
Topological Casimir effect in Maxwell electrodynamics on a compact manifold

ChunJun Cao, Moos van Caspel, and Ariel R. Zhitnitsky

Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
(Received 29 January 2013; revised manuscript received 26 April 2013; published 15 May 2013)

We study the topological Casimir effect, in which extra vacuum energy emerges as a result of the

topological features of the theory, rather than due to the conventional fluctuations of the physical

propagating degrees of freedom. We compute the corresponding topological term in quantum Maxwell

theory defined on a compact manifold. Numerically, the topological effect is much smaller than the

conventional Casimir effect. However, we argue that the topological Casimir effect is highly sensitive to

an external magnetic field, which may help to discriminate it from the conventional Casimir effect. It is

quite amazing that the external magnetic field plays the role of the � state, similar to a � vacuum in QCD,

or � ¼ � in topological insulators.
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I. INTRODUCTION: MOTIVATION

The nature of the conventional Casimir energy is
well understood by now: the effect is due to the vacuum
fluctuations of physical photons, which have slightly dif-
ferent propagating properties in the presence of boundaries
in comparison with infinite Minkowski space. Essentially,
the electromagnetic modes get modified as a result of
nontrivial boundary conditions (BC). For the well-known
example of parallel conducting plates, this tiny deviation
leads to the well-known expression for the Casimir energy

EC � ðEBC � EMinkowskiÞ ¼ � L2�2

720a3
; (1)

where a is the separation distance between the two plates
of size L. This extra energy gives rise to an attractive force
per unit area (vacuum pressure) [1]

P ¼ � @ðEC=L
2Þ

@a
¼ � �2

240a4
: (2)

Today the Casimir force has been measured [2], confirming
Casimir’s basic idea.

Since its original prediction, the Casimir effect has been
studied for countless configurations with fields of various
spins. The Casimir effect on nontrivial topological spaces
has also been widely explored. In many such cases, a
simple scalar field is considered and periodic or twisted
boundary conditions are imposed to reflect the topological
properties. The fluctuations of the physical field are quan-
tized, for instance, by the periodicity of the space, yielding
a Casimir energy similar to (1). See [3] for an overview.

However, in the case of gauge fields, we argue that it is
important to not only account for the topology of the
spacetime manifold, but also the relation between that
and the gauge topology. Precisely this topology of the
gauge group leads to the emergence of vacuum states
that are physically identical but topologically inequivalent.
These are known as winding states and are often over-
looked in literature on the Casimir effect.

We will explicitly demonstrate in the present work that,
for the Casimir effect formulated using a pure photon field
on a spacetime manifold with toroidal topology, the
nontrivial spatial and gauge topology together induce an
additional vacuum pressure that has not been previously
computed. Such an effect is purely topological in origin,
resulting not from fluctuations of the physically propagat-
ing degrees of freedom as in the ‘‘conventional’’ Casimir
effect, but rather from the tunneling between different
topological sectors. Mathematically, such phenomena are
described by the fundamental group �1½Uð1Þ� ffi Z, where
nontrivial mappings between the spacetime manifold and
the gauge group assume the form of gauge transformations.
Because of its topological nature, the extra contribution has
some unique qualities, both theoretical and practical, that
distinguish it from the conventional Casimir effect.
A simple way to get some feeling on the nature of these

new topological contributions is to study Maxwell theory
in two dimensions, which is essentially the Schwinger
model without fermions. As is well known, Maxwell
theory in two dimensions is empty, since there are no
physical propagating degrees of freedom. Still, there are
nontrivial topological sectors in the model which eventu-
ally lead to the emergence of the so-called � vacuum state.
The construction of these topological sectors is sensitive to
the size of the system. Therefore, it is not a surprise that the
partition function will be also sensitive to the system’s size,
including finite size along the compactified time direction
�, corresponding to a finite temperature T ¼ 1=�. We
will elaborate on this example in great detail in Sec. II,
using the Hamiltonian as well as Euclidean path integral
approaches to explain the nature of topological vacuum
fluctuations. We also elaborate on the physical ‘‘reality’’
of these vacuum fluctuations in the Appendix where we
compute some important observables, such as topological
susceptibility and entropy.
We also note here that the gauge-induced contributions

to the Casimir energy on a compact manifold have been
discussed previously in literature. Although no explicit
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computations were performed, it has been suggested
in [4] that a sum over all gauge classes may be required
to accommodate the nontrivial topological features of
the theory. More recently, the computations for the elec-
tromagnetic field on general manifolds were explicitly
done in [5], and papers referenced therein. Our goal here
is to discuss some key elements of these new topological
terms in a more physical and intuitive way, rather than
through formal mathematics. Furthermore, we will discuss
the relation between the � states and the physical realiza-
tion of these states by placing the system into a uniform
external magnetic field. We speculate that a high sensitivity
of the extra terms to the applied external magnetic
field might be a key element which could allow one to
measure these novel types of vacuum fluctuations in real
experiments.

To conclude this introduction, we wish to comment on
the title of this work and the term ‘‘topological Casimir
effect’’ (TCE) which will be frequently used in the text
below. In some literature this name can refer to the con-
ventional Casimir effect on different topological spaces.
However, in the current context, we will use it to strictly
denote the additional topological contribution from tunnel-
ing phenomena between the nontrivial topological sectors
that make up the � state, which is the true vacuum of the
configuration. The effect is fundamentally different from
that obtained by solely manipulating the spacetime topol-
ogy and is unique to gauge fields. Exactly in this context,
this term was introduced in [6] to emphasize that new extra
contributions to the vacuum energy may emerge as a result
of tunneling events.

The structure of our presentation is as follows. In the
next section, we review the relevant parts of the two-
dimensional Maxwell ‘‘empty’’ theory which does not
have any physical propagating degrees of freedom, but
does show nontrivial topological features. We study this
system using the Euclidean path integral approach as well
as the Hamiltonian formalism. In Sec. III we generalize
our construction to four-dimensional Maxwell theory.
Numerical estimates in this case suggest that TCE is gen-
erally much smaller than the conventional CE in normal
circumstances. However, in Sec. IV we advocate an idea
that the effect is highly sensitive to a weak uniform exter-
nal magnetic field. It is very similar to a construction of the
so-called � states in QCD. Finally, in Sec. V which is our
conclusion, we comment on some profound consequences
the topological Casimir effect may have for cosmology.
Furthermore, we advocate the idea that an experimental
study of the topological Casimir effect in a laboratory
might be considered as an investigation of the most intri-
cate properties of the cosmological vacuum and the dark
energy observed in our Universe. In the Appendix we
argue, using an empty two-dimensional Maxwell model,
that the topological vacuum fluctuations are very real and
very physical and must be taken into consideration to

satisfy some important consistency conditions such as the
Ward identities.

