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We investigate fermion-antifermion production in 1þ 1 dimensional QED using real-time lattice

techniques. In this nonperturbative approach the full quantum dynamics of fermions is included, while

the gauge field dynamics can be accurately represented by classical-statistical simulations for relevant

field strengths. We compute the nonequilibrium time evolution of gauge-invariant correlation functions,

implementing ‘‘low-cost’’ Wilson fermions. Introducing a lattice generalization of the Dirac-Heisenberg-

Wigner function, we recover the Schwinger formula in 1þ 1 dimensions in the limit of a static

background field. We discuss the decay of the field due to the backreaction of the created fermion-

antifermion pairs and apply the approach to strongly inhomogeneous gauge fields. The latter allows us to

discuss the striking phenomenon of a linear rising potential building up between produced fermion

bunches after the initial electric pulse ceased.
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I. INTRODUCTION

It has already been pointed out in the early days of
quantum physics that the vacuum of quantum electro-
dynamics (QED) becomes unstable against the formation
of many-body states in the presence of strong external
electromagnetic fields, manifesting itself as the creation
of electron-positron pairs by the Schwinger mechanism
[1–3]. Nevertheless, this fundamental quantum effect has
not been experimentally observed so far, as it has not been
possible to generate the required electromagnetic field
strengths in a laboratory. However, due to the rapid devel-
opment of laser technology during the last decades, an
experimental verification of electron-positron pair produc-
tion in the focus of high-intensity laser pulses comes into
reach.

Vacuum pair production in an applied uniform electric
field of strength E0 may be viewed as a quantum process in
which virtual electron-positron dipoles can be separated to
become real pairs once they gain the binding energy of
2mc2. However, there will be strong spatial and temporal
inhomogeneities of the electromagnetic field in realistic
situations, as envisaged in upcoming high-intensity laser
experiments. The theoretical description of such a non-
perturbative phenomenon in quantum field theory out of
equilibrium is a demanding task and very little is known so
far for realistic scenarios. Most current approaches assume
the electromagnetic field as being an external one with a
one-dimensional inhomogeneity, so that the problem of
particle production can be mapped onto a one-dimensional
quantum mechanical scattering problem [4,5]. This ap-
proach neglects, in particular, the backreaction of the

created fermion-antifermion pairs on the electromagnetic
field. This is closely related to kinetic descriptions in terms
of a momentum-dependent distribution function of pairs in
collisionless (Vlasov) approximations [6–11]. For multi-
dimensional inhomogeneities, more advanced approaches
such as semiclassical approximations of the vacuum effec-
tive action [12] or the Dirac-Heisenberg-Wigner phase
space formulation [13,14] have been applied. However,
to describe strongly inhomogeneous field configurations,
including the full backreaction of the produced particles,
remains a theoretical challenge. In view of the potential
experimental applications it is crucial to devise new theo-
retical methods which can deal with this situation.
In this work we propose to use real-time lattice gauge

theory techniques [15] to compute fermion-antifermion
pair production in QED. In this nonperturbative approach
the full quantum dynamics of fermions is included, while
the gauge field dynamics can be accurately represented by
classical-statistical simulations for relevant field strengths.
As the inclusion of dynamical fermions can become
numerically very expensive, the real-time evolution of
fermions is taken into account by means of a low-cost
fermion algorithm [16].
As an example and in order to compare with established

continuum results, we apply these techniques to QED
in 1þ 1 dimensions—the massive Schwinger model
[17,18]. Introducing a lattice generalization of the Dirac-
Heisenberg-Wigner function, we show that the simula-
tions accurately reproduce the results described by the
Schwinger formula in the limit of a static background field.
We discuss the decay of the field due to the backreaction
of the created fermion-antifermion pairs and apply the
approach to strongly inhomogeneous gauge fields. For
these fields we compute for the first time the backreaction
of the created pairs on the gauge fields. Most strikingly,
we find that a self-consistent electric field between the

*f.hebenstreit@thphys.uni-heidelberg.de
†j.berges@thphys.uni-heidelberg.de
‡d.gelfand@thphys.uni-heidelberg.de

PHYSICAL REVIEW D 87, 105006 (2013)

1550-7998=2013=87(10)=105006(14) 105006-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.87.105006


produced fermion and the antifermion bunch builds up for
times exceeding the initial pulse duration. The two bunches
consisting of particles and antiparticles act as a capacitor,
creating a homogeneous electric field between them, which
can be represented in terms of a linear rising potential.

From the point of view of theoretical developments, it is
important to note that very similar questions are addressed
in physics of the early Universe or in collision experiments
of heavy nuclei. Nonequilibrium particle creation from
large coherent fields has been extensively studied in the
context of inflaton dynamics [19–21] and non-Abelian
gauge field theory [22,23]. The production of fermion-
antifermion pairs has been mainly investigated based on
semiclassical descriptions using the Dirac equation coupled
to time-dependent background fields [24–27]. Going
beyond these approximations, studies based on two-particle
irreducible effective action techniques [28,29] showed that
quantum effects can dramatically affect the far-from-
equilibrium production of fermion pairs. Recently, pair
production from scalar inflaton decay [29] as well as baryo-
genesis [30,31] has been studied using similar lattice field
theory methods as employed in this work. In particular, the
results of Refs. [29,31] provide a proof of principle that
real-time lattice simulations with Dirac fermions are indeed
feasible in 3þ 1 dimensions. They also have been tested
[29] against calculations based on real-time two-particle
irreducible effective action techniques [32,33] in their
range of applicability.

This paper is organized in the following way: In Sec. II
we briefly review the low-cost fermion algorithm and
derive the real-time lattice equations of motion for the
massive Schwinger model. Additionally, we construct a
lattice generalization of the Dirac-Heisenberg-Wigner
function which is subsequently used as a read-out tool
for fermionic distributions. In Sec. III we first apply this
formalism to a static electric background field and
compare to the Schwinger formula. We then discuss the
decay of the background field due to the backreaction
of the created fermion-antifermion pairs. As a second
example, we investigate the pair creation process in the
presence of a space- and time-dependent electric field. In
Sec. IV we conclude and give an outlook.

