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It has been shown that well-behaved spacetimes may induce the vacuum fluctuations of some

nonminimally coupled free scalar fields to go through a phase of exponential growth. Here, we discuss

this mechanism in the context of spheroidal thin shells emphasizing the consequences of deviations from

spherical symmetry.
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I. INTRODUCTION

In a recent paper, it was shown that certain well-behaved
spacetimes are able to induce an exponential enhancement
of the vacuum fluctuations of some nonminimally coupled
free scalar fields [1]. This ‘‘vacuum awakening mecha-
nism’’ may have consequences, in particular, to astrophys-
ics, since the vacuum energy density of the scalar field can
grow as large as the nuclear density of neutron stars in a
few milliseconds once the effect is triggered [2]. As a
result, the system must evolve into a new equilibrium
configuration and eventually it should induce a burst of
free scalar particles [3] (see also Refs. [4,5] for related
classical analyses reaching similar conclusions).
Conversely, the existence of classes of nonminimally
coupled scalar fields can be unfavored by the determination
of the mass-radius ratio of relativistic stars with known
equations of state.

It is thus interesting to know if the main features de-
scribed in Ref. [2] are preserved when assumptions as
staticity and spherical symmetry are relaxed. In this paper,
we investigate the vacuum awakening mechanism in
the context of thin static spheroidal shells. This will allow
us to explore the consequences of deviations from
sphericity, while avoiding complications concerning un-
certainties about the interior spacetime of nonspherical
compact sources.

The paper is organized as follows. In Sec. II, we follow
Ref. [6] and present the general properties of the shell
spacetime, emphasizing the assumptions which were
made in order to obtain the particular class of solutions
that we investigate. In Sec. III, we consider the quantiza-
tion of a real scalar field in this background and proceed to
discuss the vacuum awakening effect in nonspherical con-
figurations. We show, in particular, that in the limit where
spherical symmetry is recovered our results can be ex-
pressed in terms of known functions. In Sec. IV, we discuss

the exponential growth of the vacuum energy density in the
context of spherically symmetric shells. Section V is dedi-
cated to conclusions. We assume natural units in which
c ¼ ℏ ¼ G ¼ 1 and metric signature ð� þþþÞ through-
out the paper.

II. THIN SPHEROIDAL SHELLS

Let us consider a static and axially symmetric thin shell
surrounded by vacuum [7,8]. The most general line ele-
ment describing the external- and internal-to-the-shell por-
tions of the spacetime complying with the assumptions
above can be written as [9]

ds2 ¼�e2�dt2þe2ð���Þðd�2þdz2Þþ�2e�2�d’2; (1)

where � ¼ �ð�; zÞ and � ¼ �ð�; zÞ satisfy
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The external- and internal-to-the-shell regions will be
covered with coordinates ðt; �; z; ’Þ and ð�t; ��; �z; �’Þ, respec-
tively, where we will denote by S the three-dimensional
timelike boundary between them. It is worth to note that by
using the spacetime symmetries one can choose the time
and angular coordinates on S such that �t ¼ t and �’ ¼ ’.
As a result, we will denote the internal coordinates simply
as ðt; ��; �z; ’Þ and the shell is identified with t ¼ const
sections of S. Let us assume, moreover, that the shell lies
on a � ¼ const surface:

�ð�; zÞjS ¼ �ð ��; �zÞjS ¼ �0 ¼ const: (5)

This choice leads the spacetime inside the shell to be flat
with the corresponding line element being cast as [6]

*wccl@ift.unesp.br
†rfpm@ift.unesp.br
‡matsas@ift.unesp.br
§vanzella@ifsc.usp.br

PHYSICAL REVIEW D 87, 104039 (2013)

1550-7998=2013=87(10)=104039(11) 104039-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.87.104039


ds2� ¼ �e2�0dt2 þ e�2�0ðd ��2 þ d�z2 þ ��2d’2Þ: (6)

In order to analyze the external metric, it is convenient
to perform the coordinate transformation f�; zg ! fx; yg
defined by