II. MAXWELL THEORY IN TWO DIMENSIONS

The 2d Maxwell model has been solved numerous times
using very different techniques, see, e.g., [7–9] for a
review. We have nothing new to say here. Our goal is in
fact quite different: we want to review this empty model by
emphasizing some elements which will be crucial for our
discussions of the topological Casimir effect in four
dimensions.

A. Hamiltonian framework

We consider 2d Maxwell theory defined on the
Euclidean torus S1 � S1 with lengths L and � respectively.
In the Hamiltonian framework we choose a A0 ¼ 0 gauge
along with @1A1 ¼ 0. This implies that A1ðtÞ is the only
dynamical variable of the system with E ¼ _A1. The
Hamiltonian density, the Gauss law and the commutation
relations are

H ¼ 1

2
E2; @1Ejphysi ¼ 0;

½A1ðxÞ; EðyÞ� ¼ iℏ�ðx� yÞ;
(3)

where jphysi is the physical subspace. The Gauss law
is satisfied only for the x-independent (zero) mode.
Therefore, the problem is reduced to the quantummechani-
cal (QM) problem of a single zero mode living on a circle
of circumference L. In other words, the configurations

A1 � A1 þ 2�n

eL
; n 2 Z; (4)

are gauge equivalent and must be identified. The fact that
2d Maxwell theory does not describe any physical propa-
gating degrees of freedom is well known—it simply fol-
lows from the observation that the polarization of a photon
must be perpendicular to its momentum. However, such a
polarization cannot live in the physical space as there
is only one spatial dimension x, which is reserved for
momentum. The presence of a single x-independent mode
and the absence of all other x-dependent modes are man-
ifestations of the ‘‘emptiness’’ of this theory.
The loop integral e

R
dxA1 ¼ eA1L plays the role of

phase � in the conventional QM problem for a particle
on a circle with periodic boundary conditions. The com-
mutation relation (3) then implies that the electric field E is
a constant in space and that it is quantized:

E ¼ en n 2 Z: (5)

The Hamiltonian H � HL and the corresponding eigen-
values En for this system are well known and are given by

H ¼ � 1

2L
� d2

dA2
1

; En ¼ 1

2
n2e2L: (6)
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Consequently, the partition function for this system is

Zð�;LÞ ¼ X
n2Z

e��En ¼ X
n2Z

e�1
2�Ln

2e2 : (7)

The construction of the so-called � states is also well
known for this system [7]. The spectrum in this case is
shifted as follows: Enð�Þ ¼ 1

2 ðnþ �
2�Þ2e2L, such that the

corresponding partition function now takes the form

ZðV; �Þ ¼ X
n2Z

e�e2V
2 ðnþ �

2�Þ2 ; (8)

where V ¼ �L is the two-volume of the system. Before
we discuss the physical meaning of the obtained results in
the context of our present work, we want to reproduce the
same partition function for the same 2d Maxwell theory
using the path integral approach. In this case, the inter-
pretation of Eq. (8) will be quite obvious and straight-
forward. Furthermore, it can easily be generalized to
four-dimensional Maxwell theory defined on a compact
manifold.

B. Euclidean path integral approach

For path integral computations, we use a Wick rotation
to describe the system in a Euclidean metric. Here the
inverse temperature � ¼ 1=T takes the role of an imagi-
nary time component with periodic BC, such that we can
consider a two-dimensional Euclidean torus �� L. We
follow [9] and introduce the classical ‘‘instantons’’ in order
to describe the different topological sectors of the theory
which are classified by the integer k. The transitions be-
tween different topological k sectors are described by these
instantons, as given by the following configuration[9]:

eEðkÞ ¼ 2�k

V
; (9)

where Q ¼ e
2�E is the topological charge density andZ

d2xQðxÞ ¼ e

2�

Z
d2xEðxÞ ¼ k (10)

is the integer-valued topological charge in the 2d Uð1Þ
gauge theory, EðxÞ ¼ @0A1 � @1A0 is the field strength
[10]. The action of this classical configuration is

1

2

Z
d2xE2 ¼ 2�2k2

e2V
: (11)

This configuration corresponds to the topological charge k
as defined by (10). The next step is to compute the partition
function defined as follows:

Zð�Þ ¼ X
k2Z

Z
DAðkÞe�

1
2

R
d2xE2þie�2�

R
d2xE: (12)

All integrals in this partition function are Gaussian and can
be easily evaluated using the technique developed in [9].
The result is

Z ð�;L; �Þ ¼
ffiffiffiffiffiffiffiffiffi
2�

e2V

s X
k2Z

e
�2�2k2

e2V
þik�

; (13)

where the expression in the exponent represents the
classical instanton configurations with action (11) and
topological charge (10), while the factor in front is due to
the fluctuations. The computation of this pre-exponent
factor is reduced to a conventional QM problem as the
fluctuating field is in fact x independent in the A0 ¼ 0
gauge, as mentioned in Sec. II A. Therefore, the expression
for the pre-exponent isZ

Dð�A1Þe�
L
2

R
�

0
d�ð� _A1Þ2 : (14)

A simple way to evaluate this path integral is to rescale
the A1 field according to its natural dimensionality A1 �
a1ð2�eLÞ where the dimensionless variable 0 � a1 � 1 fluc-

tuates inside a unit interval according to (4). In terms of this
rescaled field problem, (14) is reduced to a standard ex-
pression for a free particle with mass m � Lð2�eLÞ2 such thatZ

D�a1e
�L

2ð2�eLÞ2
R

�

0
d�ð� _a1Þ2 ¼

ffiffiffiffiffiffiffiffiffiffi
m

2��

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2�

e2L�

s
; (15)

which is precisely the pre-exponent factor in formula (13).
While expressions (8) and (13) look differently, they are

actually identically the same, as the Poisson summation
formula states

X
n2Z

e�e2V
2 ðnþ �

2�Þ2 ¼
ffiffiffiffiffiffiffiffiffi
2�

e2V

s X
k2Z

e
�2�2k2

e2V
þik�

; (16)

see [11] with detailed discussions on the relation between
Hamiltonian formalism and the path integral approach.

