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The scattering theory approach makes it possible to carry out exact calculations of Casimir

energies in any geometry for which the scattering T-matrix and a partial wave expansion of the free

Green’s function are available. We implement this program for the case of a perfectly conducting

elliptic cylinder, thereby completing the set of geometries where electromagnetic scattering is

separable. Particular emphasis is placed on the case of zero radius, where the elliptic cylinder reduces

to a strip.
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I. INTRODUCTION

Formulating the Casimir energy in terms of scattering
theory has made it possible to efficiently reduce quantum
field theory calculations to standard problems in quantum
mechanics and electromagnetism. By expressing the
‘‘TGTG’’ form of the Casimir energy [1] in appropriate
scattering bases, one can calculate the Casimir interaction
energy of a collection of objects as a combination of the
objects’ scattering amplitudes (T-matrices) together with
universal translation matrices, which are obtained from a
mode expansion of the free Green’s function [2–4]. The
former are computed for each object individually, while
the latter depend only on the objects’ relative positions
and orientations. As a result, the Casimir energy can be
computed for any collection of objects for which the
scattering T-matrix is available within a standard scatter-
ing basis. This approach allows for exact calculations,
extending earlier results using asymptotic expansions
[5,6] and results from scalar theories [7–9]. It can also
be applied in the weak coupling approximation [10].
For objects without special symmetries, however, one
must ultimately turn to computational methods to
compute either the T-matrix or the associated Green’s
functions [11–14].

With sufficient symmetry, the exact T-matrix can take
an analytically calculable form, greatly reducing the
amount of computation required. This reduction has
made it possible to apply the scattering method to effi-
cient computations of the Casimir energy for planes [15],
spheres and ordinary cylinders [2,4,16,17], parabolic
cylinders [18,19], and wedges and cones [20]. Here we
complete the set of separable geometries in electromag-
netism by treating the case of an elliptic cylinder. This
geometry has been investigated for microfabricated
materials using a Lifshitz formula approach in Ref. [21]
and has been used to study Casimir self-energies in
Refs. [22,23].

II. SCATTERING IN ELLIPTIC CYLINDER
COORDINATES

We begin by formulating scattering theory in elliptic
cylinder coordinates,

x ¼ d cosh� cos � y ¼ d sinh� sin �; (1)

where 2d is the interfocal separation of our elliptic cylinder
coordinates, � is the analog of the angle in ordinary cylin-
drical coordinates, and � is the analog of the radius, with

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh 2�þ cos 2�

2

s
! d

2
e� (2)

as � ! 1.
We use separation of variables to form solutions of the

Helmholtz equation �r2c ðrÞ ¼ k2c ðrÞ as products of
functions of �, � and z individually. For the functions of
z, we have ordinary complex exponentials eikzz, which will
multiply angular functions of � and radial functions of �.
Since we have parity symmetry, we can choose our angular
solutions to be either even or odd under reflection across
the x axis, � ! ��. Unlike the ordinary cylinder case, the
elliptic angular solutions depend on the wave number k,
and the elliptic radial solutions associated with the odd and
even angular solutions differ and depend on the wave
number and radius separately, rather than only on the

product kr. For q ¼ d2

4 ðk2 � k2zÞ, the angular solutions

are the even and odd angular Mathieu functions cemð�; qÞ
and semð�; qÞ, which are the analogs of cosm� and sinm�,
respectively. As in the case of ordinary cylindrical coor-
dinates, for the even functions m runs from 0 to 1, while
for the odd functions m runs from 1 to 1. For the corre-
sponding radial functions, we have both the even and odd
first kind solutions Jemð�; qÞ and Jomð�; qÞ, the analogs of
the Bessel function Jmð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2z

q
rÞ, and the even and odd

outgoing wave solutions Hemð�; qÞ and Homð�; qÞ, the
analogs of the Hankel function Hð1Þ

m ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2z

q
rÞ. We will

normalize the Mathieu functions so that they obey the
same orthonormality conditions as their cylindrical ana-
logs, except that the m ¼ 0 even angular function will be*ngraham@middlebury.edu
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normalized so that its root mean square average value is