� � aðx2 � 1Þ1=2ð1� y2Þ1=2; z � axy; (7)

where x 2 ½1;1Þ, y 2 ½�1; 1�, and a ¼ const> 0. In
terms of the x and y coordinates, Eq. (2) reads
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�
¼ 0: (8)

The most general solution of Eq. (8) which is regular on
y ¼ �1 (symmetry axis) and well behaved at x ! 1
(spatial infinity) can be cast as

� ¼ X1
j¼0

AjQjðxÞPjðyÞ; Aj ¼ const; (9)

where PjðzÞ and QjðzÞ are the zero-order associated

Legendre functions of first and second kinds [10], respec-
tively. For the sake of simplicity, we will restrict ourselves
to the particular class of spheroidal shells obtained by
imposing Aj ¼ 0 for j ¼ 1; 2; . . . in Eq. (9). As a result,

we have

� ¼ ��

2
ln
xþ 1

x� 1
; (10)

where � ¼ �A0 > 0 will play the role of a geometric
parameter linked to the shell shape. It is worthwhile to
note that condition (5) combined with the A1 ¼ A2 ¼
� � � ¼ 0 choice restrict the possible shapes and stress-
energy-momentum distributions of the shells considered
here (see, e.g., Ref. [11] for more general shells). Still, this
class of shells is general enough for our purposes.

Equation (10) implies that the shells which we consider
will lie on

x ¼ x0 ¼ const> 1

surfaces. The corresponding � solution can be directly
obtained from Eqs. (3) and (4):

� ¼ �2

2
ln

x2 � 1

x2 � y2
: (11)

By combining these results, the exterior metric will read
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One can see that the spacetime is asymptotically flat by
taking the x ! þ1 limit in Eq. (12). It will be shown later

that 0<�< 1, � ¼ 1, and �> 1 are associated with
prolate, spherical, and oblate configurations, respectively.
Next, we must impose continuity of the internal and

external induced metrics, hab, on S. It is convenient to
cover S with coordinates �a ¼ ðt; y; ’Þ, a ¼ 0, 2, 3, since
the shell lies at x ¼ x0 ¼ const. The continuity condition
establishes a relationship between the internal, ��, �z, and
external y coordinates on S. For further convenience,
however, let us replace coordinates ��, �z by ~r, � as defined
below:

�� � a~r sin�; �z � a~r cos�:

By doing so, Eq. (6) reads

ds2� ¼�
�
x0�1

x0þ1

�
�
dt2

þa2
�
x0þ1

x0�1

�
�ðd~r2þ~r2d�2þ~r2sin2�d’2Þ; (13)

where we have used �0 ¼ �ð�=2Þ ln½ðx0 þ 1Þ=ðx0 � 1Þ�.
Then, in order to join the metrics given by Eqs. (12) and
(13) on S, we impose ~rjS ¼ fðyÞ and cos�jS ¼ gðyÞ,
where

fðyÞ ¼
�ðx20 � 1Þð1� y2Þ

1� gðyÞ2
�
1=2

(14)

and

g0ðyÞð1� y2Þ
1� gðyÞ2

¼ gðyÞyþ ð1� gðyÞ2Þ1=2
��

x20 � 1

x20 � y2

�
�2�1 � y2

�
1=2

(15)

with “0” � d=dy. The fðyÞ function follows immediately
after gðyÞ is determined from Eq. (15) through a numerical
calculation, where we fix gð0Þ ¼ 0 [to harmonize with the
solution gðyÞ ¼ y for � ¼ 1]. In order to guarantee that
gðyÞ is real, an extra restriction on x0 must be imposed
when �> 1:

�> 1 ) x0 � �; (16)

0<� � 1 ) x0 > 1: (17)