C. Interpretation

The crucial observation for our present study is that this
naively empty theory which has no physical propagating
degrees of freedom, nevertheless shows some very nontri-
vial features of the ground state related to the topological
properties of the theory. These properties are inherent fea-
tures of the gauge theories and do not have counterparts in
conventional scalar field theories. Rather these new proper-
ties are related to the presence of different topological
sectors in the system,whichwe refer to as the ‘‘degeneracy’’
of the ground state, for short [12].We interpret the nontrivial
properties of the partition function (12) and (13) in this
empty model as a result of tunneling between these
‘‘degenerate’’ winding jni states. These tunneling processes
are happening all the time and the intensity of tunneling is
determined by the topological charge (10) and the size V of
the compact manifold (11). A typical value of the topologi-
cal charge k which saturates the series (13) in the large

volume limit is very large, k	
ffiffiffiffiffiffiffiffiffi
e2V

p

 1.

It is different from the conventional tunneling in QM in
that the tunneling in our system corresponds to a transition
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between one and the same physical state, whereas that in
QM describes a transition between physically distinct
states. More specifically, the tunneling in our case occurs
between the winding jni states which are connected by
large gauge transformations. Therefore, they correspond to
one and the same physical state.

The key for our present work is the observation that the
properties of these tunneling processes are sensitive to the
size of the system. In different words, the additional energy
associated with these tunneling processes is different for
systems with different sizes and shapes. A direct manifes-
tation of this sensitivity (when it is generalized to 4d case
as we discuss below) is the emergence of the TCE, when
the vacuum energy and pressure depend on the size of the
compact manifold on which the theory is defined.

Is this extra energy physical? Our ultimate answer is
‘‘yes.’’ We refer to the Appendix where we present some
arguments suggesting that the extra energy related to the
tunneling processes in the empty theory cannot be removed
by any redefinition of observables. It must be present in the
system for consistency of the theory. In particular, the
Ward identities cannot be maintained without these tunnel-
ing contributions, see the Appendix for details. Essentially,
this extra contribution is precisely the source of violation
of a commonly accepted (but generally wrong) receipt
that the Casimir effect due to Maxwell photons could be
obtained by multiplying the corresponding scalar expres-
sions by a factor of 2.

III. TOPOLOGICAL CASIMIR EFFECT
IN QED IN FOUR DIMENSIONS

The topological structure of the gauge field in 2d can be
easily generalized to higher dimensions. In four spacetime
dimensions, we can devise boundary conditions that give
rise to very similar instantonlike configurations, with pre-
cisely the action (11) as found in 2d Maxwell theory on the
torus. In this section we show that these topological degrees
of freedom are completely decoupled from the propagating
physical photons. Furthermore, the corresponding quantum
fluctuations do not depend on the properties of the topologi-
cal sectors (due to the linearity of the Maxwell equations),
and can be treated in the conventional way. As a result we
are able to focus on the new contributions and compare them
to the conventional Casimir effect from literature. We shall
see that the topological Casimir effect is strongly sup-
pressed on a Euclidean 4-torus where one of the spatial
dimensions is much smaller than the others. In this case the
well-known formulas (1) and (2) are recovered. However,
the main goal of this work is to study precisely those novel
contributions which are sensitive to the system size.

A. Decoupling of the topological and conventional parts

To construct a theory defined on a Euclidean 4-torus
[13], we consider a system with a box of sizes L1 � L2 �
L3 � � in the respective directions. A torus is realized

when we assume periodic boundary conditions on the
physical fields in all directions, in which case we find a
degeneracy of the vacuum state, just like in Sec. II: by
making a loop in the xy plane, the A� field can pick up a
phase corresponding to a large gauge transformation.
Working in Euclidean space and adopting the Lorentz
gauge, it is simple to find a 4d generalization of the
instanton potential from Sec. II B that satisfies these
boundary conditions. The 4d instanton potential is given by

A�
top ¼

�
0;� �k

eL1L2

x2;
�k

eL1L2

x1; 0

�
; (17)

where k is the winding number that labels the topological
sector, and L1, L2 are the dimensions of the plates in the x
and y directions respectively, which are assumed to be
much larger than the distance between the plates L3. This
classical configuration satisfies the periodic boundary con-
ditions up to a large gauge transformation, and provides a
topological magnetic flux in the z direction:

~Btop ¼ ~r� ~Atop ¼
�
0; 0;

2�k

eL1L2

�
; (18)

in close analogy with the 2d case (9). The Euclidean action
of the system becomes

1

2

Z
d4xf ~E2 þ ð ~Bþ ~BtopÞ2g; (19)

where the integration is over the Euclidean torus

L1 � L2 � L3 � � and ~E and ~B are the dynamical quan-
tum fluctuations of the gauge field. These terms were not
present in the 2d model, but must here be taken into
account due to the presence of real propagating physical
photons. We find that the action can be easily split into the
sum of a topological and a quantum part, because of the
vanishing cross termZ

d4x ~B � ~Btop ¼ 2�k

eL1L2

Z
d4xBz ¼ 0: (20)

Here the fact is used that the magnetic portion of quantum
fluctuations in the z direction, represented by Bz ¼ @xAy �
@yAx, is a periodic function because ~A is periodic over the

domain of integration. As a result, there is no coupling
between the conventional quantum fluctuations described
by photons with physical polarizations and the classical
instanton potential (17) and (18). Furthermore, the quan-
tum fluctuations due to photons are not sensitive to the
topological sector k of the theory, and therefore they
decouple from the classical k-instanton contribution.
Finally, the quantum fluctuations from photons must be
computed in a box with size L1L2 rather than in infinite
space along x, y directions. The corresponding corrections,
in principle, can be computed. Technically the computa-
tions would be quite tedious as they require the operation
with Green’s functions defined on a finite manifold
rather than in the infinite space. The computations can be
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performed for the trivial k ¼ 0 topological sector as the
corresponding corrections are independent of k. These
contributions are expected to produce some corrections

	ð1þ a2

L2Þ to formula (2). However, we shall not elaborate

on these terms in the present work. It is a part of the
conventional partition function Z0 computed for trivial
topological sector k ¼ 0.

The main lesson from the previous discussion is that the
conventional quantum fluctuations are not sensitive to the
topological sectors k as a result of linearity of the Maxwell
equations. Therefore, they can be treated in completely
separate ways, which greatly simplifies our analysis. For
the partition function we can now write Z ¼ Z0 �Ztop.

The conventional partZ0 is well studied for toroidal BCs at
finite temperatures [3]. It is k independent, so it will not be
elaborated here. In the rest of this section we will study
the behavior of Ztop. We shall see that in the limit when
L1L2

L3
! 1 the partition function related to the topological

effects yield Ztop ¼ 1, and we recover the conventional

Casimir effect (1) and (2) which is computed from Z0.
However, we shall see that a number of novel and unusual
features will emerge in the system when L1, L2 are large
but remain finite, which is precisely the main subject of
our studies.