1=
ffiffiffi
2

p
(the same as for all the other angular functions)

instead of cos 0 ¼ 1. As a result, we haveZ 2�

0
cemð�; qÞ2d� ¼

Z 2�

0
semð�; qÞ2d� ¼ �; (3)

with the radial functions normalized to coincide with
their cylindrical analogs asymptotically. Our notation and

normalization match that of Ref. [24], which defines
Mathieu functions following the conventions of
Abramowitz and Stegun [25], but uses a modified notation
that is more closely analogous to the ordinary cylinder
case. We will make use of identities for elliptic cylinder
functions found in standard Refs. [25–27].
The key ingredients for our calculation will be the free

Green’s function

Gðr1; r2; kÞ ¼
Z 1

�1
dkz
2�

i

2

"X1
m¼0

cemð�1; qÞcemð�2; qÞJemð�<; qÞHemð�>; qÞ

þ X1
m¼1

semð�1; qÞsemð�2; qÞJomð�<; qÞHomð�>; qÞ
#
; (4)

where �< (�>) is the smaller (larger) of �1 and �2, and
the expansion of a plane wave,

eik�r ¼ eikzz
"
2
X1
m¼0

imcemð�; qÞcemð�; qÞJemð�; qÞ

þ 2
X1
m¼1

imsemð�; qÞsemð�; qÞJomð�; qÞ
#
; (5)

where �, �, and z are the elliptic cylinder coordinates of

r and� ¼ arctan
ky
kx
is the angle of k ¼ ðkx; ky; kzÞ in the xy

plane, with k2 ¼ k2x þ k2y þ k2z .

We will work on the imaginary k axis k ¼ i�, so that

ky ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ k2x þ k2z

q
and q ¼ �d2ð�2 þ k2zÞ=4 is nega-

tive. As a result, it is convenient to rewrite these expres-
sions in terms of modified radial functions,

Gðr1; r2; kÞ ¼
Z 1

�1
dkz
2�

1

�

"X1
m¼0

cemð�1; qÞcemð�2; qÞIemð�<;�qÞKemð�>;�qÞ

þ X1
m¼1

semð�1; qÞsemð�2; qÞIomð�<;�qÞKomð�>;�qÞ
#

(6)

and

eik�r ¼ eikzz
"
2
X1
m¼0

ð�1Þmcemð�;qÞcemð�;qÞIemð�;�qÞþ2
X1
m¼1

ð�1Þmsemð�;qÞsemð�;qÞIomð�;�qÞ
#
; (7)

where Iemð�;�qÞ ¼ i�mJemð�; qÞ, Iomð�;�qÞ ¼ i�mJomð�; qÞ,Kemð�;�qÞ ¼ imþ1 �
2 Hemð�; qÞ, andKomð�;�qÞ ¼

imþ1 �
2 Homð�; qÞ are the modified outgoing radial functions.

We will consider scattering with Dirichlet and Neumann boundary conditions on an elliptic cylinder of radius
�0. For the scattering amplitudes, we have T e;o

mkzm
0k0z

¼ 2��ðkz � k0zÞ�mm0T e;o
m , with

T e
m ¼ � Iemð�0;�qÞ

Kemð�0;�qÞ T o
m ¼ � Iomð�0;�qÞ

Komð�0;�qÞ ðDirichletÞ

T e
m ¼ � Ie0mð�0;�qÞ

Ke0mð�0;�qÞ T o
m ¼ � Io0mð�0;�qÞ

Ko0mð�0;�qÞ ðNeumannÞ; (8)

where prime indicates a derivative with respect to �.

