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We perform full three-dimensional numerical relaxations of isospinning Hopf solitons with Hopf charge

up to 8 in the Skyrme-Faddeev model with mass terms included. We explicitly allow the soliton solution to

deform and to break the symmetries of the static configuration. It turns out that the model with its rich

spectrum of soliton solutions, often of similar energy, allows for transmutations, formation of new solution

types, and the rearrangement of the spectrum of minimal-energy solitons in a given topological sector

when isospin is added. We observe that the shape of isospinning Hopf solitons can differ qualitatively

from that of the static solution. In particular, the solution type of the lowest energy soliton can change.

Our numerical results are of relevance for the quantization of the classical soliton solutions.
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I. INTRODUCTION

Hopf soliton solutions arise as topological solitons
in the Skyrme-Faddeev model [1,2]—a nonlinear Oð3Þ
sigma model in (3þ 1)-dimensional space-time whose
Lagrangian is modified by an additional term quartic in
its field derivatives. Extensive numerical simulations [3–9]
of the highly nonlinear classical field equations have re-
vealed a very rich spectrum of solutions that are classified
by their integer-valued Hopf charge. For Hopf charges up
to 16 a variety of static, stable minimum-energy solutions
with the structure of closed strings, twisted tori, linked
loops, and knots have been identified. These stringlike
solitons might be candidates to model glueball configura-
tions [10] in QCD or may arise in two-component Bose
condensates [11,12].

In this paper we investigate the effect of isospin on
classical Hopf soliton solutions. In analogy to the conven-
tional SUð2Þ Skyrmemodel we use the collective coordinate
method [13] to construct Hopf solitons of well-defined,
nonzero isospin: We parametrize the isorotational zero
modes of a Hopf configuration by collective coordinates,
which are then taken to be time dependent. This gives rise
to additional dynamical terms in the Hamiltonian, which can
then be quantized following semiclassical quantization
rules. A simplification that is often made in the literature
[13–16] is to apply a simple adiabatic approximation to the
(iso)rotational zero modes of the soliton by assuming that
the soliton’s shape is rotational frequency independent. The
limitations of this rigid body approach were pointed out by
several authors [17–20]. In this paper we perform numerical
computations of isospinning Hopf solitons with Hopf
charges up to 8 in the full three-dimensional classical field
theory without applying the rigid body approximation and
without imposing symmetry constraints on the isospinning
Hopf configurations. It turns out that the Skyrme-Faddeev

model with its rich topology of minimum-energy solutions,
often of comparable energy, allows for ‘‘transmutations’’
when isospin is added and even for the formation of new,
metastable Hopf solutions.
This paper is organized as follows. In Sec. II we briefly

review the Skyrme-Faddeev model and describe how Hopf
solitons acquire isospin within the collective coordinate
approach. Then, in Sec. III we set up appropriate initial
conditions, which are used in Sec. IV to compute Hopf
configurations of zero isospin. The effect of isospin on
these Hopf soliton solutions is studied in Sec. V. We
conclude with Sec. VI.

II. CLASSICALLY ISOSPINNING HOPF SOLITONS

The Lagrangian density of the Skyrme-Faddeev model
[1] in (3þ 1) dimensions takes in terms of the real three-
component unit vector � ¼ ð�1; �2; �3Þ the form

L ¼ 1

32�2
ffiffiffi
2

p
�
@�� � @��� 1

2
ð@��� @��Þ2 � Vð�Þ

�
:

(1)

To stabilize isospinning Hopf configurations we modi-
fied in (1) the usual Skyrme-Faddeev model by adding a
mass term Vð�Þ to the Oð3Þ sigma model and Skyrme
term. Here we will consider the following SOð3Þ symmetry
breaking potentials:

Vð�Þ ¼
(
VIð�Þ ¼ 2�2ð1��3Þ;
VIIð�Þ¼ �2ð1��2

3Þ;
(2)

where� is a rescaled mass parameter. The potential VI has
one vacuum for �3 ¼ þ1, whereas VII has two vacua: for
�3 ¼ þ1 and �3 ¼ �1. The planar version of (1) with
V ¼ VI corresponds to the old baby Skyrme model [21],
and the one with V ¼ VII reproduces the new baby Skyrme
model [22,23]. The normalization in (2) is chosen so that
for �3 ! þ1 both potentials show the same asymptotic
behavior, explicitly given by �2ð�2

