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We discuss the thermodynamics of the OðNÞ model across the corresponding phase transition using the

two-loop �-derivable approximation of the effective potential and compare our results to those obtained

in the literature within the Hartree-Fock approximation. In particular, we find that in the chiral limit the

transition is of the second order, whereas it was found to be of the first order in the Hartree-Fock case.

These features are manifest at the level of the thermodynamical observables. We also compute the thermal

sigma and pion masses from the curvature of the effective potential. In the chiral limit, this guarantees that

Goldstone’s theorem is obeyed in the broken phase. A realistic parametrization of the model in the N ¼ 4

case, based on the vacuum values of the curvature masses, shows that a sigma mass of around 450 MeV

can be obtained. The equations are renormalized after extending our previous results for the N ¼ 1 case

by means of the general procedure described in Ref. [8]. When restricted to the Hartree-Fock approxi-

mation, our approach reveals that certain problems raised in the literature concerning the renormalization

are completely lifted. Finally, we introduce a new type of �-derivable approximation in which the gap

equation is not solved at the same level of accuracy as the accuracy at which the potential is computed. We

discuss the consistency and applicability of these types of ‘‘hybrid’’ approximations and illustrate them in

the two-loop case by showing that the corresponding effective potential is renormalizable and that the

transition remains of the second order.
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I. INTRODUCTION

It is a well-known fact that the �-derivable approxima-
tion scheme, also called in the literature two-particle irre-
ducible (2PI) or Cornwall-Jackiw-Tomboulis formalism,
gives a first order phase transition when applied to the
OðNÞ model in its lowest, Hartree-Fock approximation
level. Other resummation methods, such as the 1=N ex-
pansion, give a second order phase transition already at
leading order [1], in accordance with general expectations
and with the result of the functional renormalization group
approach [2,3]. It was argued [4,5] that close to the tran-
sition temperature the contribution of higher loops may
become important and that already the inclusion of the
setting-sun diagram in the �-derivable functional will
render the phase transition of the second order type.

As a continuation of our previous investigation done for
the one-component scalar model, where we found that the
change of order indeed happens within a full two-loop
treatment of the effective action, we turn now to the

physically more interesting OðNÞ model. For N ¼ 4 this
model can be regarded as a low energy effective model of
two flavor QCD because the global SUð2ÞL � SUð2ÞR
symmetry of the latter is isomorphic with Oð4Þ. Since the
Oð4Þ model contains both the longitudinal and transverse
excitations of the chiral order parameter, it is widely used
in the phenomenology of low energy mesons for the quali-
tative description of medium induced effects, especially
around the phase transition.
We would like to understand where exactly the contri-

bution coming from the setting-sun diagram is essential to
obtain the right order of the phase transition. Therefore, in
addition to the two-loop approximation, we consider an
approximation where the effective action is computed
at two-loop order, but is evaluated for propagators com-
puted from the Hartree-Fock approximation. Although this
hybrid type of approximation might present certain incon-
sistencies, as it does not obey the conditions identified by
Baym in Ref. [6], it is convenient in practice because its
numerical treatment is much easier. Moreover, we will
see that, for not too low temperatures where the hybrid
approximation does not seem to show inconsistencies, its
results are pretty close to those obtained from the two-loop
approximation which is numerically more time and
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memory demanding. In particular, both in the two-loop and
in the hybrid approximations, the transition is found to be
of the second order.

As far as meson phenomenology is concerned, we will
be particularly interested in the value of the sigma mass
which can be obtained within a realistic parametrization of
the model. Indeed, one of the difficulties when applying the
Oð4Þ model to meson phenomenology is to obtain high
enough values of the sigma mass, while maintaining the
interpretation as an effective model where the cutoff �,
a mere separation scale between the modes of interest
(p � �) and those which are integrated out (p >�),
does not play the role of a parameter. This is usually
rendered difficult by the fact that the model possesses a
Landau pole in the ultraviolet and, if the latter is too close
to the physical scales, the renormalization procedure is not
enough to ensure the insensitivity of the results to cutoff
values below the Landau pole. We will see that, in the
two-loop and hybrid approximations, one can obtain rea-
sonable values of the sigma mass with a Landau scale
almost one order of magnitude higher. This, combined
with the fact that the Landau pole does not show up in
the renormalized quantities defined within the two-loop
or hybrid approximations, allows us to meet the above
mentioned requirements.

In principle the insensitivity to the cutoff scale � is
ensured automatically by the renormalization group since,
by following a line of constant physics, a change in � is
carried over to the (bare) parameters of the Lagrangian, in
such a way that the low energy physics is unaffected. Even
if this picture persists order by order in perturbation theory,
this is not necessarily so for approximation schemes that go

beyond it and certain amendments need to be made to the
renormalization procedure, depending on the method used.
Over the last few years a general method for renormalizing
�-derivable approximations has been developed and we
illustrate it here both in the two-loop and in the hybrid
approximations to the 2PI effective action. By revisiting
the lower Hartree-Fock approximation, we can also com-
pare our renormalization procedure to other approaches
followed in the literature. In particular, we show that
certain inconsistencies discussed in Ref. [7] are completely
lifted by our approach.
In Secs. II and III, we define and renormalize the two

approximations to be discussed in this work and compare
our renormalization procedure to other approaches.
Section IV is devoted to some of the numerical tricks that
we use to achieve high accuracy results in the two-loop
approximation. Section V deals with the parametrization of
the model, with a special attention to the attainable values
of sigma mass and gathers our results on the phase tran-
sition and thermodynamical observables. We also discuss
there the dependence of the physical quantities on the
renormalization scale and on the cutoff. We present our
conclusions in Sec. VI.

II. TWO-LOOP APPROXIMATION

A. Relevant equations

The 2PI effective action for the OðNÞ model is a
functional of a one-point function �aðxÞ and a symmetric
two-point function Gabðx;yÞ¼Gbaðy;xÞ. In the imaginary-
time formulation of field theory at a finite temperature
T ¼ 1=� and at two-loop order, it reads

�½�;G� ¼ m2
2

2

Z
x
�2ðxÞ þ �4

24N

Z
x
ð�2ðxÞÞ2 þ 1

2

Z
x
tr½lnG�1 þ ð�hE þm2

0ÞG� 1�ðx; xÞ þ �ðAÞ
2

12N

Z
x
�2ðxÞ trGðx; xÞ

þ �ðBÞ
2

6N

Z
x
�ðxÞGðx; xÞ�ðxÞ þ �ðAÞ

0

24N

Z
x
½trGðx; xÞ�2 þ �ðBÞ

0

12N

Z
x
trG2ðx; xÞ

� �2
?

36N2

Z
x

Z
y
�ðxÞGðx; yÞ�ðyÞ tr½Gðx; yÞGðy; xÞ� � �2

?

18N2

Z
x

Z
y
�ðxÞGðx; yÞGðy; xÞGðx; yÞ�ðyÞ; (1)

with
R
x �

R�
0 d�

R
d3x, �2 � �a�a, �G� � �aGab�b,

trG � Gaa and where a summation over repeated indices is
implied. As discussed in Refs. [8,9] and below, the need for
two bare masses m0 and m2 and three families of bare
couplings, labeled with the indices 0, 2 and 4 respectively,
reflects the fact that, given a truncation of the 2PI effective
action, there are two possible ways to define the two-point
function and three different ways to define the four-point
function. As we discuss in Appendix A, the need for a
doubling (represented by the superscripts A and B) of the
bare couplings carrying an index 0 or 2 has to do with the
fact that two of these four-point functions do not obey

the crossing symmetry.1 Finally, following Ref. [9], we
have replaced the bare couplings in the highest loop dia-
grams of Eq. (1) by a coupling �? which will be identified
later to the renormalized coupling at some renormalization
scale T?. This is because no renormalization comes from
these vertices at this level of truncation.
In what follows, we study the phase transition of

the model by computing the effective potential �ð�Þ.

1Equivalently, the corresponding terms in the 2PI effective
action (1) are independently invariant under OðNÞ transforma-
tions; see Ref. [8].
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The latter is obtained after evaluating the functional (1) at
the stationary value of G which we denote �G�,

2 with � a

homogeneous field configuration:

�ð�Þ ¼ 1

�V
�½�; �G��: (2)

Some more explicit expressions of the effective potential
will be given later. In the presence of a homogeneous field,
the propagator �Gðx; yÞ depends on the difference x� y or,
in Fourier space, on Q ¼ ði!n; ~qÞ where !n ¼ 2�n=�
is a bosonic Matsubara frequency. From parity and time-
reversal symmetry, we have �GabðQÞ ¼ �Gabð�QÞ and thus
�GabðQÞ ¼ �GbaðQÞ since �GabðQÞ ¼ �Gbað�QÞ. Moreover,
theOðNÞ invariance of �½�;G� upon simultaneous rotation
of � and G implies that �G� is covariant:

�GR�
ab ¼ RacRbd

�G�
cd; 8 R 2 OðNÞ: (3)

We recall in Appendix C that, together with the property
�GabðQÞ ¼ �GbaðQÞ, this implies the following spectral
decomposition:

�Gab ¼ �GLP
L
ab þ �GTP

T
ab; (4)

with

PL
ab �

�a�b

�2
and PT

ab � �ab ��a�b

�2
(5)

the longitudinal and transverse projectors with respect to�
and where the functions �GL and �GT depend on � only
through �2.

It is convenient to introduce momentum dependent
longitudinal and transverse masses defined through the
relation �GL;TðQÞ ¼ 1=ðQ2 þ �M2

L;TðQÞÞ, such that they

include the corresponding self-energy and the tree-level
mass. After some straightforward calculation starting from
the stationarity condition 0 ¼ ��=�Gj �G, one shows using
the two projectors in Eq. (5) that they obey the following
coupled gap equations:3

�M2
LðKÞ ¼ m2

0 þ
�ðAþ2BÞ
0

6N
T ½ �GL� þ �ððN�1ÞAÞ

0

6N
T ½ �GT�

� �2
?

18N2
�2½9B½ �GL�ðKÞ þ ðN � 1ÞB½ �GT�ðKÞ�

þ �ðAþ2BÞ
2

6N
�2; (6)

and

�M2
TðKÞ ¼ m2

0 þ
�ðAÞ
0

6N
T ½ �GL� þ �ððN�1ÞAþ2BÞ

0

6N
T ½ �GT�

þ �2

6N

�
�ðAÞ
2 � 2�2

?

3N
B½ �GL; �GT�ðKÞ

�
: (7)

In order to save space, we find it appropriate to write

�ð�Aþ�BÞ
0;2 � ��ðAÞ

0;2 þ ��ðBÞ
0;2 ; (8)

and denoting the sum integral by

Z T

Q
fðQÞ � T

X1
n¼�1

Z d3q

ð2�Þ3 fði!n; qÞ; (9)

where q ¼ j ~qj, we use the short-hand notations

T ½G� �
Z T

Q
GðQÞ; (10)

B½G1;G2�ðKÞ �
Z T

Q
G1ðQÞG2ðQþ KÞ; (11)

S½G1;G2;G3� �
Z T

K

Z T

Q
G1ðKÞG2ðQÞG3ðQþ KÞ: (12)

For the last two of them, when all the arguments are equal
to a given propagator G, we write more simply B½G�ðKÞ
and S½G�. Taking the difference of Eqs. (6) and (7), it is
straightforward to check that, when � ¼ 0, the system
of equations is compatible with a solution such that �M2

L ¼
�M2
T � �M2

�¼0 with

�M 2
�¼0 ¼ m2

0 þ
�ðNAþ2BÞ
0

6N
T ½ �G�¼0� (13)

and �G�¼0ðQÞ � 1=ðQ2 þ �M2
�¼0Þ.

The nature of the transition will be discussed by moni-
toring the nontrivial extrema �� of the effective potential.
They obey the equation

0 ¼ m2
2 þ

�4

6N
��2 þ �ðAþ2BÞ

2

6N
T ½ �GL� þ �ððN�1ÞAÞ

2

6N
T ½ �GT�

� �2
?

18N2
ð3S½ �GL� þ ðN � 1ÞS½ �GL; �GT; �GT�Þ; (14)

which, due to the stationarity condition 0 ¼ ��=�Gj �G,
originates only from the explicit field dependence of the
functional (1). We note that the case N ¼ 1 is obtained
after disregarding Eq. (7) and making the replacements

�ðNAþ2BÞ
0;2 ¼ �ðAþ2BÞ

0;2 ! 3�0;2 in Eqs. (6) and (14). We shall

use this recipe later in order to cross-check the expressions
obtained for the bare parameters.
We shall also need the curvature of the potential, which

at � ¼ 0 is found to be

2In order to alleviate the notations, the dependence of �G
and alike on various quantities such as �; T; . . . will be
written explicitly only when needed.

3By using the substitutions ��Aþ�B
0;2 =ð�þ �Þ ! 12=" and

�? ! 12=", we recover the equations derived in Ref. [10].
There, however, the equations were neither renormalized nor
solved.
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M̂ 2
�¼0 ¼ m2

2 þ
�ðNAþ2BÞ
2

6N
T ½ �G�¼0� � N þ 2

18N2
�2
?S½ �G�¼0�:

(15)

More generally, one can define the curvature tensor at an
arbitrary value of the field. Using as in Ref. [11] that the
effective potential depends on the field � only through the
OðNÞ-invariant �2, one writes �ð�Þ ¼ Uð�2Þ and obtains

M̂abð�Þ ¼ �2�ð�Þ
��a��b

¼ 4U00ð�2Þ�a�b þ 2U0ð�2Þ�ab

¼ ½2U0ð�2Þ þ 4�2U00ð�2Þ�PL
ab þ 2U0ð�2ÞPT

ab:

(16)

In this paper we shall call curvature masses the two eigen-
modes appearing in the above equation, evaluated at the
solution �� of the field equation:

M̂2
L ¼ 2U0ð ��2Þ þ 4�2U00ð ��2Þ and M̂2

T ¼ 2U0ð ��2Þ:
(17)

The field equation reads

��ð�Þ
��a

���������¼ ��
¼ 2U0ð ��2Þ ��a ¼ 0; (18)

from which it follows, first, that M̂2
L ¼ M̂2

T in the symmet-

ric phase (since �� ¼ 0) and, second, that M̂2
T ¼ 0 in the

broken phase [since �� � 0 and thus U0ð ��2Þ ¼ 0] in agree-
ment with Goldstone’s theorem. In contrast, there is no
reason for the gap mass �M2

T � �M2
TðK ¼ 0Þ to vanish in the

broken phase and we shall investigate quantitatively how
much the Goldstone’s theorem is violated in this case.

In the case of explicitly broken symmetry, when a
term �h� � �ha�a is added to the effective potential,
what changes is the field equation,4 which becomes
��ð�Þ=��aj �� ¼ 2U0ð ��2Þ ��a � ha ¼ 0, so that we have

M̂2
T ¼ khk=k ��k and M̂2

L still given by Eq. (17). Without
loss of generality, we can choose h ¼ ðkhk; 0; . . . ; 0Þ along
the first coordinate axis. Note also that if we view
2U0ð�2Þ ¼ fðk�kÞ as a function of k�k, we can compute

the longitudinal curvature mass as M̂2
L ¼ fðk�kÞ þ

k�kf0ðk�kÞ from a numerical derivative of the function
fðk�kÞ which appears on the right-hand side of Eq. (14).

