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We investigate some higher-loop structural properties of the � function in asymptotically free vectorial

gauge theories. Our main focus is on theories with fermion contents that lead to an infrared (IR) zero in �.

We present analytic and numerical calculations of the value of the gauge coupling where � reaches a

minimum, the value of � at this minimum, and the slope of � at the IR zero, at two-, three-, and four-loop

order. The slope of � at the IR zero is relevant for estimates of a dilaton mass in quasiconformal gauge

theories. Some inequalities are derived concerning the dependence of the above quantities on loop order.

A general inequality is derived concerning the dependence of the shift of the IR zero of �, from the n-loop

to the (nþ 1)-loop order, on the sign of the (nþ 1)-loop coefficient in �. Some results are also given for

gauge theories with N ¼ 1 supersymmetry.
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I. INTRODUCTION

The evolution of an asymptotically free gauge theory
from high Euclidean momentum scales � in the deep
ultraviolet (UV) to small scales in the infrared is of funda-
mental field-theoretic interest. This evolution is described
by the � function of the theory. Following the pioneering
calculations of the � function at one-loop [1] and two-loop
[2] order, this function was subsequently calculated to
three-loop [3] and four-loop [4] order in the modified

minimal [5] subtraction (MS) scheme [6]. The anomalous
dimension of the (gauge-invariant) fermion bilinear opera-
tor, �m, has also been calculated up to four-loop order in
this scheme [7].

Here we consider the UV to IR evolution of an asymp-
totically free vectorial gauge theory with gauge group G
and Nf massless fermions transforming according to a

representation R of G [8]. An interesting property of this
type of theory is that, for sufficiently largeNf, the two-loop

� function has an IR zero [2,9]. If Nf is near to the

maximum allowed by the property of asymptotic freedom,
then this IR zero occurs at a small value, but, as Nf

decreases, it increases to stronger coupling. This motivates
the calculation of the IR zero of � at higher-loop order
[10]. Calculations of this IR zero, and the associated
anomalous dimension of the (gauge-invariant) fermion bi-
linear, �m, have recently been done to four-loop order for
an asymptotically free vectorial gauge theory with gauge
group G and Nf fermions in an arbitrary representation R,

with explicit results for R equal to the fundamental, ad-
joint, and symmetric and antisymmetric rank-2 tensor rep-
resentations [11,12]. A corresponding analysis was carried
out for an asymptotically free vectorial gauge theory with
N ¼ 1 supersymmetry in [13]. Although the terms in the
� function at three- and higher-loop order, and the terms in

�m at two- and higher-loop order, are dependent on the
scheme used for regularization and renormalization of the
theory, these higher-loop calculations are valuable because
they give a quantitative measure of the accuracy and
stability of the lowest-order calculations of �IR and �m.
A study of the effect of scheme transformations on results
for �IR was performed in [14].
In this paper we will present calculations at the n-loop

level, where n ¼ 2, 3, 4, of several important quantities
that provide a detailed description of the UV to IR evolu-
tion of a theory with an IR zero in its � function. Our
general results apply for an arbitrary (non-Abelian) gauge
group G. We denote the running gauge coupling at a scale
� as gð�Þ, and define �ð�Þ ¼ gð�Þ2=ð4�Þ. (The � argu-
ment will often be suppressed in the notation.) The loop
order to which a quantity is calculated is indicated explic-
itly via the subscript n‘, standing for n loop, so that the
n-loop � function and its IR zero are denoted �n‘ and
�IR;n‘. Given the asymptotic freedom of the theory, the UV

to IR evolution, as described by �n‘, occurs in the interval

I�: 0 � �ð�Þ � �IR;n‘: (1.1)

In addition to �IR;n‘, the three structural properties of �n‘

that we study are (i) the value of � where �n‘ reaches its
minimum in the interval (1.1), denoted �m;n‘, (ii) the mini-

mum value of �n‘ on this interval, ð�n‘Þmin , and (iii) the
slope of �n‘ at �IR;n‘, denoted d�n‘=d�j�IR;n‘

. The impor-

tance of the first two quantities for the UV to IR evolution
of the theory is clear. One would like to know where the
rate of running,� ¼ d�=dt, has maximummagnitude, as a
function of �, and hence, as a function of�. Further, one is
interested in what this maximum magnitude in the rate of
running, i.e., (since � � 0), the minimum value of � is in
the interval I�. The third quantity, the slope of the �
function at �IR, is of interest because it describes how
rapidly � approaches zero as � approaches �IR. A knowl-
edge of this slope is also valuable because it is relevant for
estimates of a dilaton mass in gauge theories that exhibit
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approximate scale invariance associated with an IR zero of
� at a value, �IR, that is sufficiently large that this approxi-
mate dilatation symmetry is broken by the formation of a
fermion condensate. For each of these structural quantities,
one would like to see how higher-loop calculations com-
pare with the two-loop computation. As part of our work,
we derive some inequalities concerning the relative values
of each of these quantities at the two- and three-loop order.

We also generalize some results that were obtained in
[11] concerning�IR;n‘. In [11] it was shown that in a theory

with a given G, R, and Nf for which the two-loop �

function �2‘ has an IR zero, the three-loop zero satisfies
the inequality �IR;3‘ < �IR;2‘ in the minimal subtraction

(MS) scheme used there [15]. The reduction in the value of
the IR zero going from two-loop to three-loop level is
typically substantial; for example, for G ¼ SUð2Þ and
Nf ¼ 8, �IR;2‘ ¼ 1:26, while �IR;3‘ ¼ 0:688, and for G ¼
SUð3Þ and Nf ¼ 12, �IR;2‘ ¼ 0:754, while �IR;3‘ ¼ 0:435.

A natural question that arises from the analysis in [11] is
how general this inequality is and, specifically, whether it
also holds for other schemes. We address and answer this
question here. We prove that for an asymptotically free
theory with a given G, R, and Nf for which �2‘ has an IR

zero, the inequality �IR;3‘ < �IR;2‘ holds in any scheme

that has the property that the sign of the three-loop coef-
ficient in � is opposite to that of the one-loop coefficient
for Nf 2 I, which thus preserves for �3‘ the existence of

an IR zero that was true of �2‘. This preservation of the
two-loop IR zero in � is physically desirable, since �2‘ is
scheme independent, so if it exhibits an IR zero, then a
reasonable scheme should maintain the existence of this
zero at the higher-loop level. More generally, we will
derive a result that shows how �IR;n‘ shifts, upward or

downward, to �IR;ðnþ1Þ‘, when it is calculated to the next

higher-loop order.
For a given gauge group G, the infrared properties of the

theory depend on the fermion representation R and the
number of fermions, Nf. For a sufficiently large number,

Nf, of fermions in a given representation (as bounded

above by the requirement of asymptotic freedom), the IR
zero in � occurs at a relatively small value of � and the
theory evolves from the UV to the IR without any sponta-
neous chiral symmetry breaking (S�SB). In this case, the
IR zero of � is an exact infrared fixed point of the renor-
malization group. Thus, the infrared behavior of the theory
exhibits scale invariance (actually conformal invariance
[16]) in a non-Abelian Coulomb phase. For small Nf, as

the theory evolves from the UV to the IR, and the reference
scale � decreases below a scale which may be denoted �,
the gauge interaction becomes strong enough to confine
and produce bilinear fermion condensates, with the asso-
ciated spontaneous chiral symmetry breaking and dynami-
cal generation of fermion masses of order �. As �
decreases below �, and one constructs the effective low-
energy field theory applicable in this region, one thus

integrates out these now-massive fermions, and the �
function changes to that of a pure gauge theory, which
does not have any perturbative IR zero. Hence, in this case
the infrared zero of � is an approximate, but not exact,
fixed point of the renormalization group.
If Nf is only slightly less than the critical value Nf;cr for

spontaneous chiral symmetry breaking, so that �IR is only
slightly greater than the critical value, �cr (depending onG
and R) for fermion condensation, then the UV to IR
evolution exhibits approximate scale (dilatation) invari-
ance for an extended logarithmic interval, because as
�ð�Þ increases toward �IR, while less than �cr, � ap-
proaches zero, i.e., the rate of change of �ð�Þ as a function
of � approaches zero. Thus, �ð�Þ is large, of O(1), but
slowly running (‘‘walking’’). This is quite different from
the behavior of �sð�Þ in quantum chromodynamics
(QCD). This approximate scale invariance at strong cou-
pling plays an important role in models with dynamical
electroweak symmetry breaking [17,18], and occurs natu-
rally in models with an approximate infrared fixed point
[18]. Since �IR �Oð1Þ and �m is a power series in �, there
is an enhancement of �m in such models, which, in turn, is
useful for generating sufficiently large Standard Model
fermion masses. Approximate calculations of hadron
masses and related quantities have been performed using
continuum field-theoretic methods for these theories [19].
Recently, an intensive effort has been made using lattice
methods to study the properties of SUðNcÞ gauge theories
with various fermion contents, in particular, theories that
exhibit quasi-scale-invariant behavior associated with an
exact or approximate IR zero of the respective� functions.
For example, for SU(3) with fermions in the fundamental
representation, measurements of �m have been reported in
[20]. In theories where Nc, R, and Nf are such that �IR is

only slightly greater than �cr, so this approximate scale
invariance associated with an IR zero of � at strong
coupling holds, the spontaneous breaking of this symmetry
by the formation of a fermion condensate may lead to a
light state which is an approximate Nambu-Goldstone
boson (NGB), the dilaton [21] (see also [19]). The mass
of the dilaton depends on several quantities, including the
effective value of the � function at the relevant scale
��� where the S�SB takes place. The desire to study
the quasi-scale-invariant behavior of such a theory is an
important motivation for obtaining more detailed informa-
tion about the structure of the � function, as contained in
the structural quantities (i)–(iii) discussed above.

II. BETA FUNCTION

A. General

The UV to IR evolution of the theory is described by the
� function

� � �� � d�

dt
; (2.1)
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where t ¼ ln�. This has the series expansion

� ¼ �2�
X1
‘¼1

b‘a
‘ ¼ �2�

X1
‘¼1

�b‘�
‘; (2.2)

where ‘ denotes the number of loops involved in the
calculation of b‘, a � g2=ð16�2Þ ¼ �=ð4�Þ, and

�b ‘ ¼ b‘
ð4�Þ‘ : (2.3)

As noted above, the one- and two-loop coefficients b1 and
b2, which are scheme independent, were calculated in [1,2]
(see Appendix A). The b‘ for ‘ � 3 are scheme dependent;

in the commonly used MS scheme, the b‘ have been
calculated up to four-loop order [3,4]. For analytical pur-
poses it is more convenient to deal with the b‘, since they
are free of factors of 4�. However, for numerical purposes,
it is usually more convenient to use the �b‘, since, as is
evident from Table I of [11], the range of values of �b‘ is
smaller than the range for the b‘. We will use both inter-
changeably. We denote the � function calculated to n-loop
order as

�n‘ ¼ �8�
Xn
‘¼1

b‘a
‘þ1 ¼ �2

Xn
‘¼1

�b‘�
‘þ1: (2.4)

Some explicit examples of four-loop � functions are given
in Appendix B. We recall the well-known fact, as we have
noted before [11,13,14], that Eq. (2.2) is an asymptotic
expansion rather than a Taylor series expansion.