For � ¼ 1, Eq. (17) just reflects the fact that the radius of a
spherical shell must be larger than the Schwarzschild one.
In order to investigate the dependence of the shell shape

on � and x0, we calculate

n � Lequatorial=Lmeridional

¼ ð1� 1=x20Þð1��2Þ=2

2F1ð1=2; ð�2 � 1Þ=2; 1; x�2
0 Þ ; (18)

where Lmeridional and Lequatorial are the meridional (’ ¼
const) and equatorial (y ¼ 0) proper lengths, respectively,
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taken on some t ¼ const hypersurface and 2F1ða; b; c; zÞ is
the hypergeometric function. We note that the shell will be
prolate (0< n< 1), spherical (n ¼ 1), and oblate (n > 1)
for 0<�< 1,� ¼ 1, and�> 1, respectively (see Fig. 1).
The maximum oblateness (associated with the maximum n
value) can be obtained from Eq. (18) combined with
Eq. (16):

nmax � lim
x0¼�!1

n ¼ e1=4=I0ð1=4Þ 	 1:3; (19)

where I�ðzÞ is the modified Bessel function of first kind.
This limit should not be viewed as a general restriction to
arbitrary oblate shells but rather a consequence of the
assumptions discussed below Eq. (10). There is no similar
restriction for prolate configurations, since n may take
arbitrarily small (positive) values. For the sake of further
convenience, it is also useful to calculate, at this point, the
shell proper area as a function of � and x0:

A ¼ 4�x20a
2

�
x0 þ 1
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�
�
�
1� 1

x20

�ð�2þ1Þ=2
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2
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2
;
3

2
;
1
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�
: (20)

By establishing the interior and exterior metrics, the
shell stress-energy-momentum tensor is also fixed:

T�� ¼ Sabe
�
a e�b	ð‘Þ; (21)

where ‘ is the proper distance along geodesics intercepting
orthogonally S (such that ‘ < 0, ‘ ¼ 0, and ‘ > 0 inside,
on, and outside S, respectively), e�a � @x�=@�a are the
components of the coordinate vectors @=@�a defined on S

(with fx�g being some smooth coordinate system covering
a neighborhood of S [8]), and

Sab ¼ � 1

8�
ð�Kab � hab�KÞ: (22)

Here, Kab is the extrinsic curvature, K � Kabh
ab, and

�Aabc...
mno... gives the discontinuity of Aabc...

mno... across S. A
straightforward calculation leads to [6]

8�S00 ¼ AðyÞ½BðyÞ þ CðyÞ � 2�ðx20 � y2Þ�; (23)

8�S22 ¼ AðyÞCðyÞ; (24)

8�S33 ¼ AðyÞBðyÞ; (25)

where

AðyÞ � ðx20 � 1Þ�1
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BðyÞ � �2x0ð1� y2Þ �UðyÞ�1ðx20 � �2y2Þðx20 � 1Þ
þ x0ðx20 � 1Þ;

CðyÞ � ðx20 � y2Þ½x0 �UðyÞ�;
and
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�
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Then, by using Eq. (21) combined with Eqs. (23)–(25), we
obtain that the gravitational mass formula [12]

M ¼ 2
Z
�t

�
T�
� � 1

2
g�� T

�
&�d�� (27)

yields

M ¼ �a: (28)

Here, &� � ð@=@tÞ� is a global timelike Killing field, the
integral is taken on a t ¼ const Cauchy surface �t, and
d�� � n�d� with n� being the pointing-to-the-future

unit vector field orthogonal to �t.
It can be verified that the weak and strong energy

conditions are always satisfied by the stress-energy-
momentum tensor (21). As for the dominant-energy
condition, it will be satisfied for 0<�< 1 and � � 1
provided that

2�x0 � �1þ �2 þ 3x20 � x�
2

0 ðx20 � 1Þ1��2=2

� 2x2��2

0 ðx20 � 1Þ�2=2 (29)

and

x0 � ð13=12Þ�; (30)