1 þ�2
2Þ.
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The Lagrangian (1) admits topologically nontrivial,
stringlike, finite-energy configurations due to the third
homotopy group of the 2-sphere being nontrivial,
�3ðS2Þ ¼ Z. This can be seen as follows. A static finite-
energy configuration requires the boundary condition
�ðt; xÞ ! ð0; 0; 1Þ as jxj ! 1 for all time t. Hence this
boundary condition on the field � defines a mapping
�: S3 � S2, and the field configurations can be classified
topologically by the homotopy group �3ðS2Þ ¼ Z. The
topological invariant associated with each static field
configuration is known as the Hopf charge N. It can be
interpreted geometrically as the linking number of two
loops obtained as the preimages of any two generic distinct
points on the target 2-sphere. The position curve of the
soliton is defined as the set of points where the field is as
far as possible from the boundary vacuum value �1 ¼
ð0; 0; 1Þ. Thus it is given by the preimage of the point��1,
which is antipodal to the vacuum value. When we visualize
Hopf solitons’ position curves, we usually display for
clarity tubelike isosurfaces with ð0; 0;�1þ �Þ, where �
is chosen to be small. Similarly the linking curve can be
illustrated graphically by plotting an isosurface of the
preimage of the vector ð�1þ �; 0; 0Þ.

The overall factor 1=32�2=
ffiffiffi
2

p
in (1) is motivated by

Ward’s conjecture [24] that with the normalization (1) the
Vakulenko-Kapitanski lower bound [25,26] on the energy
MN of a Hopf configuration with charge N is given by

MN � cN3=4; where c ¼ 1: (3)

The topological bound (3) has been shown to be compat-
ible with fully three-dimensional numerical simulations
carried out in the massless Skyrme-Faddeev model
[5,6,8] and in the massive one [27] with potential VI

included.
The Skyrme-Faddeev model (1) can be expressed in

analogy to the conventional SUð2Þ Skyrme model [28] in
terms of the SUð2Þ-valued Hermitian scalar field Uðt; xÞ ¼
� � �. The ansatz for the dynamical soliton field adopted in
the collective coordinate quantization [13–15] is given by

Ûðx; tÞ ¼ A1ðtÞU0ðxÞAy
1 ðtÞ; (4)

where we have promoted the collective coordinate A1 2
SUð2Þ to a time-dependent dynamical variable and ignored
the translational and rotational degrees of freedom. A1ðtÞ
describes the isorotational fluctuations about the classical
minimum-energy solution U0ðxÞ. Substituting (4) in (1)

and defining the body-fixed angular velocities via aj ¼
�i Trð�jAy

1
_A1Þ the Skyrme-Faddeev Lagrangian takes the

form

L ¼ 1

2
aiUijaj �MN; (5)

where the Hopf soliton mass MN is given by

MN ¼ 1

32�2
ffiffiffi
2

p
Z �
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2
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d3x; (6)

and the moment of inertia tensors is

Uij ¼ 1

16�2
ffiffiffi
2

p
Z
ð�2�ij ��i�jÞð1þ @k� � @k�Þ

� ð�� @k�Þið�� @k�Þjd3x: (7)

The momentum conjugate to ai is the body-fixed isorota-
tion angular momentum Ki defined via

Ki ¼ @L

@ai
¼ Uijaj: (8)

In this article, we choose the z axis as our rotation axis.
Using gradient-based methods we search for Hopf configu-
rations� of a given topological charge N, which minimize

�L ¼ MN � 1

2
U33!

2; (9)

where the rotation frequency ! ¼ a3 is calculated at each
time step for a fixed jKj as follows:

! ¼ jKj
U33

: (10)

III. INITIAL CONDITIONS

We create suitable initial field configurations with non-
trivial Hopf charge N by using the approach presented in
Ref. [9]. The basic idea is to approximate the Hopf
configuration by rational maps W: S3 � CP1, that is, a
mapping from the three-sphere to the complex projective
line. This approach enables us to set up initial conditions
for knotted, linked, and axial Hopf configurations with
energies reasonably close to the suspected minimum en-
ergy solutions. These initial conditions can then be relaxed
using a modified version of the energy minimization algo-
rithm [29] originally designed to study Skyrmion solutions.
First we compactify R3 to a unit 3-sphere S3 2 C2 via a

degree one spherically equivariant map given by

ðZ1; Z0Þ ¼
�
x1 þ ix2

r
sin f; cos fþ i

sin f

r
x3

�
; (11)

where ðx1; x2; x3Þ 2 R3, r2 ¼ x21 þ x22 þ x23 and ðZ1; Z0Þ
are complex coordinates on the unit 3-sphere (with jZ1j2 þ
jZ0j2 ¼ 1). Here fðrÞ is a monotonically decreasing profile
function with boundary conditions fð0Þ ¼ � and fð1Þ ¼
0. In our simulations we use a simple linear profile function
fðrÞ ¼ �ðrmax � rÞ=L for r < rmax and fðrÞ ¼ 0 for
r � rmax with rmax ¼ 6. Approximate Hopf solutions
can be obtained by writing the stereographic projection
of the field �
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W ¼ �1 þ i�2