With our sign conventions, the restriction to an asymp-
totically free theory means that b1 > 0. This is equivalent
to the condition

Nf < Nf;b1z; (2.5)

where [22,23]

Nf;b1z ¼ 11CA

4Tf

(2.6)

(and b‘z stands for b‘ zero.) For the fundamental, adjoint,
and symmetric and antisymmetric rank-2 tensor representa-
tions of G¼SUðNcÞ, the upper bound (2.5) allows the
following ranges of Nf: (i) Nf< ð11=2ÞNc for fundamental,

(ii) Nf<11=4 for adjoint, and (iii) Nf<11Nc=½2ðNc�2Þ�
for symmetric (antisymmetric) rank-2 tensor. In the case of a
sufficiently large representation R, this upper bound may
forbid even the value Nf ¼ 1. For example, for the rank-3

symmetric tensor representation of SUðNcÞ, the upper bound
is Nf < 11Nc=½ðNc þ 2ÞðNc þ 3Þ�, and the right-hand side

of this bound is larger than 1 only for Nc (analytically
continued to non-negative real numbers) in the interval

3� ffiffiffi
3

p
<Nf < 3þ ffiffiffi

3
p

, i.e., 1:268<Nf < 4:732 (to the

indicated floating-point accuracy). Hence, if Nc is equal to
2, 3, or 4, the bound allows only the single value Nf ¼ 1,

and if Nc � 5, then the bound does not allow any nonzero

(integer) value of Nf. For G ¼ SUð2Þ, with a representation
labeled by the integer or half-integer j, the inequality (2.5) is

Nf <
33

2jðjþ 1Þð2jþ 1Þ for G ¼ SUð2Þ: (2.7)

This bound is (i) Nf < 11 if j ¼ 1=2; (ii) Nf < 11=4 if

j ¼ 1; (iii) Nf < 11=10 if j ¼ 3=2. The right-hand side of

(2.7) decreases through 1 as j (continued to real numbers)
increases through 1.562, so that the upper bound (2.7) does
not allow a nonzero number of fermions in a representation
of SU(2) with j � 2 [24].
To analyze the zeros of the n-loop � function, �n‘, aside

from the double zero at � ¼ 0, one extracts the overall
factor of �2�2 and calculates the zeros of the reduced (r)
polynomial

�n‘;r � � �n‘

2�2
¼ Xn

‘¼1

�b‘�
‘�1; (2.8)

or equivalently,
P

n
‘¼1 b‘a

‘�1. As is clear from Eq. (2.8),

the zeros of �n‘ away from the origin depend only on
n� 1 ratios of coefficients, which can be taken as �b‘= �bn
for ‘ ¼ 1; . . . ; n� 1. Although Eq. (2.8) is an algebraic
equation of degree n� 1, with n� 1 roots, only one of
these is physically relevant as the IR zero of �n‘. We
denote this as �IR;n‘. In analyzing how the n-loop �
function describes the UV to IR evolution of the theory,
we will focus on the interval (1.1).
To investigate how �IR;n‘ changes when one calculates it

to higher-loop order, it is useful to characterize the full set
of zeros of �n‘. In general, if one has a polynomial of
degreem, PmðzÞ ¼ P

m
s¼0 �sz

s, and one denotes the set ofm
roots of the equation PmðzÞ ¼ 0 as fz1; . . . ; zmg, then the
discriminant of this equation is defined as [25]

�m �
�
�m�1
m

Y
i<j

ðzi � zjÞ
�
2
: (2.9)

Since �m is a symmetric polynomial in the roots of the
equation PmðzÞ ¼ 0, the symmetric function theorem im-
plies that it can be expressed as a polynomial in the
coefficients of PmðzÞ [26]. We will sometimes indicate
this dependence explicitly, writing �mð�0; . . . ; �mÞ. The
discriminant �m is a homogeneous polynomial of degree
mðm� 1Þ in the roots fzig. For our present purpose, to
analyze the zeros of �n‘ away from the origin, given by
the roots of Eq. (2.8), of degree m ¼ n� 1, we will thus
use the discriminant �n�1ð �b1; �b2; . . . ; �bnÞ, or equivalently,
�n�1ðb1; b2; . . . ; bnÞ. Note that, because of the homogene-
ity properties,

�n�1ð �b1; �b2; . . . ; �bnÞ ¼ ð4�Þ�ðnþ1Þðn�2Þ�n�1ðb1; b2; . . . ; bnÞ:
(2.10)

Some further details on discriminants are given in
Appendix C.
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Although we focus on the behavior of �n‘ in the physi-
cal interval (1.1), in characterizing the zeros of �n‘, we
will make use of some formal mathematical properties of
�n‘ as an abstract function of �. For large j�j, since �n‘ �
�2 �bn�

nþ1, it follows that if � is large and positive, then
sgnð�n‘Þ ¼ �sgnðbnÞ, while for large negative �,
sgnð�n‘Þ ¼ sgnðð�1ÞnbnÞ. Thus, sgnð�n‘Þ for large posi-
tive � is equal to ð�1Þnþ1sgnð�n‘Þ for large negative �.
Since �n‘ is negative in the vicinity of the origin, it follows
that for (both even and odd) n � 2,

if bn < 0;

then�n‘ has at least one zero at a positive real value of�:

(2.11)

Furthermore, again because ���2 �bn�
nþ1 for large j�j,

a consequence is that for n � 2,

if n is odd andbn < 0orn is even andbn > 0;

then�n‘ has at least one zero at a negative real value of�:

(2.12)

Of course, the behavior of�n‘ at negative values of� is not
directly physical, and the behavior at large positive � is
beyond the range of validity of the perturbative calculation,
but these mathematical properties will be useful in char-
acterizing the total set of zeros of �n‘ at higher-loop order.

Given that Nf 2 I, so that �2‘ has an IR zero, we can

track how this zero changes as the loop order n increases.
One general result is as follows. As Nf % Nf;b1z at the

upper end of the interval I, �IR;n‘ ! 0. This is a result of

the fact that in this limit, �b1 ! 0, so that �n‘;r reduces to

�
P

n
‘¼2

�b‘�
‘�2, which has a root at � ¼ 0. Starting at the

ðn ¼ 2Þ-loop level and tracking the physical IR zero at
three- and higher-loop order, one can infer that generically
�n;‘ is the root of �n‘;r that moves toward zero in this limit

Nf % Nf;b1z.

Because �n‘ is a polynomial in �ð�Þ and hence a
continuous function, and because �n‘ ¼ 0 at the two
ends of the interval (1.1), at � ¼ 0 and � ¼ �IR;n‘, and

is negative for small (positive) �, it follows that � reaches
a minimum in this interval (1.1). This occurs at a point
where d�n‘=d� ¼ 0, which we label �m;n‘ (where the

subscriptm stands for ‘‘minimum� in I�’’), and we denote

ð�n‘Þmin � �n‘j�¼�m;n‘
: (2.13)

From Eq. (2.4), one calculates d�n‘=d� ¼
ð4�Þ�1d�n‘=da, with the result

d�n‘

d�
¼�2

Xn
‘¼1

ð‘þ1Þb‘a‘¼�2
Xn
‘¼1

ð‘þ1Þ �b‘�‘: (2.14)

The equation for the critical points, where d�n‘=d� ¼ 0,
is thus an algebraic equation of degree n, with n formal
roots, one of which is � ¼ 0. Assuming that b2 < 0, i.e.,

Nf 2 I, so that the two-loop� function has an IR zero (and

also, in higher-loop calculations, that the scheme preserves
the existence of this IR zero), it follows that, among the
remaining n� 1 roots, one is real and positive and yields
the minimum value of �n‘ for � in the relevant interval
(1.1), and this root is the above-mentioned �m;n‘.

Given that � has an IR zero at �IR and is analytic at this
point, one may expand it in a Taylor series about �IR. This
involves the slope of the � function at �IR. For compact
notation, we denote

�0
IR � d�

d�

���������¼�IR

(2.15)

and, for the n-loop quantities,

�0
IR;n‘ �

d�n‘

d�

���������¼�IR;n‘

: (2.16)

With �ð�IRÞ ¼ 0, the expansion of �ð�Þ for � near to �IR

is

� ¼ �0
IRð�� �IRÞ þOðð�� �IRÞ2Þ: (2.17)

Here we have written this expansion for the full� function;
a corresponding equation applies for �n‘.

B. IR zero of � at the two-loop level

We next review some background on the two-loop �
function that is relevant for the present work. The two-loop
� function is �2‘ ¼ �2�2ð �b1 þ �b2�Þ. This has an IR zero
(see Table I) at

�IR;2‘ ¼ �
�b1
�b2

¼ � 4�b1
b2

; (2.18)

which is physical if and only if b2 < 0. The coefficient b2
is a linear, monotonically decreasing function ofNf, which

is positive for zero and small Nf and passes through zero,

reversing sign, as Nf increases through Nf;b2z, where

Nf;b2z ¼ 17C2
A

2Tfð5CA þ 3CfÞ : (2.19)

For arbitrary G and R, Nf;b1z > Nf;b2z, as is proved by the

fact that

Nf;b1z � Nf;b2z ¼
3CAð7CA þ 11CfÞ
4Tfð5CA þ 3CfÞ > 0: (2.20)

Hence, there is always an interval I of Nf values for which

the two-loop � function has an IR zero, namely,

I: Nf;b2z < Nf < Nf;b1z: (2.21)

For example, in the case of fermions in the fundamental
representation, denoted h,

I:
34N3

c

13N2
c � 3

<Nf <
11Nc

2
if R ¼ h; (2.22)
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so that, for Nc ¼ 2, the interval I is 5:55<Nf < 11; for

Nc ¼ 3, I is 8:05<Nf < 16:5; and as Nc ! 1, I ap-

proaches 34Nc=13<Nf < 11Nc=2.

Since we are primarily interested in studying the IR zero
of � and since the presence or absence of an IR zero of the
two-loop � function, �2‘, is a scheme-independent prop-
erty, we focus on Nf 2 I, where this IR zero of �2‘ is

present. A general result is that for a given gauge group G
and fermion representation R and Nf 2 I, �IR;2‘ is a

monotonically decreasing function of Nf. As Nf decreases

from Nf;b1z, �IR;2‘ increases from 0. As Nf decreases

through a value labeled Nf;cr, �IR increases through a

critical value, �cr �Oð1Þ, where fermion condensation
takes place. Thus,

Nf ¼ Nf;cr , �IR ¼ �cr: (2.23)

The value of Nf;cr is of fundamental importance in the

study of a non-Abelian gauge theory, since it separates
two different regimes of IR behavior, viz., an IR-conformal
phase with no S�SB for Nf;cr <Nf and an IR phase with

S�SB for Nf < Nf;cr. As Nf approachesNf;b2z at the lower

end of the interval I,�IR;2‘ becomes too large for Eq. (2.18)

to be reliable.
Because of the strong-coupling nature of the physics at

an approximate IR fixed point with �IR �Oð1Þ, there are
significant higher-order corrections to results obtained
from the two-loop � function, which motivated the calcu-
lation of the location of the IR zero in �, and the resultant
value of �m evaluated at this IR zero, to higher-loop order
for a general G, R, and Nf [11,12].