The gap and field equations (6), (7), and (14), will be
solved using the techniques developed in Ref. [9] that we
quickly summarize in Sec. IV. Before we proceed to the
numerical resolution of the model, we must however
determine the values of the bare parameters in such a
way that the sensitivity to the ultraviolet regulator is
removed, or at least considerably reduced. The results
that we shall present are valid for any regularization that
can be defined nonperturbatively. For definiteness however

and in line with the numerical method that we use to solve
the two-loop approximation, in the next section, we assume
that 3D momenta of a modulus larger than a given cutoff�
are dropped. More details concerning the regularization
procedure can be found in Ref. [9].

B. Renormalization

As explained in Ref. [8] and illustrated in Ref. [9], the
fact that the gap masses at zero momentum are different
from the curvature masses requires the presence of two
distinct bare masses m0 and m2. Those are fixed by means
of the usual renormalization condition

�M2
�¼0;T?

ðK ¼ 0Þ ¼ m2
? (19)

at some renormalization scale, here a temperature T?,
supplemented by a consistency condition

M̂2
�¼0;T?

¼ �M2
�¼0;T?

ðK ¼ 0Þ; (20)

which restores the equality of the two masses at the
renormalization point. Applying these conditions to
Eqs. (13) and (15), we obtain

m2
0 ¼ m2

? � �ðNAþ2BÞ
0

6N
T ?½G?� (21)

and

m2
2 ¼ m2

? � �ðNAþ2BÞ
2

6N
T ?½G?� þ N þ 2

18N2
�2
?S?½G?�; (22)

with G?ðQ?Þ � 1=ðQ2
? þm2

?Þ. The ? on any quantity
means that it is computed at the temperature T?. For
instance, Q? means that the corresponding Matsubara
frequencies involve the temperature T?. Similar consider-
ations apply to the four-point function which admits

three distinct definitions �Vab;cd, Vab;cdðKÞ, V̂abcd; see

Appendix A. The first two do not obey the crossing sym-
metry and thus involve two independent components at

� ¼ 0: �V�¼0
ab;cd ¼ �VðAÞ

�¼0�ab�cd þ �VðBÞ
�¼0ð�ac�bd þ �ad�bcÞ

and similarly for V�¼0
ab;cdðKÞ. In contrast V̂�¼0

abcd ¼
V̂�¼0ð�ab�cd þ �ac�bd þ �ad�bcÞ is crossing symmetric.

The renormalization condition

�V ðAÞ
�¼0;T?

¼ �?

3N
(23)

and the consistency conditions

V̂�¼0;T?
¼ �VðAÞ

�¼0;T?
¼ �VðBÞ

�¼0;T?

¼ VðAÞ
�¼0;T?

ðK ¼ 0Þ ¼ VðBÞ
�¼0;T?

ðK ¼ 0Þ (24)

fix all the bare couplings that we have introduced and
restore the equality of the various four-point functions
at the renormalization point; in particular, the crossing
symmetry becomes manifest. We obtain the following
expressions for the bare parameters:

4The stationarity condition that defines �G� is not changed. It
follows that Eq. (3) and in turn Eq. (4) still hold.
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3N

�ðBÞ
0

¼ 3N

�?

�B?½G?�ð0Þ (25)

and

3N

�ðNAþ2BÞ
0

¼ 3N

ðN þ 2Þ�?

� 1

2
B?½G?�ð0Þ; (26)

for those coupling parameters labeled with 0, �ðBÞ
2 �

�ðBÞ
2l þ ��ðBÞ

2nl with

��ðBÞ
2nl ¼

N þ 6

6N
�2
?B?½G?�ð0Þ (27)

and

�ðBÞ
2l

�ðBÞ
0

¼ 1� N þ 6

18N2
�2
?

Z T?

Q?

G2
?ðQ?Þ�B?½G?�ðQ?Þ; (28)

as well as �ðNAþ2BÞ
2 � �ðNAþ2BÞ

2l þ ��ðNAþ2BÞ
2nl with

��ðNAþ2BÞ
2nl ¼ N þ 2

N
�2
?B?½G?�ð0Þ (29)

and

�ðNAþ2BÞ
2l

�ðNAþ2BÞ
0

¼ 1� N þ 2

6N2
�2
?

Z T?

Q?

G2
?ðQ?Þ�B?½G?�ðQ?Þ;

(30)

for those coupling parameters labeled with 2 and finally

�4 ¼ �2�? þ 1

N

ð�ðNAþ2BÞ
2l Þ2
�ðNAþ2BÞ
0

þ 2

�
1� 1

N

� ð�ðBÞ
2l Þ2
�ðBÞ
0

þ �4
?

�ðN þ 2Þ2
6N4

þ ðN þ 6Þ2
54N3

�
1� 1

N

��

�
Z T?

Q?

G2
?ðQ?Þ½�B?½G?�ðQ?Þ�2: (31)

In the above expressions, �B?½G?�ðQ?Þ stands for the
difference of bubble sum integrals B?½G?�ðQ?Þ�
B?½G?�ð0Þ. The reason for the splitting of the bare parame-

ters �ðA;BÞ
2 into ‘‘local’’ and ‘‘nonlocal’’ parts, �ðA;BÞ

2l and

��ðA;BÞ
2nl respectively, is explained in Refs. [12–14]; see also

Appendix B. Applying the replacement rule discussed right
after Eq. (14), one recovers the N ¼ 1 bare parameters of
Ref. [9]. It is also simple to obtain the expressions for the
bare parameters in the Hartree-Fock approximation. One

has simply to set ��ðA;BÞ
2nl ¼ 0 and to remove all those terms

that involve �B?½G?�. Then �ðAÞ
0 and �ðBÞ

0 remain un-

changed, while m2 ¼ m0, �
ðAÞ
2 ¼ �ðAÞ

0 , �ðBÞ
2 ¼ �ðBÞ

0 and

�H
4 ¼ �2�? þ �ðAþ2BÞ

0 ; (32)

which gives �H
4 ¼ �2�? þ 3�0 when N ¼ 1, in agree-

ment with the result of Ref. [15]. We have introduced a

superscript ‘‘H’’ for the value taken by �4 in the Hartree-
Fock approximation for later convenience.
Following similar steps as in Ref. [9], it is possible to

prove implicitly that the bare parameters given above
renormalize the gap and field equations, as well as the
effective potential (up to a temperature and field indepen-
dent divergence for this latter quantity). By ‘‘implicit
proof,’’ we mean that certain steps require some assump-
tions on the properties of a function, the spectral function,
which is defined implicitly. We are not able to prove these
properties but we can argue that they are plausible for they
are true perturbatively and the resummation should only
bring innocuous logarithmic corrections to them. We shall
not reproduce this proof here and refer to Ref. [9] for
further details. In the next section however, we illustrate
some of the aspects of the proof which are specific to the
OðNÞ model by using a simpler approximation where
renormalization can be performed in an explicit way.
This will be also the opportunity to revisit the renormal-
ization of the Hartree-Fock approximation from our point
of view and to compare to other results in the literature, in
particular those of Ref. [7].

C. Landau pole

Let us end this section by discussing the presence of a
Landau pole in the OðNÞ model and how this affects the
discussion of renormalization at the level of approximation
considered in this work.
First of all, at least one pole is present in the expressions

for the bare parameters. Indeed, the equations (25) and (26)

determining the bare couplings �ðAÞ
0 and �ðBÞ

0 can be

rewritten as

1

�ðBÞ
0

¼ 1

�?

�
1� 2�?

6N
B�

? ½G?�ð0Þ
�

(33)

and

1

�ðAÞ
0

¼ 1

�ðBÞ
0

�
1� ðN þ 2Þ�?

6N
B�

? ½G?�ð0Þ
�
; (34)

where we have made the cutoff dependence of the bubble
sum integral explicit. Since the latter grows logarithmically

with �, it follows that both �ðAÞ
0 and �ðBÞ

0 diverge before

turning negative at some value of �, which signals an

instability. The bare coupling �ðAÞ
0 being the first to diverge

since N > 0, it is natural to define the Landau scale �p

from the equation:

0 ¼ 1� N þ 2

6N
�?B

�p

? ½G?�ð0Þ: (35)

Above this scale, at least one of the bare couplings be-
comes negative and one might wonder whether the theory
is stable. In contrast, below this scale, it is easily checked,
using the fact that B?½G?�ð0Þ> 0 and �B?½G?�ðQ?Þ< 0
(this is proven for instance in Appendix B.3 of Ref. [9]),
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that all the bare couplings remain positive. To remain in
the stability region, we shall thus consider values of �
below �p.

In the case of the two-loop approximation considered
here (and also in the hybrid approximation that we intro-
duce in the next section or in the Hartree-Fock approxi-
mation), the presence of a pole in the cutoff dependence
of the bare couplings does not imply the appearance of a
pole in the integrals that enter the physical observables.
Choosing parameters such that the Landau scale is not too
close to the physical scales,5 the physical quantities are
defined for any value of the cutoff�. This is because in the
two-loop approximation (and also in the Hartree-Fock
approximation or in the hybrid approximation considered
in the next section) the self-energy does not grow quadrati-
cally at large frequency/momentum and also because these
approximations do not involve vertex-type resummations
capable of generating a Landau pole in the physical quan-
tities. It follows that one can discuss renormalization as
usual, in terms of divergent and convergent quantities as
� ! 1 and thus, even though we restrict to values of �
below �p, the renormalization procedure ensures that the

results are already pretty insensitive to the cutoff in this
range if the Landau scale is large enough. We have already
studied these features in Refs. [9,15] and we shall also do it
here briefly in Sec. V.

At higher orders of approximation, one expects a pole
to appear in the physical observables too, at a finite value
of the cutoff. This prevents discussing the renormalization

in terms of divergent and convergent quantities as
� ! 1. Still, if the Landau scale is large enough, these
concepts survive in a somewhat generalized acceptation.
In particular, quantities renormalized according to our
scheme will still show a plateau behavior below the
Landau scale, from which one can extract results that
are pretty insensitive to the cutoff. The discussion
becomes more delicate as the Landau scale gets closer
to the physical scales.

III. HYBRID APPROXIMATION

We shall also consider another type of approximation
where the gap equation is solved at a lower level of
accuracy than that used to compute the effective potential.
We name these approximations ‘‘hybrid’’ for they break to
some extent the consistency of the�-derivable formalism.
In particular, because the potential is not evaluated at its
stationary point, the field equation admits additional con-
tributions of the form ��=�Gj �G� �G=��. These types of
approximations have been considered in earlier works as
well; see Refs. [16–18]. We note that these types of
approximations do not obey Baym’s conditions and might
thus lead to certain inconsistencies in some region of the
parameters.

A. Definition and relevant equations

To make things explicit, we consider the two-loop 2PI
effective potential (below cL ¼ 1 and cT ¼ N � 1):

�½�;GL; GT� ¼ N�0ðm?Þ þ 1

2
m2

2�
2 þ �4

24N
�4 þ X

i¼T;L

ci
2

Z T

Q
½lnG�1

i ðQÞ � lnG�1
? ðQÞ þ ðQ2 þm2

0ÞGiðQÞ � 1�

þ �ðAþ2BÞ
0

24N
T 2½GL� þ �ððN�1ÞAÞ

0

12N
T ½GL�T ½GT� þ �ððN�1Þ2Aþ2ðN�1ÞBÞ

0

24N
T 2½GT�

þ �2

12N
½�ðAþ2BÞ

2 T ½GL� þ �ððN�1ÞAÞ
2 T ½GT�� � �2

?�
2

36N2
½3S½GL� þ ðN � 1ÞS½GL;GT;GT��; (36)

but instead of evaluating it at its stationary point, defined
by the solution of Eqs. (6) and (7), we evaluate it at the
stationary point of the Hartree-Fock effective potential.
There are two main reasons to do this here. Since the
Hartree-Fock gap equations are equations for a momentum
independent self-energy, the possibility rises to draw some
conclusions, including renormalization, analytically, and
also numerical calculations become faster, allowing for a

thorough investigation of the model.6 The momentum
independence of the self-energy also allows us to conven-
iently work in dimensional regularization. We stress how-
ever that what follows can be redone equivalently using a
cutoff regularization. We note finally that the need for
�0ðm?Þ in the expression (36) stems from a proper regu-
larization of the 2PI effective action, as discussed in
Ref. [9]. In dimensional regularization, we have7

5If the Landau scale is too close to the other scales, we have
seen in Ref. [14] that the gap equation might lose its solution if
the cutoff is taken too large, implying that the physical observ-
ables are not defined for too large values of the cutoff. But this is
not due to the appearance of a pole in the integrals contributing
to these observables.

6We shall see that, once a physical parametrization
of the model is performed, our results in the two-loop and
hybrid approximations will not differ much.

7There was a factor of 1=2 missing in Eq. (22) of Ref. [9] and
as a consequence there should be a factor of 2 in front of the two
terms of the last line of Eq. (31) of that reference.
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�0ðm?Þ ¼ 1

2

Z dd�1q

ð2�Þd�1
½"?q þ 2T ln ð1� e�"?q=TÞ�; (37)

with d ¼ 4� 2	.
Although it can be performed explicitly (see below), the

discussion of renormalization in the hybrid case is more
subtle than in the �-derivable case, because two different
levels of approximation for the 2PI effective potential are
intertwined, each of which comes with its own set of
counterterms. First, the Hartree-Fock effective potential,
from which the hybrid gap equations are deduced, is
obtained from Eq. (36) after removing the setting-sun
sum integrals, making the replacements m2 ! m0 and

�ðA;BÞ
2 ! �ðA;BÞ

0 , and taking �4 as given by Eq. (32). The

parameters m2 and �ðA;BÞ
2 are taken equal to m0 and �ðA;BÞ

0

because, in the Hartree approximation and at � ¼ 0,

M̂2 ¼ �M2 and V ¼ �V. To understand why (32) is the

relevant choice for �4, one has to recompute V̂ in the
Hartree approximation, along the lines of Appendix A. It
follows in particular that the gap equations in the hybrid
approximation read

�M2
L ¼ m2

0 þ
�ðAþ2BÞ
0

6N
½�2 þT ½ �GL�� þ �ððN�1ÞAÞ

0

6N
T ½ �GT�

(38)

and

�M2
T ¼ m2

0 þ
�ðAÞ
0

6N
½�2 þT ½ �GL�� þ �ððN�1ÞAþ2BÞ

0

6N
T ½ �GT�;

(39)

which are obtained equivalently from Eqs. (6) and (7) by
disregarding the momentum dependent pieces and making

the replacements �ðA;BÞ
2 ! �ðA;BÞ

0 . Second, since the two-

loop 2PI effective potential is evaluated for a different
propagator than in the two-loop case, the bare parameters
needed to renormalize the hybrid effective potential need
not be the same as those derived in the previous section. In

fact, it can be immediately seen that m0, m2, �
ðA;BÞ
0 , �ðA;BÞ

2

are the same as they are also needed to renormalize the
gap and curvature masses at � ¼ 0 which remain un-
changed. However, as mentioned above, the field equation
receives additional contributions and therefore �4 is
changed. Another point of view is that the four-point

function V̂�¼0 is modified as compared to the two-loop

�-derivable case. After some calculation whose details are
gathered in Appendix B and upon imposing the renormal-

ization condition V̂�¼0;T?
¼ �?, we arrive at

�4 ¼ �2�? þ 2�ðAþ2BÞ
2l � �ðAþ2BÞ

0 ; (40)

which gives �4 ¼ �2�? þ 6�2l � 3�0 when N ¼ 1.
One of the nice features of the hybrid approximation is

that, since the self-energies are momentum independent,
the divergent part of the various sum integrals involved in

the calculation can be determined analytically. In this way,
one can check explicitly that the above counterterms
renormalize the gap and field equations as well as the
effective potential and explicitly finite expressions can be
obtained for them. We will now show in detail how to
derive the finite gap equations and then sketch the deriva-
tion of the finite hybrid effective potential which in turn
leads to a finite field equation by differentiation.

