing this is that a parametrization of this
type was used in the past [27,28,47], taking A;, to be a
constant for all hadrons heavier than the pion and the kaon.
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FIG. 4 (color online). Strange sigma terms calculated with the
constituent quark picture.
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The value of this constant was estimated to be =~ 0.9-1.2
on the basis of fits to data from 1QCD simulations
(performed at unphysical values of quark masses). One
may ask how strongly the quantities A, defined by
Eq. (26) depend on 4 in the model under consideration.
The state-dependent coefficient A, can be used to
replace the sigma terms in the condensate formulas
[Egs. (13) and (14)], according to (assuming « = 0)

m2

ol =—"4, 27)
miy
for the light quark sigma terms. Below we will also use this
formula to translate sigma terms calculated within the CQP
to estimate A;. Using the GMOR relation [Eq. (18)], one
can write for the light quark condensate in a HRG the
compact expression

- = Aavn (o)
@9 = a1 - 2"), (8)
mredfﬂ'
where the averaged A, coefficient is introduced as
_ Apny,/m
A, = =y {8y Anttn/ h (29)
Zh={M},{B} nh/ my,
while
= n,/my1-1
Moy = [Zh o8y n/ h] (30)
Zh:{M},{B} ny

is the weighted reduced mass and ny = 3 ;— (s72n the
total scalar density of hadrons. Note that A,, and m,4 are
temperature dependent.

Equation (28) provides a compact expression for the
modification of the light quark condensate in a HRG
medium. Since n, and m4 are model-independent char-
acteristics of the HRG, the evaluation of the medium
dependence requires solely the determination of A,, for a
given model.

The reduced mass defined in Eq. (30) is analogous to
the reduced mass .4 used in many particle systems. The
latter obeys two inequalities, Mygpiest/ = fhred = Miightests
where Myjgpe 18 the lightest mass in the system of n
particles. Those inequalities have a direct analogy in our
case and read m, < myq = m n(T)/n,(T), where the
pion is the lightest hadron and n,(T) is the scalar density
of the pion. Figure 5 shows the temperature dependence of
the scalar densities for pions, kaons, and for all hadrons
included in the calculation.

We exemplify this for the simple quark-counting model
with the mass formulas of Egs. (24) and (25), for which we
have already given the sigma terms. The corresponding
values of the A, coefficient as a function of hadron mass
are shown in Fig. 6. For this model, the averaged value
[Eqg. (29)] comes out to be temperature dependent, and its
behavior is shown in Fig. 7 for three different upper limits
of the mass spectrum of included hadrons.
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FIG. 5 (color online). Scalar densities defining the hadron
contribution to the melting of the chiral condensate.

The straight line structures of Fig. 6 reflect the fact that
different hadrons admit different flavor structures and the
assumption that excited states have the same structure as
their respective ground states.

Figure 8 shows chiral condensates calculated with the
two mass formulas described above. What is apparent is
that in the quark-counting scenario there is a more pro-
nounced difference between the light and the strange con-
densates. In Ref. [47] it was found that for the parametric
mass formulas [27,28] at the temperature where the light
condensate vanishes, the strange condensate is =0.4 of its
vacuum value. The temperature where the light condensate
vanishes is about T = 178 MeV. In contrast, for the quark-
counting scheme used here, this ratio is (3s)/(3s), = 0.83.
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i ° .o oo ]
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FIG. 6 (color online). Values of the A, coefficient for hadrons
of different mass from Eq. (27) as evaluated with the generalized
quark-counting formula.
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FIG. 7 (color online).
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HRG model results. Left panel: Temperature dependence of the quantity A,, defined by Eq. (29).

Right panel: Temperature dependence of the weighted reduced mass m.4 defined by Eq. (30). The parameter m,,, denotes the

upper limit for the mass of hadrons included in the calculation.
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FIG. 8 (color online).
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HRG model results. Left panel: Quark-counting-mass-formulas-based result for the light quark condensate

(green solid line) and the strange quark condensate (green dashed line). Condensate based only on the pion gas contribution (red dotted
line). Right panel: Chiral condensate with parametric dependence of hadron masses [27,28,47].