C. � function and dilaton mass

Here we focus on a theory in which the IR zero of�, �IR,
is slightly greater than �cr, so that, in the UV to IR flow,
there is an extended interval in t ¼ ln� over which�ð�Þ is
approaching�IR from below, but is still less than�cr. In this
interval, �ð�Þ �Oð1Þ, but � is small, and hence the theory
is approximately scale-invariant. As � decreases through
�, �ð�Þ increases through �ð�Þ ¼ �cr, the fermion con-
densate forms, and the fermions gain dynamical masses,
this approximate scale invariance is broken spontaneously.
In terms of the (symmetric) energy-momentum tensor ��	,
the dilatation current isD� ¼ ��	x	, and one has @�D

� ¼
½�=ð4�Þ�Ga

�	G
a�	, where Ga

�	 is the field-strength tensor

for the gauge field. When taking matrix elements, the
deviation of this divergence @�D

� from zero, i.e., the

nonconservation of the dilatation current, thus arises from
two sources, namely, the facts that � is not exactly equal to
zero and the nonzero value of the matrix element of
Ga

�	G
a�	, defined appropriately at the scale�. An analysis

of the matrix element of @�D
� between the vacuum and the

dilaton state j�ðpÞi, in conjunction with a dimensional
estimate of the gluon matrix element, and the Taylor series

expansion (2.17) evaluated with ��� yields the resulting
estimate for the dilaton mass m� [21]

m2
� ’ �0

IRð�IR � �crÞ�2: (2.24)

In terms of n-loop level quantities, the right-hand side of
Eq. (2.24) is �0

IR;n‘ð�IR;n‘ � �crÞ�2. The importance of the

slope at �IR, �
0
IR, and the n-loop calculation of this slope,

�0
IR;n‘, in estimating a dilaton mass in a quasiconformal

theory is evident from Eq. (2.24). As is the case with �IR;n‘,

because of the strong-coupling nature of the physics, it is
valuable to compute higher-loop corrections to the two-
loop result, �0

IR;2‘. Below, we will present two- and higher-

loop analytic and numerical calculations of �0
IR;n‘. Other

effects on m� have been discussed in the literature [21],

including the effect of dynamical fermion mass generation
associated with the spontaneous chiral symmetry breaking
as� descends through the value�. Owing to this and other
nonperturbative effects onm�, we restrict ourselves here to

presenting one input to this calculation, namely, �0
IR;n‘, for

which we can give definite analytic and numerical results.

D. IR zero of � at the three-loop level

Let us assume that Nf 2 I, so that �2‘ has an IR zero.

Here we analyze how this IR changes as one calculates the
� function to three-loop order, extending our results in [11]

to (an infinite set of) schemes more general than the MS
scheme used in that paper. Since the existence of the IR
zero in the two-loop � function is a scheme-independent
property of the theory, it is reasonable to restrict ourselves
to schemes that preserve this IR zero of � at the three-loop
level. We first determine a condition for this to hold.
The three-loop� function is�3‘ ¼ �2�2�3‘;r, so, aside

from the double zero at � ¼ 0 (the UV fixed point), �3‘

vanishes at the two roots of the factor �3‘;r � �b1 þ �b2�þ
�b3�

2 ¼ 0, namely,

��z;3‘;� ¼ 1

2 �b3

�
� �b2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ð �b1; �b2; �b3Þ

q �

¼ 2�

b3

�
�b2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðb1; b2; b3Þ

q �
; (2.25)

where �2ðb1; b2; b3Þ ¼ b22 � 4b1b3. The analysis of the IR
zero of �3‘ requires a consideration of the sign of
�2ðb1; b2; b3Þ. The condition that �3‘ have an IR zero
requires, in particular, that its two zeros away from the
origin be real, i.e., that �2ðb1; b2; b3Þ � 0. For a given G,
R, and Nf 2 I, so that b1 and b2 are fixed, this condition

amounts to an upper bound on b3, namely, b3 � b22=ð4b1Þ.
Now, b2 ! 0 at the lower end of the interval I, so that,
insofar as one considers the analytic continuation of Nf

from positive integers to positive real numbers, the above
bound generically requires that b3 � 0 for Nf 2 I. This is

also required if R ¼ h, and one studies the theory in the
limitNc ! 1 andNf ! 1with r � Nf=Nc fixed, since in

this case there are discrete pairs of values ðNc; NfÞ that
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enable one to approach arbitrarily close to the lower end of
the interval I at r ¼ 34=13 where b2 ! 0. In order to
preserve the existence of the two-loop IR zero at the
three-loop level, one is thus motivated to restrict to
schemes in which b3 � 0 for Nf 2 I, and we will do so

here. (The marginal case b3 ¼ 0 is not generic, since b3
varies as a function of Nc and Nf, so we will not consider

it further.)
Before proceeding, it is worthwhile to recall how the

property b3 < 0 for Nf 2 I arises in the MS scheme. In

this scheme, b3 is a quadratic function of Nf with positive

coefficients of theN2
f term and the term independent ofNf.

This coefficient b3 vanishes, with sign reversal, at two
values of Nf, denoted Nf;b3z;� and Nf;b3z;þ, given as

Eq. (3.16) in [11], with b3<0 for Nf;b3z;�<Nf<Nf;b3z;þ
(and b3 > 0 forNf < Nf;b3z;� andNf > Nf;b3z;þ). In [11] it
was shown that in this scheme, for all of the representations
considered there, namely, the fundamental (h), adjoint,

and rank-2 symmetric ( ) and antisymmetric ( ) tensor

representations, Nf;b3z;� <Nf;b2z and Nf;b3z;þ >Nf;b1z,

so that b3 < 0 for all Nf 2 I. For example, for

fermions in the R¼h representation, (i) for Nc¼2,
Nf;b3z;� ¼ 3:99<Nf;b2z ¼ 5:55, and Nf;b3z;þ ¼ 27:6>

Nf;b1z ¼ 11; (ii) for Nc ¼ 3, Nf;b3z;� ¼ 5:84<Nf;b2z ¼
8:05, and Nf;b3z;þ ¼ 40:6>Nf;b1z ¼ 16:5; (iii) as

Nc ! 1, Nf;b3z;� ! 1:911Nc while Nf;b2z ! 2:615Nc

and Nf;b3z;þ ! 13:348Nc, while Nf;b1z ! 5:5Nc. In

Table II we list the values of �2ð �b1; �b2; �b3Þ with �b3 calcu-

lated in theMS scheme, for the illustrative casesNc ¼ 2, 3,
4 and Nf in the respective I intervals. Since b3 < 0 for

Nf 2 I in this MS scheme, it follows that all of the entries

in this table have �2 > 0.
Given that b3 < 0 for Nf 2 I, Eq. (2.25) can be rewrit-

ten as � ¼ ð2�=jb3jÞð�jb2j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 þ 4b1jb3j

q
Þ. The solu-

tion with a� sign in front of the square root is negative and
hence unphysical; the other is positive and is �IR;3‘, i.e.,

�IR;3‘ ¼ 2�

jb3j
�
�jb2j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 þ 4b1jb3j

q �
: (2.26)

Values of �IR;3‘ are listed in Table I.

In [11] it was shown that in the MS scheme, for all
Nf 2 I, �IR;3‘ < �IR;2‘. Here we demonstrate that this

result holds more generally than just in the MS scheme.
We prove that for arbitrary gauge group G, fermion repre-
sentation R, and Nf 2 I, in any scheme in which b3 < 0

for Nf 2 I (which is thus guaranteed to preserve the IR

zero present at the two-loop level), it follows that �IR;3‘ <
�IR;2‘. To prove this, we consider the difference

�IR;2‘ � �IR;3‘ ¼ 2�

jb2b3j
�
2b1jb3j þ b22

� jb2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 þ 4b1jb3j

q �
: (2.27)

The expression in square brackets is positive if and only if

ð2b1jb3j þ b22Þ2 � b22ðb22 þ 4b1jb3jÞ> 0: (2.28)

This difference is equal to the nonnegative quantity
ð2b1b3Þ2, which proves the inequality. Note that, since b1
is nonzero for asymptotic freedom, this difference vanishes
if and only if b3 ¼ 0, in which case �IR;3‘ ¼ �IR;2‘. We

have therefore proved that

�IR;3‘ < �IR;2‘ if b3 < 0 for Nf 2 I: (2.29)

As noted above, �IR;2‘ is a monotonically decreasing

function of Nf 2 I. With b3 < 0 for Nf 2 I, this monoto-

nicity property is also true of �IR;3‘. As Nf increases from

Nf;b2z to Nf;b1z in the interval I, �IR;3‘ decreases from

�IR;3‘ ¼ 4�

ffiffiffiffiffiffiffiffi
b1
jb3j

s
at Nf ¼ Nf;b2z (2.30)

to zero as Nf % Nf;b1z at the upper end of this interval,

vanishing like

�IR;3‘ ¼ 4�b1
jb2j

�
1� jb3jb1

jb2j2
þOðb21Þ

�
(2.31)

as Nf % Nf;b1z and b1 ! 0.