1þ�3

; (12)

as a rational function of the complex variables Z1 and Z0

W ¼ pðZ1; Z0Þ
qðZ1; Z0Þ ; (13)

where p and q are polynomials in Z1 and Z0.
There are three different solution types that will be used

as initial field configurations for our energy relaxation
simulations:

(i) Toroidal fields of solution type An;m can be ob-

tained by setting

W ¼ Zn
1

Zm
0

; (14)

where n, m 2 Z. The integer pair ðn;mÞ counts the
angular windings around the two cycles of the torus.
An axially symmetric Hopf configuration of the type
An;m can be described [5,9] by a baby Skyrmion

solution with winding numberm, which is embedded
in the (3þ 1)-dimensional Skyrme-Faddeev model
(1) along a closed curve and with its internal phase
rotated through an angle 2�n as it travels around the
circle once. The Hopf charge N associated with such
an unlinked Hopf configuration (14) is given by
N ¼ nm.

(ii) ða; bÞ-torus knots Kab are described by the
mapping

W ¼ Z�
1Z

�
0

Za
1 þ Zb

0

; (15)

where � is a positive integer, � is a non-negative
integer, and a, b are coprime positive integers with
a > b. The rational map (15) generates a knot lying
on the surface of an unknotted torus and winding a
and b times about the torus circumferences. Fields
of type Ka;b have topological charge N ¼ �bþ
�a [9].

(iii) Linked Hopf initial configurations of the typeL�;�
p;q

can be constructed, when the denominator of (15) is
reducible. Following the notation of Ref. [9], p and
q label the charges of the two disconnected com-
ponents that form the link, and the additional link-
ing number of each component due to its linking
with the other is denoted by the superscripts �

and �. The total Hopf charge of a field L�;�
p;q is

N ¼ pþ qþ �þ �. In particular, in this paper
we will use the rational map

W ¼ Znþ1
1

Z2
1 � Z2

0

¼ Zn
1

2ðZ1 � Z0Þ þ
Zn
1

2ðZ1 þ Z0Þ ; (16)

to produce smooth initial linked configurations of

solution type L1;1
n;n and Hopf charge N ¼ 2nþ 2.

In the following section, we compute minimum-energy
Hopf solutions for potential VI and VII using a relaxation
algorithm with initial conditions constructed from the ra-
tional maps (14) and (15) and from linked configurations
like e.g., (16). To avoid saddle point solutions of the
Skyrme-Faddeev energy functional MN , we explicitly
add, in a similar way to Ref. [5], symmetry-breaking,
nonaxial perturbations to our initial conditions.

IV. RELAXED HOPF SOLITON SOLUTIONS

To find the stationary points of the energy functional
MN , we solve the associated Euler-Lagrange equations
numerically. The field equations can be implemented
analogous to Ref. [29]

M €�� �ð _�; @i�; @i _�; @i@j�Þ � 	�þ 
 _� ¼ 0; (17)

whereM is a symmetric matrix. The dissipation 
 in (17) is
added to speed up the relaxation process, and the Lagrange
multiplier 	 imposes the unit vector constraint � �� ¼ 1.
We do not present the full field equations here since they
are cumbersome and not particularly enlightening. The
initial configuration is then evolved according to the flow
equations (17). Kinetic energy is removed periodically by

setting _� ¼ 0 at all grid points. All the simulations pre-
sented in the following use fourth order spatial differences
on grids with ð201Þ3 points, a spatial grid spacing
�x ¼ 0:1, and time step size �t ¼ 0:01. The dissipation
is set to 
 ¼ 0:5, and we choose the rescaled mass parame-
ter � ¼ 1 throughout this paper.
A summary of our relaxed configurations is given in

Table I. Each initial configuration is listed together with the
final Hopf configuration it evolves to. In Fig. 1 we display
the linking structure of the minimum-energy configura-
tions of charge 1 � N � 8 obtained for potential VI.
Here, we visualize the field configurations by plotting
isosurfaces of the points ð0; 0;�
Þ and ð�
; 0; 0Þ with