B. Explicit renormalization

Recall first how the renormalization of the gap equation
for� ¼ 0 works. We have seen in this case that everything
boils down to a single equation, Eq. (13), similar to the gap
equation in the case N ¼ 1. After using the value of m2

0,

one obtains

�M2
�¼0 �m2

?

�ðNAþ2BÞ
0

¼ 1

6N
½T ½ �G�¼0� �T ?½G?��: (41)

By using the techniques developed in Ref. [9] or by per-
forming an explicit calculation, it is easily seen that the
remaining divergence in the right-hand side is nothing but
�ð �M2

�¼0 �m2
?ÞB?½G?�ð0Þ=6N. Subtracting this contribu-

tion from both sides of the equation and using Eq. (26), we
end up with

�M2
�¼0 ¼ m2

? þ N þ 2

6N
�?T F½ �G�¼0�; (42)

where we have introduced the finite combination

T F½G� ¼ T ½G� �T ?½G?� þ ðM2 �m2
?ÞB?½G?�ð0Þ:

(43)

In order to generalize these manipulations to the case
� � 0, we note that what matters when � ¼ 0 is that the
combination of masses appearing in the left-hand side of
Eq. (41) is exactly the same as the combination of tadpoles
in the right-hand side and also that the combinations of

bare couplings �ðAÞ
0 and �ðBÞ

0 are precisely the ones given in

Eq. (26) whose inverse is finite up to a bubble diagram with
the appropriate prefactor. If we were able to find linear
combinations of the masses �M2

L and
�M2
T involving the same

linear combinations of the corresponding tadpoles, we
could apply the previous procedure twice. Now, if we write
the system of gap equations as

�M2
L

�M2
T

 !
¼ a b

c d

 !
T ½ �GL�
T ½ �GT�

 !
u

v

 !
; (44)

we see that if P denotes the matrix that diagonalizes the
system, we obtain

P
�M2
L

�M2
T

 !
¼ � 0

0 


 !
P

T ½ �GL�
T ½ �GT�

 !
þ P

u

v

 !
; (45)
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and thus P provides the sought-after combinations. These
are found to be �M2

L þ ðN � 1Þ �M2
T and �M2

L � �M2
T and we

note that the corresponding equations not only involve by
construction the same combinations of tadpoles, that is
T ½ �GL� þ ðN � 1ÞT ½ �GT� and T ½ �GL� �T ½ �GT�, but also
that they involve respectively the combinations �ðNAþ2BÞ

0

and �ð2BÞ
0 which are those whose inverse is finite up to a

bubble diagram with the appropriate prefactors; see
Eqs. (25) and (26). We can now apply twice the procedure
used for the case � ¼ 0 and, after switching back to
longitudinal and transverse components, we finally end
up with the equations

�M2
L ¼ m2

? þ �?

2N
½�2 þT F½ �GL�� þ N � 1

6N
�?T F½ �GT�;

(46)

and

�M2
T ¼ m2

? þ �?

6N
½�2 þT F½ �GL�� þ N þ 1

6N
�?T F½ �GT�;

(47)

which are both finite. A similar approach has been used in
Ref. [19] in the case of a theory with two scalar fields, not
related to each other by Oð2Þ symmetry. Surprisingly, the
author did not use this approach in the case of the OðNÞ
model in Ref. [20]. This is probably related to the fact that
he was not considering multiple bare couplings as we do
here; see also the discussion below.

To sketch the renormalization of the two-loop hybrid
effective potential, let us consider the caseN ¼ 1 first. The
trick is to express the hybrid effective potential in terms of
the Hartree-Fock effective potential

�Hð�Þ ¼ �0ðm?Þ þm2
0

2
�2 þ �H

4

24
�4

þ �0

8
½T ½ �G� þ 2�2�T ½ �G�

þ 1

2

Z T

Q
½ln �G�1 � lnG�1

? þ ðQ2 þm2
0Þ �G� 1�;

(48)

which we know how to renormalize; see Ref. [15]. We have

�ð�Þ ¼ �Hð�Þ þm2
2 �m2

0

2
�2 þ �2l � �0

4
�4

þ �2 � �0

4
�2T ½ �G� � �2

?

12
�2S½ �G�; (49)

where we have used the fact that in the Hartree-Fock
approximation m2 is equal to m0, �2 is equal to �0 and
�4 is given by Eq. (32) instead of Eq. (40), so that the
difference accounts for the �4 term above. Using the
expressions for m2 and m0, together with the gap equation
at N ¼ 1, this term cancels and we arrive at

�ð�Þ ¼ �Hð�Þ þ �2
?

4
�2C½ �G;G?�; (50)

with

C½ �G;G?� ¼ 2

�2
?

�
�2l

�0

� 1

�
ð �M2 �m2

?Þ þ ��2nl

�2
?

½T ½ �G� �T ?½G?�� � 1

3
½S½ �G� � S?½G?��

¼ T F½ �G�B?½G?�ð0Þ � 1

3

�
S½ �G� � S?½G?� � ð �M2 �m2

?ÞdS?½G?�
dm2

?

�
: (51)

The second line has been obtained by using the explicit
expressions for �2l and ��2nl and shows that the determi-
nation of C½ �G;G?� relies essentially on the determination
of S½ �G�. An explicit proof of the finiteness of C½ �G;G?� is
given in Appendix B. This concludes the proof that the
hybrid potential is finite in the case N ¼ 1. We mention
that a finite expression of C½ �G;G?�, which can be used for
the numerical evaluation of the effective potential, was
obtained within dimensional regularization in Ref. [9];
see Eq. (B11) there.

Similar considerations for arbitrary N lead to

�ð�Þ ¼ �Hð�Þ þ �?�
2

36N
CN½ �GL; �GT; G?�; (52)

where

CN½ �GL; �GT; G?� ¼ ðN þ 8ÞC½ �GL; G?�
þ ðN � 1Þ~C½ �GL; �GT; G?�; (53)

with C given in Eq. (51) and

~C½ �GL; �GT;G?�
¼2T F½ �GT�B?½G?�ð0Þ�1

3

�
3S½ �GL; �GT; �GT��S½ �GL�

�2S?½G?��2ð �M2
T�m2

?ÞdS?½G?�
dm2

?

�
: (54)

As it was the case for C, it is possible to show that ~C is finite
and we refer to Appendix B for the details.
Thus, it remains to be shown that the Hartree-Fock

potential is renormalized for arbitrary N. In fact we expect
it to be finite up to a temperature and field independent
divergent constant. For this reason, we consider instead the
subtracted potential ��ð�Þ � �ð�Þ � �?ð0Þ. In the case
N ¼ 1, one possibility is to rewrite the effective potential
in terms of the combination �2 þT ½ �G�. We complete
a square of the form / ð�2 þT ½ �G�Þ2 and gather the
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terms proportional to the bare mass into m2
0ð�2þT ½ �G�Þ;

then we use the gap equation to write �2 þT ½ �G� ¼
2ð �M2 �m2

0Þ=�0 and the expression for 1=�0, which can

be read off from Eq. (26). Performing these steps we end up
with the subtracted effective potential

��Hð�Þ ¼ �H
4 � 3�0

24
�4 þ 1

2
ðLF½ �G� � �M2T F½ �G�Þ

þ �M4 �m4
?

2�?

; (55)

where we have introduced the subtracted logarithmic sum
integral

LF½G��2½�0ðm?Þ��?
0 ðm?Þ�þ

Z T

Q
½lnG�1� lnG�1

? �

�ðM2�m2
?ÞT ?½G?�þ1

2
ðM2�m2

?Þ2B?½G?�ð0Þ;
(56)

which can be checked to be finite. It remains to be shown
that the combination �H

4 � 3�0 is finite. From Eq. (32), we
have �H

4 � 3�0 ¼ �2�?, which concludes the proof in the
one-component case.
The extension to N � 1 is rendered difficult by the

presence of terms of the form T ½ �GL�T ½ �GT� which couple
longitudinal and transverse components. However, if one
expresses the Hartree-Fock potential in terms of the
diagonalizing combinations obtained above, namely
�GL þ ðN � 1Þ �GT and �GL � �GT, one checks that such types
of coupled terms disappear. Moreover the combinations
of bare couplings which come with such decoupled
combinations are again precisely those for which we
have simple expressions given by Eqs. (25) and (26). We
can thus repeat twice the standard procedure for the
case N ¼ 1. After switching back to longitudinal and
transverse components, we finally end up with the renor-
malized expression

��Hð�Þ ¼ ��?�
4

12N
þ 1

2
ðLF½ �GL� � �M2

LT F½ �GL�Þ þ N � 1

2
ðLF½ �GT� � �M2

TT F½ �GT�Þ

þ 3N

ðN þ 2Þ�?

�
N þ 1

4
ð �M4

L �m4
?Þ þ 3ðN � 1Þ

4
ð �M4

T �m4
?Þ � N � 1

2
ð �M2

L
�M2
T �m4

?Þ
�
: (57)

In the hybrid approximation we shall not use the field
equation, but search for the minimum of the effective
potential (57), as explained in Sec. IV; nevertheless,
for completeness, we give its renormalized form in
Appendix B.

C. Comparison to other approaches

To close this section, let us compare our renormalization
procedure to other approaches followed in the literature.
Since most of these approaches concern the Hartree-Fock
approximation, we focus on the latter for which we have
given the renormalized effective potential in Eq. (57) and
the renormalized gap equations in (46) and (47). The finite
field equation can be obtained by plugging Eq. (38) into the
Hartree-Fock bare field equation to yield

0 ¼ �M2
L þ

�H
4 � �ðAþ2BÞ

0

6N
��2 ¼ �M2

L �
�?

3N
��2; (58)

where we have also used Eq. (32).
The renormalization of the Hartree-Fock approximation

was investigated for instance in Ref. [7] where two
different regularization schemes, cutoff and dimensional
regularization, were used together with the corresponding
‘‘renormalization’’ schemes, named respectively ‘‘cutoff
scheme’’ (CO) and ‘‘counterterm scheme’’ (CT) and lead-
ing surprisingly to different results. In fact the CO scheme
is not really a renormalization scheme since the authors
explain that there is no way to send � to infinity and the
equations need to be considered at finite �, � being an

additional parameter of the model. The drawback of such
an approach is that certain obstructions appear in parame-
ter space, in particular in the chiral limit. In contrast, the
CT scheme removes the divergences and the continuum
limit can be considered, with no obstruction in the chiral
limit. This seems contradictory since one could expect that
physical results should not depend on the regularization
method used. Moreover, the CT scheme was not given a
real justification in Ref. [7] and it was not clear how to
generalize it to higher order truncations. The renormaliza-
tion that we use in this work clarifies these issues. As we
now explain, it gives a justification to the CT scheme of
Ref. [7], it is generalizable to an arbitrary level of trunca-
tion and it allows us to modify the CO scheme in such a
way that it becomes formally identical to the CT scheme.
In particular it presents no obstructions in the chiral limit.
If we have a closer look at Eqs. (46) and (47) for

instance, we notice that, except for the fact that the
subtractions are made at a finite temperature T?, our re-
normalized gap equations have structurally the same form
as those of the CT scheme of Ref. [7]. We thus see that one
way to justify this scheme is to admit the need for multiple
bare parameters8 which need to be fixed by appropriate
renormalization conditions, supplemented by consistency

8As it is explained in Ref. [15], the need to multiply defined
bare parameters is a truncation artifact and the consistency
conditions are such that, if one increases the order of the
truncation, the differences between the various bare parameters
should become smaller and smaller, at least formally.
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conditions. Unlike what is stated in Ref. [7], our inter-
pretation shows that the CT scheme does not involve
temperature dependent counterterms since the counter-
terms depend only on the renormalization scale T? but
not on the self-consistent mass �M2. Moreover, these
considerations are sufficiently general to be extendable
to higher order approximations or to apply to any regulari-
zation, with similar results in the continuum limit. In
particular, we can define a CO scheme for which the
renormalized equations are (46) and (47) with integrals
cut off at some scale �. In this scheme the cutoff � can be
sent to infinity (as mentioned above, this is a peculiarity of
lower order approximations) and no obstructions appear in
the chiral limit. In fact the problems with the CO scheme
in Ref. [7] can all be identified with the use of one single
bare coupling, instead of multiple ones as we propose here.
To illustrate this, let us revisit one of the obstructions
raised in Ref. [7] and see how it is lifted within our
approach. In the CO scheme of Ref. [7], the gap equations
at finite � are written using a single bare coupling. This

amounts to replacing �ðAÞ
0 and �ðBÞ

0 by �0 in the bare gap

equations (38) and (39). Similarly the bare field equation is
written with the same coupling �0 everywhere and reads in
the Hartree-Fock approximation:

0 ¼ m2
0 þ

�0

6N
��2 þ �0

2N
T ½ �GL� þ ðN � 1Þ�0

6N
T ½ �GT�

¼ �M2
L �

�0

3N
��2; (59)

to be compared to Eq. (58). Writing the difference of the
two gap equations at T ¼ 0, setting the pion mass to zero
and using the field equation (59), one arrives then at

0 ¼
Z T¼0

Q<�

1

Q2 þm2
�

�
Z T¼0

Q<�

1

Q2
; (60)

whose solutions are either m� ¼ 0 or � ¼ 0, both absurd.
This is the conclusion reached in Ref. [7]. In contrast,
within our scheme, if we subtract the renormalized gap
equations (46) and (47) and use renormalized field
equation (58), we obtain

0 ¼
Z T¼0

Q<�

1

Q2 þm2
�

�
Z T¼0

Q<�

1

Q2

þm2
�

Z T?

Q?<�

1

ðQ2
? þm2

?Þ2
; (61)

which admits a nonzero solution9 form�, pretty insensitive
to the large values of � because Eq. (61) is renormalized.