E. IR zero of � at the four-loop level

The four-loop � function is �4‘ ¼ �2�2�4‘;r, so �4‘

has three zeros away from the origin, at the roots of the
cubic equation

�4‘;r � �b1 þ �b2�þ �b3�
2 þ �b4�

3 ¼ 0 (2.32)

[where �n‘;r was given in Eq. (2.8)]. These zeros were

analyzed for the MS scheme in [11,12]. Here we extend
this analysis to a more general class of schemes that have
b3 < 0 for Nf 2 I, and hence maintain at the three-loop

level the IR zero of the scheme-independent two-loop �
function.
The nature of the roots of Eq. (2.32) is determined by the

sign of the discriminant �3ð �b1; �b2; �b3; �b4Þ, or equivalently,
�3 � �3ðb1; b2; b3; b4Þ

¼ b22b
2
3 � 27b21b

2
4 � 4ðb1b33 þ b4b

3
2Þ þ 18b1b2b3b4:

(2.33)

The following properties of �3 are relevant here: (i) if
�3 > 0, then all of the roots of Eq. (2.32) are real; (ii) if
�3 < 0, then Eq. (2.32) has one real root and a complex-
conjugate pair of roots; (iii) if �3 ¼ 0, then at least two of
the roots of Eq. (2.32) coincide. Given the scheme-
independent properties b1 > 0 and b2 < 0 (i.e., Nf 2 I),

and provided that b3 < 0 for Nf 2 I, we can write this

discriminant as
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�3ðb1; b2; b3; b4Þ ¼ b22b
2
3 � 27b21b

2
4 þ 4ðb1jb3j3 þ b4jb2j3Þ

þ 18b1jb2jjb3jb4: (2.34)

If b4 were zero, then the zeros of �4‘ would coincide with
those of �3‘, and the property that these are all real is in
accord with the reduction

�3ðb1; b2; b3; 0Þ ¼ b23ðb22 þ 4b1jb3jÞ ¼ b23�2ðb1; b2; b3Þ;
(2.35)

which is positive.
Now consider nonzero b4. First, assume that the

scheme has the property that b4 > 0. Then we can write
Eq. (2.32) as

�b1 � j �b2j�� j �b3j�2 þ �b4�
3 ¼ 0 if b4 > 0: (2.36)

From an application of the Descartes theorem on roots of
algebraic equations, it follows that there are at most two
(real) positive roots of this equation and at most one
negative root. Moreover, from Eq. (2.12) we can deduce
that in this case with b4 > 0, in addition to the double zero
at � ¼ 0, �4‘ has a zero at a negative value of �, so the
upper bound on negative zeros from the Descartes theorem
is saturated. Furthermore, since �4‘ is negative at large
positive �, there are then two possibilities: either the two
remaining zeros of Eq. (2.32) are a complex-conjugate
pair, or else they are both real and positive.

If, on the other hand, the scheme is such that b4 < 0,
then we can write Eq. (2.32) as

�b1 � j �b2j�� j �b3j�2 � j �b4j�3 ¼ 0 if b4 < 0: (2.37)

From a similar application of the Descartes theorem, we
infer that there is at most one positive real root and at most
two negative real roots of Eq. (2.37). From Eq. (2.11) we
deduce that �4‘ has a zero at a positive real value of �.
Depending on jb4j, the other two roots of Eq. (2.37) may be
real and negative or may form a complex-conjugate pair.

Combining the information from both the Descartes
theorem and the discriminant �3, we derive the following
conclusions about the roots of Eq. (2.32) and hence the
zeros of �4‘ aside from the double zero at � ¼ 0. As
before, we assume that b2 < 0 (i.e., Nf 2 I) so that �2‘

has an IR zero, and also that the scheme is such that b3 < 0
for Nf 2 I, guaranteeing that this IR zero is maintained at

the three-loop level. Then,
(1) if b4 > 0 and �3 > 0, then Eq. (2.32) has one nega-

tive and two positive real roots;
(2) if b4 > 0 and �3 < 0, then Eq. (2.32) has one nega-

tive root and a complex-conjugate pair of roots;
(3) if b4 < 0 and �3 > 0, then Eq. (2.32) has one posi-

tive root and two negative roots;
(4) if b4 < 0 and �3 < 0, then Eq. (2.32) has one posi-

tive root and a complex-conjugate pair of roots.
For a particular pair ðNc; NfÞ, the marginal case �3 ¼ 0

might occur, and would mean that two of the roots of

Eq. (2.32) are degenerate. Since this equation is a cubic,
it would follow that all of the roots are real. If �3 ¼ 0 and
b4 > 0, then Eq. (2.32) has one negative root and a positive
root with multiplicity 2, while if b4 < 0, then (2.32) has
one positive root and a negative root with multiplicity 2.
It is reasonable to avoid schemes that lead to the out-

come (2) above, with no real positive root of Eq. (2.32),
since these fail to preserve the IR zero of the scheme-
independent two-loop � function. Although the positivity
of �3 is not a necessary condition for this preserving of the
IR zero, it is a sufficient condition. We thus investigate
the conditions under which �3 is positive. As shown via
Eq. (2.35), if b4 ¼ 0, then �3 > 0. By continuity, for small
jb4j, �3 remains positive, and there is only a small shift in
the two zeros that were present in �3‘, together with the
appearance of a new zero. Since the highest-degree term in
�3ðb1; b2; b3; b4Þ involving jb4j, namely,�27b21b

2
4 is nega-

tive definite, it follows that, other things being equal, for
sufficiently large jb4j, �3ðb1; b2; b3; b4Þ will decrease
through zero and become negative. The two b4 values at
which �3ðb1; b2; b3; b4Þ ¼ 0 are

ðb4Þ�3z;� ¼ jb2jð2b22 þ 9b1jb3jÞ � 2ðb22 þ 3b1jb3jÞ3=2
27b21

:

(2.38)

Therefore, a sufficient condition for a scheme to be such
that�4‘ preserves the IR zero that is present in�2‘ and�3‘

for Nf 2 I is

ðb4Þ�3z;� < b4 < ðb4Þ�3z;þ: (2.39)

Note that at the lower end of the interval I, where b2 ! 0,

the interval (2.39) reduces to the upper bound jb4j<
2jb3j3=2=ð27b1Þ1=2.
For reference, in the MS scheme, b4 is a cubic poly-

nomial inNf and is positive forNf 2 I forNc ¼ 2, 3 but is

negative in part of I for higher values of Nc (see Table I of
[11], where Nc is denoted N). In Table II we list the values

of �3ð �b1; �b2; �b3; �b4Þ with b3 and b4 calculated in the MS
scheme, for the illustrative values Nc ¼ 2, 3, 4 and values
of Nf in the respective I intervals. For all of the four-loop

entries in Table I, �3ð �b1; �b2; �b3; �b4Þ> 0, as is evident from
the values listed explicitly in Table II, so these entries
correspond to the case (1) in the list of possibilities for
b4 and �3 given above.
Rather than calculating �IR;n‘ directly from �n‘, a dif-

ferent approach is to use �n‘ to compute Padé approxim-
ants and then calculate zeros of these approximants. As
before, since one is interested in the zeros away from the
origin, one extracts the factor �2�2 in Eq. (2.4) and
analyzes the polynomial �n‘;r in Eq. (2.8), of degree

n� 1 in �, depending on the n coefficients �b‘, ‘ ¼
1; . . . ; n. From this, one can construct a set of ½p; q� Padé
approximants, i.e., rational functions, each with a numera-
tor polynomial of degree p and a denominator polynomial
of degree q in �, of the form ðPp

j¼0 pjz
jÞ=ðPq

k¼0 qkz
kÞ.
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Without loss of generality, one can divide numerator and
denominator by q0, so that, after redefinition of the coef-
ficients, the ½p; q� Padé approximant to Eq. (2.8) is

½p; q� ¼
Pp

j¼0 pj�
j

1þPq
k¼1 qk�

k
; (2.40)

depending on the pþ qþ 1 coefficients pj with j ¼
0; . . . ; p and qk with k ¼ 1; . . . ; q. These coefficients are
determined by matching the Taylor series expansion of
½p; q� in � with the n coefficients �b‘, ‘ ¼ 1; . . . ; n, so
that pþ q ¼ n� 1. Thus, from the four-loop beta func-
tion factor �4‘;r, one can construct two relevant approx-

imants with pþ q ¼ 3, namely, the [1, 2] and [2, 1] Padé
approximants [27]. We did this in [11] and calculated
the resultant unique IR zero from the [1, 2] approximant
and the relevant IR zero from [2, 1], denoted �IR;4‘;½1;2� and
�IR;4‘;½2;1�, respectively. These were found to be close to the
directly calculated IR zero, �IR;4‘. From the known results

for �n‘ with n ¼ 2, 3, 4, one can make estimates of �5‘

by various methods, but since these only contain exact
information up to the n ¼ 4 loop level, we will not pursue
this direction here.

As the n ¼ 4 special case of the result discussed above,
�IR;4‘ decreases to zero as Nf % Nf;b1z. For R ¼ h

and for a given Nf 2 I where it is reliably calculable,

�IR;4‘ is slightly larger than �IR;3‘, but the difference,

�IR;4‘��IR;3‘, is sufficiently small that �IR;4‘ is smaller

than �IR;2‘. For higher fermion representations and Nf

values where the IR zero is reliably calculable (i.e., not
too close to the lower end of the interval I), the difference
�IR;3‘ � �IR;4‘ is again smaller in magnitude then the

difference �IR;2‘ � �IR;3‘ but may have either sign. Thus,

where �IR;4‘ is reliably calculable, it is smaller than �IR;2‘.

The finding that the fractional change in the location of the
IR zero of� is reduced at higher-loop order agrees with the
general expectation that calculating a quantity to higher
order in perturbation theory should give a more stable and
accurate result.
The scheme dependence of �IR;n‘ for n � 3 can be

studied by carrying out scheme transformations, recalcu-
lating�0

IR;n‘ in the new scheme, and comparing with�IR;n‘.

This study was carried out in [14]. To be acceptable, a
scheme transformation must satisfy a number of necessary
conditions, such as mapping a positive real � to a positive
real �0 and vice versa. Although these conditions can be
satisfied easily in the vicinity of the ultraviolet fixed point
of an asymptotically free theory at � ¼ 0, they are non-
trivial and constitute significant restrictions on scheme

TABLE I. Value of �m;n‘ at the n-loop level with n ¼ 2, 3, 4
for an SUðNcÞ gauge theory with Nf fermions in the fundamental

representation, with Nf 2 I. As discussed in the text, �m;n‘ is the

value at which the n-loop � function takes on its minimum value
in the interval 0 � � � �IR;n‘. Results are given for the illus-

trative values Nc ¼ 2, 3, 4. For comparison, we also list the IR
zeros of � calculated at n-loop level, �IR;n‘, for n ¼ 2, 3, 4, from
Ref. [11]. For this and other tables, quantities evaluated at the
n ¼ 3 and n ¼ 4 loop level are calculated in the MS scheme.

Nc Nf �m;2‘ �m;3‘ �m;4‘ �IR;2‘ �IR;3‘ �IR;4‘

2 7 1.89 0.735 0.823 2.83 1.05 1.21

2 8 0.838 0.476 0.515 1.26 0.688 0.760

2 9 0.397 0.286 0.300 0.595 0.418 0.444

2 10 0.154 0.133 0.135 0.231 0.196 0.200

3 10 1.47 0.534 0.563 2.21 0.764 0.815

3 11 0.823 0.402 0.429 1.23 0.579 0.626

3 12 0.503 0.300 0.320 0.754 0.435 0.470

3 13 0.312 0.217 0.228 0.468 0.317 0.337

3 14 0.185 0.146 0.151 0.278 0.215 0.224

3 15 0.0952 0.0834 0.0846 0.143 0.123 0.126

3 16 0.0277 0.0416 0.0267 0.0416 0.0397 0.0398

4 13 1.23 0.422 0.436 1.85 0.604 0.628

4 14 0.773 0.340 0.359 1.16 0.489 0.521

4 15 0.522 0.275 0.293 0.783 0.397 0.428

4 16 0.364 0.221 0.235 0.546 0.320 0.345

4 17 0.256 0.174 0.184 0.384 0.254 0.271

4 18 0.177 0.133 0.138 0.266 0.194 0.205

4 19 0.117 0.0954 0.0981 0.175 0.140 0.145

4 20 0.0697 0.0613 0.0621 0.105 0.0907 0.0924

4 21 0.0315 0.0472 0.0297 0.0472 0.044 0.0444

TABLE II. Values of the discriminants �2ð �b1; �b2; �b3Þ and
�3ð �b1; �b2; �b3; �b4Þ [see Eqs. (2.9) and (2.10)] for the three- and
four-loop IR zero equations, with �b3 and �b4 calculated in theMS
scheme. Results are given for the illustrative values Nc ¼ 2, 3, 4.
Notation ae-n means a	 10�n.