B. Computing the topological pressure

The system of parallel plates is related to 2d Maxwell
theory by dimensional reduction: taking a slice of the 4d
system in the xy plane will yield precisely the topological
features of the 2d torus. Assuming that L3 is much smaller
than L1 and L2, the additional dimensions do not contribute
toward Ztop as we noted above. Instead, the quantum

corrections slightly modify Z0 as they do not depend on
the topological sectors k, and can be factored out from
Ztop. With this set up, the classical action for configuration

(18) takes the form

1

2

Z
d4x ~B2

top ¼ 2�2k2�L3

e2L1L2

; (21)

while the topological partition function becomes

Ztop ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��L3

e2L1L2

s X
k2Z

e
�2�2k2�L3

e2L1L2 ; (22)

where the 2d electric charge entering Eqs. (11) and (13) is
expressed in terms of the 4d electric charge as follows [14]:

e22d ¼
e2

�L3

;
e2

4�
� �: (23)

In this section we consider � ¼ 0. More discussion on this
matter is found in Sec. IV.

One should note that the dimensional reduction which is
employed here is not the most generic one. In fact, one can
impose a nontrivial boundary condition on every slice in

the 4d torus. However, the main goal of this work is not to
classify the most generic BC, but to discuss the physical
properties for the simplest possible case (18), i.e., when a
nontrivial BC is imposed on a single slice, while keeping
the trivial periodic BC for other slices.
With this objective in mind, it is useful to introduce the

dimensionless parameter

� � 2�L3=e
2L1L2 (24)

such that the partition functionZtop can be written in a very

simple form:

Ztopð�Þ ¼
ffiffiffiffiffiffiffi
��

p X
k2Z

e��2�k2 ¼ X
n2Z

e�n2

� ; (25)

where the Poisson summation formula (16) is used again.
Our normalization of the partition function Ztop is such

that in the limit L1L2 ¼ 1 the topological portion of the
partition function Ztop ¼ 1 so that we recover the conven-

tional Casimir effect (1) and (2) which is encoded in Z0.
The simplest way to check our normalization is to take the
limit � ! 0 using the right-hand side of Eq. (25) when a
single term with n ¼ 0 contributes. It corresponds to very

large instanton numbers k	 ��1=2 ! 1 saturating the
original series (22).
From Ztop, we can calculate any thermodynamic prop-

erty of the system, like the topological pressure between
the plates

Ptop ¼ 1

�L1L2

@

@L3

lnZtop: (26)

In the asymptotic limit where � � 1 one can use the dual
representation of Ztop encoded by the Poisson resumma-

tion formula (25) to find that

Ptop � e2

�2L2
3

e�1
�; � � 1: (27)

In this case, the topological pressure is exponentially
suppressed, and when compared with the conventional
Casimir pressure (2) it is clear that the topological effect
is too small to measure experimentally [15].
A few comments are in order. First of all, one can

explicitly see that the original instanton formula (22) is
consistent with our interpretation: that the additional
energy and pressure due to the topological features of the
system is the result of tunneling events between different
winding states, as discussed in Sec. II C. Indeed, a non-
analytical structure of Eq. (22) with respect to coupling
constant exp ð�1=e2Þ represents the typical behavior for a
tunneling process. It is quite fortunate that the Poisson
resummation formula (25) allows us to analyze both
regimes, at large as well as small �. Secondly, even in
this simple � � 1 case one can explicitly see that the sign
of the effect is opposite to the conventional Casimir effect
(2). This correction leads to repulsive rather than attractive
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forces. This ‘‘wrong’’ sign is a typical manifestation of the
topological fluctuations, in contrast with the conventional
vacuum fluctuations of photons with physical polariza-
tions. See some additional comments on a ‘‘wrong sign’’
in the Appendix.

While � � 1 can be examined analytically, it is more
interesting to study a system with � ’ 1 where this effect
could be sufficiently large. We can satisfy the conditions
L1, L2 
 �, L3, in order to use the dimensional reduction,
and at the same time still achieve � ’ 1 because the small
parameter e2 enters the denominator in Eq. (24) in the
definition for �. In this case we have to resort to numerical
approximations, since there is no closed form for the
partition sum and pressure. In Fig. 1, a numerical plot of
Ptop is shown for this regime. There is a large peak around

� ’ 0:4where the pressure, measured in units 2
L2
1
L2
2
e2
, has an

order of 1. The relative magnitude between the maximum
topological pressure and the conventional Casimir pressure
(2) using parallel ideal conductors at low temperature is
thus approximately

Rmax � jPtopj
jPj � 480L4

3

L2
1L

2
2e

2�2
� 120

�3�
� L4

3

L2
1L

2
2

: (28)

This ratio (even at its maximum at � ’ 0:4) is very small in
a typical Casimir experiment setup with L1, L2 
 L3, in
spite of the large numerical factor in front of formula (28).
As we mentioned previously, the powerlike corrections
	L2

3=L
2
1, L

2
3=L

2
2 are also expected to occur in Z0 resulting

from the conventional vacuum fluctuations of physical
photons. We expect these conventional corrections to be

even smaller as they cannot contain a parametrically
enhanced factor 1=e2 that is a unique feature of the topo-
logical vacuum fluctuations.
To conclude this section, we find that there is a small, but

very real, contribution to the Casimir effect that is purely
due to topological features of the system. When QED is
defined on a compact manifold such as a 4-torus, one needs
to take into account the tunneling processes which occur
between the topologically inequivalent (but physically
identical) winding states. These topological transitions
are described in terms of integer magnetic fluxes (18). It
is not surprising that the effect is exponentially small in
normal circumstances (27). The effect remains very small
(28) even at �	 1. Still, there is a hope to make it mea-
surable by studying the TCE in the presence of some
external magnetic field. We shall observe a high sensitivity
of TCE to applied weak external magnetic field. This
should be contrasted with conventional Casimir effect (1)
and (2) which cannot be sensitive to external fields as
vacuum photon fluctuations do not couple to external fields
(since the Maxwell equations are linear). This topic is
precisely the subject of the next section.