Our approach differs also from that used by Amelino-
Camelia and Pi in Refs. [20,21] where only one bare
coupling was used. If we were to use only one bare

coupling, the first term of Eq. (55) would be
�ð�0=12Þ�4 in place of �ð�?=12Þ�4. According to
Amelino-Camelia this term does not spoil the renormaliz-
ability because �0, albeit being a bare parameter, ap-
proaches 0� as � ! 1. However, as already discussed
above, the possibility to send the cutoff to infinity is a
peculiarity of the lowest order approximations, not shared
by higher order ones where we expect physical quantities
not to be defined above the Landau scale. It is thus more
satisfactory to implement a renormalization scheme in
which the results are already pretty much insensitive to
the cutoff below the Landau scale. This is achieved by our
scheme if the Landau scale is not too close to the physical
scales because our results show a ‘‘plateau’’ behavior
below the Landau scale, whereas in the scheme by
Amelino-Camelia there remains a logarithmic sensitivity
from the term �ð�0=12Þ�4. One could argue that the
existence of a plateau is related to the existence of a
continuum limit, a notion that does not make sense at
higher orders of approximation. Still, as already mentioned
above, if the parameters are such that the Landau scale
is much larger than the relevant physical scales, there
is an intermediate regime where this notion can be consid-
ered in a somewhat generalized acceptation: quantities
renormalized according to our scheme will still show a
plateau behavior for values of the cutoff below the
Landau scale. These considerations can be made more
quantitative by using specific examples and will be pre-
sented elsewhere [22]. In our present two-loop approxima-
tion we will study the cutoff dependence of some physical
quantities for different values of the parameters, that is
different values of the Landau pole (see Fig. 5).
Let us finally mention that certain works disregard

renormalization by arguing that one is only interested in
thermal effects and thus that ‘‘vacuum’’ fluctuations can be
neglected; see for instance Ref. [1]. It is worth mentioning
however that, in a self-consistent context such as the
2PI formalism, the masses or self-energies that enter
these vacuum fluctuations depend on the temperature.
Neglecting them is then not completely justified and can
lead to neglecting an important piece of the thermal con-
tribution. This can be tested by using the exact limits of
certain models/theories such as the limit of a large number
of flavors in QED/QCD; see Ref. [23].

IV. NUMERICAL METHOD

Before discussing our results in the next section, let us
give a brief overview of the numerical methods that we
used to solve the equations and compute various quantities
of interest.
In the two-loop case we take advantage of the fact that

all momentum dependent sum integrals are convolutions
and compute them by means of discrete fast Fourier
transform algorithms (DST and DCT as described in
Refs. [9,24]) using a 3D cutoff �. We exploit the rotation

9As a function of m2
�, the right-hand side of the equation starts

at 0 when m2
� ¼ 0, and decreases first before growing linearly as

m2
� ! 1.
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symmetry of the propagators to reduce our discretization to
a two-dimensional N� � Ns lattice containing N� � 1
positive Matsubara frequencies in addition to the static
mode !n ¼ 0 and Ns moduli of the 3D momentum, the
smallest available being the lattice spacing in momentum
space�k ¼ �=Ns. Moreover, since the leading asymptotic
behavior of �GðQÞ is exactly 1=Q2 in the approximation at
hand, we can increase the rate of convergence of the
Matsubara sums and of the convolutions by subtracting
first the leading (free-type) asymptotic behavior of the
various summands/integrands. These subtracted sum inte-
grals involve free-type propagators, as it is also the case for
all the sum integrals encountered in the hybrid approxima-
tion, and therefore can be computed almost exactly. In
practice this means that the Matsubara sum is performed
exactly and the momentum integral is computed numeri-
cally using accurate adaptive integration routines of the
GNU Scientific Library (GSL) [25]. For more details on
the numerical aspects, we refer to our previous work [9]

and adopt the notations used in its Sec. V. In the remainder
of this section, we describe some of the most important
aspects, in particular the new features that appear in the
case N � 1.

A. Increasing the rate of convergence
of the sum integrals

After using the expressions form2
0,m

2
2 and ��

ðA;BÞ
2nl , which

can be read off from Eqs. (21), (22), (27), and (29), it is
straightforward to apply the procedure described in Sec. V.B
of Ref. [9] to render the longitudinal gap equation (6), the
gap equation at � ¼ 0 (13), and the expression of the
curvature at � ¼ 0 (15) in a form suitable for numerical
computations, because they contain the same types of sum
integrals as those in Ref. [9]. This is true also for the
subtracted effective potential, defined using Eq. (36) as
��ð�Þ ¼ �ð�Þ � �?ð0Þ, when it is written using the
expression ��=�� appearing in the field equation10 as

��ð�Þ ¼ Nð�0ðm?;�Þ � �?
0 ðm?;�ÞÞ þ X

i¼T;L

ci
2

Z T

Q
½ln �G�1

i ðQÞ � lnG�1
? ðQÞ � ð �M2

i ðQÞ �m2
?Þ �GiðQÞ�

þ 1

2
�

��

��
� �4

24N
�4 � h�

2
þ �ðAÞ

0

24N
½T ½� �GL� þ ðN � 1ÞT ½� �GT� þ N�T ½G?��2

þ �ðBÞ
0

12N
½ðT ½� �GL� þ �T ½G?�Þ2 þ ðN � 1ÞðT ½� �GT� þ �T ½G?�Þ2�; (62)

where cL ¼ 1, cT ¼ N � 1, �?
0 ðm?;�Þ is the integral in

Eq. (37) calculated with a cutoff� and at a temperature T?

and we used the shorthand notations � �GL=T ¼ �GL=T �G?

and �T ½G?� ¼ T ½G?� �T ?½G?�. The integrals are
evaluated as shown in Eq. (131) of Ref. [9]. However,
for the transverse gap equation (7) and the field equation
itself (14), we need to compute two sum integrals which
were not encountered in our previous work. The first is the
bubble sum integral of Eq. (7), which is rewritten as

B½ �GL; �GT�ðKÞ ¼ B½G?�ðKÞ þ
Z T

Q

�GLðQÞ� �GTðK �QÞ

þ
Z T

Q
� �GLðQÞG?ðK �QÞ; (63)

where � �GL=T decrease faster in the UV than �GL=T, hence
reducing the error of the corresponding sum integrals, as
compared to that of the sum integral B½ �GL; �GT�, while the
first term involves only the free-type propagator G? and
can be computed almost exactly. The discretized form of
Eq. (63) used in the numerics can be easily given in terms
of the discrete version of the convolution defined in

Eq. (114) of Ref. [9]. The second new sum integral is
decomposed as

S ½ �GL; �GT; �GT� ¼
Z T

Q

�GLðQÞðB½ �GT�ðQÞ �B½G?�ðQÞÞ

þ
Z T

Q
� �GLðQÞB½G?�ðQÞ þ S½G?�:

(64)

The third term and the bubbleB½G?�ðQÞ in the second term
can be computed almost exactly. The summand in the
second term decreases faster than the original one,
�GLðQÞB½ �GT�ðQÞ, as it is the case with the difference of
bubbles in the first term, which can be rewritten as a
convolution using Eq. (121) of Ref. [9]. Then, the discre-
tized form of S½ �GL; �GT; �GT� can be readily written using
the discrete version of the convolution and of the local sum
integral defined in Eqs. (114) and (115) of Ref. [9].

B. On the solution of the equations

In the two-loop approximation the solution of the gap
equations (6) and (7) either at fixed � or together with the
field equation (14) is obtained iteratively. In both cases the

coupling counterterms �ðA;BÞ
0 , �ðA;BÞ

2l and �4 are evaluated

first using accelerated Matsubara sums, as explained in

10In the presence of an external field h, ��=�� is the expres-
sion appearing on the right-hand side of Eq. (14), but multiplied
by � and with h� subtracted from it.
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Appendix C of Ref. [9]. Then, the T-dependent integrals
which do not depend on the solution of the equations are
evaluated using adaptive numerical integration routines.
The quantities determined up to this point are unchanged
during the iterative process. The process used to solve the
coupled equations (6), (7), and (14), at h � 0 is similar to
that used in Ref. [9]. At a given T both propagators are
initialized withG?. The iteration starts with the evaluation,
using the most recent �GL=T, of the local-type sum integrals

in the field equation, which is easily solved for it is cubic in
��. Using the obtained value of ��, the propagators are
updated sequentially, starting with �GL. First, the self-
energy �M2

Lði!n; kÞ is evaluated by computing the required
sum integrals with the most recent propagators (due to the
sequential update of the propagators there is no need to
recalculate all the local-type sum integrals). Then, the
updated propagator is

�G Lði!n; kÞ ¼ ½!2
n þ k2 þ � �M2

L þ ð1� �Þ �M2
L;old��1;

(65)

where ‘‘old’’ refers to the propagator of the previous itera-
tion, which has to be stored. The updated �GL is then used to
update �GT in an analogous way, using the same � 2 ð0; 1�
parameter, which controls the speed of convergence of the
iterative process. For large �? one needs �< 1 for the
iteration procedure to converge at all; however, for small
couplings the fastest convergence is achieved with � ¼ 1
Besides ��, the value of the propagators at the lowest
available frequency and momentum is also monitored.
The iteration stops when the relative change of all these
quantities from one iteration to the next is smaller than the
desired accuracy (usually a relative change smaller than
10�7 was required).

In the hybrid approximation the gap equations (46) and
(47) are momentum independent and, therefore, much
easier to solve compared to the full two-loop case.
However, the field equation is complicated due to the
fact that the propagators do not fulfill the stationarity
conditions. For this reason, we evaluate instead the effec-
tive potential (52) and search for its minimum. During this
process the vacuum parts of the sum integrals can be
calculated analytically, while the explicitly temperature
dependent parts can be computed almost exactly using
adaptive numerical integration. Note that one can avoid
the determination of �ML=T as a solution of two coupled

equations. In the next section, we will see in Eq. (71) that it
is possible to explicitly express �ML in terms of �MT.
Plugging this expression into Eq. (47) yields a one-
dimensional equation for �MT, to be solved for any �.
Then, �MT, �ML at the minimum of the potential are
easily obtained with a numerical minimum finder routine,
which chooses values of � and checks the value of the
effective potential (52) evaluated with the solution �MT of
the one-dimensional gap equation and �ML determined
from Eq. (71).

C. Determination of the (pseudo-)critical temperature
and zero temperature quantities

In the chiral limit the critical temperature Tc is the value
at which the curvature of the potential vanishes at � ¼ 0.
Since the latter is the same in both approximations consid-
ered in this work, the corresponding Tc is also the same.
Moreover since the gap equation (13) yields a momentum
independent solution, the curvature at vanishing field, and
therefore Tc, can be evaluated almost exactly, using adap-
tive integration routines. Using Eqs. (22), (26), and (30) in
Eq. (15) one can even obtain an explicitly finite equation
for the curvature at vanishing field in terms of the the
gap mass given by Eq. (42) and C½ �G�¼0; G?�, defined
in Eq. (51):

M̂ 2
�¼0 ¼ �M2

�¼0 þ
N þ 2

6N2
�2
?C½ �G�¼0; G?�: (66)

The critical temperature Tc is then obtained from the

previous expression through the relation M̂�¼0;Tc
¼ 0. It

is also convenient to define a temperature �Tc from the
vanishing of the gap mass at � ¼ 0: �M�¼0; �Tc

¼ 0. The

temperature �Tc is the same in both approximations and
can be given analytically, since by setting �M�¼0 to zero in

Eq. (42) and introducing

C? ¼ m2
? þ N þ 2

6N
�?T F;T¼0½G0�; (67)

with G0ðQÞ � 1=Q2, as in the one-component case in

Ref. [15], one obtains �Tc ¼ ½�72NC?=ððN þ 2Þ�?Þ�1=2,
if the parameters are such that C? � 0; otherwise it is
not defined. We note that because the gap and curvature
masses admit a continuum limit, so do the critical tem-
peratures. Of course these continuum values are not
directly connected with the critical temperatures of the
systems the model could describe at low energies, because
these are nonuniversal quantities which depend on the
microscopic details of the particular system under study.
To obtain them, one should rather envisage a first principle
calculation or include sufficiently enough nonrenormaliz-
able operators in the model.
In the physical case, i.e., at nonzero h, the pseudocritical

temperature Tpc is defined through the inflection point of

the ��ðTÞ curve, which is determined in both approxima-
tions with the same algorithm. This takes into account that
since in the two-loop case the computation is time demand-
ing, it becomes worthwhile to determine the inflection
point by running the code at the least possible number
of temperature values without giving up the accuracy
requirements. As a first step of the algorithm we compute
�� at five equidistant temperature values between Tc and
min ð3 ��ðTcÞ; 5T?Þ (this proved always larger than Tc),
where Tc is the critical temperature corresponding to the
actual value of the parameters m2

?=T
2
? and �? but h ¼ 0.

Then, from this set of points we compute numerically the
first and second derivatives, using the highest possible
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order of finite difference formulas for central or one-sided
approximations [26] which can be reached at a certain
value of the temperature, given the finite number of points
we have. Using the information that d ��=dT has a mini-
mum at T ¼ Tpc and d2 ��=dT2 changes sign as it goes

through T ¼ Tpc, where it vanishes, we can determine

from our five points the two values of temperatures T<

and T> which enclose the inflection point (T<<Tpc<T>).

Next, a rough estimate for the pseudocritical temperature,
Test, is obtained from T< and T> through a linear inter-
polation. Finally, we compute �� at three more tempera-
tures: ðTest þ T<Þ=2, Test, ðTest þ T>Þ=2 and by fitting the
function fðTÞ ¼ aþ b arctan cð�� dTÞ to the values of ��
available at these temperature values and at T< and T>, we
obtain our best estimate for the abscissa of the inflection
point: Tpc ¼ �=d.

The determination of the T ¼ 0 quantities required for
the parametrization of the model or for the computation of
the pressure (see below) is different in the two approxima-
tions that we consider. In the hybrid case the vacuum parts
of the integrals can be evaluated analytically, rendering the

T ¼ 0 value of M̂L=T and �� or even the effective potential

easily accessible. On the contrary, in the two-loop approxi-
mation it is impossible to explicitly reach T ¼ 0 due to the
use of a finite number of Matsubara frequencies, since the
number of needed frequencies is inversely proportional to
the temperature. However, this shortcoming of the numeri-
cal method is overcome with an extrapolation procedure
which uses the low temperature data obtained by increas-
ing the value of N� to an appropriate value (see the caption
of Fig. 7 for an explicit example). The effective potential at
T ¼ 0 is obtained by fitting to the low-T values a func-
tional form based on the temperature dependence of

the ideal gas pressure, gðTÞ ¼ a� bT5=2 exp ð�c=TÞ. To
obtain M̂L=T and �� at T ¼ 0 we use a fitting function

jðTÞ ¼ a� b exp ð�c=
ffiffiffiffi
T

p Þ, which has a purely empirical
motivation.

D. Characteristic curves

In preparation for the discussion of the results in Sec. V,
it is convenient to define certain characteristic curves in the
parameter space (m2

?=T
2
?, �?).