Nc Nf �2ð �b1; �b2; �b3Þ �3ð �b1; �b2; �b3; �b4Þ
2 7 0.107 0.151e-2

2 8 0.113 0.399e-2

2 9 0.108 0.885e-2

2 10 0.0963 1.68e-2

3 10 0.557 0.0943

3 11 0.596 0.170

3 12 0.610 0.293

3 13 0.603 0.493

3 14 0.577 0.803

3 15 0.537 1.221

3 16 0.489 1.676

4 13 1.75 1.53

4 14 1.87 2.45

4 15 1.95 3.74

4 16 1.97 5.60

4 17 1.96 8.32

4 18 1.92 12.18

4 19 1.85 17.36

4 20 1.75 23.71

4 21 1.64 30.59
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transformations at an infrared fixed point [14]. For ex-
ample, the scheme transformation � ¼ tanh�0, with in-
verse �0 ¼ ð1=2Þ ln ½ð1þ �Þ=ð1� �Þ�, is acceptable for
small �, in the vicinity of the UV fixed point of an
asymptotically free gauge theory, but is not acceptable in
the vicinity of an IR fixed point at � ¼ �IR �Oð1Þ, since
� can approach 1 from below, in which case �0 diverges,
and � can exceed 1, in which case �0 is complex.

Scheme dependence of higher-loop calculations is
present not just in calculations of an IR zero of �n‘ at
three- and higher-loop level, but also in higher-loop per-

turbative QCD calculations. The fact that theMS scheme is
a reasonable one has been demonstrated, e.g., by the ex-
cellent fit that has been obtained to experimental data for
�sð�Þ with �2 ¼ Q2 using this scheme [28]. There has
been much work on optimized schemes for higher-order
QCD calculations [29]. However, we note that two of the
simplest scheme transformations that one might apply for
QCD are not generally acceptable at an IR zero of � with
�IR �Oð1Þ. These are the scheme transformations denoted
S2 and S3 in [14], which are constructed to render the
leading scheme-dependent coefficient in the new scheme,
b03, equal to zero. They are acceptable at the UV zero of �
and hence in perturbative QCD applications, but are not, in
general, acceptable in the vicinity of an IR zero with �IR �
Oð1Þ because they can map a real positive � in the MS
scheme to a negative or complex coupling in the trans-
formed scheme, as was shown in [14].

F. Shift of IR zero at ðn þ 1Þ-loop level

Here we derive a result on the direction of the shift in the
IR zero of the � function when one increases the order of
calculation of � from the n-loop level to the ðnþ 1Þ-loop
level, where n � 2. We assume, as before, that the theory is
asymptotically free and that b2 < 0 (i.e., Nf 2 I), so that

there is an IR zero of � at the two-loop level. We assume
that the scheme-dependent coefficients b‘ with ‘ ¼
3; . . . ; nþ 1 are such that they preserve the existence of
the IR zero of� at higher-loop level [30]. We focus here on
values of � close to �IR;n‘, where d�n‘=d� > 0.
Expanding �n‘ in a Taylor series expansion around � ¼
�IR;n‘, with the abbreviation �0

IR;n‘ � d�n‘=d�j�IR;n‘
de-

fined above, we write the general Eq. (2.17) explicitly in
terms of n-loop quantities as

�n‘ ¼ �0
IR;n‘ð�� �IR;n‘Þ þOðð�� �IR;n‘Þ2Þ: (2.41)

Now let us calculate � to the next-higher-loop order, i.e.,
�ðnþ1Þ‘, and solve for the zero, �IR;ðnþ1Þ‘, which corre-

sponds to �IR;n‘ (among the n� 1 zeros of �ðnþ1Þ‘ away

from the origin). To determine whether �IR;ðnþ1Þ‘ is larger
or smaller than �IR;n‘, i.e., whether there is a shift to the

right or left, consider the difference

�ðnþ1Þ‘ � �n‘ ¼ �2 �bnþ1�
nþ2: (2.42)

In a scheme in which bnþ1 > 0, this difference, evaluated
at � ¼ �IR;n‘, is negative, so, given that d�n‘=d�j�IR;n‘

>

0, to compensate for this, the zero shifts to the right,
whereas if bnþ1 < 0, the difference is positive, so the
zero shifts to the left. That is,

if bnþ1 > 0; then�IR;ðnþ1Þ‘ > �IR;n‘;

if bnþ1 < 0; then�IR;ðnþ1Þ‘ < �IR;n‘:
(2.43)

[In a scheme with bnþ1 ¼ 0, obviously �IR;ðnþ1Þ‘ ¼
�IR;n‘.] The application of this general result (2.43) is

evident in the specific calculations in [11] at the three-
and four-loop levels.

III. � FUNCTION STRUCTURE

At high scales in the UV, the � function is dominated by
the leading quadratic term, � ’ �2 �b1�

2 þOð�3Þ. The
calculation of the IR zero of �n‘ is important for inves-
tigating the UV to IR evolution of the theory. But, as
discussed in the Introduction, for a more detailed study
of this evolution, one needs not just the value of the IR
zero, �IR;n‘, but the full curve of �n‘ for � 2 I�. Here we
present calculations of three quantities that give further
information about this curve, including (i) the value of �
where �n‘ reaches its minimum for � 2 I�, �m;n‘; (ii) the

minimum value of �n‘ for � 2 I�, ð�n‘Þmin ; and (iii) the
slope �0

IR;n‘ at the IR zero of �, as defined in Eq. (2.16).

The relevance of the third quantity to estimates of the
dilaton mass in a quasiconformal gauge theory has been
noted above. Our calculations are performed at the n ¼ 2,
n ¼ 3, and n ¼ 4 loop level.

A. Two-loop level

1. Position of minimum in �2‘ for � 2 I�

At the two-loop level, given that b2 < 0 so that the �2‘

function has an IR zero, the derivative d�2‘=d� ¼
�2�ð2 �b1 þ 3 �b2�Þ vanishes at � ¼ �m;2‘, where

�m;2‘ ¼ � 2 �b1
3 �b2

¼ � 8�b1
3b2

¼ 8�b1
3jb2j : (3.1)

Explicitly,

�m;2‘ ¼
8�ð11CA � 4TfNfÞ

3½4ð5CA þ 3CfÞTfNf � 34C2
A�
: (3.2)

2. Minimum value of �2‘ for � 2 I�

At � ¼ �m;2‘, �2‘ reaches its minimum physical value

for � 2 I�, namely,

ð�2‘Þmin ¼ � 8 �b31
27 �b22

¼ � 32�b31
27b22

¼ � 32�ð11CA � 4TfNfÞ3
81½34C2

A � 4ð5CA þ 3CfÞTfNf�2
: (3.3)
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Note that

�m;2‘ ¼ 2

3
�IR;2‘: (3.4)

3. Slope of �2‘ at �IR;2‘

The derivative d�2‘=d� evaluated at � ¼ �IR;2‘ is

�0
IR;2‘ ¼ � 2 �b21

�b2
¼ � 2b21

b2
¼ 2b21

jb2j

¼ 2ð11CA � 4TfNfÞ2
3½4ð5CA þ 3CfÞTfNf � 34C2

A�
; (3.5)

which is positive for Nf 2 I.

As descriptors of the shape and structure of the �
function, the quantities �m;n‘, ð�n‘Þmin , and �0

IR;n‘ are

interrelated. Thus, if one makes a rough, linear (lin.)
approximation to the � function in the interval from � ¼
�m;n‘ to � ¼ �IR;n‘, then this slope would be

��n‘;lin:

��
¼ �ð�n‘Þmin

�IR;n‘ � �m;n‘

: (3.6)

For example, in the ðn ¼ 2Þ-loop case, substituting the
values of ð�2‘Þmin , �IR;2‘, and �m;2‘, this approximation

yields

��2‘;lin:

��
¼ � 8 �b21

9 �b2
¼ 8b21

9jb2j ; (3.7)

which exhibits the same dependence on the input coeffi-
cients b1 and b2, with a somewhat smaller coefficient, 8=9
rather than the coefficient 2 in the exact two-loop expres-
sion, �0

IR;2‘, in Eq. (3.5).

In Tables I, III, and IV we list numerical values of �m;n‘,

ð�n‘Þmin , and �0
IR;n‘ for fermions in the R ¼ h represen-

tation of SUðNcÞ, for some illustrative cases of Nc and, for
each Nc, values of Nf in the respective intervals I. As

illustrations, we show plots of �n‘ in Fig. 1 for Nc ¼ 2
and Nf ¼ 8 and in Fig. 2 for Nc ¼ 3 and Nf ¼ 12 as

functions of �. The results in the tables and figures are
given for the quantities evaluated at the n ¼ 2, n ¼ 3, and
n ¼ 4 loop levels. The n ¼ 3 and n ¼ 4 loop results will
be discussed further below.

B. Three-loop level

1. Position of minimum in �3‘ for � 2 I�

Here we assume a scheme in which b3 � 0, since if one
is working with a scheme in which b3 ¼ 0, then �3‘ ¼
�2‘, so the analysis of the three-loop � function reduces to
that of the two-loop � function discussed above.
Furthermore, for the reasons explained above, we restrict
ourselves to schemes in which b3 < 0 for Nf 2 I.

TABLE III. Minimum value of the n-loop � function, �n‘,
denoted ð�n‘Þmin , in the interval 0 � � � �IR;n‘ relevant for the

UV to IR evolution, calculated to n ¼ 2, 3, 4 loop order for an
SUðNcÞ theory with Nf fermions in the fundamental representa-

tion, with Nf 2 I. Values are given for Nc ¼ 2, 3, 4. Notation

ae-n means a	 10�n.