IV. � VACUA AND EXTERNAL
MAGNETIC FIELDS

Now it is interesting to place our system into a region
with a weak external magnetic field Bext

z along the z
direction. The idea behind this construction is that the
external magnetic field Bext

z will interfere with the integer
topological flux (18) describing the tunneling events. It is
expected that such interference may skew the summation
over the topological sectors, similar to the action of the
so-called � parameter (12) and (13). As we shall demon-
strate below, this is indeed what happens in our simple case
considered in Sec. III. In different words, we claim that by
adding a constant magnetic field to the previous setup, an
effective nonzero �eff parameter emerges in the system.
The crucial point here is that we introduce this parameter
which can be externally varied. By studying the corre-
sponding responses to �eff variation, it gives us some
hope that while the TCE is numerically very small (28),
it is nevertheless very sensitive to a weak magnetic external
field [in contrast with conventional Casimir effect (2)],
and hopefully it can be eventually measured due to this
sensitivity.
To construct a system as such, in addition to the topo-

logical flux through the xy plane, we apply a real physical
constant magnetic field Bext

z ¼ @xA
ext
y � @yA

ext
x parallel to

the z direction (perpendicular to the xy plane). The total Bz

field in the Euclidean metric is thus modified as follows:

Bz ¼ Bq
z þ B

top
z þ Bext

z ; (29)

where the total field decomposition consists of the

same instanton potentials Atop
� as in Eq. (17), the external

FIG. 1 (color online). The topological pressure on the 4d
system of parallel plates as a function of � � 2�L3=e

2L1L2.
Pressure is measured in units 2

L2
1
L2
2
e2
.
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magnetic field potential Aext
� given above and the quantum

fluctuations Aq
� around them.

The only difference from the previous construction is the
additional external constant magnetic field. Note that the
quantum fluctuations still decouple from the classical and
external fields, similar to Eq. (20), due to the periodicity of
quantum fluctuations over the domain of integration,

�S ¼
�
Bext
z þ 2�k

L1L2e

�
�
Z

d4xBq
z ¼ 0: (30)

The remaining part of the action is quadratic and thus path
integration can be performed. The same calculation from
the previous section follows and the partition function
separates into a classical portion, which describes TCE,
and a quantum portion that corresponds to the effect of
photons in 4D, i.e., the well-known Casimir effect. It is
important that the conventional quadratic term represent-
ing the photon fluctuations does not depend on the topo-
logical sector k, nor on the external magnetic field. It is
described exclusively by Z0, as before.

The new element here is that the external field couples to
the instanton potential. Therefore, the topological partition
function now takes the form,

Ztopð�; �effÞ ¼
ffiffiffiffiffiffiffi
��

p X
k2Z

exp

�
��2�

�
kþ �eff

2�

�
2
�
; (31)

where we introduced the effective theta parameter [16]

�eff ¼ Bext
z L1L2e (32)

proportional to the external magnetic flux through the xy
plane in this particular system. It is clear from the partition
sum (31) that a nonzero effective �eff skews the summation
over topological sectors similar to the 2d example given by
(12) and (13). It is also clear that �eff ¼ 2�m corresponds
to integer flux m through the xy plane, which obviously
cannot modify the system, such that Ztopð�; �effÞ is 2�

periodic in �eff .
In what follows, we also need a ‘‘dual’’ representation

for Ztopð�; �effÞ which is obtained by applying the Poisson

resummation formula (16)

Ztopð�; �effÞ ¼
X
n2Z

exp

�
� n2

�
þ i�effn

�
: (33)

In representation (33), it is obvious that �eff being
expressed in terms of the external magnetic field (32) can
be thought of as a fundamental � parameter. However,
the corresponding ‘‘instanton charge’’ n which normally
enters with � is not the same magnetic flux k from our
original construction (18) with classical action (21).
Rather, it is some ‘‘dual’’ configuration with classical
action 	��1.

We note that Ztopð�; �effÞ is properly normalized in the

limit L1, L2 ! 1 which corresponds to � ! 0. In this
case, only a single term with n ¼ 0 in (33) survives,

leading to the desired normalization Ztopð�!0;�effÞ¼1.

Therefore, all conventional formulas for the Casimir effect
determined by Z0 are recovered in this limit as Z is
factorized Z ¼ Z0 �Ztop for our system.

Now we are in position to calculate the topological
Casimir pressure contribution from free energy at finite
temperature, by inserting the partition function into
Eq. (26). Like in Sec. III B, the topological pressure has
no closed form. For the limit where � � 1, we may obtain
an asymptotic expansion. Using the dual representation
(33) and keeping the leading order terms, we arrive at

Ptop � e2

�2L2
3

cos ð�effÞ exp ð�1=�Þ; � � 1; (34)

which reduces to our previous formula (27) in the absence
of the external magnetic field. As expected, the oscillatory
effect with respect to �eff is present, but becomes exponen-
tially suppressed because the tunneling amplitudes natu-
rally diminish in this limit.
In a more general case when � ’ 1, we have to use some

numerical methods as asymptotic analysis is no longer
sufficient. A numerical plot is shown in Fig. 2, such that
the variation with �eff is manifest. The pressure is clearly
oscillatory with respect to �eff and its local extrema are
attained at n�where n 2 Z. Thus, by altering the magnetic
flux, the topological Casimir pressure will also be modified
accordingly. Additionally, at �eff ¼ 0 the pressure has a
‘‘wrong’’ sign, i.e., it is opposite to conventional Casimir
effect (2), as we already discussed after Eq. (27). This sign
changes as a function of the external magnetic field, as can
be seen in the plot. Such a variation can be interpreted as the
result of interference between the external magnetic field
and the topological instanton fluctuations (18). This very
specific and distinct variation, hopefully, might be a useful
feature to measure the effect in the future in spite of its

FIG. 2 (color online). Topological Casimir pressure is plotted
in units 2

L2
1
L2
2
e2
for different �. A clear 2� periodicity is seen and

local extrema are between odd and even integer multiples of �.
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strong numerical suppression (28) in comparison with the
conventional Casimir effect(2).

Our next step is to analyze the magnetic response of the
system under influence of the external magnetic field. The
idea behind these studies is the observation that the exter-
nal magnetic field acts as an effective �eff parameter as
Eqs. (32) and (33) suggest. Therefore, the corresponding
study of the magnetic response in our system is in fact very
similar to an analysis of the expectation value of the
topological density and topological susceptibility in other
gauge models, where a � parameter enters the system in a
similar way. See, e.g., the Appendix for some discussion on
this in 2d Maxwell theory.