II. REAL-TIME LATTICE GAUGE THEORY

A. Continuum formulation

We consider QED in 1þ 1 dimensions, which is defined
in the continuum by the action

S ¼
Z

d2x

�
�c ½i��D� �m�c � 1

4
F ��F ��

�
; (1)

with the covariant derivative D� ¼ @� þ ieA� ensuring

gauge invariance of the action under local Uð1Þ transfor-
mations

c ! c eie�; A� ! A� � @��: (2)

Here � ¼ 0, 1 as space-time is only two dimensional
with x0 � t and x1 � x. The field strength tensor F �� ¼
@�A� � @�A� possesses only one nontrivial component
which is regarded as the electric field:

F 10 ¼ �F 01 ¼ Eðx; tÞ: (3)

We will frequently consider temporal axial gauge with
A0ðx; tÞ ¼ 0 and simply denote the spatial component of
the vector potential as Aðx; tÞ.1 One observes that the
electric field Eðx; tÞ is the canonical momentum conjugate
to Aðx; tÞ.
The Dirac algebra is composed of two Dirac gamma

matrices only:

f��; ��g ¼ 2g�� with ð��Þy ¼ �0���0; (4)

with g�� ¼ diagð1;�1Þ. This algebra may be represented
in terms of the first two Pauli matrices �0 � �1 and
�1 � �i�2. Moreover, the chirality matrix

f��; �5g ¼ 0 with ð�5Þy ¼ �5; ð�5Þ2 ¼ 1 (5)

can be defined in terms of the third Pauli matrix �5 � �3.
As a consequence, the spinors c and �c are two-component
field operators, obeying the equal-time anticommutation
relation:

fc ðx; tÞ; �c ðy; tÞg ¼ �0�ðx� yÞ: (6)

1. Time evolution equations

In general, in the classical-statistical theory observ-
ables are calculated as ensemble averages of solutions of
Maxwell’s equation

@�F ��ðx; tÞ ¼ hj�ðx; tÞi (7)

starting from different canonical field variables at initial
time t0; hereAt0ðxÞ ¼ Aðx; t0Þ andEt0ðxÞ ¼ Eðx; t0Þ. The
values for the canonical field variables at initial time are
distributed according to a normalized phase-space density
functional W½At0 ; Et0�, such that an observable hOi is

given by [34,35]

hOi ¼
Z

DAt0DEt0W½At0 ; Et0�Ocl½At0 ; Et0�: (8)

Here Ocl½At0 ;Et0�¼
R
DAO½A��ðA�Acl½At0 ;Et0�Þ,

where Acl½At0 ; Et0� is the solution of the classical field

equation (7) with initial conditions Acl ¼ At0 and Ecl ¼
Et0 at initial time t0. Ensemble averages at initial time are

taken to correspond to the respective quantum expectation
values for the gauge fields. The gauge field dynamics in the
classical-statistical approximation is accurately described
in the presence of sufficiently high occupation numbers or
fields, which is, in general, the case for the relevant field

1We note that this incomplete gauge choice leaves a residual
gauge invariance under time-independent gauge transformations.
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strengths for pair production. It breaks down once the
typical gauge field occupancies become of order unity.
For an introductory review see Ref. [32].

The subsequent time evolution then follows from (7)
with

hj�ðx; tÞi ¼ e

2
h½ �c ðx; tÞ; ��c ðx; tÞ�i; (9)

where the expectation value is taken with respect to the
initial state of the spinor field. We will restrict ourselves to
the Dirac vacuum within the current investigation. The
equations of motion for the spinors read

i��D�c ðx; tÞ ¼ mc ðx; tÞ; (10a)

iD�
�
�c ðx; tÞ�� ¼ �m �c ðx; tÞ: (10b)

Since the fermions appear only quadratically in the
action (1) these equations are exact for a given classical
gauge field configuration.

Equivalently, the above equations can be conveniently
expressed in terms of the equal-time statistical propagator

Fðx; y; tÞ � 1

2
h½c ðx; tÞ; �c ðy; tÞ�i; (11)

which yields the closed system of equations

i��D�;xFðx; y; tÞ ¼ mFðx; y; tÞ; (12a)

iD�
�;yFðx; y; tÞ�� ¼ �mFðx; y; tÞ; (12b)

@�F ��ðx; tÞ ¼ �eTr½��Fðx; x; tÞ�: (12c)

We note that the gauge field dynamics in 1þ 1 dimensions
is special since it is governed by the fermionic backreac-
tion only. Therefore, we do not consider sampling over
initial gauge field configurations in this work.

2. Initial conditions and low-cost fermions

We have to solve the Cauchy problem (12) in
order to calculate fermion-antifermion pair production.
Accordingly, we need to provide an initial value for the
statistical propagator at t0 ¼ 0. To this end, we consider an
asymptotic Dirac vacuum—corresponding to zero particle
number and vanishing gauge field—and employ the frame-
work of canonical quantization:

c ðx; tÞ ¼
Z dp

2�
eipx½uðpÞaðpÞe�i!t þ vð�pÞbyð�pÞei!t�;

(13)

with ! ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
and anticommuting creation and

annihilation operators

faðpÞ; ayðp0Þg ¼ fbðpÞ; byðp0Þg ¼ 2��ðp� p0Þ; (14)

whereas all other anticommutators vanish. An explicit
representation of the eigenspinors is given by

uðpÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!ð!þ pÞp !þ p

m

 !
; (15a)

vðpÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!ð!þ pÞp !þ p

�m

 !
; (15b)

fulfilling the orthogonality relations

uyðpÞuðpÞ ¼ 1 ¼ vyðpÞvðpÞ; uyðpÞvð�pÞ ¼ 0:

(16)

Because of the fact that the asymptotic Dirac vacuum is
homogeneous in space and time, we obtain the initial value

Fðx; y; t0Þ ¼
Z dp

2�
eipðx�yÞ m� p�1

2!
: (17)

The solution of the time evolution equation of the
statistical propagator (6) may be based on a mode function
expansion [15]. This treatment can be well suited for
low-dimensional systems but becomes computationally
too expensive in higher dimensions. In view of later appli-
cations of our approach to 3þ 1-dimensional systems, we
perform a stochastic integration of an equivalent set of
equations going by the name of low-cost fermions [16].
To this end, we introduce ensembles of classical stochastic
spinors, termed male cMðx; tÞ and female c Fðx; tÞ, instead
of spinor field operators. Given these c-number spinors,
we define

Fstoðx; y; tÞ � hcMðx; tÞ �c Fðy; tÞi ¼ hc Fðx; tÞ �cMðy; tÞi;
(18)

where here h� � �i is understood as an ensemble average.
The requirement

Fstoðx; y; tÞ¼! Fðx; y; tÞ (19)

is met provided that the stochastic spinors c gðx; tÞ, with
the gender index g ¼ fM;Fg, both satisfy the Dirac
equation (10a) and Fstoðx; y; tÞ takes the initial value (17).
This second requirement is achieved by initializing the
stochastic spinors according to

c gðx;t0Þ¼
Z dp

2�
eipx

1ffiffiffi
2

p ½uðpÞ�ðpÞ�vð�pÞ�ðpÞ�; (20)

with complex random variables �ðpÞ and �ðpÞ. Note that
the male and female spinors only differ by the sign of the
antiparticle component. In order to reproduce the initial
value (17), the random variables are sampled according to

h�ðpÞ��ðp0Þi ¼ h�ðpÞ��ðp0Þi ¼ ð2�Þ�ðp� p0Þ; (21)

whereas all other correlators vanish.
In an actual simulation employing low-cost fermions,

the closed system (12) is solved in the form

i��D�c gðx; tÞ ¼ mc gðx; tÞ; (22a)

@�F��ðx; tÞ ¼ �eTr½��Fstoðx; x; tÞ�: (22b)
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The stochastic spinors c gðx; tÞ are evolved in time inde-

pendently and the ensemble average h. . .i appearing in
the definition (18) is approximated by an average over a
sufficiently large number Nsto of pairs of male and female
spinors. While the computational cost of the mode function
approach scales with the volume of the phase space,
i.e., N2d

s in d dimensions, the resource requirements of
‘‘low-cost’’ fermions are proportional to just Nd

sNsto.