A first class of curves that we use is made of the iso-�p

curves which allow us to determine a region where the
Landau scale is large enough.11 We note that, for N ¼ 1,
Eq. (35) goes over into Eq. (48) of Ref. [9],12 which means
that the scale of the Landau pole obtained in the N ¼ 1

case for some value of the coupling is obtained in the
N ¼ 4 case at twice that value. The value of the Landau
pole corresponding to a given �? can be accurately esti-
mated for m? � �p using the formula

�est
p � m?

2
exp

�
48�2N

ðN þ 2Þ�?

þ 1� 8�2Bð1Þ
?;�¼1½G?�ð0Þ

�
;

(68)

obtained by replacing in Eq. (35) the ‘‘thermal’’ part of the

bubble integralBð1Þ
?;�p

½G?�ð0Þ withBð1Þ
?;�¼1½G?�ð0Þ (we use

the notations of Ref. [9]).
We also use the �Tc ¼ 0 curve, whose equation

��c
?ðm?=T?Þ can be simply obtained using Eq. (67)

from the relation C? ¼ 0, as13

�� c
?

�
m?

T?

�
¼ � 6N

N þ 2
m2

?T
�1
F;T¼0½G0�: (69)

This curve can be seen in Fig. 1. For points which are
above (below) it C? < 0 (C? > 0). We shall need similarly
the curve Tc ¼ 0 whose equation �c

?ðm?=T?Þ is obtained
implicitly from M̂�¼0;Tc¼0 ¼ 0, with the renormalized

curvature mass given in Eq. (66), that is

0 ¼ �M2
�¼0;Tc¼0 þ

N þ 2

6N2
�2
?CTc¼0½ �G�¼0;Tc¼0; G?�: (70)

We note that the solution of the gap equation at vanishing
temperature (and for N ¼ 1 even at an arbitrary value
of the field) can be obtained in closed form in terms of
the two real branches of the Lambert function W . In
Appendix B we provide the solution at vanishing field
and temperature, which can be used in (70) to obtain
�c
?ðm?=T?Þ numerically.
The last characteristic curve is needed in the hybrid case.

In the Hartree-Fock approximation applied to the one-
component case it was already observed in Ref. [15] that
there is a temperature dependent critical value of the field,
�cðTÞ, satisfying �cðTÞ< ��ðTÞ, such that for smaller
values of the field the gap equation does not admit a
physical solution. We investigate now the existence of
such a curve in the hybrid approximation and its location
with respect to ��ðTÞ. Subtracting three times Eq. (47) from
Eq. (46) one can express �ML in terms of �MT as

�M2
L ¼ 3 �M2

T � 2m2
? � N þ 2

3N
�?T F½ �GT�: (71)

Expressing T F½ �GT� from the relation above and plugging
it in Eq. (47), one obtains

11We have treated the hybrid approximation using dimensional
regularization and taking the continuum limit after proper re-
normalization of the equations. We could have proceeded equiv-
alently using a 3D cutoff as in the two-loop case. The iso-�p

curves need to be understood in this context.
12Note that there is a factor of 1=2 missing in front of the
integral.

13A simpler expression, ��c
?ðm?=T?Þ � ð72Nm2

?=T
2
?Þ=½ðN þ 2Þð1� 3m?=ð2�T?ÞÞ�, is obtained using high-temperature

expansion, which is reliable for m?=T? & 1 and sufficient for
our purposes.
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ð1� NÞ �M2
T ¼ 2m2

? � ðN þ 1Þ �M2
L

þ �?

3N
ðN þ 2Þð�2 þT F½ �GL�Þ: (72)

We define �cðTÞ as the value of the field for which
�MTðTÞ ¼ 0. Then, from Eq. (72) one obtains

�2
cðTÞ ¼ 3NðN þ 1Þ

ðN þ 2Þ�?

�
�M2
L;cðTÞ �

2m2
?

N þ 1

�
�T F½ �GL;c�;

(73)

where �M2
L;cðTÞ ¼ �?ðN þ 2Þð �T2

c � T2Þ=ð36NÞ is obtained
from Eq. (71). Note that, by definition of �Tc, �MTð �TcÞ
vanishes at � ¼ 0. It follows that ��cð �TcÞ ¼ 0. The exis-
tence of the ��cðTÞ line depends, of course, on the values of
the parameters. It is an interesting question what happens
at zero temperature because there could exist a ��c;0 curve

in the (m2
?=T

2
?, �?) parameter plane along which �cð0Þ ¼

��ð0Þ � 0, and which delimits a parameter region where
the model cannot be solved at T ¼ 0 in the hybrid approxi-
mation. This is actually the case to the left of the ��c;0 line

in the parameter region shown in Fig. 1. We have not seen
any trace of a ��c;0 curve in the two-loop approximation.

We mention that we could have alternatively defined
�cðTÞ as the value at which �MLðTÞ vanishes. In this
case from Eq. (72) we have �M2

T;cðTÞ ¼ �ðN þ 2Þ�?=

ð3ðN � 1ÞÞ½ ��2
cðTÞ þ ðT2 � �T2

cÞ=12�, which is only positive
if for 0 � T � �Tc one has �2 � ð �T2

c � T2Þ=12. This

means that one needs C? � 0. Then similarly as in
Appendix B [one only has to change b? given in
Eq. (B18) to b? � 1=2] the T ¼ 0 solution of Eq. (71) at
�ML ¼ 0 given in terms of the Lambert function is bigger
than 2�est

p exp ½24�2N=ððN þ 2Þ�?Þ � 1�. The size of this
solution matches the size of the �MT;cð0Þ expressed from

Eq. (72) only for very large �?, when the scale of the
Landau pole is small. This is outside the region of the
parameter space we would like to investigate. It is easy to
see, using that T F½GT� increases with T at fixed MT, that
for 0< T < �Tc Eq. (71) admits only a large scale solution,
because the right-hand side of Eq. (71) at MT ¼ 0 is
negative in this temperature range and vanishes only at
T ¼ �Tc. In conclusion, in the region allowed by the defi-
nition of �cðTÞ based on the vanishing of �MT, it turned out
that �ML is always positive when �MT is nonvanishing. As a
last remark we note that in the hybrid approximation for
the one-component case, where the only possible definition
for �cðTÞ is the one in terms of �ML, we can prove that the
curve ��c;0 does not exist, because, as discussed in

Appendix B, �cð0Þ ¼ ��ð0Þ cannot happen for ��ð0Þ> 0,
that is for parameters for which the model is in its broken
phase at T ¼ 0.

V. RESULTS

In this section we present our numerical results on the
phase transition and the thermodynamic properties of the
model. As it was the case in the one-component scalar
model studied in Ref. [9], we shall find that in the chiral
limit, the transition, when it occurs, is of the second order
type. We shall show this explicitly by monitoring the
variation of the order parameter. We shall also determine
some critical exponents as well as thermodynamical
observables. Before doing so, we discuss the physical
parametrization of the model, relevant, when N ¼ 4, for
the discussion of light meson properties.

A. The parametrization of the model

The renormalized OðNÞmodel has three parameters m2
?,

�? and h (h ¼ 0 in the chiral limit) and a renormalization
scale T?. Being the solution of the gap equations at � ¼ 0
and T ¼ T?, m

2
? is positive, and since we want the bare

couplings to be positive, we need to restrict to �? > 0 (in
addition to �<�p). Not all the 4-uples ðm?; �?; h; T?Þ
correspond to different physical systems. First of all,
renormalization group invariance implies that given two
values for the renormalization scale T?, there exists a
renormalization group transformation that maps two sets
of values for m? and �? in such a way that the physical
predictions are the same. This is rigorously true in the exact
theory where no approximation is considered but it need
not be the case in a given truncation of the �-derivable
potential and the T? dependence of the physical results
needs to be investigated; see below.
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FIG. 1 (color online). Parametrization in the chiral limit
(h ¼ 0). The scanned region is bounded by the �p=T? ¼ 50

(upper) and �Tc ¼ 0 (lower) curves. The ��c;0 curve is only

present in the hybrid approximation, in which case the grey
region is excluded for a reason explained in the text. The points
which form vertical lines are obtained in the hybrid approxima-
tion, while the squares denote the solution of the full two-loop
approximation. The iso-Tc and the iso-M̂L;0 curves are obtained

in the hybrid case. The palette shows the value of the renormal-
ization scale T?. The inset shows the variation of Tc with T?

along iso-M̂L;0 curves.
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Another source of redundancy is provided by dimen-
sional analysis, since knowing the values of the physical
observables of a system represented by ðm?; �?; h; T?Þ, one
can very easily deduce the values of the same physical
observables for a rescaled system represented by
ð�m?; �?; �

3h; �T?Þ, where all dimensionful quantities
are rescaled by � to the appropriate power. In contrast to
renormalization group invariance, this redundancy is
present at any level of truncation and it is therefore
convenient to get rid of it by working exclusively with
dimensionless parameters. For instance, below we will be
interested in the value of the order parameter at T ¼ 0,
which is a function ��0 ¼ ��0ðm2

?; �?; h;T?Þ of mass
dimension one (the label 0 emphasizes that the given
quantity is computed at T ¼ 0). Using simple dimensional
analysis, we deduce that

��0=T? ¼ ��0ðm2
?=T

2
?; �?; h=T

3
?; 1Þ: (74)

Similar expressions can be obtained for the rescaled

curvature masses M̂L;0=T? and M̂T;0=T? that are also

needed below. The use of rescaled variables m2
?=T

2
? and

h=T3
? as parameters is more suitable for numerical calcu-

lations for only dimensionless numbers are used and
according to Eq. (74) we can replace T? by 1 in the
numerical code.

In principle, the parameters can be fixed by equating
quantities computed at zero temperature with their experi-
mental values. Our choice is to relate ��0 with the pion

decay constant f� and the curvature masses M̂T;0 and M̂L;0

with the mass of the pion and sigma particles, m� and m�

respectively. We decided to use those masses for they
reflect the best symmetry of the theory whereas, as
discussed in Sec. II A, the gap masses violate the
Ward identities associated to the OðNÞ symmetry, e.g.,
Goldstone’s theorem. However, the choice of curvature
masses for parametrization is questionable, since usually
the measured physical masses are the pole masses. In this
work, we do not have access to the spectral functions and
therefore we assume implicitly that the pole masses are not
so far from the curvature modes (this of course would
deserve further investigation).

One way to proceed would be to choose a value of T?

and equate ��0 in Eq. (74) to f�:

��0 ¼ T?
��0ðm2

?=T
2
?; �?; h=T

3
?; 1Þ¼! f� (75)

and similarly for m� and m�. This would define a point in
the parameter space (m2

?=T
2
?, �?, h=T

3
?). By changing the

value of T? without changing the values of f�,m� andm�,
we would then follow a line of constant physics. One
difficulty with this approach is that our renormalization
procedure requires in the chiral limit the temperature T? to
be necessarily in the symmetric phase and thus for a given
set of physical values of f�, m� and m� there is a minimal
possible value for T? which we do not know a priori.

Another difficulty is that the sigma mass is not known
exactly, as according to Ref. [27] m� 2 ð400; 550Þ MeV
and, based on large-N studies [28,29], one may have con-

cerns whether in our approximation M̂L;0 turns out to be

large enough.14 Hence, instead of trying to fix the parame-
ters by picking up some arbitrary value for the sigma mass
in the range given above, our procedure is to scan an
appropriately large part of the space (m2

?=T?, �?, h=T
3
?)

and determine at each point ��0=T? from Eq. (74) and M̂T;0

and M̂L;0 from similar relations. At each point of the

investigated parameter space we require ��0 ¼ 93 MeV,
which fixes T? according to Eq. (75) and allows us to

determine M̂T;0 and M̂L;0. We then keep only those points

which satisfy M̂T;0 ¼ 138� 1:38 MeV and allow for the

decay of the sigma particle into two pions by requiring

M̂L;0 > 2M̂T;0. A one percent tolerance is allowed in the

value of M̂T;0 in order to guarantee a sufficient number of

points, even when the parameter space is not densely
sampled. In the chiral limit, there is no constraint on

M̂T;0, because this vanishes due to Goldstone’s theorem

[see the discussion below Eq. (17)], and hence the
constraint on the sigma mass is lifted as well. Another
difference is that the value for the pion decay constant
in the chiral limit is fh¼0

� ¼ 88 MeV [30] instead of
f� ¼ 93 MeV used at h � 0.
Since by construction all points that we keep are such

that ��0 and M̂T;0 are fixed, the iso-M̂L;0 curves are ‘‘lines of

constant physics.’’ We use quotation marks because, as
already mentioned, in a given truncation, we expect physi-
cal quantities to vary slightly as we move along such a line,
that is as we change T? for fixed f�, m� and m�.

15 Along
such a line we can determine in particular Tpc (Tc at h ¼ 0)

from the inflection point of the ��ðTÞ curve as described in
Sec. IVand plot its dependence with respect to T?. We can
apply the same strategy for any other physical quantity and
study its physical dependence; see Sec. VD for a discus-
sion concerning the pressure. Note finally that, even though
all points in parameter space correspond by construction to
a given value of ��0, we could access other values of ��0

(if our model would apply to other physical systems)
by using dimensional analysis and changing the corre-
sponding value of T?. Of course, all other dimensionful
quantities would be scaled by the same quantity.
The result of the parametrization in the chiral limit

is shown in Fig. 1 in an almond-shaped range of the
parameter space encountered already in Refs. [9,15].

14A maximal value of the sigma pole mass was observed in
these studies. This can be seen in Fig. 2 of Ref. [28], and a
formula determining the maximal value was derived in Ref. [29].
The renormalization scale used to fix the coupling constant
differs in the two references.
15Also, even though in the exact theory, the lines of constant
physics should have a constant h, this does not need to be the
case in a given truncation.
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The �p=T? ¼ 50 curve can be easily obtained from

Eq. (35) or Eq. (68), the �Tc ¼ 0 curve is given
by Eq. (69), while the Tc ¼ 0 curve is obtained by solving
Eq. (70) using (B19). The points investigated in the two-
loop case are shown in Fig. 1 by squares in order to
distinguish them from those used in the hybrid approxima-
tion which populate more densely the studied region and
appear in the form of vertical lines.

In the hybrid approximation, the region to the left of the
��c;0 curve is excluded at h ¼ 0 because, as discussed in

Sec. IVD, the model cannot be solved at T ¼ 0 in that
region. Actually, the presence of this line, along which
�MT;0 ¼ 0, invalidates the use of the hybrid approximation

in the chiral limit in a relatively large region of the
parameter space, the grey region of Fig. 1. This is because
as one enters this region, by decreasing for examplem2

?=T
2
?

at fixed �?, M̂L;0 increases very abruptly. Such a huge

sensitivity to the parameters alone raises suspicion con-
cerning the applicability of the approximation, but in our
case one can check explicitly that the results of the hybrid
approximation deviate in this case from those obtained in
the full two-loop approximation. The right boundary of this
region is given by the points where the relative change of

M̂L;0 compared to the two-loop approximation equals 3%.