Nc Nf ð�2‘Þmin ð�3‘Þmin ð�4‘Þmin

2 7 �0:504 �0:998e-1 �0:117

2 8 �0:745e-1 �0:292e-1 �0:326e-1

2 9 �1:11e-2 �0:660e-2 �0:703e-2

2 10 �0:836e-3 �0:666e-3 �0:680e-3

3 10 �0:498 �0:863e-1 �0:934e-1

3 11 �1:32e-1 �0:394e-1 �0:432e-1

3 12 �0:4025e-1 �1:72e-2 �1:88e-2

3 13 �1:20e-2 �0:672e-2 �0:719e-2

3 14 �0:304e-2 �0:209e-2 �0:218e-2

3 15 �0:481e-3 �0:392e-3 �0:399e-3

3 16 �1:36e-5 �1:28e-5 �1:28e-5

4 13 �0:484 �0:752e-1 �0:790e-1

4 14 �0:169 �0:419e-1 �0:452e-1

4 15 �0:674e-1 �0:232e-1 �0:252e-1

4 16 �0:2815e-1 �1:24e-2 �1:35e-2

4 17 �1:16e-2 �0:6215e-2 �0:667e-2

4 18 �0:444e-2 �0:280e-2 �0:296e-2

4 19 �1:45e-3 �1:055e-3 �1:09e-3

4 20 �0:343e-3 �0:282e-3 �0:287e-3

4 21 �0:350e-4 �0:319e-4 �0:321e-4

TABLE IV. Value of d�n‘=d� at n ¼ 2, 3, 4 loop order for an
SUðNcÞ theory with Nf fermions in the fundamental representa-

tion, with Nf 2 I, evaluated at the IR zero calculated to this

order, �IR;n‘. We denote this here as �0
IR;n‘.

Nc Nf �0
IR;2‘ �0

IR;3‘ �0
IR;4‘

2 7 1.20 0.728 0.677

2 8 0.400 0.318 0.300

2 9 0.126 0.115 0.110

2 10 0.0245 0.0239 0.0235

3 10 1.52 0.872 0.853

3 11 0.720 0.517 0.498

3 12 0.360 0.2955 0.282

3 13 0.174 0.156 0.149

3 14 0.0737 0.0699 0.0678

3 15 0.0227 0.0223 0.0220

3 16 0.00221 0.00220 0.00220

4 13 1.77 0.965 0.955

4 14 0.984 0.655 0.639

4 15 0.581 0.440 0.424

4 16 0.348 0.288 0.276

4 17 0.204 0.180 0.1725

4 18 0.113 0.105 0.101

4 19 0.0558 0.0536 0.0522

4 20 0.0222 0.0218 0.0215

4 21 0.00501 0.00499 0.00496
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The derivative d�3‘=d� ¼ �2�ð2 �b1 þ 3 �b2�þ 4 �b3�
2Þ is

zero at � ¼ 0 and at the two other points,

� ¼ 1

8 �b3

�
�3 �b2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 �b22 � 32 �b1 �b3

q �
: (3.8)

This can be written as � ¼ �ð2jb3jÞ�1ð�3jb2j �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9b22 þ 32b1jb3j

q
Þ. The critical point corresponding to the

� sign in front of the square root is negative and hence
unphysical, while the critical point corresponding to the
þ sign in front of the square root is �m;3‘, i.e.,

�m;3‘ ¼ �

2jb3j
�
�3jb2j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9b22 þ 32b1jb3j

q �
: (3.9)

A general inequality is

�m;3‘ < �m;2‘: (3.10)

We prove this by examining the difference

�m;2‘ � �m;3‘ ¼ �

6jb2b3j
�
16b1jb3j þ 9b22

� 3jb2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9b22 þ 32b1jb3j

q �
: (3.11)

The condition that this is positive is equivalent to the
condition that the square of the polynomial term in the
numerator of Eq. (3.11) minus the square of the term in this
numerator involving the square root is positive. This dif-
ference of squares is equal to 256b21b

2
3, which is positive.

This proves the inequality (3.10).

2. Minimum value of �3‘ for � 2 I�

At � ¼ ��min ;3‘, �3‘ reaches its minimum value for

� 2 I�, namely,

ð�3‘Þmin ¼ �

64jb3j3
½�ð144b1b22jb3j þ 128b21b

2
3 þ 27b42Þ

þ jb2jð9b22 þ 32b1jb3jÞ3=2�: (3.12)

Note that one can write ð�3‘Þmin in terms of the �b‘
coefficients by replacing each b‘ in Eq. (3.16) by the
corresponding �b‘ and dividing the overall expression by
4�. Since ð�n‘Þmin < 0, it is convenient to deal with
the magnitudes jð�n‘Þmin j. We find the following general
inequality: for a given G, R, and Nf 2 I, in a scheme that

has b3 < 0 and hence maintains the existence of the IR
zero in �2‘,

jð�3‘Þmin j< jð�2‘Þmin j: (3.13)

To prove this, we consider the difference

jð�2‘Þmin j � jð�3‘Þmin j
¼ �

1728b22jb3j3
½2048b31jb3j3 þ 27b22ð144b1b22jb3j

þ 128b21b
2
3 þ 27b42Þ � 27jb2j3ð9b22 þ 32b1jb3jÞ3=2�:

(3.14)

The positivity of this difference is equivalent to the pos-
itivity of the square of the polynomial terms in the numera-
tor minus the square of the term in the numerator involving
the radical. This difference of squares is equal to

8192b31jb3j3ð512b31jb3j3 þ 3402b42b1jb3j
þ 1728b22b

2
1b

2
3 þ 729b62Þ: (3.15)

This expression is manifestly positive definite, which
proves the inequality (3.13).

–0.1

–0.05

0

0.05

0.1

0.15

be
ta

0.2 0.4 0.6 0.8 1 1.2 1.4

alpha

FIG. 1. Plot of the n-loop � function �n‘ as a function of � for
n ¼ 2, 3, 4 and Nc ¼ 2, Nf ¼ 8 with fermions in the funda-

mental representation. At a given value of �, the curves, from
bottom to top, are for �2‘, �4‘, and �3‘, respectively. See text for
further details.
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FIG. 2. Plot of the n-loop � function �n‘ as a function of � for
n ¼ 2, 3, 4 and the illustrative case Nc ¼ 3, Nf ¼ 12 with

fermions in the fundamental representation. At a given value
of �, the curves, from bottom to top, are for �2‘, �4‘, and �3‘,
respectively. See text for further details.
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3. Slope of �3‘ at �IR;3‘

The derivative of �3‘ at � ¼ �IR;3‘ is

�0
IR;3‘ ¼

1

jb3j2
�
�jb2jðb22 þ 4b1jb3jÞ

þ ðb22 þ 2b1jb3jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 þ 4b1jb3j

q �
: (3.16)

That this is positive follows from the fact that the square of
the term involving the square root minus the square of
�ð4b1jb2jjb3j þ jb2j3Þ in the brackets is the manifestly
positive quantity 4b21b

2
3ðb22 þ 4b1jb3jÞ. Owing to the ho-

mogeneity properties, to express �0
IR;3‘ in terms of the �b‘

coefficients, one simply replaces each b‘ in Eq. (3.16) by
the corresponding �b‘.

A general inequality is that for a givenG, R, andNf 2 I,

in a scheme with b3 < 0, which is thus guaranteed to
maintain the existence of the IR zero in �2‘ at the three-
loop level,

�0
IR;3‘ < �0

IR;2‘: (3.17)

To prove this, we examine the difference

�0
IR;2‘ � �0

IR;3‘ ¼
1

jb2jb23

�
2b21b

2
3 þ jb2j2ðb22 þ 4b1jb3jÞ

� jb2jðb22 þ 2b1jb3jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 þ 4b1jb3j

q �
:

(3.18)

The positivity of this difference is equivalent to the pos-
itivity of the square of the polynomial terms in the numera-
tor minus the square of the term in the numerator involving
the square root, which is

4b41b
4
3: (3.19)

This is manifestly positive definite, which proves the in-
equality (3.17).

The shifts in the values of the IR zero, �IR;n‘, the

position of the minimum in �n‘, the value of �n‘ at the
minimum, and the slope of �n‘ at � ¼ �n;‘ are evident

from Tables I, III, and IV and Figs. 1 and 2.

C. Four-loop level

The derivative d�3‘=d� ¼ �2�ð2 �b1 þ 3 �b2�þ
4 �b3�

2 þ 5 �b4�
3Þ is zero at � ¼ 0 and at the three other

points given by the zeros of the cubic equation 2 �b1 þ
3 �b2�þ 4 �b3�

2 þ 5 �b4�
3 ¼ 0. We have calculated these

critical points, evaluated �4‘ at its minimum physical
value, and also evaluated the derivative d�4‘=d� at � ¼
�IR;4‘. We give the numerical results for �m;4‘, ð�4‘Þmin ,

and �0
IR;4‘ in Tables I, III, and IV. These four-loop struc-

tural results are also evident in Figs. 1 and 2.
In addition to the results that we have proved above,

we note some others here. As stated above, numerical
results for three- and four-loop structural quantities were

calculated in the MS scheme. First, although the ratios
�m;3‘=�IR;3‘ and �m;4‘=�IR;4‘ are not constants as func-

tions of Nf, they do not differ very much from the two-

loop ratio, which is a constant, namely, 2=3, as given in
Eq. (3.4). With fermions in the h representation, for a
given Nc and Nf 2 I, �m;4‘ is slightly larger than �m;3‘,

but still substantially smaller than �m;2‘, just as is true of

the corresponding �IR;n‘ quantities. Moreover, for a given

G and loop order n, �m;n‘ is a monotonically decreasing

function ofNf2 I and vanishes asNf%Nf;b1z and b1 ! 0.

IV. SOME PROPERTIES OF �m

The anomalous dimension �m for the fermion bilinear
�c c describes the scaling properties of this operator and
can be expressed as a series in a or equivalently, �:

�m ¼ X1
‘¼1

c‘a
‘ ¼ X1

‘¼1

�c‘�
‘; (4.1)

where �c‘ ¼ c‘=ð4�Þ‘ is the ‘-loop series coefficient. The
coefficient c1 is scheme independent, while c‘ for ‘ � 2
are scheme dependent. The c‘ coefficients have been cal-

culated up to four-loop order in theMS scheme [7]. We list
c‘ for ‘ ¼ 1, 2, 3 in Appendix A. We denote the n-loop
expression for �m as a series in �, evaluated at the n-loop
IR zero of �, � ¼ �IR;n‘, as �IR;n‘.

In [11], we calculated �IR;n‘ up to ðn ¼ 4Þ-loop order in
the MS scheme. An important result was that we found a
substantial reduction in �IR going from the two-loop to
three-loop level for all of the fermion representations that
were considered. The difference going from three- to four-
loop level, �IR;3‘ � �IR;4‘, was found to be smaller and

could be of either sign, depending on the representation
and value of Nf. The resultant �IR;4‘ was thus substantially

smaller than �IR;2‘.

One may investigate the reduction �IR;3‘ < �IR;2‘ found

in [11] further. To do this for a given gauge group G and
fermion representation R, we assume that Nf 2 I, so that

the theory has an IR zero of �2‘, and, further, that the
scheme is such that b3 < 0 for Nf 2 I, so that this IR zero

is guaranteed to be maintained at the three-loop level. We
will use the resultant property that �IR;3‘ < �IR;2‘. Let us

consider the difference �IR;2‘ � �IR;3‘. This is given by

�IR;2‘ � �IR;3‘ ¼ �c1ð�IR;2‘ � �IR;3‘Þ
þ �c2ð�2

IR;2‘ � �2
IR;3‘Þ � �c3�

3
IR;3‘: (4.2)

The (scheme-independent) coefficient c1 is positive, so
that, since �IR;2‘ � �IR;3‘ > 0, it follows that the first

term on the right-hand side of Eq. (4.2) is positive. The
factor ð�2

IR;2‘ � �2
IR;3‘Þ in the second term is also positive.