B. Lattice formulation

We solve the equations of motion (22) on a 1þ
1-dimensional space-time lattice. For the spatial sublattice,
we define

� ¼
�
l

�������� x

as
2 f0; . . . ; Ns � 1g

�
; (23)

with the spatial lattice spacing as and the total number of
spatial lattice sites Ns. A point on the space-time lattice
is then denoted by x � ðl; jÞ, with the temporal lattice
spacing at such that t ¼ atj. We employ periodic boundary
conditions in the compactified spatial direction, whereas
no periodicity assumptions apply for the noncompact tem-
poral direction. The lattice action governing the dynamics
is then composed of a pure gauge part as well as a part
describing the fermions, including their interaction with
the gauge field.

1. Pure gauge part

In order to put the gauge fields on the lattice, we use the
compact formulation of a gauge theory with Uð1Þ symme-
try. The parallel transporter U�ðxÞ is associated with the

link from a lattice point x to a neighboring point xþ �̂ in
the direction of the space-time lattice axis � ¼ 0, 1:

U�ðxÞ ¼ eiea�A�ðxÞ: (24)

The link variable obeys U�
�ðxÞ ¼ U�1

� ðxÞ and we use the

definition U��ðxÞ ¼ U�
�ðx� �̂Þ. The continuum gauge

transformation (2) translates to

c ðxÞ ! �ðxÞc ðxÞ; (25a)

U�ðxÞ ! �ðxÞU�ðxÞ��ðxþ �̂Þ; (25b)

with � 2 Uð1Þ. Given the gauge-dependent link variable,
we define the gauge-invariant plaquette variable:

U��ðxÞ ¼ U�ðxÞU�ðxþ �̂ÞU�
�ðxþ �̂ÞU�

�ðxÞ: (26)

Disregarding higher order terms in the lattice spacings a�,

we find

U��ðxÞ ¼ eiea�a�F��ðxÞ: (27)

Accordingly, the pure gauge part of the action can be
written as

Sg½U� ¼ 1

e2asat

X
x

Re½1�U01ðxÞ�: (28)

Moreover, the electric field (3) is given by

EðxÞ ¼ 1

easat
Im½U01ðxÞ�: (29)

2. Dirac and interaction parts

Using a symmetric finite difference approximation for
the first derivatives, the naive discretization of the fermi-
onic part is given by

Sð0Þ
f ½c ; �c ;U�¼atas

X
x

�c ðxÞ
�
i��

U�ðxÞc ðxþ�̂Þ�U��ðxÞc ðx��̂Þ
2a�

�mc ðxÞ
�
; (30)

where the gender index is omitted for simplicity. This
expression is gauge invariant under lattice gauge trans-
formations (25); however, it also gives rise to unphysical
states. This fermion doubling problem is well known
from Euclidean lattice field theory. However, unlike to
Euclidean time one distinguishes between temporal and
spatial doubler modes in the real-time formulation [15].

The spatial doublers, corresponding to high-momentum
excitations showing a low-energy dispersion relation, are
conveniently suppressed by adding a higher derivative term
to the action:

� as
2

Z
d2x �cD1D

1c ; (31)

which vanishes in the continuum limit as ! 0. This
gauge-invariant Wilson term in space ensures that only

low-momentum excitations show a low-energy dispersion
relation. In the lattice implementation, this corresponds to
adding one more term to the action:

SðWÞ
f ½c ; �c ; U�
¼ atas

X
x

�c ðxÞ

�
�
U1ðxÞc ðxþ 1̂Þ � 2c ðxÞ þU�1ðxÞc ðx� 1̂Þ

2as

�
:

(32)

We do not include a temporal Wilson term, as this would
turn the Dirac equation into a second order differential
equation in time. The temporal doublers are avoided, pro-
vided that we initialize only the physical mode and choose
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the temporal lattice spacing to be much smaller than the
spatial lattice spacing at � as [15,16,30].

3. Low-cost Wilson fermions

The construction of the stochastic spinor ensemble on
the space-time lattice follows the same lines as in the
continuum outlined in Sec. II A. For spatial momenta p
we define the conjugate lattice

~� ¼
�
q

��������Lp2� 2
�
�Ns

2
; . . . ;

Ns

2
� 1

��
; (33)

with the spatial volume L ¼ asNs. Accordingly, the dis-
crete Fourier transformation is given by

c ðxÞ ¼ 1

L

X
q2~�

exp

�
2�ilq

Ns

�
~c ðqÞ; (34a)

~c ðqÞ ¼ as
X
l2�

exp

�
� 2�ilq

Ns

�
c ðxÞ; (34b)

with the notation q � ðq; jÞ. The stochastic spinors are
then again initialized at t0 ¼ atj0 ¼ 0:

~c gðq0Þ ¼ 1ffiffiffi
2

p ½uðqÞ�ðqÞ � vð�qÞ�ðqÞ�; (35)

with q0 ¼ ðq; j0Þ and eigenspinors

uðqÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~!ð ~!þ ~qÞp ~!þ ~q

~m

 !
; (36a)

vðqÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~!ð ~!þ ~qÞp ~!þ ~q

� ~m

 !
: (36b)

Here the mass term is modified due to the spatial Wilson
term

~m ¼ mþ 2

as
sin 2

�
�q

Ns

�
; (37)

and we define the lattice quantities

~q ¼ 1

as
sin

�
2�q

Ns

�
; ~! ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m2 þ ~q2

q
: (38)

In order to reproduce the correct initial value for the
statistical propagator on the lattice,

Fðl1; l2;j0Þ¼ 1

L

X
q2~�

exp

�
2�iðl1� l2Þq

Ns

�
~m� ~q�1

2 ~!
; (39)

the complex random variables �ðqÞ and �ðqÞ are sampled
according to

h�ðqÞ��ðq0Þi ¼ h�ðqÞ��ðq0Þi ¼ L�q;q0 : (40)

This is most easily done by assuming

�ðqÞ ¼ XðqÞei	ðqÞ; �ðqÞ ¼ YðqÞei
ðqÞ (41)

and choosing the amplitudes XðqÞ and YðqÞ to be Gaussian
distributed, whereas the phases 	ðqÞ and 
ðqÞ are chosen
to be uniformly distributed on the interval ½��;�Þ.