Apart from this excluded region, the results obtained in the
two approximations are very close to each other. The value

of M̂L;0 (sigma mass) which can be reached is relatively

low, less than 300 MeV, and the critical temperature is in
the range [135, 190] MeV. The scale T?, at which the
renormalization and consistency conditions are imposed,
varies in a relatively large interval. Once determined, it
allows us to access the value of the Landau pole �p in

physical units and one sees that, in the range of the
parameter space where the sigma mass is the largest,
�p > 8:5 GeV. The inset shows the dependence of Tc on

T? along a line of constant physics. Interestingly, as one
goes to larger values of m2

?=T
2
? along these lines, that is as

one increases T?, the dependence becomes linear.
The result of the parametrization when h � 0 is shown

in Fig. 2 for the hybrid approximation. Compared to the

chiral limit we see an increase in the value of M̂L;0 and of

the pseudocritical transition temperature Tpc and a signifi-

cant decrease in the value of the renormalization scale T?.

For fixed m2
?=T?, larger values of M̂L;0 can be achieved for

higher �?, that is allowing the Landau pole to come closer
to the physical scales. We note that a similar figure could
be obtained in the two-loop approximation, but with a
significantly increased numerical effort. In the hybrid
case the code is much faster than in the two-loop case
and hence one can run it for a much larger number of points
of the parameter space. We have tested on a good number
of points of the scanned region, even those not satisfying

M̂L > 2M̂T, that for a given set of the parameters the two-

loop results for M̂L;0, M̂T;0 and Tpc are within 3% of the

values obtained in the hybrid approximation. This is shown
in Fig. 3, where the general tendency is that at fixedm2

?=T
2
?

both �? and h=T3
? tend to increase the difference, so that

the largest difference is obtained at the largest �? and
h=T3

?, and that this largest difference decreases with
increasing m2

?=T
2
?.

Figure 4 shows the variation of the pseudocritical tem-
perature with the renormalization scale T? determined
during parametrization in the physical case and in the
hybrid approximation. The lines of the figure belong to
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FIG. 2 (color online). Parametrization at h � 0 in the hybrid case. The location of the investigated points relative to the characteristic
curves is indicated with smaller size points in the (�?, m

2
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2
?) plane of the figure in the left panel. The points having bigger size

indicates the parameters used in Fig. 3 to compare the result of the two-loop and hybrid approximations. The smaller size points satisfy
the two criteria M̂T;0 ¼ 138� 1:38 MeV and M̂L;0 	 2M̂T;0. The value of the renormalization scale T? is indicated on the figure in the
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different curves in the (m2
?=T

2
?, �?, h=T

3
?) parameter space

selected by different values of M̂L;0, each of them being a

line of constant physics. One sees that the T? dependence is
less than 10%. In units of T?, both Tc and Tpc decrease for

increasing T? and for large values of T? one can fit (up to
possible logs) aþ b=x on Tc=T? and Tpc=T?. In both cases

b > 0, but in the chiral limit a > 0, while for h � 0 one has
a < 0, which accounts for the increase of Tc and decrease
of Tpc seen in Fig. 1 and in Fig. 4 for a given line of

constant physics and for large T?. We expect jaj to dimin-
ish as we increase the order of truncation.

B. On the sigma mass

The parametrization reveals that there is a large region
of the parameter space where a separation of scale occurs
in the sense that the physical scales are much lower than
the cutoff, which in turn is much smaller than the scale of
the Landau pole�p. In this case the solution of the model is

practically insensitive to the cutoff used, as it was the case
for N ¼ 1 in Ref. [9], where the cutoff dependence was
thoroughly investigated. We have also seen that the value

of the zero temperature sigma mass defined through M̂L;0

increases with increasing �?. We have reached values of
sigma masses which are larger than the maximal value of
the sigma pole mass found within the large-N approxima-
tion in Ref. [28], which in the chiral limit is m� �
328 MeV obtained for a coupling � � 311 and a renor-
malization scale of M0 � 334 MeV and m� � 362 MeV
in the h � 0 case, obtained for � � 386 and M0 �
381 MeV. The scale of the Landau pole in these cases is
approximately 1853 and 1150 MeV, respectively. In
Ref. [29], where the renormalization scale and the value
of the coupling were chosen differently, a higher value of
the sigma pole mass of around 433 MeV was reported.
However, in that case, the scale of the Landau pole
was only 720 MeV which prevented calculations above
T � 50 MeV.
We investigate now what happens in our case with the

scale of the Landau pole, which in view of Eq. (35)
decreases with �? when all the other parameters are kept
fixed, if a more realistic parametrization of the model is
required, in which m� 2 ½440; 470� MeV to conform to
recent dispersive analyses of more precise �� scattering
data (see Ref. [27] and for a recent review Ref. [31], in
particular its Fig. 3). To this end, we have chosen different
values ofm2

?=T
2
? and increased the value of �? in the range

between the �p=T? ¼ 50 and �p=T? ¼ 20 curves of the

(m2
?=T

2
?, �?) plane, shown in Fig. 1. It turns out that in

the two-loop approximation it is possible to reach with the
parametrization procedure described in the previous sub-

section values of the M̂L;0 in the desired range. For in-

stance, we obtain M̂L;0 � 465 MeV and T? � 167 MeV

for m2
?=T

2
? ¼ 0:04, h=T3

? ¼ 0:38, �? ¼ 19:2, and M̂L;0 �
445 MeV and T? � 171 MeV for m2

?=T
2
? ¼ 0:124,

h=T3
? ¼ 0:355, �? ¼ 32:476. In these cases the scale of

the Landau pole remained at least seven times larger than

the largest mass scale given by M̂L, that is �p ’ 3:4 GeV.

The interesting question is whether the scale of
the Landau pole is high enough for the result not to
depend too much on the value of the cutoff �. In order to
study the sensitivity of the results on � we monitored
the cutoff dependence of the relative change �Qð�Þ ¼
ðQð�þ��Þ=Qð�Þ � 1Þ of a given physical quantity Q.
If this quantity is regarded as a sequence for discrete values
of �, then in the ideal case where the convergence occurs
the relative change not only tells us how sensitive is the
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FIG. 4 (color online). The dependence of the pseudocritical
temperature Tpc on the renormalization scale T? in the hybrid

approximation at h � 0 along different lines of constant physics
specified by the value of M̂L;0.
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physical quantity on the cutoff at some value �, but also
how close it is to the convergent value. This is because if at
some cutoff� the value j�Qð�Þj< 10�n, then one can say
that Qð�Þ is within 10�nþ2% from the converged value of
the physical quantity Q. The problem is, of course, that
strictly speaking the convergence would occur as � ! 1,
but generally one cannot go above the Landau pole.
Therefore, what is of practical relevance is whether the Q
shows a plateau as a function of � below the scale of the
Landau pole. We investigate this in Fig. 5 for several

parameter sets using the quantities �� and M̂2
L at different

temperatures (the relative change is shown in percentage).
One can see that we are closest to a plateau if the scale of
the Landau pole is high and the temperature is low. The
variation of the relative change with the cutoff shows that
even when the scale of the Landau pole is approximately

seven times larger than M̂L;0, for practical purposes the

result can be considered compatible with a cutoff indepen-
dent result, at least for temperatures not too large with
respect to Tpc. This result should however be interpreted

with a pinch of salt since the fact that the plateau observed
in Fig. 5 extends up to the Landau scale is related to the fact
that the physical quantities do not diverge at this scale, only
the bare couplings. In higher order approximations where,
due to a negatively quadratic growth of the self-energy at

large frequency/momentum or to vertex-type resumma-
tions, one expects physical quantities to diverge at �p, it

is less probable that a plateau can appear if the Landau
scale is too low.16

C. Phase transition

In the chiral limit, in both the two-loop and the hybrid
approximations, the model undergoes a second order phase
transition for those parameters of the (m2

?=T
2
?, �?) plane

which are located above the Tc ¼ 0 line of Fig. 1. This is
illustrated within the two-loop approximation in Fig. 6,
where we show the temperature evolution of the field
expectation value, curvature masses and gap masses at the
lowest available momentum. The inset shows that the three
numerically determined critical exponents are compatible
with the values� ¼ 1=2,� ¼ 1 and� ¼ 3; thus the critical
behavior of the system is characterized by mean-field-type
critical exponents at this level of approximation. This is
expected, since they were already found to be of the mean-
field type in the one-component case in Ref. [9].

FIG. 5 (color online). The cutoff dependence of the relative change of �� (upper raw) and that of M̂2
L (lower raw) obtained in the two-

loop approximation at different temperatures: T ¼ 0, T ¼ Tc and T ¼ 2Tc. The different parameter sets are (a)m2
?=T

2
? ¼ 0:124, �? ¼

22:28, h=T3
? ¼ 1:775 for which M̂L;0 � 280 MeV, �p � 186 GeV and T? � 101 MeV; (b) m2

?=T
2
? ¼ 0:04, �? ¼ 17:39, h=T3

? ¼ 0:6,

for which M̂L;0 � 360 MeV, �p � 16:2 GeV and T? � 146 MeV; (c) m2
?=T

2
? ¼ 0:04, �? ¼ 19:2, h=T3

? ¼ 0:38 for which

M̂L;0 � 465 MeV, �p � 3:35 GeV and T? � 167 MeV. The given M̂L;0 and T? values correspond to the largest � point of each

set. The discretization is characterized by N� ¼ 512 and Ns ¼ 3� 210 except for the points of set (a) at T ¼ 0 for�=�p > 0:04 where

N� ¼ 3� 512 was used. The step �L=T? was 5 for the cases (a) and (b) and 1 for case (c).

16Some explicit calculation using an educated example reveals
that, if �p is large enough, a plateau develops and even extends
up to the very vicinity of �p. However, as �p is decreased, the
plateau fades away.
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One also sees in Fig. 6 that M̂T fulfills the requirement
of Goldstone’s theorem discussed in Sec. II A around
Eq. (17), as it vanishes in the broken phase and becomes

degenerate with M̂L in the symmetric phase. However, as a
result of the truncation of the 2PI effective action,
Goldstone’s theorem is violated by �MTðK ¼ 0Þ [approxi-
mated numerically by �MTð0;�kÞ] which is rather large
since at small temperatures it is larger than ��=2. We note
however that �MTð0;�kÞ is the smallest scale among
�MTð0;�kÞ, �MLð0;�kÞ, M̂L and �� and that the size (in
MeV) of the violation of Goldstone’s theorem is quite
constant with the temperature. These observations give
good hope that higher order corrections will reduce
uniformly the violation of Goldstone’s theorem by the
transverse gap mass. The restoration of Goldstone’s

theorem is expected because �M ¼ M̂ in the absence of
approximations. Our results indicate that the restoration
could happen uniformly with the temperature. At large
temperature both the degenerate curvature and gap
masses increase, but a gap remains between them. This
reflects the fact that the two-loop approximation is
such that �2�int=��a��bj�¼0 � 2��int=�Gabj�¼0, where

�int½�;G� contains all the 2PI graphs contracted with the
vertices of the shifted action S½’ ! ’þ�� (see Ref. [8]
for details).

In the physical case (h � 0) the thermal transition is of
an analytic crossover type. The temperature evolution
of the order parameter is presented in Fig. 7 for a set of

parameters at which M̂L;0 � 360 MeV. The solid line is

obtained in the two-loop approximation, while the barely

distinguishable dashed line is obtained in the hybrid
approximation at the same values of the parameters. The
inset shows that in the hybrid approximation ��ðTÞ is not a
monotonous function of the temperature, for it shows a
maximum at some value of the temperature. This reflects
an inconsistency of the hybrid approximation because,
as one sees in Fig. 8, in the temperature range where
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FIG. 7 (color online). The temperature evolution of the order
parameter, the curvature and gap masses in the two-loop
approximation where �ML=T � �ML=Tð0;�kÞ. For �� and M̂L we

also show for comparison the curves obtained in the hybrid
approximation, in which case we show the critical value of the
field belowwhich, at a given temperature, the effective potential is
not accessible. The parameters are m2

?=T
2
? ¼ 0:04, �? ¼ 17:39,

h=T3
? ¼ 0:6. The discretization used in the two-loop case is

characterized by�=T? ¼ 55,Ns ¼ 3� 210 andN�was increased
for decreasing temperature from 512 used at T 	 40 MeV to
2� 210 for T½25; 40� MeV and 4� 210 for T � 25 MeV.
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FIG. 6 (color online). Illustration of the second order nature of
the phase transition in the chiral limit within the two-loop
approximation. The inset shows the convergence of the static
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��ðTÞ> ��0, the pressure is negative. In Fig. 7, the differ-
ence between the two approximations is more visible on
the longitudinal curvature mass (the transverse ones differ

very little because M̂2
T ¼ h= ��). The restoration of sym-

metry at high temperature is reflected by both the curvature
and lowest momentum gap masses, as the corresponding
longitudinal and transverse components approach each
other. As in the chiral case, at large temperature there
remains a gap between the curvature and gap masses. We
note also the important difference between the values of
�MLð0;�kÞ and M̂L > �MLð0;�kÞ at T ¼ 0. It is clearly
more convenient to use the curvature masses to parame-
trize the model since they allow us to reach higher sigma
masses for the same values of the parameters.

D. Thermodynamics

We turn now to the study of the thermodynamic prop-
erties of the model. To this end we compute the pressure
by subtracting the value of effective potential at the
minimum obtained at a given temperature from the value
determined at zero temperature as described below
Eq. (81) of Ref. [9]. The entropy density s ¼ dp=dT is
determined from the pressure through a numerical deriva-
tive, while the energy is calculated as 	 ¼ �pþ Ts.
Usually these quantities are divided with appropriate
powers of the temperature, but we choose to normalize
them to the corresponding quantity calculated for an ideal
gas of massless particles. As it was the case for N ¼ 1
these three quantities when rescaled with the correspond-
ing Stefan-Boltzmann limit agree with each other at
that temperature where the interaction measure � ¼
Tdðp=T4Þ=dT ¼ ð	� 3pÞ=T vanishes. As discussed in
Ref. [9], this feature follows directly from the equations,
and can be seen in Fig. 8, where we compare the depen-
dence of these quantities on the temperature in the two-
loop and hybrid approximations. The curves obtained in
the two cases are indistinguishable above the pseudo-
critical temperature. At small temperature, however, there
are visible differences, and more importantly one can
clearly see that the hybrid approximation is not consistent
from a thermodynamic point of view, since at small
temperatures it leads to negative pressure, entropy and
energy densities. As already mentioned the temperature
region where the pressure is negative is correlated to that
where ��ðTÞ> ��0. The inconsistency of the hybrid
approximation is displayed also by the heat capacity
C ¼ Td2p=dT2, which becomes negative for small tem-
perature and by the square of the speed of sound c2s ¼
dp=d	 ¼ s=C which has a singularity at the temperature
for which C vanishes (see Fig. 9). Note that for the two-
loop case the temperature variation of c2 is much milder
than the one shown in Fig. 8 of Ref. [32] which was
obtained in a Hartree approximation which included
only the thermal effects and neglected the vacuum ones.
This is probably related to the fact that in our case

�MLðT ¼ 0Þ � 225 MeV is smaller than the smallest value
of the corresponding mass used there.
It is visible in Fig. 8 that at high temperature the pressure

normalized to the Stefan-Boltzmann limit decreases with
the temperature. This is the consequence of the fact that, as
one can see in Fig. 7, at high T the masses of the excitation
grow linearly with T and therefore a high temperature
expansion is less and less accurate with increasing T.
In the two-loop approximation we also tested the depen-

dence of the pressure on the renormalization scale T?, by
choosing two points in the parameter space which belong

to a line of constant physics, along which M̂L=T;0ð0;�kÞ
and ��0 are constant, and for which the difference in
�MT;0ð0;�kÞ was maximal, that is around 10%. The differ-

ence in the value of T? corresponding to these two points
was around 10% and although the difference of
�ML;0ð0;�kÞ was around 30%, the maximal difference in

the pressure was around 10% and was observed at tem-
peratures smaller than Tpc.