 ¼ 0:8. Our calculations with potential VII produce the
same Hopf solution types as for potential VI, the main
difference being that the solitons are more compact. The
minimal energy solutions of both massive models are very
similar to the massless ones [5–9].
Relaxing (14) with n ¼ m ¼ 1 reproduces the A1;1

static Hopf configuration, which has for VI an energy
M1 ¼ 1:438 and a moment of inertia U33 ¼ 0:500, and
this agrees well with M1 ¼ 1:421 stated in Ref. [27]. For
comparison, substituting a spherically symmetric hedge-
hog formUðxÞ ¼ exp ðifðrÞr̂ � �Þ in (6) and minimizing the
energy with respect to the profile function f gives for the
1-Hopf soliton solution an energy M1 ¼ 1:452 and a mo-
ment of inertia U33 ¼ 0:502. The minimal energy N ¼ 2
Hopf solitons are of the type A2;1—axially symmetric

configurations with the linking curve twisted two times
around the position curve. Applying nonaxial perturbations

to anA3;1 or aK2;1 initial configuration, we find the
~A3;1

CLASSICALLY ISOSPINNING HOPF SOLITONS PHYSICAL REVIEW D 87, 105003 (2013)

105003-3



3-Hopf soliton solution to be of lowest energy for both
potential choices. Here, the tilde indicates that the position
curve is not lying completely in the plane but it is bent. For
completeness, we also include in Table I and in Fig. 1
minimal-energy configurations of solution type NAN;1.

These axial solutions are known to be unstable for N � 3
[5,6]. Taking perturbed axially symmetric A4;1 and knot-

ted K2;1, K4;1 configurations as our initial conditions, we

identify the bent axial solution ~A4;1 as the global energy

minimum for N ¼ 4 and potential VI [27]. The charge-4
configuration A2;2 (created from axial and linked initial

conditions) and A4;1 are local energy minima. However,

for potential VII the minima swap with A2;2 becomes

the lowest minimal-energy charge-4 soliton solution. For
N ¼ 5 the minimal configuration in both massive models

is a link of type L1;1
1;2, which we obtained by relaxing a

perturbed trefoil knot K3;2. The charge-5 bent solution
~A5;1 and the toroidal A5;1 seem to be metastable local

minima. For N ¼ 6 we find using a variety of initial con-
ditions that the A3;2 configuration has minimal energy,

whereas the linksL1;1
2;2,L

1;1
3;1, the bent unknot

~A6;1, and the

rotationally symmetric unknotA6;1 are only local minima

[27]. This differs from the massless Skyrme-Faddeev

model where the link L1;1
2;2 is the minimal-energy charge-

6 soliton. Similar to the massless case, the trefoil knotK3;2

turns out to be the global minimum for N ¼ 7 in the
massive models. Charge-7 Hopf solutions like the K2;3

knot and the bent unknot ~A7;1 represent local minima.

Finally, for N ¼ 8we identify ~A4;2 as the minimal-energy

solution. For potential VI the trefoil knot 8K3;2 can be seen

within the numerical accuracy as an almost energy-

degenerate state. The link L1;1
3;3 that is the minimal-energy

solution type in the massless model relaxes to ~A4;2.

In Fig. 2 we show in analogy to Ref. [8] the normalized

minimum energiesM?
N ¼ MN=ðM1N

3=4Þ for both potential
choices. In both cases the energies of the ground-state

Hopf configurations (filled circles) follow MN / N3=4. As
already pointed out in Ref. [8] for the massless case, the
energies for the 2A2;1 configurations in the massive mod-

els are particularly low compared to the standard level. We
verify in Fig. 2 that the normalized energies of the bent

configurationsN ~AN;1 withN ¼ 3–5 are well described by
the linear [30] fits MN=M1 ¼ 0:39þ 0:6N and MN=M1 ¼
0:40þ 0:6N for VI and VII, respectively. A very similar fit

TABLE I. All initial conditions and final � ¼ 1 Hopf configurations with their respective
energies. MI and MII denote the soliton energy with potential VI and VII included, respectively.
The superscript ‘‘pert’’ indicates that we applied nonaxial perturbations to the initial
configuration.