FIG. 1 (color online). The ratio n � Lequatorial=Lmeridional is
plotted as a function of � for shells lying at different values of
x0 ¼ const. For 0<�< 1, � ¼ 1, and �> 1 we have prolate
(0< n< 1), spherical (n ¼ 1), and oblate (n > 1) shells, re-
spectively. The maximum value of n, nmax 	 1:3 corresponds to
an oblate configuration lying at x ¼ x0 ¼ � ! 1 for which the
equatorial diameter is about twice as large as the polar one.
Shells with n ! 0 correspond to infinitely thin and long rods,
0<�< 1, lying at x ¼ x0 ! 1.
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respectively (see Fig. 2). [One can see that for � ¼ 1
Eqs. (29) and (30) agree with each other.] Therefore, the
matter composing this class of shells has reasonable physi-
cal properties for a significant range of parameters.

III. QUANTIZING THE FIELD AND
AWAKING THE VACUUM

Now, let us consider a nonminimally coupled real scalar
field � with null mass defined over a spacetime of a
spheroidal shell as discussed in Sec. II (see Sec. III of
Ref. [3] for a discussion about the physical reasonableness
of the null-mass assumption). It will satisfy the Klein-
Gordon equation

�r�r��þ 
R� ¼ 0; (31)

where R is the scalar curvature and 
 ¼ const is a dimen-
sionless parameter.

We follow the canonical quantization procedure and
expand the corresponding field operator as usual:

�̂ ¼
Z

d#ð�Þ½â�u� þ ây�u
��; (32)

where # is a measure defined on the set of quantum
numbers �. Here, u� and u
� are positive and negative

norm modes with respect to the Klein-Gordon inner prod-
uct [13], respectively, satisfying Eq. (31). Then, the anni-

hilation â� and creation ây� operators satisfy the usual

commutation relations ½â�; ây�� ¼ 	ð�;�Þ, ½â�; â�� ¼ 0

and the vacuum state j0i is defined by requiring
â�j0i ¼ 0 for all �.

Since the spacetime is static and axially symmetric, it is
natural to look for positive-norm modes in the form

u�ðt; ~; ’Þ ¼ T�ðtÞF��ð ~Þei�’; (33)

where ~ ¼ ð~r; �Þ and ~ ¼ ðx; yÞ inside and outside the
shell, respectively, � 2 Z is the azimuthal quantum num-
ber, and � ¼ const. By using Eq. (33) in Eq. (31), we see
that T�ðtÞ obeys

d2

dt2
T� þ �T� ¼ 0; (34)

while F��ðÞ satisfies

� 1

a2

�
x0 � 1

x0 þ 1

�
2�
�
1

~r2
@~rð~r2@~rÞ þ 1

~r2 sin �
@�ðsin�@�Þ

� �2

~r2sin 2�

�
F�
�� ¼ �F�

�� (35)

and

� 1

a2

�
x�1

xþ1

�
2�
�ðx2�y2Þ�2�1

ðx2�1Þ�2 f@x½ðx2�1Þ@x�

þ@y½ð1�y2Þ@y�g� �2

ðx2�1Þð1�y2Þ
�
Fþ
��¼�Fþ

��: (36)

Here, we have assigned labels ‘‘�’’ and ‘‘þ’’ to F�� in

order to denote solutions valid inside and outside the shell,
respectively.
The solutions of Eq. (34) will assume the following

general forms:

T�ðtÞ ! T!ðtÞ / exp ð�i!tÞ; ! > 0; (37)

for � � !2 > 0 and

T�ðtÞ!T�ðtÞ/e�t�i�=12þe��tþi�=12; �>0; (38)

for � � ��2 < 0, where the latter is one of the possible
combinations which guarantee that u� with �< 0 is in-
deed a positive-norm mode [1]. Equation (37) is connected
with the usual time-oscillating modes while Eq. (38) is
associated with the so-called ‘‘tachyonic’’ modes.
Tachyonic modes are responsible for an exponential
growth of quantum fluctuations and, consequently, of the
expectation value of the stress-energy-momentum tensor
[1]. (We refer to Ref. [3] for more details on the canonical
quantization procedure in the presence of unstable modes
but it is worthwhile to emphasize at this point that
tachyonic modes do not violate any causality canon.) The
requirement that these modes be normalizable determines
the possible negative values of � (if any) and, thus, the
existence (or nonexistence) of tachyonic modes. One sees
from Eq. (36) that tachyonic modes vanish exponentially at
infinity:

Fþ
��ðx; yÞ ! Fþ

��ðx; yÞ /x!1
exp ð��axÞ: (39)

Next, let us analyze Eqs. (35) and (36) in more detail. On
account of Eq. (21), we have that

R ¼ �8�T ¼ �2�K	ð‘Þ:

FIG. 2. The light gray region corresponds to values of ð�; x0Þ
which do not satisfy the dominant-energy condition, while the
dark gray region is excluded by the constraint (16). The blank
area corresponds to shell configurations satisfying the weak,
strong, and dominant-energy conditions.
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Then, one sees from Eq. (31) that F�
�� should join each

other continuously on S,

F�
��ð~r; �ÞjS ¼ Fþ

��ðx; yÞjS ; (40)

while the first derivative of F�� along the direction or-

thogonal to the shell will be discontinuous:

�ðdF��=d‘ÞjS ¼ 
�ðyÞF��jS : (41)

Here, �ðyÞ � �2�K and we recall that �K ¼ 4�ðS00 þ
S22 þ S33Þ. By using Eqs. (23)–(25), we obtain

�ðyÞ¼�2

a

�
x0�1

x0þ1

��
2

�
x20�y2

x20�1

��2�1
2

�
�2x0��þx0

x20�1

þx0ð1��2Þ
x20�y2

� 1

UðyÞ
�
1�y2ð�2�1Þ

x20�y2

�
� UðyÞ
x20�1

�
;

(42)

where we recall thatUðyÞ is given by Eq. (26). For the sake
of convenience, we cast Eq. (41) in a more explicit form:�
dx

d‘

@Fþ
��

@x

���������S
�
�
d~r

d‘

@F�
��

@~r
þd�

d‘

@F�
��

@�

���������S
¼
�ðyÞF��jS;

(43)

where

dx

d‘

��������S
¼ 1

a

�
x0 � 1

x0 þ 1

�
�=2

�
x20 � y2

x20 � 1

�ð�2�1Þ=2
; (44)

d~r

d‘

��������S
¼ DðyÞg0ðyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� gðyÞ2p ; (45)

and

d�

d‘

��������S
¼ DðyÞf0ðyÞ

fðyÞ2 (46)

with

DðyÞ � 1

a

�
x0 � 1

x0 þ 1

�
�=2

�
g0ðyÞ2

1� gðyÞ2 þ
f0ðyÞ2
fðyÞ2

��1=2
: (47)

In what follows, we search for the 
 parameters which
give rise to tachyonic modes and, hence, to the vacuum
awakening effect, once the spacetime, characterized by the
values of x0, �, and M, is fixed. For this purpose, we must
look for regular F�

��ð ~Þ functions with �< 0 satisfying

Eqs. (35) and (36) inside and outside the shell, respectively,
while respecting Eqs. (40) and (41) on the shell and van-
ishing exponentially at infinity [see Eq. (39)].

A. Spherical shells

Let us start with an analytical investigation of the con-
ditions required by spherically symmetric shells to allow
the existence of tachyonic modes. It will be interesting in
its own right and useful as a test for the reliability of the

numerical code which will be used to treat more general
axially symmetric shells further.
First, we note from Eq. (28) that a ¼ M for � ¼ 1.