The temperature where the light quark vanishes is T =
168 MeV. This difference comes from the fact that taking
into account sea quark effects diminishes the difference
between contributions from strange and nonstrange had-
rons. For example, nucleons would contribute to the strange
condensate, and hadrons composed only of (anti)strange
quarks would contribute to the light quark condensate. This
effect is captured by the parametric mass dependence.

To compare with the lattice results of the Wuppertal-
Budapest group [2], the quantity

(Gq) — 2 (55)

A = m
) = g = i

(€19

is considered. The reason to define this quantity on the
lattice is purely technical: in this form it eliminates a
quadratic singularity at a nonzero value of the quark mass
my /a* (where a is the lattice spacing), and the ratio elim-
inates multiplicative ambiguities in the definition of con-
densates. The lattice results for A q,s(T) are calculated for
lattices with temporal extent N, = 6, 10, 12 and 16, and an
extrapolation to the continuum limit has been given in
Ref. [2], to which we compare our models. Physically this
quantity is sensitive to chiral symmetry restoration: it is
normalized to unity in vacuum and vanishes with the van-
ishing of the condensates as temperature grows. Figure 9
shows a comparison of the lattice data to the HRG results
with the CQP mass formulas. There is overall agreement up

105018-8



CHIRAL CONDENSATE IN HADRONIC MATTER

1 T T

. — CQP k=0 |
... CQP x=0.021
0.8 ® Lattice .
0.6 -
< |
0.4 -
0.2 \ @ .
\ =,
") - ]
0 | : }EEEEEE
150 200

T [MeV]

FIG. 9 (color online). Comparison of the HRG results for the
temperature dependence of the chiral condensate from the con-
stituent quark picture (CQP) to 1QCD results from the Wuppertal-
Budapest collaboration [2] (blue dots with error bars).
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FIG. 10 (color online). Comparison of the HRG results using the
parametric mass formula (red and green lines) to the lattice
Wauppertal-Budapest results [2] as in Fig. 9 (blue dots with error bars).

to temperatures =~ 155 MeV, which is the critical tempera-
ture from the lattice data. The effects of the NLO correc-
tions on the contribution of the pseudo-Goldstone bosons
(k corrections) to the condensate are minor. To compare, in
Fig. 10 the HRG results are shown together with those for
the parametric mass formulas. There is good agreement
only for temperatures up to ~140 MeV.

VI. HOLOGRAPHIC MASS FORMULAS

The second model considered in this paper is the holo-
graphic model of Sakai and Sugimoto [19]. This model is

PHYSICAL REVIEW D 87, 105018 (2013)

based on a D-brane construction in string theory and
assumes both large N and large 't Hooft coupling g>N.
Even though this model is neither supersymmetric nor
conformal, the approximations used are sufficiently under
control to justify the serious effort that has gone into
exploring its phenomenology. Even though in its original
formulation the model did not allow for nonzero quark
masses, it leads to a large number of quantitative predic-
tions which agree very well with experiment despite the
model having just two parameters [50]. The inclusion of
explicit chiral symmetry breaking by nonvanishing quark
masses was studied” in subsequent work [22,51]. The
resulting hadron mass shifts were calculated for the case
of two flavors in Ref. [24] and for three flavors in Ref. [25].
The latter reference provides hadron mass formulas which
were used in the present study. The results reported here
include only the nucleon octet and delta decuplet states in
the sums over hadrons, since mass formulas have only been
calculated for these states.

In the quasi-Goldstone boson sector, the holographic
model leads to the GMOR formula [22]. Although in
the holographic model the GMOR relations were only
obtained in the leading order m2 = 2c¢/f%(m, + m,) and
m% = 2c/f%(m, + my) [22], in the following Egs. (18)
and (19) will be used, which include an estimate of higher-
order corrections parameterized in terms of the constant «.

For the baryon sector, the results are as follows. In the
case of two quark flavors, the formula for the nucleon octet
and delta decuplet reads [24]

SMy = cm?2, (32)

where ¢ = 4.1 GeV ™. The leading-order chiral perturba-
tion theory result is of exactly the same form, with
¢ =23.6GeV~! [44] (and references therein). For the
choice of parameters made in this paper, this mass shift
gives M = 80.36 MeV, and the resulting sigma term is

—em (39
“fn

Note that the above results are state independent.