First, we compute the induced magnetic field defined as
follows:

hBindi¼� 1

�V

@lnZtop

@Bext
z

¼� e

�L3

@lnZtop

@�eff

¼
ffiffiffiffiffiffiffi
��

p
Ztop

X
k2Z

�
Bextþ 2�k

L1L2e

�
exp

�
���2

�
kþ�eff

2�

�
2
�
:

(35)

As one can see from (35), our definition of the induced field
accounts for the total field which includes both terms: the
external part as well as the topological portion of the field.
In the absence of the external field (Bext ¼ 0), the series is
antisymmetric under k ! �k and hBindi vanishes. It is
similar to the vanishing expectation value of the topologi-
cal density in gauge theories when � ¼ 0. One could
anticipate this result from symmetry arguments as the
theory must respect P and CP invariance at � ¼ 0.

The expectation value of the induced magnetic field
exhibits similar 2� periodicity from the partition function
and it reduces to triviality whenever the amount of skewing
results in an antisymmetric summation, i.e., hBindi ¼ 0 for
�eff 2 fn�:n 2 Zg. This property is analogous to the well-
known property in QCD when P and CP invariance holds
only for � ¼ n�.

As before, the topological effects are exponentially sup-
pressed at � � 1, as Ztop ! 1 with exponential accuracy

at � � 1. The effect is much more pronounced in the range
where � ’ 1, see Fig. 3, where we plot the induced mag-
netic field in units ðL1L2eÞ�1 as a function of �eff . One
should also remark here that the induced magnetic field
defined as (35) can be thought of as the magnetization of
the system per unit volume, i.e., hMi ¼ �hBindi, as the
definition for hMi is identical to (35) up to a minus sign.

Now we turn our attention to the magnetic susceptibility,
which is similar to the topological susceptibility reviewed
in the Appendix for 2d QED. This object is P and CP even
and does not vanish at zero external field. The magnetic
susceptibility measures the response of free energy to the

introduction of a source term, which is represented in our
case by Bext 	 �eff . To be more precise, we define 	mag in a

way which is similar to the topological susceptibility in the
Appendix for 2d QED,

	mag ¼
Z

d4xhBzðxÞ; Bzð0Þi ¼ � 1

�V

@2 lnZtop

@B2
ext

; (36)

where the integration is over the Euclidean torus
L1 � L2 � L3 � �. With this definition, 	mag is a dimen-

sionless parameter, in contrast with 2d QED where 	E&M

has dimension ðmassÞ2, and in 4d QCD where 	QCD has

dimension ðmassÞ4. This is due to the fact that the topo-
logical density operator has dimension ðmassÞ2 in 2d QED
and ðmassÞ4 in 4d QCD while our topological instanton
(18) expressed in terms of the magnetic field has dimension
ðmassÞ2. Nevertheless, we opted to keep definition (36)
without inserting any additional dimensional parameters
such as L1L2 into formula (36), to maintain the conven-
tional definition in statistical mechanics where 	mag is a

dimensionless parameter (in units where ℏ ¼ c ¼ 1).
We can represent (36) in terms of dimensionless varia-

bles as follows:

	mag ¼ � 2

�

@2 lnZtopð�; �effÞ
@�2eff

: (37)

In the limit when � � 1, one can use analytical expression
(33) to conclude that 	mag 	 exp ð� 1

�Þ is strongly sup-

pressed. It is consistent with our expectations that there
should not be any magnetic correlations in the conven-
tional Casimir experimental setups. However, for � near
the order of 1, the behavior is quite nontrivial as shown
in Fig. 4. Note that in this case, the susceptibility is
highly dependent on the external field and changes signs,
which is extremely unusual for conventional systems.
More specifically, 	mag behaves like a weak diamagnetic

FIG. 3 (color online). A numerical plot of the induced mag-
netic field in units 1

L1L2e
as a function of �eff . The oscillatory

behavior becomes more pronounced for large �.
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for �eff � �n, n even, and behaves as strongly para-
magnetic for n odd.

We note that this topological effect is quite distinct from
the behavior of the conventional Casimir effect. In the
conventional quantization of electromagnetic fields in
Minkowski space, there is no direct connection between
the Casimir pressure and an external magnetic field [17].
Although such coupling could be attained through fermi-
onic interactions in higher order diagrams, it will be highly
suppressed	�2B2

ext=m
4
e as the nonlinear Euler-Heisenberg

effective Lagrangian would suggest. In fact the explicit
computations of this effect have been done [18] and they
fully agree with our order of magnitude estimates [19].
Thus, in a pure Maxwell theory as we consider here, the
photon-photon interactions should be trivial. However, in
TCE, we see that the external magnetic field does have a
nontrivial effect on physical quantities through its inter-
actions with topological instanton fluctuations (18). To put
this in more concrete terms, the numerical value for loop
level corrections in the conventional Casimir effect is of
order 10�20 even with a 1T external magnetic field. In
contrast, the proposed correction to TCE in an external
field is of order 1, as shown in Fig. 2.

Therefore, the periodicity in all of the physical quanti-
ties with respect to the external magnetic field is a unique
feature of TCE. It is not found in any of the typical Casimir
results and can serve as a clear indicator to distinguish a
topological effect from conventional Casimir effects.

V. CONCLUSION AND FUTURE DIRECTIONS

We have demonstrated the existence and properties of a
new type of vacuum fluctuations in gauge fields, resulting
from the summation over topological sectors. While most
literature on the Casimir effect neglects these topological
sectors, which are indeed absent in the topologically trivial

Minkowski space, they need to be taken into account when
the theory is formulated on a nonsimply connected, com-
pact manifold. Physics related to pure gauge configurations
describing the topological sectors does not go away when
one removes all unphysical degrees of freedom as a result
of gauge fixing; instead, this physics reappears in a much
more complicated form where the so-called Gribov ambi-
guities [20] emerge [21]. See recent paper [5] and also
some previous relevant discussions [22–24]. We opted to
keep some gauge freedom in our analysis to study these
topological sectors explicitly.
Now we can formulate the main results of the present

paper. First of all, the physics behind the TCE is quite
simple: there are tunneling events in a theory formulated
on a small compact manifold when the temperature is
small but not identically zero. These transitions can be
completely ignored for relatively large systems, but in
general, these topological transitions interpolating between
different winding states (which correspond to one and the
same unique physical state) do occur. The amplitudes for
these transitions depend on size and shape of the system.
Therefore, it is not really a surprise that the vacuum energy
associated with these tunneling events depends on the size
of the system, which ultimately implies an extra contribu-
tion to the Casimir pressure.
In general, the effect is numerically much smaller than

the conventional Casimir effect with the ratio given by
Eq. (28). However, we argued that the effect is highly
sensitive to small external magnetic fields which can serve
as a clear indicator to distinguish TCE from conventional
Casimir effects.
Our last comment is as follows. The TCE as we already