VI. CONCLUSIONS

We studied numerically the thermal phase transition
of the renormalized OðNÞ model, both in a genuine
�-derivable approximation in which the effective action
is truncated at two-loop level and in a hybrid approxima-
tion in which the effective potential and the field equation
derived from it are evaluated with a lower level, Hartree-
Fock-type transverse (pion) and longitudinal (sigma)
propagators. In the first case the self-consistent propagator
equations were solved iteratively in Euclidean space using
3D cutoff regularization and the method of Ref. [9], which
by a combination of adaptive numerical integration and
fast Fourier transforms ensures a very accurate evaluation
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of the convolution-type integrals. In the hybrid approxima-
tion one obtains explicitly finite equations which are much
simpler to solve.

In the chiral limit the phase transition turns out to be of
second order in both approximations studied. On the one
hand, this means that the higher level truncation considered
in this work represents an improvement over the Hartree-
Fock approximation which is known to yield a first order
phase transition in the chiral limit. On the other hand, we
have a clear indication that the important improvement
over the Hartree-Fock level occurs in the field equation
and is related to the inclusion of the setting-sun diagram. In
the case of an explicit breaking of the chiral symmetry the
transition is an analytic crossover.

As long as one is interested in the temperature evolution
of the expectation value of the field, curvature and gap
masses the hybrid approximation can be regarded as a good
approximation of the two-loop �-derivable approxima-
tion. In the chiral limit this is not true for the entire
parameter space, as one has to restrict its application to
those parameters where the longitudinal curvature mass
does not change abruptly with the parameters. However,
the thermodynamic study revealed its inconsistency at
small temperatures for it leads to negative pressure,
entropy density and energy density. In fact, this feature is
also related to the nonmonotonic behavior of the field
expectation value at small temperature, where it first
increases with increasing temperature.

We have seen that for N ¼ 4 it is possible to achieve a
realistic parametrization of the model, in which the zero
temperature sigma mass, obtained as the longitudinal
eigenmode of the curvature tensor, could be fixed to values
around 460 MeV, while keeping the scale of the Landau
pole at around 3.4 GeV. This scale is large enough for the
results to be considered practically independent of the
cutoff used, at least for the approximation considered
here and for temperatures not too large with respect to
the crossover temperature. The values of the sigma mass
which can be obtained within the two-loop 2PI approxi-
mation are larger than those found in the next-to-leading
order of the 1=N expansion in the 1PI formalism [28,29],
and the scale of the Landau pole proved also larger.
However, in the approximations studied here, there is a
significant difference between the curvature masses and the
gap masses. It is expected that in approximations where the
effective action is truncated at higher orders this discrep-
ancy will diminish and then the question is raised whether
this will affect the maximum value of the sigma mass
achievable from the curvature mass. In this respect, it
will be interesting to investigate whether the possibility
of a realistic parametrization of the Oð4Þ model persists in
the 2PI formalism at higher order truncation levels and also
what will be the case in the linear sigma model with three
flavors at two-loop and higher truncations levels. Also, in
higher order approximation, especially in those involving

vertex-type resummation, as the 2PI-1=N expansion, the
presence of the Landau pole is a more severe problem,
because it influences the renormalized quantities due to the
divergence of the vertex function. In this case the cutoff
insensitivity needs a careful reexamination and it is more
probable that the scale of the Landau pole has to be kept
further away from the physical scales than in the two-loop
approximation discussed here.
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APPENDIX A: FOUR-POINT FUNCTIONS

As it is discussed at length in Ref. [8] there exist three
different definitions of the four-point function which do not
match exactly in a given truncation. Here we shall consider
these distinct definitions at� ¼ 0 in which case we can use
�G�¼0
ab ¼ �ab

�G�¼0. One possible definition is17

�V�¼0
ab;cd ¼ ���¼0

ab;cd �
1

2

Z T

Q

���¼0
ab;uv

�G2
�¼0ðQÞ �V�¼0

uv;cd; (A1)

with

���¼0
ab;cd �

4�2�

�GabðKÞ�GcdðQÞ
���������¼0

: (A2)

The kernel ���¼0
ab;cd has the structure ���¼0

ab;cd ¼
��ðAÞ
�¼0�ab�cd þ ��ðBÞ

�¼0ð�ac�bd þ �ad�bcÞ with ��ðA;BÞ
�¼0 ¼

�ðA;BÞ
0 =3N. The four-point function �V�¼0

ab;cd admits the

same decomposition and its components obey the coupled
set of equations

�VðAÞ
�¼0 ¼ ��ðAÞ

�¼0 �
N

2

Z T

Q

��ðAÞ
�¼0

�G2
�¼0ðQÞ �VðAÞ

�¼0

�
Z T

Q

��ðAÞ
�¼0

�G2
�¼0ðQÞ �VðBÞ

�¼0

�
Z T

Q

��ðBÞ
�¼0

�G2
�¼0ðQÞ �VðAÞ

�¼0; (A3)

�VðBÞ
�¼0 ¼ ��ðBÞ

�¼0 �
Z T

Q

��ðBÞ
�¼0

�G2
�¼0ðQÞ �VðBÞ

�¼0: (A4)

By expanding this system perturbatively, it is pretty ob-

vious that �VðAÞ and �VðBÞ are not equal and thus that �Vab;cd is

17In the approximation at hand, the kernel, and in turn the four-
point function, are momentum independent—hence the absence
of momenta in our notation for the kernel and the four-point
function.
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not crossing symmetric. In particular, the divergent part is
not crossing symmetric, which explains the need for two

distinct bare couplings �ðAÞ
0 and �ðBÞ

0 . In order to solve the

system of equations (A3) and (A4), it is convenient to

consider the combinations ��ðCÞ
�¼0 � N ��ðAÞ

�¼0 þ 2 ��ðBÞ
�¼0 ¼

�ðNAþ2BÞ
0 =3N and �VðCÞ

�¼0 � N �VðAÞ
�¼0 þ 2 �VðBÞ

�¼0. It is then

easily proven that

�VðCÞ
�¼0 ¼ ��ðCÞ

�¼0 �
1

2

Z T

Q

��ðCÞ
�¼0

�G2
�¼0ðQÞ �VðCÞ

�¼0; (A5)

which shows that the combination �VðCÞ
�¼0 diagonalizes the

system (A3) and (A4). This diagonalization is in one-to-
one correspondence with the one we used in the case of the
Hartree gap equations in Sec. III. In fact the combinations

of bare couplings ��ðBÞ ¼ �ðBÞ
0 =ð3NÞ and ��ðNAþ2BÞ ¼

�ðNAþ2BÞ
0 =ð3NÞ are precisely those which appeared in the

diagonalized form of the Hartree-Fock gap equations. We
obtain

1

�VðBÞ
�¼0

¼ 3N

�ðBÞ
0

þB½ �G�¼0�ð0Þ; (A6)

1

�VðCÞ
�¼0

¼ 3N

�ðNAþ2BÞ
0

þ 1

2
B½ �G�¼0�ð0Þ; (A7)

which we use in the main text to derive the expressions for

�ðBÞ
0 and �ðNAþ2BÞ

0 from the renormalization and consis-

tency conditions. A second definition of the four-point
function which depends on one momentum18 is

V�¼0
ab;cdðKÞ ¼ ��¼0

ab;cdðKÞ �
1

2

Z T

Q

���¼0
ab;uv

�G2
�¼0ðQÞV�¼0

uv;cdðQÞ

¼ ��¼0
ab;cdðKÞ �

1

2

Z T

Q

�V�¼0
ab;uv

�G2
�¼0ðQÞ��¼0

uv;cdðQÞ;
(A8)

with

��¼0
ab;cdðKÞ �

2�3�

�GabðKÞ��c��d

���������¼0

¼ �ðAÞ
�¼0�ab�cd þ�ðBÞ

�¼0ð�ac�bd þ �ad�bcÞ
(A9)

and

�ðAÞ
�¼0 ¼

1

3N

�
�ðAÞ
2 � 2

3N
�2
?B½ �G�¼0�ðKÞ

�
; (A10)

�ðBÞ
�¼0 ¼

1

3N

�
�ðBÞ
2 � N þ 6

6N
�2
?B½ �G�¼0�ðKÞ

�
: (A11)

Once again the appropriate combination of components

NVðAÞ
�¼0 þ 2VðBÞ

�¼0 leads to a system of decoupled equations

for VðBÞ
�¼0 and VðCÞ

�¼0 which is suited in particular to extract

the expressions for the bare couplings �ðA;BÞ
2 . According to

Ref. [8], the third possible definition of the four-point
function is given by

V̂�¼0
abcd ¼

�4�

��a��b��c��d

���������¼0

¼ �4

3N
ð�ab�cd þ �ac�bd þ �ad�bcÞ

� 1

2

Z T

Q
��¼0

ab;uvðQÞ �G2
�¼0ðQÞV�¼0

uv;cdðQÞ

� 1

2

Z T

Q
��¼0

ac;uvðQÞ �G2
�¼0ðQÞV�¼0

uv;bdðQÞ

� 1

2

Z T

Q
��¼0

ad;uvðQÞ �G2
�¼0ðQÞV�¼0

uv;bcðQÞ: (A12)

Using the tensor decomposition of V�¼0, we check

that V̂�¼0
abcd ¼ V̂�¼0ð�ab�cd þ �ac�bd þ �ad�bcÞ (in other

words V̂ðAÞ
�¼0 ¼ V̂ðBÞ

�¼0 and thus V̂�¼0 has the crossing

symmetry) with

V̂�¼0 ¼ �4

3N
� 1

2N

Z T

Q
�ðCÞ

�¼0ðQÞ �G2
�¼0ðQÞVðCÞ

�¼0ðQÞ

� 2

�
1� 1

N

�Z T

Q
�ðBÞ

�¼0ðQÞ �G2
�¼0ðQÞVðBÞ

�¼0ðQÞ;

(A13)

where we note that the contributions from the B and C
components of ��¼0 and V�¼0 contribute independently

to V̂�¼0. This expression is used in the main text in order to

obtain �4.

APPENDIX B: HYBRID EXTRAS

In this section we give some expressions encountered
in the hybrid approximation and discuss their particular
aspects in some details.

1. Expression of V̂� ¼0

As mentioned in the main text, the four-point function

V̂�¼0 is modified in the hybrid case. Following the same

strategy as in the previous section, we arrive at

18In principle, a four-point function depends on three indepen-
dent momenta. The four-point functions we consider here are
taken for particular values or configurations of their external
momenta and can thus depend on fewer variables.
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105001-22



V̂�¼0
abcd ¼

�4

3N
ð�ab�cd þ �ac�bd þ �ad�bcÞ � 1

2

Z T

Q
��¼0

ab;uvðQÞ �G2
�¼0ðQÞ �V�¼0

uv;cd �
1

2

Z T

Q
��¼0

ac;uvðQÞ �G2
�¼0ðQÞ �V�¼0

uv;bd

� 1

2

Z T

Q
��¼0

ad;uvðQÞ �G2
�¼0ðQÞ �V�¼0

uv;bc �
1

2

Z T

Q
ð��¼0

ab;uvðQÞ � ���¼0
ab;uvÞ �G2

�¼0ðQÞ �V�¼0
uv;cd

� 1

2

Z T

Q
ð��¼0

ac;uvðQÞ � ���¼0
ac;uvÞ �G2

�¼0ðQÞ �V�¼0
uv;bd �

1

2

Z T

Q
ð��¼0

ad;uvðQÞ � ���¼0
ad;uvÞ �G2

�¼0ðQÞ �V�¼0
uv;bc: (B1)

Once again V̂�¼0
abcd ¼ V̂�¼0ð�ab�cd þ �ac�bd þ �ad�bcÞ,

with

V̂�¼0 ¼ �4

3N
þ 2½VðAÞ

�¼0 ��ðAÞ
�¼0� þ 4½VðBÞ

�¼0 ��ðBÞ
�¼0�

� ½ �VðAÞ
�¼0 � ��ðAÞ

�¼0� � 2½ �VðBÞ
�¼0 � ��ðBÞ

�¼0�; (B2)

from which we deduce Eq. (40).

2. Finiteness of C and ~C

Let us show that C and ~C defined in (51) and (54) are
finite. One possibility is to compute the divergent part of

the setting-sun sum integrals and check that C and ~C are
free of divergences. As far as C is concerned this was
done within dimensional regularization in Appendix B of

Ref. [9]. We can treat ~C along similar lines. With the

exception of the setting-sun integral S½ �GL; �GT; �GT�, all
the integrals needed to obtain the finite expression of ~C
are given in Ref. [9]. Using the method of Ref. [33], one

can obtain for this setting-sun integral a decomposition in

terms of zero, one and two statistical factors analogous to

Eq. (B5) of Ref. [9]. From that point on, the calculation of

S½ �GL; �GT; �GT� and ~C½ �GL; �GT; G?� parallels that of S½G�
and C½G;G?� performed there and uses the vacuum part of

the setting-sun integral with two different masses. For the

part with no statistical factors one has to expand the factors

of the product T F½ �G�B?½G?�ð0Þ to Oð	Þ because both

contain 1=	 divergences. Using for Sð0Þ the expression

given in Sec. 3 of Ref. [34] one obtains

~Cð0Þ½ �GL; �GT; G?� ¼ 1

ð16�2Þ2
�
�4m2

? þ �M2
T

��
ln

�M2
T

m2
?

� 2

�
2 þ 4�2

9
� 2

3
�1

�
2

3

�
� 2�ðzÞ

�

� �M2
L

�
1

2
ln 2ð4zÞ � 2�2

9
þ 1

3
�1

�
2

3

�
� 1

2
�ðzÞ

��
; (B3)

where �1ðxÞ ¼ d2�ðxÞ=dx2 is the trigamma function, z ¼ �M2
L=ð4 �M2

TÞ, and the function �ðzÞ is defined as

�ðzÞ ¼
8><
>:
4
ffiffiffiffiffiffiffi
z

1�z

q
Cl2ð2 arcsin ffiffiffi

z
p Þ; if z < 1;

1
�

	
�4Li2

	
1��
2



þ 2ln 2

	
1��
2



� ln 2ð4zÞ þ �2

3



; if z > 1;

(B4)

with Cl2ðxÞ ¼ �R
x
0 d ln ð2 sin ð=2ÞÞ being the Clausen function and �ðzÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1=z
p

. Note that lim z!1�ðzÞ ¼ 8 ln 2.
The part with one statistical factor reads

~Cð1Þ½ �GL; �GT; G?� ¼ Bð1Þ
? ½G?�ð0Þ
8�2

�
ðm2

? � �M2
TÞ
�
3� �ffiffiffi

3
p
�
þ �M2

T ln
�M2
T

m2
?