4. Lattice equations of motion

To simplify simulations afterwards, we use the gauge
freedom and employ the lattice equivalent of the temporal
axial gauge, U0ðxÞ ¼ 1, for the equations of motion.
Stationarity of the lattice action

S½c ; �c ; U� ¼ Sg½U� þ Sð0Þ
f ½c ; �c ; U� þ SðWÞ

f ½c ; �c ; U�
(42)

with respect to the temporal link U0ðxÞ results in the
discretized version of the Gauss law:

EðxÞ � Eðx� 1̂Þ ¼ eas
2

�c ðxÞ�0c ðxþ 0̂Þ þ c:c: (43)

This equation is a constraint which is fulfilled during the
time evolution for the considered initial conditions.
The stationarity condition of the action with respect to

the spatial link U1ðxÞ, on the other hand, results in the
equation of motion

EðxÞ�Eðx� 0̂Þ¼�eat
2

�c ðxÞ½�1� i�U1ðxÞc ðxþ 1̂Þþc:c:

(44)

Finally, the stationarity condition of the action with
respect to the Dirac field �c ðxÞ gives

c ðxþ 0̂Þ ¼ c ðx� 0̂Þ � 2iat

�
mþ 1

as

�
�0c ðxÞ

� at
as

ð�0½�1 � i�U1ðxÞc ðxþ 1̂Þ

� �0½�1 þ i�U�1ðxÞc ðx� 1̂ÞÞ: (45)

The set of equations (43)–(45) is the lattice version of (22)
in temporal axial gauge including a spatial Wilson term.
In order to solve the Cauchy problem, we have to

provide the following initial values at t0 ¼ atj0 ¼ 0:

Eðx0 � 0̂Þ; U1ðx0Þ; c ðx0 � 0̂Þ; c ðx0Þ
with x0 ¼ ðl; j0Þ for all l 2 �. Most notably, we have to
choose initial values for the spinors at j0 � 1 and j0, which
is a consequence of the chosen leapfrog algorithm. To be
able to initialize them we assume a free field evolution at
initial times.
The algorithm, which is a variant of the one introduced

in Ref. [36], can then be summarized in the following way:

(1) Electric field evolution: Given Eðx� 0̂Þ, U1ðxÞ and
c ðxÞ we evolve the electric field to EðxÞ according
to (44).

(2) Dirac field evolution: Given c ðx� 0̂Þ, c ðxÞ and

U1ðxÞwe evolve the Dirac field to c ðxþ 0̂Þ accord-
ing to (45).
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(3) Temporal plaquette: We evaluate the temporal
plaquette U01ðxÞ according to (27):

U01ðxÞ ¼ eieasatF 01ðxÞ ¼ eieasatEðxÞ: (46)

(4) Spatial link evolution: The link variable U1ðxþ 0̂Þ
is calculated from the temporal plaquette U01ðxÞ in
temporal axial gauge according to (26):

U1ðxþ 0̂Þ ¼ U01ðxÞU1ðxÞ: (47)

(5) Reiterate steps 1–4.

C. Gauge-invariant correlation functions

In order to compare our simulation results with typical
discussions using the Dirac-Heisenberg-Wigner phase-
space approach [13,14,37–41], we define suitable gauge-
invariant two-point correlation functions on the lattice.

1. Continuum Wigner function

Starting from the continuum expression for the statisti-
cal propagator (11), a gauge-invariant generalization may
be defined as

~Fðx1; x2; tÞ ¼ exp

�
ie
Z x1

x2

dxAðx; tÞ
�
Fðx1; x2; tÞ: (48)

The Wilson line factor ensures gauge invariance under
local Uð1Þ transformations. The Fourier transformation
with respect to the relative coordinate defines the Wigner
function

W ðx; p; tÞ � �
Z

dye�ipy ~Fðxþ y=2; x� y=2; tÞ; (49)

with x ¼ ðx1 þ x2Þ=2 and y ¼ x1 � x2. The Wilson
line factor in (48) is not unique; however, a physical
sensible interpretation of p as kinetic momentum forces
the integration path to be chosen along the straight line.
Equivalently to (49), we may also write

W ðx; p; tÞ ¼ �
Z

dze2ipðx�zÞ ~Fðz; 2x� z; tÞ þ �:c: (50)

with the abbreviation

Dþ �:c: � Dþ �0Dy�0: (51)

As the Wigner function is in the Dirac algebra and fulfills

W y ¼ �0W�0, one can decompose it in terms of its
Dirac bilinears:

W ¼ 1

2
½Sþ i�5Pþ �0V0 � �1V�; (52)

where all its irreducible components can be chosen to be
real. Regarding the Dirac vacuum, which is described by
the statistical propagator (17), the only nonvanishing com-
ponents are given by

S vacðx; p; tÞ ¼ �m

!
; Vvacðx; p; tÞ ¼ � p

!
: (53)

In terms of these components the total chargeQ and the
total energy E can be expressed as phase-space integrals:

Q ¼ e
Z

d�V0ðx; p; tÞ; (54a)

E ¼
Z

d�½mSðx; p; tÞ þ pVðx; p; tÞ� þ 1

2

Z
dxE2ðx; tÞ;

(54b)

with the phase-space volume element d� ¼ dxdp=ð2�Þ.
The integrands �ðx; p; tÞ ¼ ½mSðx; p; tÞ þ pVðx; p; tÞ� and
%ðx; p; tÞ ¼ V0ðx; p; tÞ are regarded as energy pseudo-
distribution and charge pseudo-distribution, respectively.
We may define further quantities such as the particle
number pseudo-distributions:

n�ðx;p;tÞ¼�ðx;p;tÞ��vacðx;p;tÞ�!V0ðx;p;tÞ
2!

; (55)

which may be associated with the density of particles and
antiparticles, respectively. Of course, in the interacting
quantum theory the interpretation of these phase-space
pseudo-distributions, collectively denoted as mðx; p; tÞ,
has to be taken with care. We emphasize that our approach
is not based on these quantities and we use them only for
read-out and comparison with literature results. We will
frequently consider also the partially integrated position-
space and momentum-space marginal distributions

mXðx; tÞ �
Z dp

2�
mðx; p; tÞ; (56a)

mP ðp; tÞ �
Z

dxmðx; p; tÞ; (56b)

or the fully integrated quantities

mðtÞ �
Z

d�mðx; p; tÞ; (57)

instead of the pseudo-distributions mðx; p; tÞ.

