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We present a systematic approach to finding Higgs vacuum expectation values, which break a symmetry

G to differently embedded isomorphic copies of a subgroup H � G. We give an explicit formula for

recovering each point in the vacuum manifold of a Higgs field which breaks G ! H. In particular we

systematically identify the vacuum manifold G=H with linear combinations of the vacuum expectation

values breaking G ! H1 ! � � � ! Hl. We focus on the most applicable case for current work on grand

unified theories in extra-dimensional models and low-energy effective theories for quantum chromody-

namics. Here the subgroup, H, stabilizes the highest weight of the fundamental representation leading to a

simple expression for each element of the vacuum manifold; especially for an adjoint Higgs field. These

results are illustrated explicitly for adjoint Higgs fields and clearly linked to the mathematical formalism

of Weyl groups. We use the final section to explicitly demonstrate how our work contributes to two

contemporary high-energy physics research areas.
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I. INTRODUCTION

Symmetry breaking is a crucial aspect of modern
particle physics. In particular the symmetry breaking
sectors of theories extending the standard model are
studied intensively. Many of the most puzzling problems
in generic standard model extensions, such as the gauge
hierarchy and parameter proliferation problems, arise
because of the use of elementary scalar fields to sponta-
neously break symmetries. Deeper insights into both the
physics and mathematics of symmetry breaking are thus
worth having.

The majority of model building scenarios consider a
gauge symmetry G which is spontaneously broken to a
subgroupH. Of special interest here are models whereG is
broken simultaneously to several isomorphic but differ-
ently embedded subgroupsH. Below we enumerate several
general classes of models where this mechanism is appar-
ent. In such models, each isomorphically embedded sub-
group is given by gHg�1 for some g 2 G, and is identified
with a point in the vacuum manifold G=H. For a Higgs
field in a G representation and an associated basis of
weights for this representation, we develop explicit mathe-
matical formulas for writing each state in the vacuum

manifold as a linear combination of the weights. To
make our result accessible to the model-building audience
at large, we provide a careful review of the necessary
mathematical tools which belong to the discipline of rep-
resentation theory. We shall also explain all our mathe-
matical results in the physical context of spontaneous
symmetry breaking.
In the adjoint representation the weights are the roots,

and there exists a basis of weights for this adjoint repre-
sentation which are known as the simple roots. These can
be pulled back to define a Cartan subalgebra h1; . . . ; hl,
consisting of adjoint Higgs vacuum expectation values
(vevs) which cause the symmetry to break along G !
H1 ! H2 ! � � � ! Hl. Our formalism identifies the vac-
uum manifold G=H which belongs to the vector space
spanned by the Cartan subalgebra. The elements of the
vacuum manifold are related by a Weyl group symmetry.
Given an adjoint Higgs vacuum expectation value, h,
breaking G ! H, a full complement of vevs breaking G
to different Cartan preserving embeddings of the subgroup
H can be obtained through this method. We give an explicit
formula for recovering each vev.
In our treatment, we shall concentrate on a specific and

relevant case for high-energy physics model building sce-
narios, where H stabilizes the highest weight of the lowest
dimensional fundamental representation. This case in fact
admits the simplest formula for recovering all vevs break-
ing G ! H, when the Cartan subalgebra for H is a subset
of the Cartan subalgebra for G.
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The results presented here may provide direct solutions
to problems in high-energy physics research. This includes
problems arising in

(i) Grand unified theories (GUTs), where so-called
‘‘flipped’’ models arise whenever there are alterna-
tive embeddings of a given GUT inside a larger
GUT [1,2].

(ii) Domain-wall brane scenarios which use the ‘‘clash
of symmetries’’ mechanism [3–5]. This idea was the
main motivation for us to pursue the present study.

(iii) The low-energy limit of Yang-Mills theory [6].
(iv) Whenever there are multiple copies�1;�2; . . . of a

given representation of Higgs fields, with vevs
h�1i; h�2i; . . . breaking the gauge group to isomor-
phic but differently embedded subgroups. This is a
special case of what is generally termed ‘‘vacuum
alignment.’’

Each of these physical contexts is reviewed in more detail
in the next section. To show explicitly how our results can
be utilized we apply them to two model building examples
from the literature, Refs. [5,6], corresponding to contexts
(ii) and (iii) listed above. It would also be possible to apply
these techniques to help identify standard model particles
embedded in representations of a grand-unified gauge
group [7,8], and to help classify and construct different
chains of embeddings in the context of grand unification
[9]. We have kept our analysis general and there may well
be other applications for different embeddings of isomor-
phic subgroups.

We focus on presenting our results in a self-contained
and accessible manner. We include examples of how our
results relate to problems in the high-energy physics lit-
erature and explicitly apply the techniques developed here
to the field. We are keen to ensure the dialogue is bicultural
and accessible to mathematicians as well as physicists.

Following the introduction, we begin in Sec. II by pro-
viding a thorough physical motivation by discussing four
model building scenarios. Section III gives the necessary
notation, and in Secs. IVand V we motivate and explain the
representation theory needed to understand the proof of the
main result. The proof itself appears in Sec. VI, where we
clearly state the formula for recovering the adjoint Higgs
vevs which break G to different embeddings of a subgroup
H as linear combinations of vevs breaking G along the
chain G � H1 � H2 � � � � � Hl. We also treat the rela-
tion between the weights of vevs causing G to break to
different embeddings of a subgroup H, for a nonadjoint
Higgs field. In Sec. VII we explicitly apply the main result
to two concrete examples from the contemporary physics
literature, thus placing our results in the context of model
building scenarios. We conclude in Sec. VIII.

II. MOTIVATION

We now explain some of the physical contexts for our
work in more detail.

A. Flipped grand unification

The simplest example of flipped grand unification is
flipped SU(5) [1,2]. The relationship between standard
and flipped SU(5) may be explained using two different
embeddings of SUð5Þ � Uð1Þ inside SO(10). Call these
two subgroups SUð5Þs � Uð1ÞXs

and SUð5Þf � Uð1ÞXf
.

One of these embeddings has been labeled s for ‘‘stan-
dard,’’ and the other f for ‘‘flipped.’’ The selection of one
as standard is purely a matter of convention; the important
issue is the relationship between the two embeddings.
Having decided to call one embedding ‘‘standard,’’ the
standard weak hypercharge generator is identified as the
Ys obtained through SUð5Þs ! SUð3Þ � SUð2Þ � Uð1ÞYs

.

By contrast in the flipped case, the weak hypercharge
generator is Yf, which arises from a second embedding

of SU(5) inside SO(10); namely SOð10Þ ! SUð5Þf �
Uð1ÞXf

! ½SUð3Þ � SUð2Þ � Uð1ÞYf
� � Uð1ÞXf

, where Xf

is a linear combination of Ys and Xs. Uð1ÞYf
is not a

subgroup of SUð5Þs; in fact Yf is a linear combination of

Ys and Xs which is linearly independent of Xf.

This concept can be extended through E6 grand unifica-
tion. The subgroup chain

E 6 ! SOð10Þ � Uð1Þ00 ! SUð5Þ � Uð1Þ0 � Uð1Þ00 (2.1)

can be shown to contain three possible candidates for
weak hypercharge: standard, flipped, and double-flipped.
Standard hypercharge is a generator of SU(5). The flipped
choice is a linear combination of standard hypercharge and
the Uð1Þ0 generator, while the double-flipped choice also
involves an admixture of thegenerator ofUð1Þ00. Once again,
each of these candidate hypercharges is actually a generator
of a differently embedded SU(5) subgroup within E6.