Hence, by using the definitions x � r=M� 1 and y �
cos� in Eq. (12) and x0 � R=M� 1 in Eq. (13), we write
the external- and internal-to-the-shell line elements as

ds2þ¼�ð1�2M=rÞdt2þð1�2M=rÞ�1dr2þr2ds2S (48)

and

ds2�¼�ð1�2M=RÞdt2þð1�2M=RÞ�1M2ðd~r2þ~r2ds2SÞ;
(49)

respectively, where ds2S ¼ d�2 þ sin 2�d’2. In terms of

the internal and external coordinates, the shell is at

~r ¼ ð1� 2M=RÞ1=2R=M and r ¼ R;

respectively, from which we see that R is indeed the shell
proper radius. In order to define a continuous radial coor-
dinate on the shell, we introduce

r� � M~r=ð1� 2M=RÞ1=2; rþ � r

with respect to which the shell will be at r� ¼ R.
Now, we note that the general solutions of Eqs. (35) and

(36) can be cast in the form

F�
��ðr�; �Þ ¼

X1
l¼0

al�ðc�
�lðr�Þ=r�ÞP�

l ðcos�Þ; (50)

where al� ¼ const and P
�
l ðcos �Þ are associated Legendre

functions of the first kind, degree l ¼ 0; 1; 2 . . . , and order
� ¼ �l;�lþ 1; . . . ; l. For the sake of convenience, we
define the coordinates

� � r�=ð1� 2M=RÞ1=2;
þ � rþ þ 2M ln½rþ=ð2MÞ � 1� þD;

where D ¼ const is chosen such that � and þ fit each
other continuously on the shell. By using �, the functions
c�

�l will satisfy the ‘‘Schrödinger-like’’ equation

�d2c�
�l=d

2� þ Vðl;�Þ
eff c�

�l ¼ �c�
�l (51)

with

Vðl;�Þ
eff ¼ ð1� 2M=RÞlðlþ 1Þ=r2�; (52)

Vðl;þÞ
eff ¼ ð1� 2M=rþÞðlðlþ 1Þ=r2þ þ 2M=r3þÞ: (53)

The discontinuity of the potential across the shell is

�Veff ¼ 2Mð1–2M=RÞ=R3. Although Vðl;�Þ
eff is positive

everywhere off shell, the existence of tachyonic modes is
still possible because the potential on the shell contains a
delta distribution. Thus, depending on R=M, 
, and l, the
effective potential will be ‘‘negative enough’’ to allow
solutions of Eq. (51) for �< 0. This is codified in the
discontinuity condition (41), which will be used later.
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As a result of Eq. (50), the field-operator expansion (32)
can be written in this case as

�̂ ¼ X
l�

Z
d!½b̂!l�v!l� þ b̂y!l�v



!l��

þ X
l��

½ĉ�l�w�l� þ ĉy�l�w


�l��; (54)

where the only nonzero commutation relations between the
creation and annihilation operators are

½b̂!l�; b̂
y
!0l0�0 � ¼ 	ll0	��0	ð!�!0Þ; (55)

½ĉ�l�; ĉ
y
�0l0�0 � ¼ 	ll0	��0	��0 ; (56)

the modes read

v�
!l� ¼ T!ðtÞðc�

!lðr�Þ=r�ÞYl�ð�; ’Þ; (57)

w�
�l� ¼ T�ðtÞðc�

�lðr�Þ=r�ÞYl�ð�;’Þ (58)

with

Yl�ð�;’Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þðl��Þ!

4�ðlþ�Þ!

s
P�
l ðcos�Þei�’;

and we have assigned labels ‘‘�’’ to v!l� and w�l� to

denote solutions valid inside and outside the shell, follow-
ing our previous notation.

Our search for tachyonic modes equals, thus, the search
for solutions c�

�l of Eq. (51) with � ¼ ��2 < 0. The
regularity requirement for the normal modes implies that
at the origin

lim
�!0

c�
�l ¼ 0þ; (59)

where we have assumed that it approaches zero from
positive values, since the Klein-Gordon inner product fixes
the mode normalization up to an arbitrary multiplicative
phase (which can be chosen at our convenience). By using
Eq. (51) with Eq. (59), we conclude that

0< c�
�lðr�ÞjS ¼ cþ

�lðrþÞjS ; (60)

where the equality is a consequence of Eq. (40).
On the other hand, Eq. (41) implies that the first deriva-

tive of the radial function will be discontinuous on S:

��
1� 2M

R

�
1=2 dðcþ

�lðrþÞ=rþÞ
drþ

� dðc�
�lðr�Þ=r�Þ
dr�

�
S

¼ �2



R

�
1� 2M

R

��1=2
�
2� 3M

R
� 2

�
1� 2M

R

�
1=2

�

� c�
�lðr�Þ
r�

��������S
: (61)

Then, dcþ
�l=dþjS will be, in general, a nontrivial func-

tion of the field and shell parameters. Now, by noting from
Eq. (51) that

c�
�l _ 0 ) d2c�

�l=d
2� _ 0;

we conclude that either cþ
�l changes sign once, diverging

negatively at infinity, or it remains always positive.
Tachyonic modes (with �> 0) will be associated with
c�

�l > 0 with the additional requirement that

lim
þ!þ1c

þ
�l ¼ 0þ: (62)

It follows then from Eq. (51) that for a given shell con-
figuration there will exist up to one tachyonic mode for
each fixed l.
In order to investigate which shell configurations give

rise to tachyonic modes, let us first note that there always
exist a negative enough � ¼ ��2

0 < 0, such that

lim
þ!þ1c

þ
�0l

¼ þ1: (63)

Then, if

lim
þ!þ1c

þ
0l ¼ �1; (64)

it is certain that there will exist some � 2 ð0;�0Þ satisfy-
ing condition (62). Conversely, if condition (64) is not
verified, there will be no tachyonic mode.
The solutions of Eq. (51) with� ¼ 0 satisfying Eq. (59)

can be written as

c�
0lðr�Þ ¼ Alr

lþ1� =Rl; Al > 0; (65)

cþ
0lðrþÞ¼BlPlðrþ=M�1ÞrþþClQlðrþ=M�1Þrþ; (66)

where Al, Bl, and Cl are constants. Next, by imposing
conditions (60) and (61) on the shell, we obtain

B0

A0

¼1�
R

M

0
@3M

R
�2þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2M

R

s 1
Aln

�
1�2M

R

�
(67)

and

Bl

Al

¼�½ðlþ4
ÞðMx0=R� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2M=R

p Þ�2M
=R�Qlðx0Þ
ðlM=RÞ½Plðx0ÞQl�1ðx0Þ�Pl�1ðx0ÞQlðx0Þ�

þ ðlM=RÞQl�1ðx0Þ
ðlM=RÞ½Plðx0ÞQl�1ðx0Þ�Pl�1ðx0ÞQlðx0Þ� (68)

for l ¼ 0 and l � 1, respectively, and

Cl

Al

¼ 1� ðBl=AlÞPlðx0Þ
Qlðx0Þ (69)

for l � 0, where we recall that in the spherical case x0 ¼
R=M� 1. Then, by using that
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lim
rþ!þ1Qlðrþ=M� 1Þrþ � r�lþ ; (70)

lim
rþ!þ1Plðrþ=M� 1Þrþ � rlþ1þ ; (71)

we see from Eq. (66) and condition (64) that the existence
of tachyonic modes with some �> 0 requires Bl=Al < 0.
(Bl=Al ¼ 0 corresponds to ‘‘marginal’’ tachyonic modes
characterized by having the quantum number� ¼ 0.) This
establishes a relationship between the field parameter 

and the shell ratio M=R. In Figs. 3 and 4, we show the
parameter-space region where tachyonic modes with l ¼ 0
and l ¼ 1 do exist, respectively. We note that because the

smaller the l the lower the Vðl;�Þ
eff , the existence of a

tachyonic mode with l ¼ l0 implies the existence of ta-
chyonic modes with l ¼ 0; . . . ; l0 � 1. This can be seen in
Figs. 3 and 4 as we note that the tachyonic-mode region for
l ¼ 1 is contained in the one for l ¼ 0. Clearly, the exis-
tence of a single tachyonic mode is enough to induce an
exponential growth of quantum fluctuations leading to the
vacuum awakening effect. We note, in particular, that there
are shell configurations which allow the existence of ta-
chyonic modes for the conformal field case, 
 ¼ 1=6.
Nevertheless, it can be also seen from Figs. 3 and 4 that
for these configurations the dominant-energy condition
(30) is violated.