2. Lattice Wigner function

In order to adjust the above continuum treatment to the
lattice, we have to account for the periodicity of the spatial
lattice properly. Our approach is an extension of previous
work on the discrete Wigner function in the context of
signal processing [42].
We first define the gauge-invariant generalization of the

lattice statistical propagator according to

~Fðl1; l2; jÞ ¼ Uðl1; l2; jÞFðl1; l2; jÞ; (58)

whereUðl1; l2; jÞ is the lattice analogue of the Wilson line
factor along the straight line path. However, since the
straight line path between two lattice points is not unique
due the periodicity of the lattice, we choose to define it
such that properties of the above standard continuum
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interpretation apply. It turns out that this requires taking the
shortest path between two lattice points. Accordingly, for
�l ¼ l1 � l2 > 0 we employ

�l 	 Ns

2
: U ¼ Yl1�1

l¼l2

U1ðxÞ; (59a)

�l >
Ns

2
: U ¼ YNs�1

l¼l1

U�
1ðxÞ �

Yl2�1

l¼0

U�
1ðxÞ: (59b)

On the other hand, for �l < 0 we use

�l >�Ns

2
: U ¼ Yl2�1

l¼l1

U�
1ðxÞ; (60a)

�l 	 �Ns

2
: U ¼ YNs�1

l¼l2

U1ðxÞ �
Yl1�1

l¼0

U1ðxÞ: (60b)

More precisely, we utilize the following Wigner lattices:

�W ¼
�
l

��������2xas 2 f0; . . . ; 2Ns � 1g
�
; (61a)

~�W ¼
�
q

��������Lp� 2 f�Ns; . . . ; Ns � 1g
�
; (61b)

which have the same extent as the original ones � and ~�,
however, each with twice as many grid points. We then
define the lattice Wigner function according to

W ðl; q; jÞ � �as
2
e�ilq=Ns

� X
k2�

e�2�ikq=Ns ~Fðk; ½l� k�Ns
; jÞ þ �:c:

(62)

with l 2 �W and q 2 ~�W . We account for the periodicity
of the lattice by taking the module operation in the second
argument of the statistical propagator:

½l� k�Ns
¼ ðl� kÞmodNs: (63)

This definition is such that we reproduce the above
continuum expressions for the marginal distributions, as
shown in Appendix A. Moreover, the lattice Wigner func-

tion (62) again fulfills W y ¼ �0W�0 so that the decom-
position in terms of its Dirac bilinears (52) is possible.

In complete analogy to the continuum, we may then
again define various pseudo-distributions:

%ðl;q;tÞ¼eV0ðl;q;tÞ; (64a)

�ðl;q;tÞ¼ ½ ~mSðl;q;tÞþ ~qVðl;q;tÞ�; (64b)

n�ðl;q;tÞ¼�ðl;q;tÞ��vacðl;q;tÞ� ~!V0ðl;q;tÞ
2 ~!

; (64c)

corresponding to charge, energy, particle number and antipar-
ticle number, respectively. Given these pseudo-distributions
mðl; q; tÞ, the marginal distributions are defined via

mXðl; jÞ � 1

2L

X
q2~�W

mðl; q; jÞ; (65a)

mP ðq; jÞ � as
2

X
l2�W

mðl; q; jÞ; (65b)

whereas the fully integrated quantities are given by

mðjÞ ¼ 1

2Ns

X
q2~�

X
l2�W

mðl; q; jÞ: (66)

Here one should note the summation order in the last
expression: The sum over l 2 �W yields the marginal
distribution mP ðq; tÞ which is nonvanishing for even q
only. Accordingly, the subsequent sum is just taken

over q 2 ~�.

III. PAIR PRODUCTION SIMULATIONS

We now come to the results which are based on the
lattice approach presented in the previous section. As a
first example, we consider a static electric background
field, disregarding the backreaction of created fermion-
antifermion pairs. This configuration can be solved analyti-
cally such that we can compare our lattice simulations with
well-established continuum results. Subsequently, we also
include the backreaction of created fermion-antifermion
pairs and discuss the decay of the gauge field which shuts
pair production off after a characteristic time.
As a second example, we investigate the pair creation

process in the presence of a space- and time-dependent
electric field. Neglecting backreaction in a first step,
we can compare to and complement previous investiga-
tions based on the continuum Dirac-Heisenberg-Wigner
approach [40,43]. Subsequently, we solve the full lattice
evolution and compare.

A. Spatially homogeneous gauge field

We consider a static electric background field Eðx; tÞ ¼
E0 in temporal axial gauge A0 ¼ 0, represented by the
vector potential

AðtÞ ¼ E0t: (67)

Within the compact lattice formulation, this corresponds to
a trivial temporal link U0ðxÞ ¼ 1 and the spatial link

U1ðxÞ ¼ eieatasE0j (68)

disregarding higher order terms in the lattice spacing.
Moreover, we introduce the dimensionless field strength
parameter

� ¼ E0

Ec

; (69)

with the critical Schwinger field strength Ec ¼ m2=e. For
all subsequent numerical results we employ e=m ¼ 0:3.
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In Appendix B we briefly review some analytic results,
which are used for comparison in the following.

1. Particle production without backreaction

In this section we disregard the backreaction of created
fermion-antifermion pairs on the electric field. This corre-
sponds to neglecting the fermionic contributions in the
gauge field equation of motion (44). Starting with the
vacuum initial conditions for the fermions, this amounts
to evolving the fermion equation (45) with a sudden
switching-on of the electric field at initial time.

In Fig. 1 we show the time evolution of the total number
of produced particles, nþðtÞ, for various values of the
dimensionless field strength parameter �. Most notably,
we observe two different regimes: At early times there is
a transient oscillatory behavior superimposed which can be
attributed to the sudden switching-on of the electric field.
For � ¼ 1 we estimate this oscillation to be exponentially
damped with a characteristic rate � ’ 1=m, leading to a
purely linear growth to very good accuracy after times of a
few ��1.

The slope of the linear rise of nþðtÞ strongly depends on
the value of �. In order to extract its functional dependence,
we perform a linear fit. For this we measure the change in
the total number of particles �nþ which are produced
during the time interval T ¼ 10=m for times large com-
pared to ��1. In Fig. 2 we compare the slope for different
values of � with the analytical result from Appendix B:

�nþ

TLm2
¼ �

2�
exp

�
��

�

�
: (70)

We emphasize that for this analytical result the initial time
is sent to the remote past such that it cannot reproduce the
transient oscillatory regime. However, both the simulation
and the analytical result should accurately agree for large
enough times.

The lattice results are shown in Fig. 2 for different
spatial lattice spacings as, keeping the volume L ¼ asNs

constant, thus increasing Ns accordingly. One clearly
observes that the simulation and the analytical result (70)
fall nearly on top of each other for small enough as,
indicating that we are close to the continuum limit in that
case. As a matter of fact, we find that temporal discretiza-
tion errors are quite negligible for at & as=20. This
corroborates that the real-time lattice simulation is in fact
capable of reproducing the analytic results in the contin-
uum limit to very good accuracy.
In Fig. 3 we show the normalized particle number

marginal distribution nþP ðp; tÞ=L, corresponding to the

momentum spectrum of created particles (B2), and com-
pare it to the continuum value fðpÞ. In comparison to the
integrated particle number shown above, the spectrum is
not smooth but shows fluctuations due to the sampling of
low-cost fermions. As a matter of fact, these fluctuations
can be systematically reduced by taking Nsto larger. We
find that it suffices to take the number Nsto of the
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FIG. 1 (color online). Time evolution of the total particle
number nþðtÞ for different values of �. The parameters are
Nsto ¼ 103, at ¼ 0:00125=m, as ¼ 0:025=m, Ns ¼ 1024 such
that L ¼ 25:6=m.