B. Domain-wall brane models

This work was primarily motivated by a study of
domain-wall topological defects created by an adjoint
scalar field X [10]. In particular we study the case where
the Lagrangian is invariant under a discrete symmetry, Z,
and a continuous internal symmetry, G, but along two
distinct antipodal directions the asymptotic configuration
of the scalar field breaks Z�G down to differently em-
bedded isomorphic copies ofH � G. This construction has
a natural manifestation in grand unified models with gauge
group G and a single infinite extra dimension. Here the
adjoint scalar field interpolates between two vacuum con-
figurations preserving subgroups H and zgHg�1 (for some
z 2 Z and g 2 G) as a function of the extra-dimensional
coordinate,1 y. The case g ¼ 1 defines what may be called

1The role of the discrete symmetry breaking is to provide
disconnected vacua which then serve as the boundary conditions
for topologically nontrivial domain-wall solutions [11,12].
Cosmologically, one expects domain-wall formation when caus-
ally disconnected patches of spacetime acquire different vacuum
configurations.
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the standard domain wall or kink [13]. In this case, the
spontaneous symmetry breaking produces exactly the same
unbroken subgroup H on opposite sides of the domain
wall. At generic values of y, the configuration is also
stabilized by exactly that same H, except for a finite
number of points where the unbroken subgroup may be
instantaneously larger than H. The interesting fact is that
for certain g � 1, domain-wall solutions can also exist.
This situation has been termed the ‘‘clash of symmetries
(CoS),’’ because now the unbroken subgroups in the
‘‘bulk’’ on opposite sides of the domain wall are no longer
identical, though they are isomorphic [3–5].

One reason to be interested in CoS domain walls is the
dynamical localization of massless gauge fields to the
domain wall, thus effecting a dimensional reduction from
a dþ 1-dimensional gauge theory to a ðd� 1Þ þ
1-dimensional gauge theory. The idea, which is an elabo-
ration of an original proposal due to Dvali and Shifman
[14], is as follows. We suppose that the non-Abelian factors
in the H and gHg�1 gauge theories produced on opposite
sides of the wall are in confinement phase. The underlying
mechanism for this might, for example, be dual super-
conductivity. On the wall, the unbroken subgroup is
H \ gHg�1, which is a subgroup of both H and gHg�1.
The idea is that the gauge fields of a certain subgroup of
H \ gHg�1 are dynamically localized, due to the mass gap
created by the confining dynamics in the bulk. An example
of this situation has been provided in Ref. [5]. Here, E6

breaks to differently embedded SOð10Þ � Uð1Þ subgroups
in the bulk on opposite sides of the domain wall. For
appropriately chosen pairs of these subgroups, their inter-
section is SUð5Þ � Uð1Þ � Uð1Þ. By hypothesizing that the
SO(10) gauge forces lead to confinement, the conclusion is
that the SU(5) gauge fields should be dynamically local-
ized on the wall.2 This is interesting for model building
when d ¼ 4, because the dynamically localized d ¼ 3 SU
(5) gauge theory could form the basis for a phenomeno-
logically realistic standard model extension. It is simulta-
neously possible to localize fermions to a domain-wall
brane [16,17], thereby providing all the components for a
3þ 1-dimensional grand unified theory.

To implement the CoS mechanism we must solve the
Euler-Lagrange equations for X for boundary conditions
as y ! �1 breaking G� Z to H and zgHg�1, respec-
tively. Therefore it is necessary to understand how the
boundary conditions breaking G to gHg�1 can be written

as a linear combination of the adjoint scalar field vevs
breaking G along the H1;2;3;...;l branching direction in the

Cartan subalgebra.
Solutions to the Euler-Lagrange equations satisfying

different boundary conditions have different energies. A
boundary condition preserving a symmetry H can be con-
tinuously transformed into a boundary condition preserv-
ing any other isomorphic subgroup gHg�1 inside G, and
for some choices of g solutions interpolating between the
H- and zgHg�1-preserving boundary conditions exist. The
phenomenology of each of these domain-wall solutions is
different because each different nonisomorphic intersec-
tion H \ gHg�1 will give rise to a different gauge theory
localized on the domain wall. Hence an exhaustive search
for the lowest energy stable domain-wall configuration
must be executed. This search must range through all
solutions to the Euler-Lagrange equations with different
boundary conditions. In this case a systematic method for
finding all the different possible configurations must be
established. To trap a copy of the standard model gauge
group on the domain wall, the grand unified gauge group
must have a comparatively high rank, for example E6 as in
[5]. For high rank groups a method for writing one set of
boundary conditions in terms of another becomes critical.
To find thevev for the adjointX breakingG to a subgroup

gHg�1 as a linear combination of vevs along the H1;2;3;...;l

branching direction in the Cartan subalgebra, the authors of
[5] wrote down the Casimir operators (invariants) for a
general linear combination of the Cartan subalgebra,
h1; . . . ; hl. The coordinates in the Cartan subalgebra space
which extremize the Casimir operators correspond to linear
combinations which break G to certain subgroups, includ-
ing H and gHg�1. The physical reason for this is that
invariance of the action under the internal symmetry forces
the potential to be a polynomial in the Casimir invariants.
Therefore extrema of the Casimir operators correspond to
degenerate minima in the vacuummanifold associated with
spontaneous breaking of the internal symmetryG to various
subgroups, including to differently embedded isomorphic
copies of a subgroup H ¼ H0 � Uð1ÞH. Hence the coeffi-
cients in the linear combination which extremize the
Casimir invariants are precisely the components of the
adjoint Higgs field in the original Cartan subalgebra basis
which combine to give the Uð1ÞgHg�1 generator which

spontaneously condenses to break G ! gHg�1. This ap-
proach is labor intensive, and the techniques to be explained
in this paper will improve upon it.

C. Low-energy limit of Yang-Mills theory

We have found a natural motivation for our work in
domain-wall formation due to the breaking of a global
symmetry on cosmological scales. At the other end of the
spectrum, in low-energy effective models for SU(3) [and
SU(2)] pure Yang-Mills gauge theories, domain walls form
due to a breakdown of Weyl group symmetry caused by

2It has not been definitely established that the Dvali-Shifman
mechanism works, but the heuristics are compelling. Note that
for d > 3, the bulk dynamics is governed by a nonrenormalizable
gauge theory that must be implicitly defined with an ultraviolet
cutoff, beyond which new physics must be invoked to complete
the dynamics. Studies of Yang-Mills theory in 4þ 1 dimensions
at finite lattice spacing, which acts as an ultraviolet cutoff,
support the existence of a confinement phase when the gauge
coupling constant is above a critical value [15].
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gluon condensation. This gives rise to a trapping of gauge
fields on the domain wall. Galilo and Nedelko [18] work
with an effective potential generated by loop order correc-
tions in a low-energy effective field theory approach to
QCD:

Ueff ¼ 1

12
Tr

�
C1F̂

2 þ 4

3
C2F̂

4 � 16

9
C3F̂

6

�
; (2.2)

where the potential is confining provided C1 > 0, C2 > 0,
C3 > 0, and the non-Abelian gauge field strength tensor,

F̂��, can be written in terms of the SU(3) Lie algebra

structure constants fabc as

Fa
�� ¼ @�G

a
� � @�G

a
� � ifabcGb

�G
c
�;

ðF̂��Þbc ¼ Fa
��T

a
bc; Ta

bc ¼ �ifabc:
(2.3)

The second order Casimir invariant TrðF̂Þ2 ¼
�3Fa

��F
a
�� � 0, causing the minimum of the effective

potential to occur at a nonzero gluon field strength:

Fa
��F

a
�� ¼ 4

9C2
3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
2 þ 3C1C3

q
� C2

�
2
�4 > 0; (2.4)

where � is the QCD confinement scale.
Galilo and Nedelko [18] look at the effective potential

for F̂�� ¼ h�B�
��, which involves restricting the full SU

(3) gauge theory to the Uð1Þ � Uð1Þ Abelian subspace,
where the generators are given as a linear combination of
the diagonal Gell-Mann matrices,

h� ¼ �1�3 þ �2�8; (2.5)

and the associated field strength B�
�;� can be found by using

the Abelian subalgebra version of (2.3) on B
�
� ¼ �1G3

� þ
�2G8

�. The minima of the effective potential are located at

�¼
�
Cos

ð2nþ1Þ�
6

;Sin
ð2nþ1Þ�

6

�
for n2f0; . . . ;5g:

(2.6)

They are related by a discrete Weyl group symmetry. The
requirement that QCD remains unbroken despite a nonzero
background field strength means the background field must
be the average of an ensemble of gauge field configurations
with a high degree of disorder and spatial variation of the
direction � in color space. This causes different vacua to be
picked out in different spatial regions. Galilo and Nedelko
[18] explain that domain-wall configurations are formed
by gauge fields interpolating between these vacua.
Collectively the h� describe the vevs of an adjoint Higgs
field which break SU(3) to Uð1Þ � Uð1Þ. Here they again
form the boundary conditions for the domain wall.