mentioned in the Introduction is a very generic phenome-
non in gauge theories. It shows the algebraic sensitivity to
the size of the system even when the theory has a mass gap.
See [6,25] and many references therein where TCE has
been tested in various models, including QCD lattice com-
putations. Our comment here is that the observed dark
energy in the Universe might be a direct manifestation of
the TCE as argued in [6,25] and references therein. The
idea is based on two key elements. Firstly, the additional
energy in Maxwell theory (defined on a compact manifold
and discussed in this paper) is based on nontrivial topo-
logical properties formally expressed by the first homotopy
group�1½Uð1Þ� 	 Z. In four dimensions a similar structure
emerges for non-Abelian QCD where the third homotopy
group is nontrivial �3½SUð3Þ� 	 Z. In this case one can
argue that the system is algebraically sensitive to very
large distances in spite of the fact that the theory has a
mass gap. The second key element is based on the para-
digm that the relevant definition of the energy which enters
the Einstein equations is the difference�E � ðE� EMinkÞ,
similar to the Casimir effect (1), rather than the energy E
itself. In this case the difference between the two metrics
(expanding universe with Hubble expansion rate H and

FIG. 4 (color online). Numerical plot of magnetic susceptibil-
ity 	mag as a function of �eff for different values of �. It oscillates

with �eff as it should, and it does not vanish even at zero external
magnetic field at �eff ¼ 0 due to topological fluctuations, similar
to well-studied cases of 2d QED and 4d QCD.
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Minkowski space-time) as a result of TCE would lead to an
estimate [6,25]

�E	 L�1�3
QCD 	 ð10�3 eVÞ4; (38)

where L is the visible size of the Universe estimated as
L�1 	H 	 10�33 eV. Estimation (38) is amazingly close
to the observed dark energy value today. In fact, a com-
prehensive phenomenological analysis of this model (the
so-called ‘‘ghost dark energy’’ model) has been recently
studied in a number of papers where comparisons have
been made with the current observational data. (See refer-
ences on observational papers in [6,25].) The conclusion
was that the model (38) is consistent with all presently
available data, and we refer the reader to the original
papers on analysis of the observational data.

Our comment relevant for the present study is that some
very fascinating topological properties of the quantum
vacuum may be, in principle, studied in a laboratory if
the TCE in Maxwell theory, which is the main subject of
the present work, can be experimentally measured. We
conclude on this optimistic note [26].
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APPENDIX: WHY TOPOLOGICALVACUUM
FLUCTUATIONS MUST BE REAL
AND PHYSICALLY OBSERVABLE

The main subject of the present work is zero point
(vacuum) fluctuations. There has always hung a shadow
over this question as there have always been suspicions that
those vacuum fluctuations are not really zero point fluctua-
tions, but rather can be attributed to some other physics.
See in particular the relatively recent paper [28] where it
has been argued that the conventional Casimir effect can be
computed without even mentioning such a notion as the
‘‘vacuum.’’

The main goal of this Appendix is to argue, using a
simple exactly solvable 2d model, that the topological
vacuum fluctuations are very real and very physical. In
other words, we want to present a few arguments suggest-
ing that finite contributions resulting from topological
features of the system cannot be removed by any means
such as subtraction or redefinition of observables.

We start our study with the topological susceptibility 	
defined as follows:

	 � e2

4�2
lim
k!0

Z
d2xeikxhTEðxÞEð0Þi; (A1)

where Q ¼ e
2�E is the topological charge density and

Z
d2xQðxÞ ¼ e

2�

Z
d2xEðxÞ ¼ k (A2)

is the integer-valued topological charge in the 2d Uð1Þ
gauge theory, EðxÞ ¼ @1A2 � @2A1 is the field strength.
The 	 measures response of the free energy to the intro-
duction of a source term

L� ¼ i�
e

2�

Z
d2xEðxÞ: (A3)

The corresponding computations can be easily carried out
as the partition function Zð�Þ is known exactly, see Sec. II.
When differentiating the partition function twice with
respect to �, we get a finite contribution in the infinite
volume limit, V � �L ! 1, i.e.,

	E&M ¼ � 1

�L

@2 lnZð�Þ
@�2

���������¼0
¼ e2

4�2
: (A4)

Is contribution (A4) physical? This question immediately
arises because we are dealing with ‘‘empty’’ Maxwell
theory in two dimensions, where there are no physical
propagating degrees of freedom in the system. Can we
redefine the theory to remove all such terms from consid-
eration once and for all? For example, one can use a
prescription [29] which ignores the topological sectors
and leads to a trivial partition function Z ¼ 1, see
Eqs. (4.1), (4.3) in [29]. Such a prescription would obvi-
ously be consistent with the conventional procedure which
relates the Casimir effect for 4d Maxwell theory and 4d
massless scalar field theory up to factor 2. However, such a
prescription would not produce the contact term (A4)
which must be present in the system for its consistency,
as we shall argue below.
The question addressed above on ‘‘physical reality’’ of

(A4) is not a purely academic question. If Eq. (A4) is
treated as a physical contribution, then the partition func-
tion Zð�;L; �Þ which leads to (A4) is also physical.
Therefore, the same partition function Zð�; L; �Þ will
also lead to an extra Casimir force P	 @ lnZ=@L which
‘‘in principle’’ is an observable quantity. In different
words, if (A4) is physical, then there is an extra term in
the Casimir energy which is not related to any asymptotic
propagating degrees of freedom and is in principle observ-
able. We present a few arguments below to advocate that
(A4) is indeed physical.
Our argument goes as follows. We add a massless fer-

mion field c to the system to arrive at the well-known 2d
Schwinger model. The expression for the topological sus-
ceptibility in the 2d Schwinger QED model is known
exactly [9,25]
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	QED ¼ e2

4�2

Z
d2x

�
�2ðxÞ � e2

2�2
K0ð�jxjÞ

�
; (A5)

where�2 ¼ e2=� is the mass of the single physical state in
this model, andK0ð�jxjÞ is the modified Bessel function of
order 0, which is the Green’s function of this massive
particle. The crucial observation here is as follows: any
physical state contributes to 	QED with negative sign

	dispersive 	 lim
k!0

X
n

h0j e
2�Ejnihnj e

2�Ej0i
�k2 �m2

n

< 0: (A6)

In particular, the term proportional to �K0ð�jxjÞ with the
negative sign in Eq. (A5) is the result of the only physical

field of mass�. However, there is also a contact term e2

4�2 in

Eqs. (A5) and (A4) which contributes to the topological
susceptibility 	 with the opposite sign, and which cannot
be identified according to (A6) with any contribution from
any asymptotic state.