�
þT ð1Þ

? ½G?�
8�2

�
3� �ffiffiffi

3
p � �M2

T

m2
?

�
þ FL½ �ML; �MT�T ð1Þ½ �GL� þ 2FT½ �ML; �MT�T ð1Þ½ �GT�; (B5)

where

FL½ �ML; �MT� ¼ 1

16�2

�
� ln ð4zÞ � �ffiffiffi

3
p þQ

�
arctanhðQÞ; if z 	 1;

arctan ðQ�1Þ; if z < 1;

�
; (B6)

FT½ �ML; �MT� ¼ 1

16�2

2
4ln �M2

T

m2
?

� 2z ln ð4zÞ � 2þ 4zQ

8<
:
� 1

2 ln
1þQ
1�Q ; if z 	 1;

arctan ð2zÞ�1�1
Q þ arctan 1

Q ; if z < 1;

3
5; (B7)

with Q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij1� 1=zjp
. Finally, the part with two statistical factors is
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~C ð2Þ½ �GL; �GT; G?� ¼ 2T ð1Þ½ �GT�Bð1Þ
? ½G?�ð0Þ � 1

3

�
3Sð2Þ½ �GL; �GT; �GT� � Sð2Þ½ �GL� � 2Sð2Þ

? ½G?� � 2ð �M2
T �m2

?Þ dS
ð2Þ
? ½G?�
dm2

?

�
;

(B8)

where

Sð2Þ½ �GL; �GT; �GT� ¼ 1

32�4

Z 1

0
dp

Z 1

0
dkpk

nTð �"TðkÞÞ
�"TðkÞ

"
nTð �"TðpÞÞ

�"TðpÞ ln
4"2TðkÞ"2TðpÞ � ð �M2

L � 2 �M2
T þ 2kpÞ2

4"2TðkÞ"2TðpÞ � ð �M2
L � 2 �M2

T � 2kpÞ2

þ 2
nTð �"LðpÞÞ

�"LðpÞ ln
4"2TðkÞ"2LðpÞ � ð �M2

L � 2kpÞ2
4"2TðkÞ"2LðpÞ � ð �M2

L þ 2kpÞ2
#
; (B9)

with nTð"Þ ¼ 1=ðexp ð"=TÞ � 1Þ, "2T=LðkÞ ¼ k2 þ �M2
T=L,

and all other integrals are given in Ref. [9].

We can also discuss the finiteness of C and ~C using
another explicit method, which is less calculational and
shows clearly the different roles played by �2l and ��2nl.
Let us illustrate it in the case of C. Using the results of
Ref. [33] to write

T ½ �G� ¼ T T¼0½ �G� þ
Z
q

n"q
"q

(B10)

and

S½ �G� ¼ ST¼0½ �G� þ 3
Z
q

n"q
2"q

X
�¼�1

B½ �G�ð ~Q�Þ

þ 3
Z
q

n"q
2"q

Z
k

n"k
2"k

X
�;�¼�1

�Gð ~Q� þ ~K�Þ; (B11)

with
R
q �

R
d3q=ð2�Þ3 and where B½ �G�ð ~Q�Þ denotes the

analytical continuation of the bubble sum integral to real
values of the frequency followed by its evaluation on

shell Q¼ði!n;qÞ! ~Q�¼ðq0¼�"qþi0þ;qÞ. Plugging

this back into the first line of Eq. (51), we obtain

C ½ �G;G?� ¼ 2

�2
?

�
�2l

�0

� 1

�
ð �M2 �m2

?Þ þ finite

þ
Z T¼0

Q
� �GðQÞ½B?½G?�ð0Þ �B?½G?�ðQÞ�

þ
Z
q

n"q
2"q

X
�¼�1

½B?½G?�ð0Þ �B½ �G�ð ~Q�Þ�

�
Z
q

n?"?q
2"?q

X
�¼�1

½B?½G?�ð0Þ �B?½G?�ð ~Q�Þ�;

(B12)

where � �G � �G�G?, "q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ �M2

p
and "? �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þm2
?

p
. The role of ��2nl is thus to remove the sub-

divergences in such a way that the integrands in Eq. (B12)
are finite. In addition the last two integrals are finite due to
the presence of the thermal factors. This is not the case for
the zero temperature integral because the factor � �G does
not decrease fast enough in the UV. However the term
involving the ratio �2l=�0 has precisely the same form as

this integral. Separating the T ¼ 0 part of �2l=�0 and
combining it with the rest we obtain

C½ �G;G?� ¼
Z T¼0

Q
GrðQÞ½B?½G?�ð0Þ �B?½G?�ðQÞ�

þ
Z
q

n"q
2"q

X
�¼�1

½B?½G?�ð0Þ �B½ �G�ð ~Q�Þ�

�
Z
q

n?"?q
2"?q

X
�¼�1

½B?½G?�ð0Þ �B?½G?�ð ~Q�Þ�

þ finite; (B13)

where Gr � � �Gþ ð �M2 �m2
?ÞG2

? ¼ ð �M2 �m2
?Þ2G2

?
�G de-

creases fast enough to make the corresponding integral

convergent. A similar proof can be given for ~C.

3. Explicitly finite field equation

We give here the explicitly finite form of the field
equation. Differentiating Eq. (52) with respect to � and
taking into account the implicit dependence on � of the
gap masses one obtains

��

�
�M2
L�

�?

3N
��2þ �2

?

18N2

�
CN½ �GL; �GT;G?�

þ ��2ððNþ8ÞD½ �GL;G?�þðN�1Þ ~DL½ �GL; �GT�Þd
�M2
L

d ��2

þ ��2ðN�1Þ ~DT½ �GL; �GT;G?�d
�M2
T

d ��2

��
¼0; (B14)

where, in order to give a compact expression, we have
already used in the first two terms, coming from the
Hartree-Fock part, the solution of the two linear equations
for the derivatives of the gap masses which are obtained
from Eqs. (46) and (47) as

d �M2
L

d ��2
¼ d� b

ad� cb
;

d �M2
T

d ��2
¼ a� c

ad� cb
; (B15)

with c ¼ B½ �GL�ð0Þ �B?½G?�ð0Þ, a ¼ cþ 2N=�?, b ¼
ðN � 1Þ½B½ �GT�ð0Þ �B?½G?�ð0Þ�=3, and d ¼ 3bðN þ 1Þ=
ðN � 1Þ þ 6N=�?. Both b and c are finite because the
divergence of the perturbative bubble integral does not
depend on the mass. We note that for N ¼ 1 one has
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b ¼ 0 and d �M2
L=d

��2 ¼ 1=a; therefore with the notation
�M2 � �M2

L the field equation simplifies to

0¼ ��

�
�M2��?

3
��2þ�2

?

2
C½ �G;G?�

þ�2
?

4
��2 D½ �G;G?�
��1
? þ½B½ �G�ð0Þ�B?½G?�ð0Þ�=2

�
: (B16)

In Eq. (B14), CN is defined in Eq. (53) and D½ �GL; G?�,
whose explicit expression is given in Eq. (B12) of Ref. [9],
is obtained from C½ �GL; G?�, defined in (51), upon differ-

entiation with respect to �M2
L. Finally,

~DL½ �GL; �GT� and
~DT½ �GL; �GT; G?� are obtained from ~C½ �GL; �GT; G?� given
in Eq. (54) upon differentiation with respect to �M2

L and
�M2
T, respectively.
In order to determine the ��c;0 curve in the (m2

?=T
2
?, �?)

plane, discussed below Eq. (73), we have to take the limit
T ! 0 and �MT ! 0 in Eq. (B14). This is straightforward,

except for the last term where ~DT, which at T ¼ 0 comes

only from ~Cð0Þ, diverges and d �M2
T=d

��2 vanishes in this
limit. Working out the limit one obtains

lim
�M2
T!0

�
~DT½ �GL; �GT; G?� d

�M2
T

d�2

���������T¼0

¼
1

8�2

	
ln

�M2
L;0

m2
?
� 1



þ 2Bð1Þ

? ½G?�ð0Þ
ðNþ2Þ�?

3N

	
Bð1Þ

? ½G?�ð0Þ þ 1
16�2 ln

�M2
L;0

m2
?



� N � 1

:

(B17)

As a last remark, note that there is no equivalent of the
��c;0 line in the N ¼ 1 case, since this requires ��0 > 0 and
�M0 ¼ 0, and by examining Eq. (B16) at T ¼ 0 one sees
that the two conditions cannot be satisfied simultaneously.
This is because, for �M0 ! 0, C is finite, but D diverges as
ln 2ð �M0=m?Þ, while the denominator diverges only as
ln ð �M0=m?Þ, meaning that in this limit ��0 ¼ 0 is the only
solution of the field equation.

4. Solution of the gap equation at �¼ 0 and T¼ 0

We show here that the solution(s) of Eq. (42) can be
given at T ¼ 0 in terms of the two real branches of the
LambertW function defined to be the multivalued inverse
of the function w � wew ¼ z, for w complex. This func-
tion verifiesW ðzÞ exp ðW ðzÞÞ ¼ z for any complex z. The
real branches of the Lambert W function are depicted in
Fig. 10. The upper branch is usually called W 0ðxÞ and the
lower one W�1ðxÞ.

At T ¼ 0 one can rewrite Eq. (42) as

�M2
�¼0;T¼0 ln

�
eb?=a?

�M2
�¼0;T¼0

m2
?

�
¼ �C?

a?
; (B18)

where a?¼ðNþ2Þ�?=ð96�2NÞ, b?¼�1þðNþ2Þ
�?½Bð1Þ

? ½G?�ð0Þ�1=ð16�2Þ�=ð6NÞ and C? is defined in

Eq. (67). With a few algebraic manipulations [exponentia-
tion and multiplication by �C?=ða? �M2

�¼0;T¼0Þ] and using

the definition of the Lambert function, one expresses the
solution of Eq. (B18) as

�M2
�¼0;T¼0 ¼ � C?=a?

W
	
� C?

m2
?a?

eb?=a?

 : (B19)

For C? > 0 (points below the �Tc ¼ 0 line of Fig. 1) the
argument of W is negative and one sees by looking at
Fig. 10 that for �M�¼0;T¼0 one has no solution if

� C?

m2
?a?

eb?=a? <�1=e and two solutions if� C?

m2
?a?

eb?=a? <

�1=e, one smaller and one bigger than �Me ¼ 2�est
p =e,

where �est
p is the accurate estimation of the Landau pole

given in (68) (the two solutions merge when C?e
b?=a? ¼

m2
?a?=e). The lower scale solution is given by the lower

branch W�1 of the Lambert function.19 The larger scale
solution is given by the upper branchW 0. For C? � 0 one
has one solution, bigger than �Me and given by W 0.
In conclusion, to obtain the Tc ¼ 0 curve, defined as

M̂�¼0;Tc¼0 ¼ 0, we have to take the solution (B19) given

by the lower branch of the Lambert function and use it in
Eq. (70), which can be solved only numerically. For small
negative arguments W�1 can be evaluated using the
asymptotic series given in Ref. [35]. We mention finally
that the upper branch plays a role because we have con-
sidered the renormalized gap equation in its continuum
limit. If we would consider it in the presence of a finite 3D
cutoff, the solutions corresponding to the upper branch
would be absent; see Ref. [15].
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FIG. 10 (color online). The two real branches of the Lambert
W function. The upper branch W 0ðxÞ (dashed) is defined
for x 2 ½�1=e;1Þ and the lower one W�1ðxÞ (solid) for
x 2 ½�1=e; 0Þ.

19We know that at �Tc ¼ 0 one has �M�¼0; �Tc¼0 ¼ 0, and this can
be obtained only with W�1, which diverges negatively when its
argument vanishes. The use of the other branch would give a
finite value, because W 0ðxÞ ¼ xþOðx2Þ, for small x.
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APPENDIX C: TENSOR DECOMPOSITION

Let us first consider a real symmetric tensor U�
ab ¼ U�

ba

such that for any rotation R 2 SOðNÞ
UR�

ab ¼ RacRbdU
�
cd: (C1)

The case � ¼ 0 is easily treated. For any � 2 R we
have

ðU�¼0
ab � ��abÞRbc ¼ RabðU�¼0

bc � ��bcÞ: (C2)

Since the fundamental representation of SOðNÞ is irreduc-
ible, it follows from Schur’s lemma that U� �1 is either 0
or invertible. If we chose � to be an eigenvalue of U�¼0

(there exists at least one eigenvalue since U�¼0 is real and
symmetric), U�¼0 � �1 cannot be invertible and thus
U�¼0 ¼ �1. For reasons that will appear below, the case
� � 0 requires that we distinguish N ¼ 2 from N > 2. Let
us consider the case N > 2 first. Since U� is real and
symmetric, it is diagonalizable, that is it admits N linearly
independent eigenvectors. Let us consider an eigenvector
u� which is not collinear to � (such an eigenvector exists
for N > 2). If R is a rotation that leaves � invariant, we
have from (C1):

U�
abRbcu

�
c ¼ RabU

�
bcu

�
c ¼ ��Rabu

�
b ; (C3)

which shows that we have indeed at least N � 1 linearly
independent eigenvectors corresponding to the eigenvalue
��. If the remaining eigenvector corresponds also to ��,
we have U� ¼ ��1 with �R� ¼ �� that is with ��

a function of �2 only. If the remaining eigenvector
corresponds to another eigenvalue 
� � ��, it has to be
collinear to �. If it were not, we could construct N � 1
linearly independent eigenvectors, different from the pre-
vious ones, and it would follow that N 	 2N � 2, that is
N � 2, which contradicts our assumptionN > 2. From this
and the fact that the subspaces are orthogonal to each other,
it follows that

U�
ab ¼ 
�PL

ab þ ��PT
ab; (C4)

with �� and 
� functions of �2 only. The case N ¼ 2 is
particular because the solution to Eq. (C1) is much more
general than (C4). In fact, because SOð2Þ is Abelian, any
tensor of the form

U�
ab ¼ ~Rac

~Rbdð
�PL
cd þ ��PT

cdÞ; (C5)

with ~R 2 SOð2Þ, obeys Eq. (C1). The converse can also be
proven to be true. By imposing that Eq. (C1) holds not only
for anyR 2 SOð2Þ but also for anyR 2 Oð2Þ, one recovers
the form (C4).
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[8] J. Berges, Sz. Borsányi, U. Reinosa, and J. Serreau, Ann.

Phys. (Amsterdam) 320, 344 (2005).
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