In the pure SU(2) Yang-Mills theory domain walls form
between vacua preserving different embeddings of a Uð1Þ�
symmetry associated with magnetic charge [19].

In both the above models there is an opportunity to trap
gauge fields on the domain wall. This analysis can be

generalized to SU(N) pure Yang-Mills theory where the
rank of the algebra will again necessitate a systematic
way of identifying all the boundary conditions for the
domain walls.

D. Vacuum alignment

Many extensions of the standard model feature multiple
copies �1;�2; . . . of Higgs multiplets transforming ac-
cording to a given representation of the gauge group G.
In general, their vevs h�1i; h�2i; . . . are not aligned in the
internal representation space, so each multiplet breaksG to
a different subgroup, with the net unbroken symmetry
being the intersection of all of these individual subgroups.
These subgroups may or may not be all isomorphic, de-
pending on the model and the context. For the cases where
the individual subgroups are indeed isomorphic but differ-
ently embedded in the parent group G, then our analysis is
relevant.

III. TERMINOLOGYAND NOTATION

We now clearly outline some of the terminology and
notation we use throughout this document. A reader who is
familiar with standard notation in QCD and root systems
may choose to skip this section and use it as a reference.
We choose to work exclusively with diagonal Cartan

subalgebra generators, which can be done without loss of
generality because given an arbitrary Cartan subalgebra it is
always possible to simultaneously diagonalize each mem-
ber using a similarity transformation within the Lie algebra.
If the Lie algebra has rank l we choose hi where i 2
f1; . . . ; lg to refer to our basis for the Cartan subalgebra.
Throughout this document we physically contextualize

our result using QCD and the weak force as examples. To
do this we choose explicit representations. In each case we
make use of the adjoint representation and the lowest
dimensional fundamental representation, otherwise known
as the smallest faithful representation.
In QCD for the 3 representation of SU(3) we use the

Gell-Mann matrices �1; . . . ; �8 as generators. We refer to
the gluons as a set of eight Lorentz four-vector fields Gi

�

where i 2 f1; . . . ; 8g distributed over the Gell-Mann matri-
ces; we write X

�
i ¼ G

�
i �i where there is no intended sum

over i. We also make use of the linear combinations of the
off-diagonal gluons:

Z1
� ¼ 1ffiffiffi

2
p ðG1

� þ iG2
�Þ; Z2

� ¼ 1ffiffiffi
2

p ðG4
� þ iG5

�Þ;

Z3
� ¼ 1ffiffiffi

2
p ðG6

� þ iG7
�Þ: (3.1)

Correspondingly we take linear combinations of the two
diagonal gluons, renamed for notational convenience
G3

� ¼ A1
� and G8

� ¼ A2
�,

Bp
� ¼ Ai

��
p
i ; (3.2)
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where p 2 f1; 2; 3g and there is an implicit sum over i,
which labels the components, �p

i , of the three roots �
1 ¼

ð1; 0Þ, �2 ¼ ð1=2; ffiffiffi
3

p
=2Þ, �3 ¼ ð�1=2;

ffiffiffi
3

p
=2Þ. In keeping

with this notation we use a relabeling of the diagonal Gell-
Mann matrices �3 ¼ A1 and �8 ¼ A2 to define the SU(3)
Lie algebra generators � ¼ Ai�1

i , � ¼ Ai�2
i and " ¼ Ai�3

i

associated respectively with B1
�, B

2
� and B3

�. We also give

rather unimaginative names to the Lie algebra generators
associated with the valence gluons Z1

�, Z
2
� and Z3

�:

Z1 ¼ �1 þ i�2; Z�1 ¼ �1 � i�2; (3.3)

Z2 ¼ �4 þ i�5; Z�2 ¼ �4 � i�5; (3.4)

Z3 ¼ �6 þ i�7; Z�3 ¼ �6 � i�7: (3.5)

Notice these are precisely the raising and lowering opera-
tors of the SU(3) Lie algebra. Given a module 	 ¼
ð	1; 	2; 	3Þ for the fundamental representation of SU(3)
these ladder operators can be used to raise (or lower) the
states 	p in this module which are associated with (can be
directly labeled by) the weights:

u1 ¼
�
1

2
;

1

2
ffiffiffi
3

p
�
; u2 ¼

�
� 1

2
;

1

2
ffiffiffi
3

p
�
;

u3 ¼
�
0;� 1ffiffiffi

3
p

�
: (3.6)

Extending the SU(3) example we will refer to the I-spin,
V-spin and U-spin directions in color space, which describe
the three Cartan preserving embeddings of SU(2) inside
SU(3). These are the three embeddings which have the
Cartan subalgebra generators for SU(2) as a subset of the
Cartan generators for SU(3). In terms of the Gell-Mann
matrices, the generators of the SU(2) subgroup in each
case are

�1; �2; �|fflfflfflffl{zfflfflfflffl}
2ðI-spinÞ

; �4; �5; �6; �7; �8

�1; �2; �4; �5; "; �6; �7|fflfflfflffl{zfflfflfflffl}
2ðV-spinÞ

; "0

�1�2; �; �4; �5|fflfflfflffl{zfflfflfflffl}
2ðU-spinÞ

; �6; �7; �
0; (3.7)

where we have chosen to introduce complementary matri-

ces to the � and ", namely �0 ¼ � ffiffiffi
3

p
=2A1 þ 1=2A2 and

"0 ¼ ffiffiffi
3

p
=2A1 þ 1=2A2 respectively, so that each set of Lie

algebra generators contains a diagonal Cartan subalgebra,
which is orthogonal under the matrix trace.

In our weak force examples we use the Pauli matrices
f
1; 
2; 
3g as a vector space basis for the adjoint represen-
tation (note 
3 is the diagonal generator of the weak isospin
gauge group, I2, in this representation) and the standard
notation for the three gauge bosons W1

� ¼ w1
�


1, W2
� ¼

w2
�


2, W3
� ¼ w3

�

3.

Analogously to the QCD case we consider linear combi-
nations of the weak force gauge bosons Wþ

� ¼ wþ
�


þ ¼
W1

� � iW2
�, W�

� ¼ w�
�


� ¼ W1
� þ iW2

� and W0
� ¼

w3
�


3 ¼ W3
�, and the corresponding generators 


þ ¼ 
1 �
i
2, 
� ¼ 
1 þ i
2 and 
0 ¼ 
3. We use this notation
because þ1, �1 and 0 are the respective Uð1ÞQ quantum

numbers or electric charges of these linear combinations.
The adjoint action of the Lie algebra adhi � E� on itself is

defined by adhi � E� ¼ ½hi; E��. In the special cases where
the E� are eigenvectors under the adjoint operation for
some hi we write ½hi; E�� ¼ �ðhiÞE�.
We say a linear transformation stabilizes a point if it

maps that point back onto itself. For example if j�i is an
eigenvector of a Lie algebra generator tk 2 L, so that tk �
j�i ¼ �ðtkÞj�i, then we say j�i is stabilized by tk.

IV. ROOT SYSTEMS, THE WEYL GROUP

Our work relies heavily on the concept of roots and
weights. Particle physicists often refer to the roots and
weights as the quantum numbers of particles belonging
to a nontrivial representation space of a non-Abelian gauge
group. Consider the SU(2)-weak lepton doublet,

lL ¼ �eL

eL

� �
	 ð1; 2Þð�1Þ; (4.1)

where by (1, 2)(� 1) we mean the lepton doublet does not
transform under the SU(3) color symmetry; however it
transforms under a two-dimensional representation of the
SU(2) weak isospin gauge group and l ! e�i�l under the U
(1) weak hypercharge symmetry. The SU(2) weights of the
two states in this representation are the isospin quantum
numbers of the fermions. The electron neutrino, �e, has
isospin quantum number þ1=2. This is the highest weight
of the representation. The electron, e, has isospin quantum
number �1=2. This is the lowest weight of the
representation.
The roots are the isospin charges of the self-interacting

gauge bosons,

Wþ
� ¼ 0 wþ

�

0 0

� �
; W�

� ¼ 0 0
w�

� 0

� �
: (4.2)

The gauge bosons are associated with the SU(2) raising
operator 
þ, and the SU(2) lowering operator 
� respec-
tively. These are eigenstates of the adjoint action of the
weak-isospin generator I2, that is adI2 � 
� ¼ ½I2; 
�� ¼
adI2ð
�Þ
�. The þ1 isospin charge of Wþ and �1 isospin

charge of W� follow from

½I2; Wþ
� � ¼ wþ

�½I2; 
þ� ¼ 1Wþ
�

½I2; W�
� � ¼ w�

�½I2; 
�� ¼ �1W�
� :

(4.3)

A. Constructing the Weyl group

In general, it is possible to represent a semisimple rank l
Lie Algebra using two types of generators:
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(i) a set of l mutually commuting diagonalizable gen-
erators, h1; . . . ; hl, which together with the linear
combinations �ia

ihi, form a Cartan subalgebra,
CG, and

(ii) a collection of simultaneous eigenstates E� of the
adjoint action of every Cartan subalgebra generator.