N Initial Final MI MI=N
3=4 MII MII=N

3=4

1 A1;1 A1;1 1.438a 1.438 1.373a 1.373

2 A2;1 A2;1 2.287a 1.359 2.188a 1.300

3 Apert
3;1 , K

pert
2;1

~A3;1 3.173a 1.391 3.041a 1.334

A3;1 A3;1 3.178 1.394 3.048 1.337

4 Apert
4;1 , K

pert
2;1 , K

pert
4;1

~A4;1 4.034a 1.426 3.862 1.365

A2;2, L
1;1
1;1 A2;2 4.060 1.435 3.844a 1.359

A4;1 A4;1 4.104 1.450 3.943 1.394

5 Kpert
3;2 L1;1

1;2 4.871a 1.456 4.549a 1.360

Kpert
4;1

~A5;1 4.890 1.462 4.685 1.401

A5;1 A5;1 5.047 1.509 4.756 1.422

6 Kpert
3;2 , K

pert
4;2 , A3;2 A3;2 5.402a 1.409 5.134a 1.339

Kpert
2;2 L1;1

2;2 5.455 1.422 5.198 1.355

L1;1
3;1 L1;1

3;1 5.556 1.449 5.285 1.378

Kpert
5;1

~A6;1 5.642 1.471 5.481 1.429

A6;1 A6;1 6.001 1.565 5.541 1.445

7 Kpert
4;3 , K

pert
5;2 K3;2 6.138a 1.426 5.822a 1.352

K2;3 K2;3 6.450 1.498 6.129 1.424

Apert
7;1

~A7;1 6.587 1.530 6.294 1.462

8 A4;2, L
2;2
2;2, L

1;1
3;3, K

pert
3;4

~A4;2 6.747a 1.418 6.414a 1.348

K3;2, K
pert
5;2 K3;2 6.754 1.419 6.433 1.352

Apert
8;1

~A8;1 7.201 1.513 6.844 1.438

aThese configurations correspond to global energy minima for given Hopf charge N. Recall
that energies are given in units of 1=32�2=

ffiffiffi
2

p
.
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(MN=M1 ¼ 0:36þ 0:65N) is given in Ref. [8] for the
bent unknots in the massless Skyrme-Faddeev model.
For the planar configurations NAN;1 with N ¼ 1–6 we

obtainMN=M1 ¼ 0:415þ 0:5719N þ 0:009N2 for VI and
MN=M1 ¼ 0:4348þ 0:5501N þ 0:01475N2 for VII and
N ¼ 1–4. The corresponding quadratic fit for massless
rotationally symmetric unknots is given as MN=M1 ¼
0:39þ 0:59N þ 0:015N2 in Ref. [8].

V. NUMERICAL RESULTS ON CLASSICALLY
ISOSPINNING HOPF SOLITONS

In this section, we present the results of our energy
minimization simulations of isospinning Hopf solitons
with charges N up to 8. The variational equations derived
from (9) are implemented in analogy to (17), where we
include in � the isorotational extra terms. We use the

FIG. 2. The normalized energiesM?
N ¼ MN=ðM1N

3=4Þ for different minimal energy, massive Hopf soliton solutions as a function of
the Hopf charge N. The mass parameter � is chosen to be 1. Here, our global minima for 1 � N � 8 are represented by filled circles,
bent unknots N ~AN;1 by triangles, and rotationally symmetric unknots NAN;1 by diamonds, and the remaining local energy minima

are displayed as open circles. The dashed line shows our linear fit to the bent unknots N ¼ 1–5 (A1;1, A2;1 included), whereas the

dash-dotted line represents a quadratic fit to the rotationally symmetric unknots N ¼ 1–6. The expected N3=4 power growth is
represented by the horizontal line. The corresponding plots for the massless Faddeev-Skyrme model can be found in Refs. [8,9].
(a) Normalized energies for Hopf solitons in the Faddeev-Skyrme model modified by potential VI vs Hopf charge N. (b) Same as
(a) but for potential VII.

FIG. 1 (color online). Position (blue tube) and linking (red tube) curve for � ¼ 1 Hopf solitons with Hopf charge 1 � N � 8 and
potential VI . We label each configuration by its Hopf charge N and its solution type. The corresponding energy values can be found in
Table I. (a) 1A1;1, (b) 2A2;1, (c)

~3A3;1, (d) 3A3;1, (e)
~4A4;1, (f) 4A2;2, (g) 4A4;1, (h) 5L

1;1
1;2, (i) 5

~A5;1, ( j) 5A5;1, (k) 6A3;2,

(l) 6L1;1
2;2, (m) 6L1;1

3;1, (n) 6
~A6;1, (o) 6A6;1, (p) 7K3;2, (q) 7K2;3, (r) 7

~A7;1, (s) 8
~A4;2, (t) 8K3;2, (u) 8

~A8;1.
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configurations obtained in the previous sections as our start
configurations for vanishing angular momentum (K ¼ 0)
and increase K in a stepwise manner. All simulation
parameters are chosen as stated in Sec. IV. In particular,
we use the mass parameter � ¼ 1 and work on grids
containing ð201Þ3 lattice points with a lattice spacing
�x ¼ 0:1. If not stated otherwise, we use V ¼ VI as our
potential term in (1).