The estimated pion-nucleon sigma term in chiral pertur-
bation theory changes from o,y = 59 £ 19 MeV at NLO
[12] to o,y = 43 =7 MeV at N3LO, already quite close
to what was obtained above (within error bars). There is no
essential difference for this sigma term when one includes
the strange quark, which is why one can compare this with
the 2 + 1 flavor results. In the chiral limit, the nucleon
octet mass was found [7] to be M, = 767 MeV, which
gives 6M = 171 MeV from the physical proton mass.

For the two-flavor DSE studies [10], the nucleon and
delta sigma terms were found to be oy = 60 MeV and
o = 50 MeV. This is within the reasonable limits defined

o =

m2
(1 + 2Kf—277) = 36.86 MeV. (33)

w

%For an alternative approach, see Ref. [23].
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by various model approaches but will turn out to be a little
closer to the holographic results of the 2 + 1 flavor case.

In the three-flavor case [25], the nucleon octet mass
formula reads

1
5MN = §C8(a0m%(0 + a](mii + a’ﬁ'mfri ): (34)

and for the delta decuplet
My — 1 (agmr, + agmy. + a,m?.) 35
A = 3Cr0laomyo + agmi. + azm.), (35)

where cg = 7.9 GeV~!, ¢,y = 9.5 GeV ™! and the a coef-
ficients are given in Tables II and III. Using Egs. (20) and
(22), one can calculate the derivatives of baryon masses

a(6M 1 aq) + (5 2
(6Mp) _ _C#[aK (@q) 2<SS>0<1 N 2Km_21<)
amu 3 2fK fﬂ'
~ 2
+a, 94 (1 + 2k "Lj)] (36)
2f% e
TABLE II. Coefficients in the nucleon mass formula.

8 P N A poRs 30 s BV EZT

ap  3/5 4/5 9/10 3/5 11/10 8/5 4/5 8/5
ag  4/5 3/5 9/10 8/5 11/10 3/5 8/5 4/5
a, 8/5 8/5 6/5 4/5 4/5 4/5 3/5 3/5

TABLE III
10 ATH AT A0 A- I 30 3o

a 1/2 3/4 1 5/4 3/4 1 5/4 1 5/4 5/4
ax 5/4 1 3/4 1/2 5/4 1 3/4 5/4 1 5/4
a, 5/4 5/4 5/4 5/4 1 1 1 3/4 3/4 1)2

Coefficients in the delta mass term.

=0 e —
g = Q

PHYSICAL REVIEW D 87, 105018 (2013)

a(6Mp) _ 1 #[ 0M(1 +2Km—%()

om,; 3 212 2
=~ 2
+ aﬁfjﬁo (1 + 2k '}’;’)] 37)
1 7q) + (5 2
a(BMB) — —C#(ao + aK) <qq>0 2<SS>0 (1 + Km_2K>,
ams 3 2fK f7T

(38)

where B = N, A and # = 8, 10.

The resulting hadronic sigma terms are presented in
Tables IV and V.

In the holographic setup, the strange nucleon sigma term
is significantly overestimated, indicating that higher-order
corrections are needed. For ChPT, the leading-order
tree-level result is expressed in terms of five low-energy
constants and gives a reasonably good evaluation of the
nucleon strange sigma term. For the purpose of compari-
son, the results for the leading-order ChPT sigma terms are
shown in Table I. The strange sigma term for the nucleon,
ol = 162 MeV, is a bit large but still reasonable. It should
be noted that when compared to the NLO results from
Ref. [12] even the sign of the sigma terms can change,
meaning that higher-order corrections cannot be ignored. It
is to be expected that including higher-order corrections in
the holographic approach should cure the problem of over-
estimating the strangeness contribution as it does in the
case of ChPT.

Figure 11 presents the result for the chiral condensates
obtained with holographic and NLO ChPT mass formulas
where only the nucleon octet and delta decuplet baryons
are included (apart from the quasi-Goldstone bosons). In
the holographic case, due to the overestimated sigma
terms, the difference between strange and light conden-
sates i1s diminished. For the same reason, the too-small
number of states included in the strange sector is
compensated.

TABLE IV. Sigma terms for the nucleon octet in MeV.

8 P N A 30 o =0 =
o, 50.6 474 2.7 443 36.4 284 39.6 26.9
oy 474 50.6 427 28.4 36.4 443 26.9 39.6
o, 1190 1270 1070 714 913 1110 674 993

TABLE V. Sigma terms for the delta decuplet in MeV.