Collectively the generators satisfy the commutation rela-
tions of the Lie algebra, L,

½hi; hj� ¼ 0 ½hi; E�� ¼ adhi � E� ¼ �ðhiÞE�

½E�; E��� ¼ h� ½E�; E�� ¼ N�;�E
�;�

if � � ��; (4.4)

where h� is a linear combination of the hi. We shall call
�ðhiÞ ¼ �i for convenience. Each eigenstate E� can be
labeled by an l-dimensional vector � ¼ ð�1; . . . ; �lÞ called
a root. The root is a list of the l eigenvalues (structure
constants) for the commutator, ½hi; E��, of E� with each
hi 2 CG.

The length of the roots depends on choosing a consistent
normalization scheme for the generators. We fix the nor-
malization of our Lie algebra generators by choosing
TrðE�E��Þ ¼ 2=ð�;�Þ, where ða; bÞ is an invariant inner
product.3 This is a condition known as the Chevalley-Serre
basis. It guarantees that the components of the roots are
integers.

It follows from Eq. (4.4) that for each root �, labeling a
generator E� 2 L, there exists��, labeling the Hermitian
conjugate generator E�� ¼ E�y 2 L. We refer to E� as a
raising operator, and E�� as a lowering operator. This leads
us to partition the root system into two disjoint sets: the
positive and the negative roots. We elect to call a root, �,
whose first nonzero component is positive, a ‘‘positive root.’’
The corresponding negated positive root, ��, is termed a
‘‘negative root.’’ Not all of these roots are linearly indepen-
dent. It is convenient to introduce a basis for the root space.

A rank l Lie algebra has l independent Cartan subalge-
bra generators and therefore a set of l linearly independent

simple roots called f
 ð1Þ; . . . ; 
 ðlÞg. The simple roots are
conventionally chosen to be the l-dimensional subset of
the positive roots, with the property that every positive root
can be written as a non-negative linear combination of

f
 ð1Þ; . . . ; 
 ðlÞg.
It is clear from (4.4) that each root � is the pullback of a

member of the Cartan subalgebra,

h� ¼ ½E�; E���: (4.5)

Multiplying this expression on the left-hand side by hj 2
fh1; . . . ; hlg and taking the matrix trace we see h� ¼ �_

j h
j

(sum over j 2 f1; . . . ; lg) where �_
j ¼ gij2�

i=ð�;�Þ (sum
over i 2 f1; . . . ; lg), where gij ¼ ½TrðhihjÞ��1 is the inverse

of the l� l matrix whose ijth element is gij ¼ ½TrðhihjÞ�.
We call �_ ¼ 2�=ð�;�Þ a coroot; for example 
 ðiÞ_ ¼
2
 ðiÞ=ð
 ðiÞ; 
 ðiÞÞ is a simple coroot, for 
 ðiÞ 2 f
 ð1Þ; . . . ; 
 ðlÞg.
Linearity of the commutator bracket now allows us to

extend our definition of the adjoint action to any h� acting
on the Lie algebra according to

ad h� � E� ¼ �ðh�ÞE� ¼ ð�;�_ÞE�: (4.6)

The set of roots for a Lie algebra have the property that
they completely characterize the Lie algebra. They also
form a crystallographic root system � [20], which is a set
of roots with the property that 8�, �, � 2 �:
(1) If � 2 �, then �� 2 � if and only if � ¼ �1.
(2) The reflection of � in the hyperplane perpendicular

to �: s� � � ¼ �� ð�; �_Þ� also belongs to �.
(3) ð�;�_Þ 2 Z.
Notice that condition (2) implies that W ¼ fs�j� 2 �g,

the subset of symmetries of � generated by reflections in
the hyperplanes orthogonal to the roots in �, forms a
reflection group known as the Weyl group.
Any element of W can be expressed as a sequence of

reflections in the simple roots. This gives rise to a presen-
tation of the Weyl group, called the Coxeter presentation,
generated by reflections in the hyperplanes orthogonal to
the simple roots, 
i. If we refer to the angle between any
two simple roots 
i and 
j as �=mij, then the Coxeter

presentation is

W ¼ fs
i jðs
is
jÞmij ¼ 1; ðs
iÞ2 ¼ 1g: (4.7)

The Coxeter presentation expression for each element,
w� 2 W, is not unique. However if we define the length

of an expression to be the number of reflections, s

i
, it

contains, then the relations can be used to reduce all
Coxeter presentations for w� to a fixed minimum length.
This fixed length is a property of � relative to the choice of
f
1; . . . ; 
lg.
To understand the relations in Eq. (4.7) let H 
i_ be the

(l -1)-dimensional hyperplane orthogonal to 
i. Because 
1

and 
2 are linearly independent, the intersection H 
1_ \
H 
2_ is an (l -2)-dimensional space, the complementary
space being the plane spanned by 
1 and 
2. A reflection in

H 
1_ followed by a reflection inH 
2_ , s

1
s


2
, is the same

as a rotation by twice the angle between H 
1_ and H 
2_

(that is a rotation by 2�=m12) in the ð
1; 
2Þ plane.

Therefore the relation ðs
1s
2Þm12 ¼ 1 is equivalent to the
statement thatm12 concatenations of a rotation by an angle
2�=m12 is the identity transformation.
The Weyl group has a natural analogue in the matrix

picture [21]. Here conjugation by the operator

w� ¼ exp ðE�Þ exp ðE��Þ exp ðE�Þ; (4.8)

acts on the Cartan subalgebra according to

3For example if one used an invariant inner product on the Lie
algebra generators, such as the Cartan-Killing form or the
regular trace and restricted this inner product to the Cartan
generators then because the root space is dual to the Cartan
subalgebra this induces an invariant inner product on the root
space.
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w� � h� ¼ w�h�w�� ¼ ðs� � �_Þihi ¼ ðs� � �Þ_i hi;
(4.9)

where w�� ¼ ðw�Þ�1. We can check that (4.8) is a matrix
representation for theWeyl group, acting as amodule on the
Cartan subalgebra CG, by checking that w� � h� ¼ hs

���.
This follows directly from the action of w� � h� on E�:

½w� � h�; E�� ¼ ðs� � �Þ_i ½hi; E�� ¼ �iðs� � �Þ_i E�

¼ ð�; ðs� � �Þ_ÞE� ¼ ½hs���; E��: (4.10)

Conversely conjugating (4.10) by w��,

½h�; w��E�w�� ¼ ðs� � �;�_Þw��E�w�

¼ ð�; ðs� � �Þ_Þw��E�w� ¼ ½h�; Es����;
(4.11)

leads us to conclude w�� � E� ¼ Es��� and therefore (4.9)
also furnishes a matrix representation for the Weyl group
acting as a module on the space of generators fE�j� 2 �g.
In the root system picture its elements are orthogonal trans-
formations which act to permute the collection of roots
belonging to �.

In the matrix picture the Cartan subalgebra is an invari-
ant subspace for the Weyl group and the Weyl group
permutes the raising and lowering operators E�.

B. Weights

More generally, the physical significance of being able to
simultaneously diagonalize the Cartan subalgebra is that,
for any representation space of the Lie group, there exists a
basis, B, of simultaneous eigenvectors, jui, of the entire
Cartan subalgebra. Each eigenvector jui 2 B, can be
labeled by the l-dimensional vector, u ¼ ðu1; . . . ; ulÞ ¼
ðuðh1Þ; . . . ; uðhlÞÞ, formed by listing its eigenvalues,
hijui ¼ uðhiÞjui, for hi ¼ h1; . . . ; hl. These l-dimensional
vectors are the weights.