Note that for � � 1 there exists a maximal frequency
!max ¼ � beyond which no stable isospinning Hopf
soliton solution exists. This upper limit follows from the
stability analysis of the linearized Euler-Lagrange equa-
tions derived from (9).

A. Low charge Hopf solitons: 1 � N � 3

We show in Fig. 3 the total energy Etot as a function of
the rotation frequency ! and the angular momentum K for

isospinning Hopf solitons (of type 1A1;1, 2A2;1, 3
~A3;1)

with charges up to 3. The corresponding plots for the
moment of inertia U33 as a function of ! are also pre-
sented. For all these configurations the solution type of the
isospinning soliton is the same as the one in the static
case, only the soliton’s size grows with ! and K. As

expected, the energies and moment of inertia diverge for
! ¼ �.

B. Higher charge Hopf solitons: 4 � N � 8

(i) N ¼ 4: The energy and moment of inertia plots for

isospinning 4-Hopf solitons ð4 ~A4;1; 4A2;2Þ are

shown in Fig. 4. The 4 ~A4;1 configuration is found to

be the solution type of lowest energy for all ! and K.
The 4A2;2 soliton deforms for ! � 0:60 (K � 23)

into a 4L1;1
1;1 link, whichmeans into a solution type that

does not represent a local minimum in the static case
(! ¼ 0). The isosurface plots in Fig. 5 illustrate
the formation of the linked configuration as K
increases.

(ii) N ¼ 5: We show in Fig. 6 the total energy Etot

of isospinning charge-5 Hopf solitons ð5L1;1
1;2;

5 ~A5;1; 5A5;1Þ as a function of the rotation fre-

quency ! and the angular momentum K. We ob-
serve that the energy curve Etotð!Þ of the

linked unknot 5L1;1
1;2 crosses the one of the bent

ring ~A5;1 at ! � 0:33. For !> 0:33 the bent

ring becomes the new ground state for Hopf charge

FIG. 3 (color online). Energy and moment of inertia of isospinning Hopf solitons with N ¼ 1–3. For N ¼ 1 the results for both
potential choices are shown. (a) Etot as function of !. (b) Etot as function of K. (c) U33 as function of !.

FIG. 4 (color online). Total energy Etot and moment of inertia U33 of isospinning 4-Hopf solitons calculated with potential VI. The
isospinning 4A2;2 soliton (blue curve) deforms into 4L1;1

1;1 (red curve). The transition occurs at ! � 0:606, K � 23. The bent

configuration 4 ~A4;1 (green curve) exists for all ! 2 ½0; 1Þ, and its size is growing with !. (a) Etot as function of !. (b) Etot as function

of K. (c) U33 as function of !.
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N ¼ 5. However, for fixed K the linked configura-
tion continues to be the lowest energy state; see
Fig. 6.

(iii) N ¼ 6: Our simulations of isospinning 6-Hopf sol-

itons (6A3;2; 6L
1;1
3;1; 6L

1;1
2;2; 6

~A6;1) are summarized

by the energy curves in Fig. 7. Here, we see an
example of transmutation: the 6A3;2 configuration

that is the ground state at ! ¼ 0 transforms into

a 6L1;1
2;2 link when K increases. For K � 35

(! � 0:56) the 6A3;2 soliton has completely de-

formed into the link configuration that forms the
new lowest energy state. The deformation process

is visualized by the isosurface plots in Fig. 8. Bent

Hopf configurations of solution type 6 ~A6;1 and

links of type 6L1;1
3;1 have higher energies for all !

and K. The linking curves in Fig. 9 show that the

6L1;1
3;1 configuration is of the same qualitative shape

for all ! and K.
(iv) N ¼ 7: We do not observe any crossing of the

energy curves of isospinning 7K3;2 and 7K2;3

knot solutions. We find the 7K3;2 knot as the state

of lowest energy for all ! and K.
(v) N ¼ 8: We display in Fig. 10 the total energies of

isospinning 8 ~A4;2 and 8K3;2 configurations as a

FIG. 6 (color online). Total energy Etot of isospinning charge 5-Hopf solitons as a function of ! and K (V ¼ VI). The energy curve
Etotð!Þ of the link 5L1;1

1;2 (green curve) crosses the one of 5
~A5;1 (purple curve at! � 0:33. The lowest-energy, isospinning soliton is of

type 5L1;1
1;2 for ! 2 ½0; 0:33Þ and 5 ~A5;1 for ! 2 ½0:33; 1Þ. For comparison, we also show the axial, unstable 5A5;1 solution (blue

curve). (a) Etot as function of !. (b) Etot as function of K.