III. ELLIPTIC CYLINDER AND PLANE

To consider the elliptic cylinder’s interaction with a
plane, we will need to connect the elliptic cylinder and
planar geometries. To do so, we make use of the expression
for the free Green’s function in Cartesian coordinates for
y2 > y1,

Gðr1; r2; kÞ ¼
Z 1

�1
dkz
2�

eikzðz2�z1Þ i

4�

�
Z 1

�1
dkx
ky

eiðkxðx2�x1Þþkyðy2�y1ÞÞ; (9)

where ky ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x � k2z

q
¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ k2x þ k2z

q
. We equate

Eq. (9) to the Green’s function in Eq. (6), expand the plane
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wave eik�r2 in Eq. (9) using Eq. (7), make the substitution
kx ! �kx, and finally use the orthogonality of the regular
elliptic cylinder solutions to equate both sides term by term
in the sums over m. The result is an expansion for the
elliptic outgoing wave solutions in terms of plane waves
for y < 0 [25],

cemð�; qÞKemð�;�qÞeikzz

¼
Z 1

�1
dkx

�
i

2ky
cemð�; qÞ

�
e�ikyyþikxxeikzz

semð�; qÞKomð�;�qÞeikzz

¼
Z 1

�1
dkx

��i

2ky
semð�; qÞ

�
e�ikyyþikxxeikzz:

(10)

The quantities in brackets represent the translation matrix
elements, which we must then multiply by the normaliza-

tion factor C
elliptic
m

C
plane
kx

, where we can read off Celliptic
m ¼

ffiffiffi
1
�

q
and

C
plane
kx

¼
ffiffiffiffiffiffiffiffi
i

4�ky

q
from the expressions for the free Green’s

function in Eqs. (6) and (9).
Finally, the T-matrix elements for the plane in Cartesian

coordinates are simply T P ¼ �1 for Neumann and
Dirichlet boundary conditions, respectively. (For more
general boundary conditions on the plane, this scattering
amplitude would be a function of kx.)

We have now obtained the T-matrix elements, which
describe how waves scatter off each object individually,
and the translation matrix elements, which convert the
scattering bases between the two objects. As a result, we
are prepared to assemble these ingredients into the result
for the full Casimir interaction energy per unit length. We
consider a perfectly conducting plane oriented perpendicu-
lar to the y axis and a perfectly conducting elliptic cylinder
with its z axis parallel to the plane, its center at a distance
H from the plane, and its major axis at an angle ’ to the
plane, as shown in Fig. 1. This angle represents a rotation
of the elliptic cylinder coordinates � and � relative to the
Cartesian coordinates x and y, which we then implement

in Eq. (10) by adding a constant shift ’ to the angle � ¼
arctan

ky
kx
in the translation matrix elements.

For a particular choice of boundary conditions, we can
now use the approach of Refs. [2–4] to write the Casimir
energy per unit length as

E
ℏcL

¼
Z 1

0

d�

2�

Z 1

�1
dkz
2�

log det

�
1��0
mm0

�T �
m

Z idkx
ky

U�
mkx

T P
kx
Û�0

m0kx

�
; (11)

where the matrix determinant runs over �, �0 ¼ o, e with
m ¼ 0; 1; 2; 3; . . . for � ¼ e and m ¼ 1; 2; 3; . . . for � ¼ o,
and similarly for m0 and �0. The translation matricesU�

mkx

and reverse translation matrices Û�
mkx

are given by

Ue
mkx

¼ cemð�þ ’; qÞeikyH
Ûe

mkx ¼ cemð��þ ’; qÞeikyH
(12)

for the even modes and

Uo
mkx

¼ semð�þ ’; qÞeikyH
Ûo

mkx ¼ semð��þ ’; qÞeikyH
(13)

for the odd modes.
We can then change the integration variable from kx to

u ¼ 1
i ð�� �

2Þ and combine the � and kz equations into a

single integral over p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ k2z

q
, so that q ¼ � d2p2

4 .