In the adjoint representation the weights are the root
vectors. If the Lie group representation acts as a module
over a vector space of n-dimensional column vectors [anal-
ogously to the SU(2)-weak lepton doublet], then the
weights are the eigenvalues under left matrix multiplica-
tion by the Cartan subalgebra generators. The eigenvector
labeled by the highest weight is annihilated by all raising
operators.

The Weyl group action on the adjoint representation
space eigenbasis, w�� � E� in Eq. (4.11) (and on the
weights of the adjoint representation, s� � �) can be gen-
eralized. The Weyl group reflection of a weight u in the
hyperplane orthogonal to root � is

s� � u ¼ u� ðu; �_Þ�: (4.12)

In direct analogy to the adjoint representation, an arbitrary
representation space for the Lie group furnishes a repre-
sentation space for the Weyl group. This can be seen
directly from the action of (4.8) on jui 2 B

w�� � jui ¼ js� � ui: (4.13)

The result follows from analyzing the action of hi 2 CG on
w��jui which is described in full detail in Appendix A.
We introduce some terminology we need to talk about

weights. The weights belonging to the Weyl group orbit of
the highest weight are called extremal weights.
Consider a representation which has highest weight �,

and let E� 2 L be a generic raising operator for this
representation. Then it is easy to see that each extremal
weight� ¼ s� � �where � 2 �, is also the highest weight
with respect to a different choice of positive roots, as j�i is
eliminated by an equivalent set of raising operators w� �
E� 2 L. However the Weyl group permutes the set of Lie
algebra generators, so both representations have the same
generators. We would like to have a way of distinguishing
between these representations and others which have quali-
tatively different sets of generators.
It is necessary to work with a basis for the weight space

f!1; . . . ; !lg which is dual to the simple roots, that is
!i
j_ ¼ �ij. We call f!1; . . . ; !lg fundamental weights.
A linear combination of f!1; . . . ; !lg with non-negative
coefficients is called a dominant weight. Every dominant
weight is the highest weight of a representation, and up to
conjugation by the Weyl group every highest weight is
dominant.

V. LIE SUBALGEBRAS AND EMBEDDINGS

Lie subalgebras LH � L have generators labeled by
closed subroot systems �H � �, where by a ‘‘closed sub-
root system’’ [20] we mean
(1) A root system �H � �, such that for all �, � 2 �H

if �þ � 2 � then �þ � 2 �H.
We can see LH satisfies the Lie algebra commutation

relations (4.4) because whenever E�, E� 2 LH and
N�;� � 0, we have ½E�; E�� 2 LH (closure under the

Lie bracket).
The Weyl group of the subroot system �H, WH ¼

fs�j� 2 �Hg, is the subgroup of W, which permutes the
subset of the roots belonging to �H.
For each subroot system �H, or one of its Weyl group

conjugates, there is a systematic way of choosing a basis of
simple roots consisting of a proper subset IH �
f
1; . . . ; 
ig [ f�
0g of the union of the simple roots for
� and the negated highest weight of the adjoint represen-
tation (negated highest root). The method is given in the
Borel-de Siebenthal theorem (see Appendix B). The
Coxeter presentation for WH is generated by reflections

in the hyperplanes H
j_ , 
j 2 IH orthogonal to the simple
roots of �H.
TheWeyl group action on the root system is regular (that

is for all �, � 2 �, there exists precisely one s� 2 W such
that � ¼ s� � �). The orbit W ��H represents all the em-
beddings of �H inside �. However we know that W�H

maps �H back onto itself, so each element in the orbit
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W�H
��H ¼ �H gives rise to the same embedding of LH

insideL. Therefore the setW=W�H
��H represents all the

‘‘qualitatively different’’ embeddings of�H andLH inside
� and L respectively. By ‘‘qualitatively different’’ we
mean that the raising and lowering operators belonging
to LH and w�LHw

�� are distinct subsets of the full
complement of raising and lowering operators belonging
to L.

One outcome of this is that we now know the number of
embeddings of LH inside L is jW=W�H

j. Because the

Weyl group is finite we can simplify this expression4 to
jWj=jW�H

j.

VI. STATEMENT OF PROOF

Here we write the vacuum manifold G=H in terms of
adjoint Higgs vevs breaking G ! H1 ! H2 ! � � � ! Hl,
for some H in this chain. We assume each of the embed-
dings G � H1 � H2 � � � � � Hl is Cartan preserving.

We have established that the embeddings ofH1 withinG
arise from conjugation of the Lie algebraLH1

forH1 by the

Weyl groupW=W�H1
whereW�H1

is the Weyl group of the

maximal subgroup H1. Moreover we know conjugation by
any Weyl group element w� 2 W=W�H1

acts on the Cartan

subalgebra or vevs h1; . . . ; hl according to

w� � hj ¼ �ið�ij ��n�
n�nj�

_
i Þhi ¼ hj � �jh�: (6.1)

So after identifying the generators (roots) excluded from
the embedding of H1 � G (�H1

� �) we have a general

formula for writing the vevs of the adjoint Higgs field w� �
h1; . . . ; w� � hl causing the breaking of G � w�H1w

�� �
w�H2w

�� � � � � � w�Hlw
�� as a linear combination of

h1; . . . ; hl. If, after choosing an embedding ofH1 withinG,
identified with LH1

� L, we wish to find all the different

embeddings of H2 within H1 which have LH2
� LH1

we

simply repeat this procedure for W�H1
=W�H2

.

It is extremely simple to find G=H when H ¼
H0 � Uð1ÞH stabilizes (the representation space state
labeled by) the highest weight of the lowest dimensional
fundamental representation, j�i. For the adjoint represen-
tation we show that each vev in G=H is �i�ðhiÞhi for an
extremal weight � of the fundamental representation,
where h1; . . . ; hl break G ! H1; . . . ; Hl.

We first prove that the adjoint Higgs vev, h, which
breaks G to H, is given by the linear combination h ¼
�i�ðhiÞhi, where the coefficients are the coordinates of
highest weight of the fundamental representation. We then
explain why other generators breaking G to different
embeddings w� �H, w� � h ¼ �i�ðhiÞhi, are the linear

combinations of h1; . . . ; hl which have the coordinates of
the extremal weights, �ðhiÞ, as coefficients.
If �i�ðhiÞhi is the adjoint Higgs vev which breaks G to

H, then it is the generator of the Uð1ÞH factor in H ¼
H0 � Uð1ÞH. Therefore �i�ðhiÞhi must stabilize j�i (be a
generator of H) and it must commute with each generator,
E� 2 LG, if and only if E� 2 LH.
It is clear that �i�ðhiÞhi is a generator of H because

�i�ðhiÞhij�i ¼ ð�i�ðhiÞ2Þj�i: (6.2)

Furthermore, let E� 2 LH. Then E� is a raising or
lowering operator and E� stabilizes j�i; therefore we
must have E�j�i ¼ 0. If � 2 �H then �� 2 �H, and
by the same logic E��j�i ¼ 0. Consider the commutator

½E�;�i�ðhiÞhi� ¼ �i�ðhiÞ½E�; hi� ¼ �i�ðhiÞ�iE�

¼ �ð�i�
ihiÞE� ¼ �ðh�ÞE�

¼ �ð½E�; E���ÞE� ¼ 0: (6.3)

Therefore �i�ðhiÞhi commutes with all the elements of
LH.
Assume�i�ðhiÞhi commutes with a generator E� =2 LH

which does not belong to the Lie algebra of H; then we
have

�i�ðhiÞhi ¼ w��i�ðhiÞhiw��

¼ �i�ðhiÞhi ��i�ðhiÞ�ðhiÞh�
¼ �i�ðhiÞhi ��ij�ðhiÞ�ðhiÞ�_ðhjÞhj

¼ �i�ðhiÞhi ��j

2ð�; �Þ
ð�; �Þ �ðh

jÞhj

¼ �ið�ðhiÞ � ð�; �_Þ�ðhiÞÞhi
¼ �i½s� � ��ðhiÞhi: (6.4)