FIG. 5 (color online). Deformation of the isospinning 4A2;2 Hopf configuration into 4L1;1
1;1. Results are plotted for potential VI

(results for potential VII show the same qualitative behavior). We visualize the linking structure by plotting tubelike isosurfaces
�1 ¼ �0:9 (red tube) and �3 ¼ �0:9 (blue tube). Recall that the angular momentum K is given in units of 4�. (a) K ¼ 0 ð! ¼ 0Þ,
(b) K ¼ 10 ð! ¼ 0:292Þ, (c) K ¼ 20 ð! ¼ 0:554Þ, (d) K ¼ 21 ð! ¼ 0:572Þ, (e) K ¼ 22 ð! ¼ 0:586Þ, (f) K ¼ 25 ð! ¼ 0:609Þ,
(g) K ¼ 30 ð! ¼ 0:654Þ, (h) K ¼ 40 ð! ¼ 0:755Þ.
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function of angular frequency and momentum.
At ! ¼ 0 the configurations can be seen as energy-
degenerate [31], but in the isospinning casewe find that
the 8K3;2 solution type has a higher energy than the

8 ~A4;2 configuration. In fact,we can see that the 8
~A4;2

solution slowly deforms into the knotted solution, as
illustrated in Fig. 11 by plotting the linking structure.
The transition occurs at! � 0:68 (K � 49).

FIG. 8 (color online). Deformation of the isospinning 6A3;2 Hopf soliton solution into 6L1;1
2;2. First row: We display isosurfaces

�1 ¼ �0:98 (red tube) and �3 ¼ �0:65 (blue tube) to illustrate the change of the solution types. Second row: We show the linking
curves for �1 ¼ �0:98, separately. (a) K ¼ 0 ð! ¼ 0Þ, (b) K ¼ 20 ð! ¼ 0:367Þ, (c) K ¼ 30 ð! ¼ 0:502Þ, (d) K ¼ 45 ð! ¼ 0:677Þ.

FIG. 7 (color online). Total energy Etot for different, isospinning 6-Hopf soliton configurations (V ¼ VI). The isospinning solution of
type 6A3;2 (blue curve) deforms into 6L1;1

2;2 (green curve) at ! � 0:56 (K � 35). The ~A6;1 configuration (purple curve) exists for all

! 2 ½0; 1Þ, but is of higher energy. (a) Etot as a function of !, (b) Etot as a function of K.

FIG. 9 (color online). Linking curves of the isospinning 6L1;1
3;1 Hopf soliton solution. The linking structure is visualized by the

isosurfaces �1 ¼ �0:95 (red tube) and �3 ¼ �0:65 (blue tube). (a) K ¼ 0 ð! ¼ 0Þ, (b) K ¼ 40 ð! ¼ 0:619Þ,
(c) K ¼ 45 ð! ¼ 0:677Þ, (d) K ¼ 59 ð! ¼ 0:829Þ.
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VI. CONCLUSIONS

We have performed full three-dimensional numerical
relaxations of isospinning soliton solutions in the
Skyrme-Faddeev model with mass terms included. Our
computations of charge-4, -6, and -8 solitons show that
the qualitative shapes of internally rotating Hopf solitons
can differ from the static (! ¼ 0) solitons. However, in
most cases (for Hopf chargesN ¼ 1, 2, 3, 5, 7) the solution
types present at ! ¼ 0 also exist for nonzero !. The
qualitative shape of the lowest energy configuration can
be frequency dependent. The energy curves Etotð!Þ for a
given N can cross and minima can swap (e.g., N ¼ 5). In
summary, we distinguish three different types of behavior:

(i) Crossings of Etotð!Þ: The energy curves Etotð!Þ of
Hopf solitons for different solution types of the same
charge N can cross, which results in a rearrangement
of the spectrum of minimal-energy configurations.
Our simulations on isospinning charge-5 solitons

illustrate this: at ! ¼ 0 the link 5L1;1
1;2 is the lowest

energy solution, but for ! � 0:33 its energy curve

crosses that of the bent unknot 5 ~A5;1. For ! � 0:33

the lowest energy soliton is given by 5 ~A5;1.

(ii) Transmutation: Isospinning Hopf solitons can de-
form into minimal-energy solutions of a type that

also exists at ! ¼ 0 (e.g., 6A3;2 ! 6L1;1
2;2,

8 ~A4;2 ! 8K3;2).