We obtain

E
ℏcL

¼ 1

4�

Z 1

0
pdp log det

�
1��0
mm0 �T �

mT P

�
Z 1

�1
due�2pH coshu cem

sem

�
�

2
þ iuþ ’; q

�

� cem0

sem0

�
�

2
� iuþ ’; q

��
; (14)

where we choose cem for � ¼ e and sem for � ¼ o, and
similarly for m0 and �0. The full electromagnetic Casimir
energy is the sum of this result for Dirichlet conditions on
both surfaces and for Neumann conditions on both sur-
faces. Note that the established result for an ordinary
cylinder [16] can be obtained from this expression by
replacing the elliptic functions with their ordinary cylin-
drical analogs, combining the even and odd modes using
coshmu coshm0uþ sinhmu sinhm0u ¼ cosh ðmþm0Þu,
and employing the integral identity

Knð�Þ ¼
Z 1

0
e�� coshu cosh nudu: (15)

There are several special cases of interest in which the
calculation simplifies:
(i) Plane perpendicular to the ellipse’s major axis.—

For ’ ¼ �=2, the elliptic cylinder’s major axis
runs perpendicular to the plane. By the reflection

H

d

FIG. 1 (color online). Geometry for the elliptic cylinder and
plane.
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symmetry across the y axis, the even and odd sectors
decouple, and we can compute the Casimir energy
by considering the odd and even elliptic modes
separately.

(ii) Plane parallel to the ellipse’s major axis.—For’ ¼
0, the elliptic cylinder’s major axis lies parallel to
the plane. This case also has reflection symmetry
across the y axis, but this symmetry does not
correspond directly to the symmetry of the even
and odd Mathieu functions. Instead, the even
Mathieu functions of even order and the odd
Mathieu functions of odd order are symmetric under
this transformation, while the odd Mathieu func-
tions of even order and the even Mathieu functions
of odd order are antisymmetric. (This is the same
symmetry structure as the ordinary trigonometric
functions have when their argument is displaced
by �=2.) Thus, we can again decompose the prob-
lem into two independent sectors, consisting of the
modes for which the parity of the elliptic functions
matches the parity of m, and the modes for which
they are opposite.

(iii) Zero radius cylinder.—An elliptic cylinder with
�0 ¼ 0 becomes a strip of width 2d, allowing us
to study the effects of edges [18–20,28,29]. In that
case we have T o

m ¼ 0 for a Dirichlet boundary
and T e

m ¼ 0 for a Neumann boundary, since in
these cases the free modes already obey the
boundary condition at the surface. These modes
therefore give zero contribution to the Casimir
energy in this case, and can be omitted from the
calculation.

IV. NUMERICAL RESULTS

We can now compute the Casimir energy by straightfor-
ward numerical integration of Eq. (14). To compute the
modified radial functions needed for the scattering ampli-
tude, we use the package of Alhargan [30,31]. (Standard
packages such as MAPLE and MATHEMATICA only imple-
ment the angular Mathieu functions of the first kind.
Although the radial functions are related to the angular
functions with imaginary argument, without an implemen-
tation of the second kind angular function we cannot take
advantage of this relationship to compute the functions
needed for the scattering amplitude.) The angular functions
arising from the translation matrix, on the other hand, need
to be computed for complex arguments, which are not
supported directly in the Alhargan package. Fortunately,
since only the first kind angular functions are required, we
can use the implementation in MATHEMATICA, which sup-
ports fully complex arguments. As a final complication,
because of problems with the Mathieu function routines in
the current version of MATHEMATICA for the case where the
parameter q < 0, we make use of the identities

cemð�; qÞ ¼
8><
>:
ð�1Þm2cem

�
�
2 ��;�q

�
form even

ð�1Þm�1
2 sem

�
�
2 ��;�q

�
form odd

semð�; qÞ ¼
8><
>:
ð�1Þm2�1sem

�
�
2 ��;�q

�
form even

ð�1Þm�1
2 cem

�
�
2 ��;�q

�
form odd

(16)

so that we only need to compute the angular functions for
�q > 0. As a result, after importing the Alhargan routines
for the modified radial functions, it is possible to carry
out the full calculation within MATHEMATICA. Because of
limitations in the ability of the angular routines to handle
large imaginary arguments, however, it was not possible to
extend the calculation to very small separations.
Figure 2 shows the orientation dependence of the