This creates a contradiction because we are insisting E�

does not stabilize j�i, so w�j�i ¼ js� � �i � j�i and the
two sets of coefficients (of the linearly independent Cartan
subalgebra generators h1; . . . ; hl) in the above sum must be
different. We have proved that �i�ðhiÞhi is the adjoint
Higgs vev, h, which breaks G to H.
Now each embeddingw� �H ¼ w�Hw�� will stabilize a

state in the representation labeled by an extremal weight
w� � j�i ¼ j�i. By the above argument, the center of the
subgroup w� �H which stabilizes j�i is generated by
�i�ðhiÞhi.We have a remarkably easy formula for reproduc-
ing the vevs which breakG to all the different embeddings of
the subgroupwhich stabilizes the highest weight of the lowest
dimensional fundamental representation,H, as a linear com-
bination of the Cartan subalgebra h1; . . . ; hl. Notice that w�

must belong to a nontrivial coset in W=W�H
, because con-

jugation byw� only takes us from one embedding to another
when s� does not fix the highest weight.
We present a systematic method for determining the

subgroup H directly from the extended Dynkin diagram
for the Lie group G. Each unmarked node in the extended

4This follows from the orbit stabilizer theorem: Suppose that a
linear algebraic group G acts on the set X. If G is finite then
jGj ¼ jG � xj � jStabilizerðxÞj, that is, the order of the orbit of x,
jG � xj, divides jGj.
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Dynkin diagrams is labeled by a simple root. The node
with a cross in the center is 
0. To find the Dynkin diagram
for H we simply need to determine which of the simple
roots in � are also in �H. We also need to work out if the
highest root 
0 is in�H. The subset of f
1; . . . ; 
lg [ f�
0g
belonging to �H will be the simple roots for �H.

First we determine which subset of the simple roots
f
1; . . . ; 
lg belong to �H. Take the highest weight, �,
and write it as a linear combination of the fundamental
weights:

� ¼ a1!1 þ � � � þ al!l: (6.5)

We assume this highest weight is dominant (a1; . . . ; al 

0); if it is not then it is always possible to replace � by one
of the extremal weights which is dominant. Construct a set
S� ¼ fjjaj ¼ 0g. For all j 2 S� we have ð�; 
j_Þ ¼ 0. We

claim that 
j 2 �H, that is E�
j j�i ¼ 0, for all j 2 S�.

Otherwise if E�
j j�i � 0 consider the norm N��
j ¼
h�jE�
jyE�
j j�i. Because � is the highest weight of the

representation N�þ
j ¼ 0 while N��
j ¼ h�j½E
j ; E�
j�j�i
¼ h�j�ið�; 
j_Þ ¼ 0. For the remaining simple roots

labeled by k =2 S�, we have s

k � � � �; therefore

w
k j�i � j�i and from (4.8) we know that one of E�
k

does not stabilize �.
The highest root (negated highest root) �
0 does not

belong to �H. This follows from the fact that 
0 is some
linear combination of all the simple roots (with positive
coefficients); therefore if the setS� is nonempty ð�; 
0Þ> 0.

So the Dynkin diagram for H can be reconstructed from
the connected components of the Dynkin diagram for G
labeled by simple roots f
jjj 2 S�g. This uniquely defines
the non-Abelian factorH0 ofH. The full subgroupH which
stabilizes the highest weight is a product of H0 with one
Abelian factor Uð1Þ for each k =2 S�. These extra Uð1Þ
factors are generated by the Cartan subalgebra generators

h

k
, k =2 S�, which (by definition) stabilize �, even when

the associated raising/lowering operators E
k do not.
If the Higgs field does not belong to the adjoint repre-

sentation then the above analysis generalizes. The Weyl
group reflections still give the different embeddings of the
subgroup chain G � H1 � � � � � Hl. If there is an asso-
ciated Cartan subalgebra h1; . . . ; hl defined as the gener-
ators of Uð1ÞHi

factors appearing in the subgroup chain

through Hi ¼ H0
i � Uð1ÞH1

� � � � � Uð1ÞHi
(where H0

i is

some product of non-Abelian Lie groups) then Eq. (6.1)
gives the linear combinations for the equivalent Cartan
subalgebra generator for the Uð1Þw��Hi factors belonging
to the differently embedded subgroup chain G �
w�H1w

�� � � � � � w�Hlw
��, where w� 2 W=W�H

.

If a subgroup H � G annihilates a column vector j�i,
labeled by a weight �, then the differently embedded sub-
groupw�Hw�� annihilates the columnvectorw�j�i. Hence
if j�i breaksG toH, then js� � �i breaksG � w�Hw�� and
it follows directly from (A1) that Eq. (4.12) gives the

coordinates of the new weights as a linear combination of
� (and �).

VII. APPLICATION OF RESULTS
TO HIGH-ENERGY PHYSICS

We wish to firmly ground the above discussion by
applying the formulas from Sec. VI to two explicit model
building examples. We physically contextualize the key
concepts in Secs. IV and V via the smallest effective
example: embeddings of U-spin, I-spin and V-spin within
the SU(3) QCD gauge group. We also tackle the nontrivial
problem of finding a full complement of domain-wall
boundary conditions for an adjoint Higgs field which break
E6 to different embeddings of SOð10Þ � Uð1Þ, to demon-
strate the effectiveness of the techniques developed in
Sec. VI.

A. A quantum chromodynamics example

Consider the Weyl group conjugations giving rise to
differently embedded copies of the subgroups SUð2Þ �
Uð1Þ inside SU(3). Following [6] we rewrite the SU(3)
pure Yang-Mills quantum chromodynamics Lagrangian
in terms of the off-diagonal gluons Zp

�; p 2 f1; 2; 3g and
the dual potentials to the roots Bp

�; p 2 f1; 2; 3g defined in
Sec. III:

L ¼ � 1

4
G��G��

¼ X
p

�
� 1

6
ðFp

��Þ2 þ 1

2
jDp�Z

p
� �Dp�Z

p
�j2

� igFp
��Z

��
p Z�

p � 1

2
g2½ðZp�

� Zp
�Þ2 þ ðZp�

� Þ2ðZp
�Þ2�

�
;

(7.1)

where

Fp
�� ¼ @�B

p
� � @�B

p
�; Dp�Z

p
� ¼ ð@� � igBp

�ÞZp
�:

(7.2)

TheWeyl group permutes the roots f��1;��2;��3g of
the SU(3) Lie algebra. Hence the Weyl group action on the
above Lagrangian will cause a permutation of the dual
potentials Bp

�, p 2 f1; 2; 3g. The orbit of each dual poten-
tial is described by the Weyl group action on the associated
Cartan subalgebra element Ai�

p
i . There will be a simulta-

neous permutation of the valence gluons Zp
� which corre-

spond to theWeyl group orbits of the associated raising and
lowering operators Zp, Z�p, p 2 f1; 2; 3g. The permutation
is concordant with the geometric picture of the Weyl group
reflections of their root labels. Therefore the invariance of
the above Lagrangian under Weyl group reflections is
encapsulated in the sum over the index p.
The clarity of this presentation is a direct consequence of

the associated generators ", � and Z�p, where p 2 f1; 2; 3g
[it is not necessary to include � in this list, because SU(3)
has rank 2; however we can substitute it for either " or � if
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we wish] forming a useful computational basis for the Lie
algebra: the Chevalley basis. Here each of the three subsets
f�; Z�1g, f�; Z�2g and f"; Z�3g defines an embedding of
SU(2) inside SU(3). These correspond to the closed crys-
tallographic root systems f��1g whose Weyl group fixes a
point on the hyperplane orthogonal to �1, f��2g and
f��3g, whose Weyl groups fix analogous points. Cross-
checking this with Sec. III we see these are precisely the
I-spin, V-spin and U-spin embeddings. Each embedding
commutes with one of the Abelian subgroup generators
�8ð¼ �0Þ, �0 or "0 which we now have the tools to write as
�i�ðhiÞhi for any diagonal Cartan subalgebra fh1; h2g for
SU(3) (in Sec. III our Cartan subalgebra was chosen to be
�3 and �8) and the three extremal weights of the lowest
dimensional fundamental representation for SU(3).