10 At At A9 A 30 3 B*0 B*- Q-
T, 49.4 45.4 41.5 37.5 435 39.5 35.6 37.6 33.6 31.6
oy 37.5 415 45.4 49.4 35.6 39.5 435 33.6 37.6 31.6
o, 941 1040 1140 1240 892 992 1090 843 942 794
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Temperature dependence of strange and light condensates using holographic mass formulas (left panel) and

NLO ChPT mass formulas [12] (right panel). For details, see the text.

As is clear from the above discussion, one important
extension of the existing calculations in the holographic
model would be to calculate higher-order corrections in the
current quark masses. One motivation for it was already
mentioned: this would improve the resulting sigma terms,
especially in the strange sector. A second, more formal,
motivation is that in ChPT, for N = 2, the second-order
correction to the proton mass has the universal form [44]

3 3
8a m?,,
R2f

MY = My + 4cym2 + (39)
where g, is the axial coupling. If one adopts the usual
scaling of parameters with N, then one gets g, ~ N and
f2 ~ N, so that the subleading contribution would scale
like ~N?, which would dominate the leading order result
My ~ N. On the other hand, if one follows recent argu-
mentation [52] that g4 ~ N° = 1, then NLO contributions
would be of the order ~1/N. It would be interesting
to check if in the Sakai-Sugimoto model this universality
also holds.

VII. CONCLUSIONS

This paper was devoted to a discussion of the finite-
temperature behavior of the chiral condensate within the
HRG framework, exploring different microscopic descrip-
tions of the dependence of hadron masses on the current
quark mass. In particular, a constituent quark scheme and
holographic mass formulas have been used. It was also
studied how the results are affected by including different
numbers of states in the sums over resonances. It turns out
that with a sensible choice of mass formulas and including
hadron states with masses, up to ~2 GeV generic agree-
ment with recent lattice results is obtained. This is yet
another confirmation of the well-known fact that for low

temperatures the HRG model gives a satisfactory physical
interpretation of 1QCD data. Chiral symmetry restoration
in the strange sector was seen to take place at higher
temperatures than in the light quark sector [53,54], which
is related both to the lower number of strange hadrons
contributing to the condensate as well as to the response
of hadron masses to changes in the current strange
quark mass.

A generalization of the quark-counting approach of
Refs. [13,14] was proposed, and it was shown that the
mass relations where only valence quarks of the hadron
are taken into account already lead to a behavior of the
condensate which is close to what is seen in the full lattice
data. In this scheme, dynamically generated (constituent)
quark masses are considered, and their dependence on the
current quark mass is quantified in the framework of the
NJL model. This step takes into account part of the non-
perturbative QCD dynamics. The sea quark contributions
are neglected, resulting in a vanishing strange sigma term
for the nucleon and a vanishing light quark contribution
for the )~ baryon. This is somewhat in the spirit of the
large-N expansion where quark loops are suppressed.

Along with this, a careful analysis of the hidden strange
mesons has been performed based on the flavor symmetry
structure of the mesons. This affects the simple quark-
counting rules used by Refs. [13,14], taking into account
neglected effects which overestimated the light quark con-
densate and underestimated the strange quark condensate.

Another new aspect considered in this paper concerns
the sigma terms and the condensate following from the
mass formulas of the holographic model of QCD due to
Sakai and Sugimoto [19]. These formulas take on a form
similar to the tree-level ChPT results with strange sigma
terms overestimated due to the inaccuracy of the approxi-
mation for the relatively large value of m,. Since those
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shifts were only calculated for the nucleon octet and
delta decuplet baryons, the computation of the conden-
sate is incomplete. This also shows the importance of
heavier hadrons for temperatures near the QCD transition
temperature.

The results obtained here are of great importance in the
context of hadron production under extreme conditions in
heavy ion collisions. Recently, it has been conjectured that
the behavior of the chiral condensate determines the colli-
sion rates of hadrons and thus may provide a microscopic
approach to the chemical freeze-out of hadron species [14].
This approach, however, has yet been considered only in
the light quark sector. Including the strange quark conden-
sate in that analysis could advance the understanding of
strangeness production in heavy ion collision experiments.

PHYSICAL REVIEW D 87, 105018 (2013)
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