0 25 50
p m

0.02

0.04

0.06

0.08

0.10

n p,t L

FIG. 3 (color online). Comparison of the continuum expres-
sion fðpÞ (solid line) with the normalized particle number
marginal distribution nþP ðp; tÞ=L (dashed line) for � ¼ 1 at

t ¼ 50=m. The parameters are Nsto ¼ 105, at ¼ 0:00125=m,
as ¼ 0:025=m, Ns ¼ 1024 such that L ¼ 25:6=m.
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FIG. 2 (color online). Comparison of the analytical results (70)
with the numerical fit for L ¼ 25:6=m and different lattice
spacings as. The remaining parameters are Nsto ¼ 103 and
at ¼ as=20.
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order of 103 in order to accurately calculate integrated
quantities such as nþðtÞ. This is in contrast to the momen-
tum spectrum nþP ðp; tÞ where the number Nsto needed to be

at least of the order of 104 to suppress the statistical
fluctuations sufficiently and obtain sensible results. In
contrast to the one-dimensional case considered here, the
convergence is expected to be even better for three space
dimensions where self-averaging plays a major role [29].

The established interpretation of fðpÞ is such that elec-
tric field energy is taken and transformed into virtual
fermion-antifermion pairs, showing up as the distinctive
peak around momenta p ¼ 0. If the applied field strength
E0 is large enough, i.e., of the order of Ec, these charged
excitations can be separated over the Compton wavelength
and become real fermion-antifermion pairs. These real
particles are then further accelerated in the background
electric field and achieve higher and higher momenta
up to p ! 1.

We observe good agreement of simulation and analytical
results regarding the virtual fermion-antifermion peak
around p ¼ 0 as well as the overall magnitude of
nþP ðp; tÞ=L. However, we observe a qualitatively different

behavior for large momenta. This is due to the fact that the
analytic result assumes an electric field which has existed
for all times such that all momenta up to p ! 1 are
already occupied, whereas we solve an initial value prob-
lem on the lattice. Accordingly, we observe a transient
effect corresponding to the peak at high momenta propa-
gating to higher and higher momenta during the time
evolution.

2. Particle production with backreaction

We now include the backreaction of created fermion-
antifermion pairs on the electric field. As a consequence,
particle creation comes with a simultaneous decrease of
the electric field due to energy conservation. This energy
transfer from the gauge sector to the fermion sector finally
results in a decay of the electric field.

In Fig. 4 we compare the time evolution of the total
particle number nþðtÞ for simulations with and without
backreaction. We have already seen in the previous section
that the particle number grows eventually linearly if we
disregard the backreaction of created fermion-antifermion
pairs on the electric field. However, this changes drastically
if we include the backreaction mechanism: Following the
transient regime at early times, the pair production rate
immediately slows down once the pair creation process
kicks in and the electric field is weakened. Eventually,
this gets to a point where the fermion-antifermion produc-
tion process effectively stops and nþðtÞ levels off. This
process happens on rather short time scales of the order
of �t
 25=m.

To see the long-time behavior, in Fig. 5 we show the
particle number nþðtÞ and the electric field EðtÞ for times
up to 800=m. Most notably, we observe the occurrence

of plasma oscillations in accordance with previous inves-
tigations [6]: Starting from t0 ¼ 0, the magnitude of the
electric field decreases due to the creation of fermion-
antifermion pairs. Because of the backreaction mechanism,
an internal electric field builds up so that the field even-
tually changes sign and grows until a first local minimum is
achieved. The electric field then increases again, changes
sign, reaches a local maximum and so forth. The oscillation
frequency � increases with the number of produced
fermions, in accordance with the expected parametric
dependence.
The behavior of the particle number nþðtÞ follows from

the oscillatory behavior of the electric field: Particle
creation effectively terminates when the magnitude of the
field strength drops below 
0:5Ec, corresponding to the
approximate plateaus in nþðtÞ. However, at those instants
of time at which the electric field reaches local extrema,
fermions are created again. Because of the fact that the
envelope of the electric field decreases with time, the
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FIG. 4 (color online). Time evolution of the total particle
number nþðtÞ with (solid line) and without (dashed line)
backreaction for an initial value � ¼ 1. The parameters are
Nsto ¼ 104, at ¼ 0:0025=m, as ¼ 0:075=m, Ns ¼ 256 such
that L ¼ 19:2=m.
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FIG. 5 (color online). Time evolution of the electric field
EðtÞ (dashed line) and the total particle number nþðtÞ
(solid line) for an initial value � ¼ 1 for a much longer time
period. The parameters are as in Fig. 4.
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particle number nþðtÞ assumes the shape of a staircase with
decreasing step height.

We emphasize that the classicality condition hAAi�1
[34] is well fulfilled also after the backreaction effectively
terminates the pair production: For an electric field
amplitude E with characteristic oscillation frequency �
the classicality condition reads E2=�2 � 1. In our case
E ’ Ec=2 ¼ m2=2e during these times such that with
� ’ �m=50 for the employed coupling e=m ¼ 0:3 we
have E2=�2 ’ 700.

Moreover, in Fig. 6 we demonstrate that the energy
transfer from the gauge sector to the fermion sector is in
agreement with energy conservation.

Finally, in Fig. 7 we compare the normalized particle
number marginal distributions nþP ðp; tÞ=L for simulations

with and without backreaction prior to the onset of plasma
oscillations. We observe two major modifications if we
include the backreaction.

First, the high-momentum peak is shifted to lower
momenta. This is due to the fact that acceleration in
an electric field is proportional to its field strength.
Accordingly, particles are less accelerated and achieve
lower momenta if the electric field is decreasing gradually.
Second, the overall magnitude of nþP ðp; tÞ=L declines in

the low-momentum regime. Again, this can be attributed to
the decay of the electric field, as the decrease of the field
strength is accompanied by a drop in the pair production rate.
Consequently, this gradual decrease of the pair production
rate shows itself as a decreasing amplitude of nþP ðp; tÞ=L.
This simple picture changes rather drastically at late

times because of the occurrence of plasma oscillations.
In Fig. 8 we show the normalized particle number marginal
distribution nþP ðp; tÞ=L at different times. Because of the

fact that the electric field changes its sign again and again,
the fermions are accelerated back and forth in momentum
space over and over again. The shaking of the fermions by
the electric field has several implications.
In contrast to the wedge-shaped spectrum at early times,

this results in a peaked nþP ðp; tÞ=L at late times. It has to be

emphasized, however, that this peaked distribution still
oscillates around p ¼ 0 in accordance with the electric
field. Moreover, owing to the ongoing creation of
fermion-antifermion pairs at times when the electric field
reaches its local extrema, the overall magnitude of
nþP ðp; tÞ=L increases as well.