The first term e2

4�2 in this formula (A5) can be easily

recognized as the expression for 	E&M for 2d Maxwell
theory (A4) which is originated from the topological sec-
tors, and not related to propagating degrees of freedom.

This term has a fundamentally different, nondispersive
nature. In fact it is ultimately related to different topologi-
cal sectors discussed in Sec. II. This contact term must be
present in the expression (A5) to satisfy the Ward identity
(WI) which states that 	QEDðm ¼ 0Þ ¼ 0, see [25] for the
details. Without this contribution, it would be impossible to
satisfy the Ward identity because the physical propagating
degrees of freedom can only contribute with sign ð�Þ to
the correlation function as Eq. (A6) suggests, while WI
requires 	 ¼ 0 in the chiral limit m ¼ 0. One can explic-
itly check that WI is indeed automatically satisfied only as
a result of exact cancellation between conventional dis-
persive term with sign ð�Þ and nondispersive term (A4)
with sign ðþÞ,

	 ¼ e2

4�2

Z
d2x

�
�2ðxÞ � e2

2�2
K0ð�jxjÞ

�

¼ e2

4�2

�
1� e2

�

1

�2

�
¼ e2

4�2
½1� 1� ¼ 0: (A7)

The lesson we learn from this simple exercise is that the
contact term (A4) which is saturated by the topological
sectors is physical, and it must be present in the system for
its consistency.

The same contact term (A4) and (A5) can be also
computed using the auxiliary ghost fields, the so-called
Kogut-Susskind (KS) ghost, as has been originally done in
Ref. [30], see [25] for relevant discussions in the present
context. This auxiliary ghost field effectively takes into
account the presence of topological sectors which lead to
(A4). The crucial element accounting for different topo-
logical sectors of the underlying theory, does not go away
in KS description. Rather, this information is now coded in

terms of the unphysical ghost scalar field which provides
the required wrong sign for the contact term (A4) and (A5).
The contact term in this framework is precisely represented
by the ghost contribution replacing the standard procedure
of summation over different topological sectors. At the
same time, this unphysical ghost scalar field does not
violate unitarity or any other important properties of the
theory as consequence of Gupta-Bleuler-like condition on
the physical Hilbert space, see [25] for the details in the
given context [31].
Our second argument that the topological sectors must

be taken into consideration is based on analysis of the
entropy in the same 2d empty Maxwell theory. Before we
formulate our argument, we want to make a short historical
detour on the entropy studies in this empty model.
It has been claimed [32] that for spins zero and one-half

fields, the one loop correction to the black hole entropy is
equal to the entropy of entanglement, while for a spin one
Maxwell field, the entropy has an extra term describing the
contact interaction with the horizon. While the entropy is a
positively defined entity, the Kabat contact term is negative
[32]. Furthermore, this term being a total divergence can be
represented as a surface term determined by the behavior
of the theory at arbitrarily large distances, i.e., it obviously
has an infrared (IR) origin. More recently, it has been
conjectured [25] that the Kabat contact term is originated
from the same topological gauge sectors which saturate the
topological susceptibility (A4). Indeed, both terms have
wrong signs in comparison with what physical propagating
degrees of freedom would produce, and both terms can be
represented by surface integrals, see [25] for the details.
Next step in this development was the computation of the
entropy for the 2d Maxwell system, defined on a finite
dimensional compact manifold with size V ¼ �L, such
that the IR physics can be properly treated [33], see also
[34,35] with related discussions. In this case the expression
for the entropy can be easily computed from the partition
function (8), (13), and (16) discussed in Sec. II, and is
given by [33]

S ¼
�
lnZþ 1

2

�
� 1

2

�
4�2

e2

�
� 	E&M; (A8)

where 	E&M is the topological susceptibility given by
Eq. (A4). One can explicitly see that the negative contri-
bution is indeed present in the expression (A8) for the
entropy. This term with the wrong sign in Eq. (A8) is
exactly proportional to the topological susceptibility (A1)
in agreement with conjecture [25]. Furthermore, this term
can be represented as a surface integral because Q ¼ e

2�E

entering (A1) is the topological charge density operator
which is a total divergence. One should also emphasize
that the entropy S as well as its surface term 		E&M

separately are gauge invariant observables. Also, while
the term 		E&M can be represented as a surface integral,
the entropy itself does not possesses such a surface
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representation. Finally, the entropy (A8) can be interpreted
as the entanglement entropy because the only local observ-
able is E, which is constant over space as shown in Sec. II.
It means that the measurements of E will be perfectly
correlated on the opposite sides of the system [33].

The crucial observation for the present paper is as
follows. When the IR physics is properly treated, the
entropy (A8) is obviously a positively defined function.
Furthermore, as the theory under discussion is empty in the
sense that it does not describe any physical propagating
degrees of freedom in the bulk, one should expect that the
entropy S must vanish in the infinite volume limit V ! 1.
This expectation follows from the fact that the only
dynamics in this system could be related to the so-called
‘‘edge states’’ which are localized at the boundary of the
system but not in the bulk, similar to other topological field
theories [8]. The only way this vanishing result could occur
is the presence of a negative contribution which could
cancel a conventional positive contribution present in
(A8). In different words, the negative contribution in
(A8) is a must in order to produce an anticipated vanishing
entropy in the infinite volume limit V ! 1.

As we discussed previously, this contribution with a
wrong sign cannot be identified with any physical propa-
gating degrees of freedom. Rather it is related to the

tunneling processes between different topological sectors
as discussed in Sec. II. These discussions again support
our claim that the topological sectors must be included
into consideration for self-consistency of the theory.
Therefore, the additional terms they produce leading to
the topological Casimire effect should be considered as
physically observable quantities. As the last comment of
this Appendix: though the term (A4) with a wrong sign is a
gauge invariant contribution, its explicit computation
depends on a specific gauge-dependent technique being
used. In particular, in the KS framework [30] this term is
saturated exclusively by an unphysical ghost field, see
explicit computations in [25]. Still, this term (A4) is physi-
cal as we argued above, and it cannot be discarded on a sole
basis that it is saturated by the artificial ghost.
The main lesson of this Appendix is that there are extra

contributions to the vacuum energy due to nontrivial topo-
logical features of the gauge fields, which do not have
counterparts in scalar field theory. Therefore, the standard
receipt (that the contribution to the energy and pressure due
to the physical Maxwell photons could be obtained directly
from expressions for massless scalar field by multiplying
the corresponding scalar expressions by factor 2) does not
represent a complete description of the ground state in the
presence of the gauge fields.
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