The coefficient c2 is scheme dependent, so the analysis of
this term necessarily involves a choice of scheme, as does

the analysis of the third term. We next prove that in theMS
scheme, c2 > 0 for all of the representations considered in
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[11], so that this second term is positive. To show this, we
begin with the h representation, for which

ðc2Þfund;MS ¼
ðN2

c � 1Þð203N2
c � 9� 20NcNfÞ

192N2
c

: (4.3)

The first factor in the numerator, N2
c � 1, is obviously

positive for all physical Nc. The second factor is positive
for Nf < Nf;c2z, where

Nf;c2z ¼ 203N2
c � 9

20Nc

: (4.4)

This is larger than the upper bound on Nf from asymptotic

freedom, Nf;b1z, as is clear from the difference

Nf;c2z � Nf;b1z ¼ 3ð31N2
c � 3Þ

20Nc

> 0; (4.5)

so that c2;fund;MS > 0 for Nf 2 I (actually for all physical

Nf). This provides an analytic understanding of the nu-

merical results in Table V of [11], which indicated that
c2 > 0 for all Nc and Nf considered there.

We next consider the case of fermions in the adjoint
representation, for which

c2;adj;MS ¼
N2

cð53� 10NfÞ
24

: (4.6)

This is positive for Nf < 53=10, which is larger than the

upper bound onNf for this representation from the require-

ment of asymptotic freedom, namely, Nf;b1z ¼ 11=4 ¼
2:75, so again, c2 > 0 for all Nf for the adjoint representa-

tion in the MS scheme.
Finally, we consider the case of fermions in the sym-

metric or antisymmetric rank-2 tensor representation, de-
noted S2 and A2, respectively, with Young tableaux

and . Owing to the fact that the A2 representation of

SU(2) is the singlet, it is understood that Nc � 3 in this
case. Since various formulas are similar for these two
representations, with appropriate reversals of signs of cer-
tain terms, it is convenient to give them in a unified
manner, with T2 referring to S2 and A2 together. We have

c2;T2;MS ¼
ðNc � 2ÞðNc � 1Þ½109N2

c � 9Nc � 18� 10NcðNc � 2ÞNf�
48N2

c

; (4.7)

where the upper (lower) sign applies for the S2 (A2)
representation, respectively. In the numerator of this ex-
pression, the factor ðNc � 2ÞðNc � 1Þ is obviously positive
for the relevant values of Nc, so one next examines the
factor ½109N2

c � 9Nc � 18� 10NcðNc � 2ÞNf�. This is
positive for Nf < Nf;c2T2z, where

Nf;c2T2z ¼ 106N2
c � 9Nc � 18

10NcðNc � 2Þ : (4.8)

As for the other representations, Nf;c2T2z is larger than the
respective upper bound on Nf from the requirement of
asymptotic freedom, Nf;b1z;T2,

Nf;b1z;T2 ¼ 11Nc

2ðNc � 2Þ : (4.9)

This is proved by considering the difference

Nf;c2T2z � Nf;b1z;T2 ¼ 3ð17N2
c � 3Nc � 6Þ

10NcðNc � 2Þ : (4.10)

This difference is positive for

Nc � �3þ ffiffiffiffiffiffiffiffi
417

p
34

; (4.11)

i.e., 0.5124 for S2 and 0.6888 for A2, and hence for all
physical Nc. Therefore, this proves that c2 > 0 for all
relevant Nf < Nf;b1z and, in particular, for all Nf in the
respective intervals I for these theories with fermions in the
symmetric or antisymmetric rank-2 representation.

We have thus proved that for the MS scheme, for all of
the representations considered in [11], the first two terms
in the difference �IR;2‘ � �IR;3‘ are both positive. We

have also investigated the contribution of the third term.
By analytic methods similar to those exhibited above, we
find that this third term also makes a positive contribution
to the difference in Eq. (4.2), i.e., c3 < 0 for Nf 2 I, in

most, although not all, cases. For example, for G ¼
SUðNcÞ and fermions in the h representation, c3 < 0
for all Nc up to Nc ¼ 15 and integer Nf values in the

respective intervals I. This includes all of the cases of Nc

and Nf 2 I for which numerical results were given in

[11] and thus gives an analytic understanding of those
results. For Nc ¼ 16, the interval I is 42 � Nf � 87, and

c3 < 0 for all of these values of Nf except the lowest

one, Nf ¼ 42, where c3 > 0. Similar comments apply for

larger Nc.

V. SUPERSYMMETRIC GAUGE THEORY

A. IR zeros of �

It is of interest to give some corresponding results on
properties of the � function and associated UV to IR
evolution in an asymptotically free, N ¼ 1 supersym-
metric gauge theory with vectorial chiral superfield con-

tent �i,
~�i, i ¼ 1; . . . ; Nf in the R, �R representations,

respectively. A number of exact results have been derived
describing the infrared properties of the theory in [31,32].
Thus, one can compare findings from perturbative
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calculations with these exact results, and this was done in
[13]. The � function of the theory has the form

�s ¼ d�

dt
¼ �2�

X1
‘¼1

b‘;sa
‘ ¼ �2�

X1
‘¼1

�b‘;s�
‘; (5.1)

where we use the subscript s, standing for supersymmet-
ric, to avoid confusion with the corresponding quantities
in the nonsupersymmetric theory, and �b‘;s ¼ b‘;s=ð4�Þ‘.
The beta function calculated to n-loop order is denoted
�n‘;s. For values of Nf for which �n‘;s has an IR zero,

we denote this as �IR;n‘;s. In addition to the scheme-

independent coefficients b1;s and b2;s, calculated in

[33,34], respectively, the three-loop coefficient, b3;‘, has
been calculated in [35] in the dimensional reduction (DR)
scheme [36]. Calculations of �IR;n‘;s and corresponding

values of the anomalous dimension for the bilinear chiral

superfield operator �~� were given in [13] up to the
maximal order to which b‘ and the coefficients of the
anomalous dimension had been calculated, namely,
the three-loop level.

We recall that, since b1 ¼ 3CA � 2TfNf [33], the upper

bound on Nf for the theory to be asymptotically free is

Nf < Nf;b1z;s; (5.2)

where

Nf;b1z;s ¼ 3CA

2Tf

: (5.3)

The two-loop � function coefficient is b2;s ¼ 6C2
A �

4ðCA þ 2CfÞTfNf [34], which decreases through positive

values and passes through zero, reversing sign, as Nf

increases through

Nf;b2z;s ¼ 3C2
A

2TfðCA þ 2CfÞ : (5.4)

Since Nf;b2z;s < Nf;b1z;s, there is always an interval of

values of Nf, namely,

Is: Nf;b2z;s < Nf < Nf;b1z;s; (5.5)

in which the two-loop � function for this theory has an IR
zero for Nf. The value of this two-loop IR zero is

�IR;2‘;s ¼ � 4�b1;s
b2;s

¼ 2�ð3CA � 2TfNfÞ
2ðCA þ 2CfÞTfNf � 3C2

A

: (5.6)

In particular, for chiral superfields in the h and �h repre-
sentations, Nf;b1z;s¼3Nc and Nf;b2z;s¼3N3

c=½2N2
c�1�, so

Is:
3N3

c

2N2
c � 1

<Nf < 3Nc for R ¼ h: (5.7)

In this case, the exact value of Nf at the lower end of the

IR-conformal, non-Abelian Coulomb phase was deter-
mined in Ref. [32] to be

Nf;cr;s ¼ 3Nc

2
for R ¼ h: (5.8)

Here, since Nf;b2z;s > Nf;cr;s, the coefficient b2;s passes

through zero and reverses sign in the interior of the non-
Abelian Coulomb phase. Consequently, as was noted in
[13], for this case of chiral superfields in the h and �h
representations, one cannot study the IR zero of �2‘

throughout the entirety of this phase. The generalization
of Nf;cr;s to higher representations has been given as [37]

Nf;cr;s ¼ 3CA

4Tf

: (5.9)

Assuming that �m saturates its upper bound of 1 in this
supersymmetric theory as Nf & Nf;cr;s, Eq. (5.8) agrees

with the result obtained via a closed-form solution for �
[31] (see also [38]). Note that the fact that the scheme used
in [31] is different from theDR scheme does not affect this,
since Nf;cr;s is a physical quantity.

At the three-loop level, �3‘;s ¼ �2�2�3‘;r;s, where

�n‘;r is given by Eq. (2.8) with �b‘ replaced by �b‘;s. One
makes use of the result [35]

b3;s ¼ 21C3
A þ 4ð�5C2

A � 13CACf þ 4C2
fÞTfNf

þ 4ðCA þ 6CfÞT2
fN

2
f (5.10)

in the DR scheme. The three-loop IR zero of �s, �IR;3‘;s,

was calculated and compared with �IR;2‘;s in [13]. One can

prove various inequalities similar to those that we have
proved above for a nonsupersymmetric gauge theory. We
illustrate one of these, concerning the relative size of
�IR;2‘;s and �IR;3‘;s for chiral superfields in the h and �h
representations. We begin by noting that b3;s in the DR
scheme is a quadratic function of Nf which is positive for

small Nf, and, as Nf increases, passes through zero, be-

coming negative, at a value denoted Nf;b3z;�;s, reaches a

minimum, and then passes through zero again at Nf ¼
Nf;b3z;þ;s, and is positive for larger Nf. In general,

Nf;b3z;�;s ¼
5C2

A þ 13CACf � 4C2
f �

ffiffiffiffiffiffi
Rs

p
2TfðCA þ 6CfÞ ; (5.11)

where

Rs ¼ 4C4
A þ 4C3

ACf þ 129C2
AC

2
f � 104CAC

3
f þ 16C4

f:

(5.12)

For the h or �h representation, this reduces to

Nf;b3z;�;s ¼
21N4

c � 9N2
c � 2� ffiffiffiffiffiffiffiffiffiffiffiffiffi

Rs;fund

p
2Ncð4N2

c � 3Þ ; (5.13)

where

Rs;fund ¼ 105N8
c � 126N6

c � 3N4
c þ 36N2

c þ 4: (5.14)