B. Space- and time-dependent field

As a further example we consider an inhomogeneous
electric background field which is localized in space and
time:

Eðx; tÞ ¼ E0sech
2ð!tÞ exp

�
� x2

2�2

�
; (71)

where! and � determine the duration and spatial extent of
the pulse, respectively. Studies based on the continuum
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FIG. 6 (color online). Energy transfer between the fermionic
sector (solid line) and the gauge sector (dashed line) for an initial
value � ¼ 1. The dotted line shows the total energy, with the
fermion vacuum contribution being subtracted. The parameters
are as in Fig. 4.
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FIG. 7 (color online). Normalized particle number marginal
distribution nþP ðp; tÞ=L with (solid line) and without (dashed

line) backreaction for an initial value � ¼ 1 at t ¼ 50=m. The
parameters are Nsto ¼ 105, at ¼ 0:00125=m, as ¼ 0:025=m,
Ns ¼ 1024 such that L ¼ 25:6=m.
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FIG. 8 (color online). Normalized particle number marginal
distribution nþP ðp; tÞ=L for simulations with backreaction at

different times for an initial value � ¼ 1. The parameters are
Nsto ¼ 104, at ¼ 0:0025=m, as ¼ 0:075=m, Ns ¼ 512 such that
L ¼ 38:4=m.
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Dirac-Heisenberg-Wigner function only recently started to
address such inhomogeneous configurations, disregarding
the backreaction of created fermion-antifermion pairs
[40,43]. Here we are, for the first time, able to take this
fermionic backreaction into account using our lattice
techniques. This will allow us to discuss the striking phe-
nomenon of a linear rising potential building up between
produced fermion bunches for times exceeding the pulse
duration.

1. Particle production without backreaction

In a first step, we solve the problem without taking into
account backreaction. Consequently, we do not evolve the
electric field according to (44), as it does not fulfill
Maxwell’s equation. We rather force the electric field to
be given according to (71) at every space-time point and
investigate the fermion-antifermion production in this
given background field.

In Fig. 9 we show the position-space marginal distribu-
tions n�Xðx; tÞ for three different times, with the electric

field parameters � ¼ 1, ! ¼ 0:1m and � ¼ 5=m. One
observes two qualitatively different regimes, correspond-
ing to early times (‘‘creation regime’’) and late times
(‘‘propagation regime’’).

The fermion-antifermion pair creation process takes
place at early times, when charged excitations are created
in a space region where the electric field acts. The creation
process also comes with a polarization effect, separating
positive from negative charges. It has to be emphasized,
however, that nþXðx; tÞ and n�Xðx; tÞ still overlap at these

early times.
This changes in the propagation regime: Owing to the

acceleration by the electric field, one bunch of excitations
with positive charge propagates into the positive x direction,
whereas another bunch of excitations with negative charge
propagates into the opposite direction. Asymptotically,
these bunches can be identified with particles and antiparti-
cles, respectively.

In Fig. 10 we show the total number of created particles
nþðtÞ for t ! 1 as a function of the spatial extent �.
The result without backreaction corresponds to the dashed
line. One clearly observes the termination of the fermion-
antifermion creation process for small values of �: The pair
creation process terminates if the work done by the electric
field over its spatial extent is too small to provide the rest
mass energy of the fermion-antifermion pair. This obser-
vation is in perfect agreement with previous studies
[12,40,44,45]. For large values of � we find a linear growth
of the particle number, which reflects the scaling of the
available electric field energy that grows with �.

2. Particle production with backreaction

We now consider the numerical solution of the full
lattice problem including backreaction. The solid line in
Fig. 10 shows the full result for the total number of created

particles nþðt ! 1Þ as a function of the spatial extent �. In
accordance with the previous discussion we find that the
backreaction mechanism tends to decrease the number of
created particles since the electric field is weakened by the
pair production. For large enough spatial extent of the
pulse, such that the pair production is significant enough
for backreaction to become important, this eventually
decreases the slope of the curve growing linearly with �
for large spatial extent.
The dashed curve in the upper part of Fig. 11 shows

the position-space marginal distribution n�Xðx; tÞ at time

t ¼ 6=!. At this instant of time, the initial electric field
pulse and the corresponding pair creation regime are
over. The electric field parameters are � ¼ 1,
! ¼ 0:2m and � ¼ 5=m.
The acceleration by the electric field leads to one bunch

of excitations with positive charge propagating into the
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FIG. 9 (color online). Position-space marginal distributions
n�Xðx; tÞ (solid line) and nþXðp; tÞ (dashed line) for � ¼ 1 at

different times t ¼ 0 (top), t ¼ 0:6=! (middle) and t ¼ 1:2=!
(bottom). The parameters are Nsto ¼ 105, at ¼ 0:01=m,
as ¼ 0:22=m, Ns ¼ 256 such that L ¼ 56:32=m.
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positive x direction, whereas another bunch of excitations
with negative charge is propagating into the opposite
direction. Most strikingly, we find that a self-consistent
electric field Eðx; tÞ between the two fermion bunches
builds up in the absence of any external field (71) at these
times. The two bunches consisting of particles and anti-
particles act as a capacitor [46], creating a homogeneous
electric field between them, whereas there is no field out-
side them. This electric field is shown in the lower part of
Fig. 11. Owing to the description of the fermionic degrees
of freedom in terms of low-cost fermions, we observe
some small fluctuations in the electric field on top of this
homogeneous field. Again, these fluctuations decrease with
increasing Nsto.

The homogeneous electric field between the fermion
bunches can be represented in terms of a linear rising

potential. For larger values of the initial field strength E0

or the coupling e, we expect that secondary particle
creation due to the self-consistent electric field takes place.
This mechanism would result in the depletion of the
electric field reminiscent of the effect of string breaking
in QCD. This will involve further studies with supercritical
initial field strengths, which is beyond the scope of the
present work and deferred to a future publication.

IV. CONCLUSION AND OUTLOOK

We investigated fermion-antifermion pair production in
1þ 1 dimensions based on real-time lattice simulations.
To this end, we discussed the lattice equations of motion
using the low-cost fermion algorithm to solve them.
In order to define gauge-invariant fermionic distributions
corresponding to charge, energy, particle number and
antiparticle number, we derived the lattice analogue of
the continuum Dirac-Heisenberg-Wigner function. In the
continuum formulation, gauge invariance of these distri-
butions is achieved by a Wilson line along the straight line.
On the lattice, however, the straight line path is not unique
due the periodicity of the lattice. We showed that corre-
spondence with established results is achieved by replacing
the straight path in the continuum by the shortest path on
the lattice.
Investigating the field-strength dependence of the

fermion-antifermion production rate in a static background
field, we accurately reproduced the Schwinger formula.
We then discussed the decay of the field due to the back-
reaction of the created fermion-antifermion pairs. For the
case of inhomogeneous gauge fields we computed for
the first time the full problem, taking backreaction into
account. Most notably, we could show that the two bunches
consisting of particles and antiparticles create a homoge-
neous electric field between them, whereas there is no field
outside them. In subsequent work we will extend these
studies to supercritical initial field strengths, which is
expected to lead to striking pair creation phenomena
reminiscent of string breaking.
It should be emphasized that the real-time lattice simu-

lations are considerably cheaper from a computational
point of view than continuum approaches such as those
based on the Dirac-Heisenberg-Wigner function. In view
of potential experimental applications it is crucial that
strongly inhomogeneous configurations can be well
described. Strong inhomogeneities are a challenge for
alternative approaches based on derivative expansions
underlying effective kinetic descriptions. Here the lattice
approach, which is based on ensemble techniques using
inhomogeneous configurations, is particularly powerful.
We employed a low-cost fermion algorithm in our 1þ