Casimir interaction energy for a perfectly conducting strip
(an elliptic cylinder of zero radius) for the case where the
distance H from the center of the strip to the plane is twice
the distance from the center of the strip to the edge of the
strip, H ¼ 2d. Because higher values did not change the
results appreciably, the matrix determinants were truncated
atmmax ¼ 8. We see that the lowest energy occurs for ’ ¼
�=2, when the strip is perpendicular to the plane. As
expected, the result for the energy per unit length in this

case, Ed2
ℏcL ¼ �0:00637, is less negative than the �0:00674

one finds [18,19] for the case where the strip is extended to
an infinite half-plane whose edge maintains the same dis-
tance H � d ¼ d from the infinite plane. We note, how-
ever, that if we subtract the contribution from a half-plane
at distanceH þ d ¼ 3d from the result for the half-plane at
distanceH � d ¼ d to account for the missing remainder of
the half plane, we obtain�0:00674 � 89 ¼ �0:00599, which

8 4

3

8 2

0.007

0.006

0.005

0.004

0.003

0.002

0.001

d2

c L

FIG. 2 (color online). Electromagnetic Casimir interaction
energy for a perfectly conducting strip opposite a perfectly
conducting plane, as a function of the orientation angle ’.
The distance H from the center of the strip to the plane is twice
the distance from the center of the strip to the edge of the strip,
H ¼ 2d. The solid line shows the proximity force approximation.
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underestimates the magnitude of the true result for the strip.
We also compare these results to the proximity force
approximation (PFA),

Eð0Þ
PFA

ℏcL
¼ � �2

720

Z �d cos’

�d cos’

dx

ðH þ x tan’Þ3

¼ � �2

360

Hd cos’

ðH2 � d2sin 2’Þ2 (17)

which gives a good approximation for ’ ¼ 0 but goes to
zero at ’ ¼ �=2. For ’ � 0 the derivative expansion
correction to the PFA [32,33] is also invalid, because of
the sharp curvature at the point of closest approach.

Figure 3 shows the Casimir interaction energy for a strip
oriented parallel to a plane as a function of the distance to
the plane. The energy is shown as a ratio with the PFA
result (in this case the correction from the derivative ex-
pansion vanishes). As in the case of the ordinary cylinder
[16], the PFA is an underestimate at large distances, but at
short distances the exact result approaches the PFA result

from below. These calculations were carried out with the
matrices truncated at several different values ofmmax up to
mmax ¼ 16, with the final result then obtained by extrap-
olating these results for mmax ! 1.

V. DISCUSSION

We have computed the Casimir interaction energy for an
elliptic cylinder, the last remaining geometry for which
electromagnetic scattering is separable. For a plane, cylin-
der, and sphere, the problem remains separable even for a
dielectric, while for a parabolic cylinder, elliptic cylinder,
wedge, and cone only perfect conductors can be solved
exactly. However, the scattering method is particularly
useful in these latter cases, because they contain sharp
limits in which the PFA is invalid. In principle, it should
be possible to extend the elliptic cylinder result to a hyper-
bolic cylinder in the same way as the wedge is obtained
from the ordinary cylinder and the cone is obtained from
the sphere, but at present there do not appear to be routines
available for computing all the Mathieu functions of com-
plex order that would be needed for such a calculation.
Focusing on the limit in which the elliptic cylinder

becomes a strip has made it possible to study the orienta-
tion dependence of the Casimir force, to show how the PFA
depends on distance and angle, and to observe nonsuper-
position effects in the perpendicular configuration (where
the PFA is invalid). With improvements to the available
routines for computing Mathieu functions, this calculation
could offer an independent check of the edge correction
that was obtained for half-planes [18,19,34]. More gener-
ally, this calculation establishes another addition to the
toolbox of Casimir problems that can be cast into analyti-
cally tractable form.
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