(Note that Rs;fund is positive definite, vanishing at eight

complex values of Nf.) To prove that �IR;2‘;s < �IR;3‘;s for
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this case, it suffices to show that b3;s < 0 forNf 2 Is, since

then one can apply the same proof that we used for
Eq. (2.29). To show that b3;s < 0 for Nf 2 Is, we will

demonstrate that Nf;b3z;�;s < Nf;b2z;s and Nf;b3z;þ;s >

Nf;b1z;s. First, for this case of R equal to the h representa-

tion, we consider the difference

Nf;b2z;s � Nf;b3z;�;s

¼ �18N6
c þ 21N4

c � 5N2
c � 1þ ð2N2

c � 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
Rs;fund

p
2Ncð2N2

c � 1Þð4N2
c � 3Þ :

(5.15)

Although the polynomial term in the numerator of (5.15) is
negative, it is smaller than the term involving the square
root. To show this, we observe that the square of the term
involving the square root minus the square of the polyno-
mial term in the numerator is 24Nc4ðN2

c þ 1ÞðN2
c � 1Þ2 	

ð4N2
c � 3Þ. This is positive for all physical Nc, proving that

Nf;b2z;s > Nf;b3z;�;s for this case. Next, we consider the

difference

Nf;b3z;þ;s�Nf;b1z¼
�3N4

cþ9N2
c�2þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

Rs;fund

p
2Ncð4N2

c�3Þ : (5.16)

Although the polynomial term in the numerator is negative
for physical Nc, it is smaller than the square root, as is
shown by the fact that the difference of the square of the
square root term minus the square of the polynomial term
is 24N2

cðN4
c � 1Þð4N2

c � 3Þ, which is positive. So we have
proved that for this case, Nf;b3z;�;s < Nf;b2z;s and

Nf;b3z;þ;s > Nf;b1z;s. In turn, this proves that for this case

with Nf chiral superfields in the h and �h representations,

in the DR scheme, b3;s < 0 for Nf 2 Is, and hence

�IR;3‘;s < �IR;2‘;s: (5.17)

This inequality follows by the same type of proof as the
one that we gave for Eq. (2.29).

B. Structural properties of �s

Because one has exact, nonperturbative results available
for this theory, we will be brief in our discussion of
structural properties of the � function. The value of �
where �2‘;s has zero slope and a minimum in the interval

(1.1) is given by Eq. (3.1) as

�m;2‘;s ¼
8�ð3CA � 2TfNfÞ

3½4ðCA þ 2CfÞTfNf � 6C2
A�
: (5.18)

At this �, �2‘;s reaches its minimum physical value,

ð�2‘;sÞmin ¼ � 32�ð3CA � 2TfNfÞ3
27½4ðCA þ 2CfÞTfNf � 6C2

A�2
: (5.19)

As in the nonsupersymmetric theory, �m;2‘;s ¼
ð2=3Þ�IR;2‘;s.

The derivative d�2‘;s=d� evaluated at � ¼ �IR;2‘;s is

given by the analogue of Eq. (3.5), namely,

�0
IR;2‘;s ¼

2ð3CA � 2TfNfÞ2
4ðCA þ 2CfÞTfNf � 6C2

A

; (5.20)

which is positive for Nf 2 I.

At the three-loop level, �m;3‘;s, ð�3‘Þmin , and �
0
IR;3‘;s are

given by Eqs. (3.9), (3.12), and (3.16) with the replace-
ments b‘ ! b‘;s.
In Figs. 3 and 4 we show plots of the two- and three-loop

� functions for this supersymmetric gauge theory with
chiral superfields in the fundamental representation and
with the illustrative values Nc ¼ 2, Nf ¼ 5 and Nc ¼ 3,

Nf ¼ 7, respectively. The three-loop � functions are cal-

culated in the DR scheme.
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FIG. 3. Plot of the n-loop � function �n‘;s for an SUðNcÞ
gauge theory with N ¼ 1 supersymmetry, as a function of �,
for n ¼ 2 and n ¼ 3 loops and Nc ¼ 2, Nf ¼ 5 with chiral

superfields in the fundamental representation. The lower and
upper curves correspond to �2‘;s and �3‘;s, respectively. See text

for further details.
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FIG. 4. Plot of the n-loop � function �n‘;s for an SUðNcÞ
gauge theory with N ¼ 1 supersymmetry, as a function of �,
for n ¼ 2 and n ¼ 3 loops and Nc ¼ 3, Nf ¼ 7 with chiral

superfields in the fundamental representation. The lower and
upper curves correspond to �2‘;s and �3‘;s, respectively. See text

for further details.
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VI. CONCLUSIONS

In this paper we have studied some higher-loop structural
properties of the � function in an asymptotically free vec-
torial gauge theory, focusing on the case where the theory
has an IR zero in the � function. These structural properties
include the value of � where � reaches a minimum (i.e., a
maximal magnitude, since � � 0 for � 2 I�), the value of
� at this minimum, and the derivative d�=d� at the IR zero,
calculated to the n-loop order. We have given results up to
four loops in a nonsupersymmetric gauge theory and up to
three loops in a gauge theory withN ¼ 1 supersymmetry.
In an asymptotically free theory with an exact or approxi-
mate infrared zero in the � function, these structural quan-
tities provide further information about the running of� as a
function of the reference scale,�. The derivative of� at�IR

is also of interest because it enters into estimates of the
dilaton mass in a quasiconformal gauge theory. A general
inequality was proved concerning how the shift in the IR
zero of � as one goes from the n-loop to the ðnþ 1Þ-loop
order depends on the sign of bnþ1. For schemes that have
b3 < 0 for Nf 2 I and which thus are guaranteed to pre-

serve the existence of the IR zero in the (scheme-
independent) �2‘ at the three-loop level, we have proved
that�IR;3‘ < �IR;2‘,�m;3‘ < �m;2‘, jð�3‘Þmin j< jð�2‘Þmin j,
and �0

IR;3‘ < �0
IR;2‘. Our results further elucidate the ultra-

violet to infrared evolution of an asymptotically free vecto-
rial gauge theory with fermions.
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APPENDIX A

1. � function coefficients

For a vectorial gauge theory with gauge group G and Nf

fermions in the representation R, the coefficients b1 and b2
in the � function are [1]

b1 ¼ 1

3
ð11CA � 4TfNfÞ (A1)

and [2,22]

b2 ¼ 1

3
½34C2

A � 4ð5CA þ 3CfÞTfNf�: (A2)

In the MS scheme [3]

b3 ¼ 2857

54
C3
A þ TfNf

�
2C2

f �
205

9
CACf � 1415

27
C2
A

�

þ ðTfNfÞ2
�
44

9
Cf þ 158

27
CA

�
: (A3)

We have also used the four-loop coefficient, b4, calculated

in the MS scheme in [4], for our calculations. This coeffi-
cient b4 is a cubic polynomial in Nf.

2. Coefficients for �m

We list here the c‘ for ‘ ¼ 1, 2, 3:

c1 ¼ 6Cf; (A4)

c2 ¼ 2Cf

�
3

2
Cf þ 97

6
CA � 10

3
TfNf

�
; (A5)

c3 ¼ 2Cf

�
129

2
C2
f �

129

4
CfCA þ 11413

108
C2
A þ CfðTfNfÞð�46þ 48
ð3ÞÞ � CAðTfNfÞ

�
556

27
þ 48
ð3Þ

�
� 140

27
ðTfNfÞ2

�
;

(A6)

where 
ðsÞ ¼ P1
n¼1 n

�s is the Riemann zeta function, and

ð3Þ ¼ 1:2020569 . . . . We have also used the four-loop
coefficient c4, calculated in the MS scheme in [7], for
our calculations.

APPENDIX B

Here we give some illustrative explicit �4‘ functions for
various values of Nc and Nf. The three-loop and four-loop

coefficients are calculated in the MS scheme. These are
written in the form

�4‘ ¼ �2 �b1�
2

�
1þ X4

‘¼2

� �b‘
�b1

�
�‘�1

�
(B1)

and are listed both analytically and numerically (to the
indicated floating-point accuracy).

Nc ¼ 2; Nf ¼ 8: �4‘ ¼��2

�

�
1� 5

2

�
�

�

�
� 603

64

�
�

�

�
2 þ

��136859þ 198528
ð3Þ
9216

��
�

�

�
3
�

¼�0:3183�2ð1� 0:7958�� 0:9546�2 þ 0:3562�3Þ; (B2)

ROBERT SHROCK PHYSICAL REVIEW D 87, 105005 (2013)

105005-16



Nc ¼ 2; Nf ¼ 9: �4‘ ¼ � 2�2

3�

�
1� 169

32

�
�

�

�
� 154445

9216

�
�

�

�
2 þ

��22506041þ 50531904
ð3Þ
1327104

��
�

�

�
3
�

¼ �0:2122�2ð1� 1:6811�� 1:6980�2 þ 0:9292�3Þ; (B3)

Nc ¼ 3; Nf ¼ 10: �4‘ ¼ � 13�2

6�

�
1� 37

26

�
�

�

�
� 41351

3744

�
�

�

�
2 þ

��13418011þ 13331592
ð3Þ
404352

��
�

�

�
3
�

¼ �0:6897�2ð1� 0:4530�� 1:1191�2 þ 0:2080�3Þ; (B4)

Nc ¼ 3; Nf ¼ 12: �4‘ ¼ �3�2

2�

�
1� 25

6

�
�

�

�
� 6361

288

�
�

�

�
2 þ

��140881þ 219192
ð3Þ
3456

��
�

�

�
3
�

¼ �0:4775�2ð1� 1:3263�� 2:2379�2 þ 1:1441�3Þ: (B5)

APPENDIX C

Consider the polynomial of degree m in z, PmðzÞ ¼P
m
s¼0 �sz

s. As discussed in Sec. II, information on the

nature of the roots of the equation PmðzÞ ¼ 0 is given by
the discriminant �m defined in Eq. (2.9). Since �m is a
symmetric function of the roots (being proportional to the
square of the Vandermonde polynomial of these roots), the
theorem on symmetric functions [26] implies that �m can
be expressed as a polynomial in the coefficients �s,
s ¼ 0; . . . ; m. We indicate this in the notation �m ¼
�mð�0; . . . ; �mÞ. The discriminant�m is most conveniently
calculated in terms of the Sylvester matrix of PðzÞ and
dPðzÞ=dz, equivalent to the resultant matrix, denoted SP;P0 ,

of dimension ð2m� 1Þ 	 ð2m� 1Þ:
�m ¼ ð�1Þmðm�1Þ=2��1

m det ðSP;P0 Þ: (C1)

Since we will use �m for m ¼ 2 and m ¼ 3, we list the
explicit expressions here:

�2ð�0; �1; �2Þ ¼ �2
1 � 4�0�2: (C2)

For m ¼ 3,

SP3;P
0
3
¼

�3 �2 �1 �0 0

0 �3 �2 �1 �0

3�3 2�2 �1 0 0

0 3�3 2�2 �1 0

0 0 3�2 2�2 �1

0
BBBBBBBB@

1
CCCCCCCCA

(C3)

so that

�3ð�0;�1;�2;�3Þ¼ ð�1�2Þ2�27ð�0�3Þ2�4ð�0�
3
2þ�3�

3
1Þ

þ18�0�1�2�3: (C4)
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