We can adapt this scenario to incorporate interactions
between quarks and SUð3Þ gauge fields. The quarks belong
to a three-dimensional module, Q, for the fundamental
representation of SUð3Þ. According to Sec. IVB we can
use theweights of the fundamental representation ~up to label
a basis jupi, p 2 f1; 2; 3g for the moduleQ. With respect to
this basiswewrite the quarkfield components asqp, forp ¼
1, 2, 3 [for the wights given in Eq. (3.6) this will lead to the
interpretation that the quarks’ field components are pre-
cisely the standard r, g, b]. We illustrate the specific ex-
ample of quarks interacting with an Abelianized gauge
potential which mediates interactions between quarks car-
rying the same color charge. This example can be used to
study quark-gluon plasmas [6]; using the Lagrangian

L quarks ¼ � 1

8

X
p

ð ~Fp
��Þ2 þ

X
p

�qpði�� ~Dp� �mÞqp;

(7.3)

where in terms of the Abelian guage fields5 Ap
� ¼ Ai

�u
p
i ,

~F p
�� ¼ @�A

p
� � @�A

p
�; ~Dp�q

p ¼ ð@� � igAp
�Þqp:
(7.4)

The gauge field kinetic term is equivalent to the Abelian
field strength tensor in Eq. (7.1). The second term in
Eq. (7.3) describes the prorogation and interactions of
quarks with the Abelian gauge fields. Because the Weyl
group action permutes the weights of the fundamental rep-
resentation ~up it also causes a permutation of the Abelian
gauge fields Ap

�; p 2 f1; 2; 3g which match the orbits of the
corresponding Cartan subalgebra generators Aiu

p
i . This

permutation simultaneously acts on the quark field compo-
nents, qp, which undergo an identical orbit due to the Weyl
group action on the basis vectors jupi; see Eq. (A1) in the
Appendix. The summation over p ensures Eq. (7.3) is
always invariant under Weyl group permutations.

B. A nonadjoint SUð3Þ Higgs field

For an example of a nonadjoint Higgs, we also examine
a triplet	 ¼ ð	1; 	2; 	3Þ of Higgs fields transforming as a
module under the fundamental representation of a global
SUð3Þ symmetry. We identify each Higgs field component
with one of the weights of SUð3Þ given in Eq. (3.6).
Consider the Higgs potential

V ¼ � 1

2
�2	y	þ 1

4
�ð	y	Þ2; (7.5)

where�2, � 
 0 are free parameters. The minimum of this
potential occurs for nonzero values of j	j2; under these
circumstances the third component of the Higgs triplet can
develop a nonzero vacuum expectation value,

h	ii ¼ v�i3: (7.6)

This vacuum breaks the global SUð3Þ symmetry down to
the I-spin embedding of SUð2Þ referred to in Secs. VII A
and III. We identify the vacuum expectation value with the

root u3 ¼ ð0;�1=
ffiffiffi
3

p Þ from Eq. (3.6). The weights labeling
other elements of the vacuum manifold can be generated
by the Weyl group orbit of u3. We can explicitly calculate
the other elements of the vacuummanifold using Eq. (4.12)
in conjunction with ðu3; �p_Þ ¼ ��3p � �29 (for the roots

and weights defined in Sec. III). This gives

s�
1 � u3 ¼ u3; s�

2 � u3 ¼ u3 þ �2 ¼ u1;

s�
3 � w3 ¼ u3 þ �3 ¼ u2; (7.7)

where the properties of the ladder operators Zp can be
conveniently used to identify a simplified expression.
Colloquially, we say that the ladder operators raise (lower)
states in the fundamental representation because Zpjuji /
j�p þ uji, where the latter corresponds to a higher
(respectively lower) weight of the representation. This is
easily verified through the commutation relations (4.4) of
the ladder operators ½Zp; hi� ¼ �pðhiÞZp with the Cartan
subalgebra generators hi. The three different vacua asso-
ciated with the above weights, h	ii ¼ v�ik for k ¼ 3,
1 and 2 respectively, break SUð3Þ to the I-spin, V-spin
and U-spin embeddings of SUð2Þ.

5This redefinition of the diagonal gluons introduces superficial
differences between Eqs. (7.3) and (7.1). In Eq. (7.1) we use the
dual potentials to the roots Bp

� to define the diagonal gluons
since the coupling terms between valence gluons and dual
potentials are extremely simple. This happened because the
valence gluons directly correspond to raising/lowering operators
of the SUð3Þ Lie algebra. In Eq. (7.1) writing the Cartan gen-
erators as Bp ¼ Ai�p

i while using Z�p for the raising/lowering
operators implies we are directly choosing to define our Cartan
subalgebra through Eq. (4.5), giving us access to the relations in
Eq. (4.6). This is particularly helpful for the pure Yang-Mills
gauge theory Lagrangian. In Eq. (7.3) we simplify the quark
gluon vertex terms by defining our Abelian gauge fields in terms
of the weights. At the end of the day it does not matter how we
write the diagonal gluons. Our choice reflects the easiest way to
introduce coupling between these diagonal gluons and other
fields in the Lagrangian. This is in part why we choose to
work with quarks interacting through an Abelianized gauge
potential.
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C. Adjoint Higgs field domain-wall-brane boundary
conditions breaking E6 ! SOð10Þ � Uð1Þ

We use the method developed in the previous section to
find all the adjoint Higgs vevs which break E6 to all the
different embeddings of SOð10Þ � Uð1Þ; this example is
directly motivated by an extra-dimensional clash of sym-
metries domain-wall brane model [5]. Our choice of Cartan
subalgebra for E6 is given in Table I; the entries of this
table follow directly from the branching rules [8]:

E6�SOð10Þ�Uð1Þh1 �SUð5Þ�Uð1Þh1 �Uð1Þh2
�SUð3Þ�SUð2Þ�Uð1Þh1 �Uð1Þh2 �Uð1Þh3
�SUð3Þ�Uð1Þh1 �Uð1Þh2 �Uð1Þh3 �Uð1Þh4
�SUð2Þ�Uð1Þh1 �Uð1Þh2 �Uð1Þh3 �Uð1Þh4 �Uð1Þh5
�Uð1Þh1 �Uð1Þh2 �Uð1Þh3 �Uð1Þh4 �Uð1Þh5 �Uð1Þh6 :

(7.8)

Asmentioned in Sec. II our primarymotivation for study-
ing this problem arose from a codimension-1 clash-of-
symmetries domain-wall brane. The brane originates from
anE6 adjointHiggs fieldXwhich condenses spontaneously

to break translational invariance along the extra dimension
of a 4þ 1-dimensional space-time manifold.
The Lagrangian for this theory is invariant under a

Z2 � E6 internal symmetry. It is a linear combination of
the invariant kinetic term Tr½D�XD�X� and a potential

formed from the E6 Casimir invariants I2 ¼ TrX2 and
I6 ¼ TrX6 as well as the powers I22 and I32 . Casimir

invariants corresponding to odd powers of X must be
omitted due to the imposed Z2, X ! �X, symmetry.
The potential is truncated at sixth order because the
coupling constants of higher order invariants have nega-
tive mass dimensions and are therefore suppressed by
powers of the putative ultraviolet completion scale (see
Sec. II), yet the fourth order invariants exhibit an acci-
dental Oð78Þ symmetry, so we must include a TrX6 term.
A subset of the local minima of the Casimir invariants
occurs at adjoint Higgs vevs which break Z2 � E6 !
SOð10Þ � Uð1Þ. If the solution X to the associated
Euler-Lagrange equations interpolates between vacuum
expectation values which break Z2 � E6 to a specific
pair of differently embedded copies of SOð10Þ � Uð1Þ
then [5] postulates that a copy of the standard model
particles can be trapped on the 3þ 1-dimensional

TABLE I. The six diagonal generators h1�6 of E6. The diagonal elements of the generator hn are found by taking the nth column and
multiplying it by 1=60. Also the rows give the coefficients f1�6 of these generators that yield a linear combination that breaks E6 !
SOð10Þ � Uð1Þ.