1-dimensional simulations even though a mode-function
expansion of the spinors would have been the more direct
way. One reason for our choice was that we are aiming at
investigations of QED in 3þ 1 dimensions since then the
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FIG. 10 (color online). Total number of created particles
nþðt ! 1Þ for � ¼ 1 as a function of the spatial extent �
of the pulse. Compared are the full result (solid line) and the
result without backreaction (dashed line). The parameters are
Nsto ¼ 105, at ¼ 0:00125=m, as ¼ 0:22=m, Ns ¼ 512 such that
L ¼ 112:64=m.
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FIG. 11 (color online). Self-consistent electric field Eðx; tÞ
(solid line) and position-space marginal distributions n�Xðx; tÞ
(dashed line) at t ¼ 6=! for � ¼ 1, ! ¼ 0:2m and � ¼ 5=m.
The arrows indicate the propagation direction of the particle
and antiparticle bunch, respectively. The parameters are
Nsto ¼ 106, at ¼ 0:0075=m, as ¼ 0:22=m, Ns ¼ 512 such that
L ¼ 112:64=m.
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application of the mode function expansion becomes
impracticable. The anticipated investigations of QED in
3þ 1 dimensions will show several major differences
compared to the massive Schwinger model. Most notably,
the gauge degrees of freedom are dynamical in contrast to
1þ 1 dimensions where the dynamics of the electric field
is governed only by the fermionic backreaction. Moreover,
the issue of renormalization will become relevant in 3þ 1
dimensions in contrast to the super-renormalizability of the
massive Schwinger model.

By means of the present lattice approach to pair produc-
tion we hope to deepen our understanding of nonequilib-
riumQED, including highly topical issues such as threshold
lowering, collective phenomena, instabilities or cascades.
In the long run, this approachmay also be extended toQCD.
Most notably, the investigation of quark-antiquark produc-
tion from gluon fields would give important insights into
the early stages of relativistic heavy-ion collisions.
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APPENDIX A: MARGINAL DISTRIBUTIONS

The definition of the lattice Wigner function (62) is such
that we reproduce the continuum expressions for its
marginal distributions:

WXðx; tÞ ¼ �Fðx; x; tÞ; (A1a)

WP ðp; tÞ ¼ �
Z

dx1dx2e
�ipðx1�x2Þ ~Fðx1; x2; tÞ: (A1b)

Regarding the position-space marginal distribution on
the lattice, we consider

WXðl; jÞ ¼ 1

2L

X
q2~�W

W ðl; q; jÞ: (A2)

Upon performing the summation over q, we encounterX
q2~�W

e�iðl�2kÞq=Ns ¼ 2Ns�2k;l: (A3)

The Kronecker delta indicates that W ðl; jÞ is only non-
vanishing for even l:

WXðl; jÞ ¼ �Fðl; l; jÞ; (A4)

with l 2 �.
Regarding the momentum-space marginal distribution

on the lattice, we consider

WP ðq; jÞ ¼ as
2

X
l2�W

W ðl; q; jÞ: (A5)

Because of the fact that we used the module operation in
(62), we obtain

X2Ns�1

l¼0

e�ilq=Ns ~Fðk; ½l� k�Ns
; jÞ

¼ ð1þ ei�qÞ XNs�1

l¼0

e�ilq=Ns ~Fðk; ½l� k�Ns
; jÞ: (A6)

The factor (1þ ei�q) shows that W ðq; jÞ is only non-
vanishing for even q. Accordingly, if we redefine the
summation indices,

l1 ¼ l 2 � and l2 ¼ ½l� k�Ns
2 �; (A7)

we reproduce the analogue of (A1b):

WP ðq;jÞ¼�a2s
X
l12�

X
l22�

e�2�iqðl1�l2Þ=Ns ~Fðl1;l2;jÞ; (A8)

with q 2 ~�.

APPENDIX B: ANALYTIC RESULTS
FOR Eðx; tÞ¼E0

We briefly review some analytic results for the static
background field [14]. As a matter of fact, the Dirac
equation is analytically solvable for Eðx; tÞ ¼ E0 in terms
of parabolic cylinder functions D�ðzÞ. Accordingly, it is
also possible to compute W ðx; p; tÞ explicitly.
The pseudo-distributions mðx; p; tÞ, which have been

introduced in Sec. II C, are then given by

%ðx; p; tÞ ¼ 0; (B1a)

�ðx; p; tÞ ¼ ½2fðpÞ � 1�!; (B1b)

n�ðx; p; tÞ ¼ fðpÞ: (B1c)

The function fðpÞ is usually denoted as the single-particle
momentum distribution:

fðpÞ¼1

2
e��=4�

�
1

2�

�
1�p

!

�
D1ðpÞ

þ
�
1þp

!

�
D2ðpÞ� mffiffiffiffiffiffi

2�
p

!
D3ðpÞ

�
; (B2)

with

D1ðpÞ ¼ jD�1þi=2�ðp̂Þj2; (B3a)

D2ðpÞ ¼ jDi=2�ðp̂Þj2; (B3b)

D3ðpÞ ¼ ei�=4Di=2�ðp̂ÞD�1�i=2�ðp̂�Þ þ c:c:; (B3c)

and

p̂ ¼ �
ffiffiffi
2

�

s
p

m
e�i�=4: (B4)
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We note that fðpÞ is independent of the time variable t. It
can be shown that fðpÞ vanishes for small momenta and
approaches a nonvanishing constant for large momenta:

lim
p!�1fðpÞ ¼ 0; (B5a)

lim
p!1fðpÞ ¼ exp

�
��

�

�
: (B5b)

As the expressions (B1) are spatially homogeneous, they
are trivially related to the momentum-space marginal
distributions mP ðp; tÞ:

mðx; p; tÞ ¼ mP ðp; tÞ
L

; (B6)

in the infinite volume L ! 1. Most notably, the rate at
which particles and antiparticles are created is a constant,
so that the total number of particles and antiparticles,
respectively, which are created per volume L and time T,
is given by

�n�

LT
¼ eE0

2�
exp

�
��m2

eE0

�
¼ m2�

2�
exp

�
��

�

�
: (B7)
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