(iii) Formation of new solution types: New solution
types can emerge that are unstable for vanishing
!. For example, for N ¼ 4 the 4A2;2 deforms into

4L1;1
1;1 with the later only being stable for ! � 0:60

Naturally one expects these effects to be present and
increasingly relevant for higher Hopf charges (N > 8)
since the number of (local) energy minima grows with

the Hopf charge N [9].
In this article we have focused on purely classically

isospinning soliton solutions in the Skyrme-Faddeev

model. The relevance of classically (iso)spinning soliton

solutions was discussed in Ref. [32] in the context of the

Skyrme model. There it was argued that classically spin-

ning Skyrmions could be used to model classically the

quantized Skyrmion states. For example, a spin-1=2 proton
in its spin up state can be interpreted within this approxi-

mate classical description as a hedgehog Skyrmion of

topological charge B ¼ 1 spinning anticlockwise relative

to the positive z axis and with its normalized pion fields �̂
orientated in such a way that �̂3 ¼ �1 for z ! �1,

respectively. Analogously, classically spinning Hopf soli-

ton solutions can classically model the quantized spectra of

FIG. 10 (color online). The total energy Etot for isospinning 8-Hopf solitons as a function of ! and K (V ¼ VI). The isospinning
8 ~A4;2 configurations deform into the 8K3;2 knot at ! � 0:68 (K � 49). (a) Etot as a function of !, (b) Etot as a function of K.

FIG. 11 (color online). Deformation of the isospinning 8 ~A4;2 Hopf configuration into 8K3;2. The linking structure is visualized by
the isosurfaces �1 ¼ �0:97 (red tube) and �3 ¼ �0:8 (blue tube). (a) K ¼ 0 ð! ¼ 0Þ, (b) K ¼ 30 ð! ¼ 0:504Þ,
(c) K ¼ 40 ð! ¼ 0:615Þ, (d) K ¼ 60 ð! ¼ 0:780Þ.
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glueballs [33–40]. To do this, it is necessary to determine

the (iso)space orientations that describe the excited states of

glueballs. To approximate states of nonvanishing spin, rota-

tions in physical space have to be implemented in our com-

putations, which significantly complicates our numerics.
Our numerical results are of relevance for the quantization

of the classical soliton solutions.There are twomainmethods
used in the literature to obtain quantized Hopf solitons: the
bosonic, semiclassical collective coordinate quantization
[41,42] and the fermionic quantization [16] that is based on
the Finkelstein-Rubinstein (FR) approach [43]. Both ap-
proaches assume that the symmetries of the classical Hopf
configurations are not broken by centrifugal effects. In the
semiclassical bosonic collective coordinate quantization pro-
cedure glueballs can be modeled by quantum mechanical
states on the moduli space—the finite-dimensional space of
static minimal energy Hopf solutions in a given topological
sector that is generated from a single Hopf configuration by
rotations and isorotations. The effective Hamiltonian on this
restricted configuration space is canonically quantized. The
numerical calculations presented in this paper could be seen
as a classical approximation to the collective coordinate
dynamics on the moduli space. The allowed quantum states
have to satisfy the FR constraints [43], which follow from the
continuous and discrete symmetries of the classical Hopf
configurations: For a bosonic quantum theory the FR con-
straints result in constraints for thewave functions defined on
the configuration space, whereas fermionic quantization [16]
constrains the wave functions on the covering space of
configuration space.

Ground states and the first excited states of Hopf solitons
for charges up to 7 have been calculated inRef. [16] using the
symmetries of the classical Hopf solutions given in Ref. [8].
It would be instructive to work out the spectra that emerge
from the classical solutions calculated in our article.
The isospinning, minimal energy Hopf solitons of charge
N ¼ 5, 6, 8 are particularly interesting since their symme-
tries are different from those of the static configurations that
are commonly used to calculate the solitons’ possible ground
states. The presentation of a self-consistent, nonrigid quan-
tization proceduregoes far beyond the scope of this paper and
is the subject of future research.
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Note added.—Similar results were also reported in a

very recent paper [44], which appeared when our paper
was in preparation. The authors in Ref. [44] carried out
most of their calculations with � ¼ 2 and the potential
choice VII. Differences to our results are that they neither

identify a 6A3;2 nor a 8
~A4;2 configuration. Unfortunately

they did not visualize the linking structure of their 6- and
8-Hopf soliton solutions, so that we could not compare
them. Differences to our results could be due to the differ-
ent potential choice or to the different choice of the mass
parameter �.
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