60h1 60h2 60h3 60h4 60h5 60h6

1 20 0 0 0 0 0

2 �10 2
ffiffiffiffiffiffi
15

p
3

ffiffiffiffiffiffi
10

p �5
ffiffiffi
6

p
0 0

3 �10 2
ffiffiffiffiffiffi
15

p
3

ffiffiffiffiffiffi
10

p
5

ffiffiffi
6

p
0 0

4 �10 2
ffiffiffiffiffiffi
15

p �2
ffiffiffiffiffiffi
10

p
0 5

ffiffiffi
2

p
5

ffiffiffi
6

p
5 �10 2

ffiffiffiffiffiffi
15

p �2
ffiffiffiffiffiffi
10

p
0 5

ffiffiffi
2

p �5
ffiffiffi
6

p
6 �10 2

ffiffiffiffiffiffi
15

p �2
ffiffiffiffiffiffi
10

p
0 �10

ffiffiffi
2

p
0

7 �10 �2
ffiffiffiffiffiffi
15

p �3
ffiffiffiffiffiffi
10

p
5

ffiffiffi
6

p
0 0

8 �10 �2
ffiffiffiffiffiffi
15

p �3
ffiffiffiffiffiffi
10

p �5
ffiffiffi
6

p
0 0

9 �10 �2
ffiffiffiffiffiffi
15

p
2

ffiffiffiffiffiffi
10

p
0 �5

ffiffiffi
2

p �5
ffiffiffi
6

p
10 �10 �2

ffiffiffiffiffiffi
15

p
2

ffiffiffiffiffiffi
10

p
0 �5

ffiffiffi
2

p
5

ffiffiffi
6

p
11 �10 �2

ffiffiffiffiffiffi
15

p
2

ffiffiffiffiffiffi
10

p
0 10

ffiffiffi
2

p
0

12 5 �5
ffiffiffiffiffiffi
15

p
0 0 0 0

13 5 3
ffiffiffiffiffiffi
15

p �3
ffiffiffiffiffiffi
10

p
5

ffiffiffi
6

p
0 0

14 5 3
ffiffiffiffiffiffi
15

p �3
ffiffiffiffiffiffi
10

p �5
ffiffiffi
6

p
0 0

15 5 3
ffiffiffiffiffiffi
15

p
2

ffiffiffiffiffiffi
10

p
0 �5

ffiffiffi
2

p �5
ffiffiffi
6

p
16 5 3

ffiffiffiffiffiffi
15

p
2

ffiffiffiffiffiffi
10

p
0 �5

ffiffiffi
2

p
5

ffiffiffi
6

p
17 5 3

ffiffiffiffiffiffi
15

p
2

ffiffiffiffiffiffi
10

p
0 10

ffiffiffi
2

p
0

18 5 � ffiffiffiffiffiffi
15

p ffiffiffiffiffiffi
10

p �5
ffiffiffi
6

p
5

ffiffiffi
2

p
5

ffiffiffi
6

p
19 5 � ffiffiffiffiffiffi

15
p ffiffiffiffiffiffi

10
p �5

ffiffiffi
6

p
5

ffiffiffi
2

p �5
ffiffiffi
6

p
20 5 � ffiffiffiffiffiffi

15
p ffiffiffiffiffiffi

10
p �5

ffiffiffi
6

p �10
ffiffiffi
2

p
0

21 5 � ffiffiffiffiffiffi
15

p ffiffiffiffiffiffi
10

p
5

ffiffiffi
6

p
5

ffiffiffi
2

p
5

ffiffiffi
6

p
22 5 � ffiffiffiffiffiffi

15
p ffiffiffiffiffiffi

10
p

5
ffiffiffi
6

p
5

ffiffiffi
2

p �5
ffiffiffi
6

p
23 5 � ffiffiffiffiffiffi

15
p ffiffiffiffiffiffi

10
p

5
ffiffiffi
6

p �10
ffiffiffi
2

p
0

24 5 � ffiffiffiffiffiffi
15

p �4
ffiffiffiffiffiffi
10

p
0 �5

ffiffiffi
2

p �5
ffiffiffi
6

p
25 5 � ffiffiffiffiffiffi

15
p �4

ffiffiffiffiffiffi
10

p
0 �5

ffiffiffi
2

p
5

ffiffiffi
6

p
26 5 � ffiffiffiffiffiffi

15
p �4

ffiffiffiffiffiffi
10

p
0 10

ffiffiffi
2

p
0

27 5 � ffiffiffiffiffiffi
15

p
6

ffiffiffiffiffiffi
10

p
0 0 0
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domain-wall brane. To find X it is necessary to write the
boundary conditions at the two antipodal extremes of the
extra dimension as a linear combination of the adjoint
Higgs vevs h1; . . . ; h6, the generators of the Abelian
subgroup factors given in Eq. (7.8).

Because SOð10Þ � Uð1Þ stabilizes the highest weight of
the lowest dimensional fundamental representation for E6

this is now a trivial problem. Each of the possible boundary
conditions which break E6 ! SOð10Þ � Uð1Þ can be writ-
ten as a linear combination of h1; . . . ; h6 using �i�ðhiÞhi

FIG. 1. A pictorial representation of the 27 rearrangements of the diagonal generator h1 of E6. Each rearrangement can be
reconstructed from one of the 27 rows (or columns) of symbols in this picture. To find the diagonal entries of the nth rearrangement,
read along the nth row and translate the symbols according to the following: circles� correspond to the single 1=3 entry, squaresh to
�1=6 and crossesþ to 1=12 (note that adjacent crosses are touching). The number in the center of each circle tells its row and column
number (being the same). Row n of this picture corresponds precisely to row n of Table I in the sense that the linear combinationP6

a¼1 fah
a, where the f1�6 are chosen from row n of Table I, yields the rearranged version of the generator h1 represented by the

symbols of row n in this picture.
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where � is one of the 27 extremal weights of the lowest
dimensional fundamental representation for E6. Explicitly
the 27 different vevs breaking E6 ! SOð10Þ � Uð1Þ are

hXi / �6
a¼1fah

a; (7.9)

where the sextuplet f1;...;6 takes values from one of the

rows of Table I. In Fig. 1 we have reproduced a figure
from Ref. [22] which graphically identifies the diagonal
entries of each of these 27 vevs breaking E6 ! SOð10Þ �
Uð1Þ.

VIII. CONCLUSION

We have shown how to write the vacuum manifold G=H
as a linear combination of vevs breaking G � H1 � H2 �
� � � � Hl, for the case where the embedding of H � G is
Cartan preserving and H is a subgroup in the above chain.
We have highlighted the simple case when the Higgs field
is in the adjoint representation and H stabilizes the highest
weight of the lowest dimensional fundamental representa-
tion for G and complemented our discussion with physical
examples.

Our work is motivated by current research in high-
energy physics, where symmetry breaking is used exten-
sively, and where an explicit and exhaustive construction
of embeddings is of direct relevance. In Secs. II A, II B,
II C, and II D we have presented four physical contexts
where our results can be directly applied, and in two of
these four model building scenarios we apply our results to
the contemporary research papers [5,6].
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APPENDIX A

We explicitly evaluate the action of hi on w��j�i:
hiw��j�i¼w��ðw�hiw��Þj�i¼w��ðhi��ih�Þj�i

¼w��ðhi��i�_
j h

jÞj�i¼ð�i�ð�;�_Þ�iÞw��j�i
¼½s� ���iw��j�i¼hijs� ��i; (A1)

where to get the second equality we have used hj ¼ �i�
j
ih

i

in Eq. (4.9). Thus because of Eqs. (4.8) and (4.9) it is not a
coincidence that every representation space for the Lie
group furnishes a representation space for the Weyl group.

APPENDIX B

The Borel-de Siebenthal theorem gives a systematic way
of identifying the maximal Lie subgroups of G directly
from the extended Dynkin diagram for G [20]. It does this
by identifying which subset of the simple roots belonging
to �, the root system for the Lie algebra L of G, are also
simple roots for �H, the subroot system of the Lie algebra
LH of maximal subgroup H � G. The nodes of the ex-
tended Dynkin diagram of G which are labeled by simple
roots 
i which do not belong to �H are then removed,
along with all their adjacent edges. The remaining graph is
the Dynkin diagram for H. If the subgroup H � K � G is
not maximal then this procedure can be iterated to deter-
mine K � G and H � K.
Theorem X.1 (Borel-de Siebenthal) Let � be an irreduc-

ible crystallographic root system. Let f
1; . . . ; 
lg be the
simple roots for �. Let 
0 be the highest root of � with
respect to f
1; . . . ; 
lg. Expand:


0 ¼ �ici

i: (B1)

Then the maximal closed subroot systems of � (up to
Weyl group reflections) are those with fundamental sys-
tems

(i) f
1; 
2; . . . ; 
̂ i; . . . ; 
lg where ci ¼ 1;

(ii) f�
0; 
1; . . . ; 
̂ i; . . . ; 
lg where ci ¼ p (prime)

where ‘‘
̂ i’’ is being used to denote elimination.
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