B. Prolate and oblate shells

Now, we proceed to treat the prolate (0<�< 1) and
oblate (�> 1) spheroidal shell cases. Here, we shall focus
our attention on the boundaries which curb the regions
where the vacuum awakening effect occurs due to the
existence of any tachyonic mode. These boundaries are
associated with the presence of marginal tachyonic solu-
tions with � ¼ 0 [see discussion below Eq. (71)].
Moreover, following the spherically symmetric case rea-
soning where the most likely tachyonic modes have l ¼ 0
(implying � ¼ 0), we will look for marginal tachyonic
modes (� ¼ 0 ) � ¼ 0) with � ¼ 0 in the axially sym-
metric prolate and oblate cases. Then, the relevant regular
solutions of Eqs. (35) and (36) which give rise to normal-
izable modes are

F�
00 ¼

X
l

Al~r
lPlðcos �Þ (72)

and

Fþ
00 ¼

X
l

ClQlðxÞPlðyÞ: (73)

We note that Eqs. (72) and (73) generalize the spherically
symmetric relation (50) with� ¼ � ¼ 0 provided that one
sets Bl ¼ 0 in Eq. (66) [see observation within parentheses
below Eq. (71)].
Next, we use Eqs. (72) and (73) in the continuity con-

dition (40) to determine the Cl coefficients in terms of the
Al ones:

FIG. 3. The black and dark gray areas depict the parameter-
space region where B0=A0 < 0 leading to the ‘‘vacuum awaken-
ing effect.’’ The magnitude of the vacuum energy density on the
shell grows positively and negatively in the black and dark gray
regions, respectively (see discussion in Sec. IV). The light gray
strip is excluded from the parameter space because no static
spherical shell can exist with R � 2M, while the translucent
gray one contains those configurations which violate the
dominant-energy condition. The inset graph emphasizes that
there are shell configurations which allow the presence of
tachyonic modes for 
 ¼ 1=6 (vertical dashed line), although
the dominant-energy condition is not satisfied.

FIG. 4. The black areas depict the parameter-space region
where tachyonic modes with l ¼ 1 are present. The light and
translucent gray regions represent the same as in Fig. 3. In
contrast to the l ¼ 0 case, no analysis is performed here con-
cerning whether the vacuum energy density on the shell grows
positively or negatively because any contribution coming from
l ¼ 1 is dominated by the one associated with l ¼ 0.
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Cl0 ¼ 2l0 þ 1

2Ql0 ðx0Þ
X
l

Al

Z 1

�1
dyPl0 ðyÞfðyÞlPl½gðyÞ�; (74)

where we recall that fðyÞ and gðyÞ are given in Eqs. (14)
and (15), respectively, and we have used the orthonormal-
ity conditionZ 1

�1
PnðyÞPmðyÞdy ¼ 2

2nþ 1
	nm: (75)

Once we have determined Eq. (74) for Al and Cl con-
nected with the marginal tachyonic modes associated with
Eqs. (72) and (73) (which satisfy the proper boundary
conditions), the frontiers which curb the unstable regions
are obtained as we impose the first-derivative constraint
(41). Here, it is convenient to note that Eq. (41) supplied by
Eqs. (72)–(74) can be cast as

P
lAlGlðyÞ ¼ 0 for an intri-

cate but otherwise known function GlðyÞ. By expanding
GlðyÞ in terms of Legendre polynomials, Eq. (41) can be
written as X

l

X
l0
Alkll0Pl0 ðyÞ ¼ 0; (76)

where kll0 � ðl0 þ 1=2Þðkð1Þ
ll0 þ kð2Þ

ll0 þ kð3Þ
ll0 Þ with

kð1Þ
ll0 ¼

�
1

Ql0 ðxÞ
dQl0 ðxÞ
dx

�
x¼x0

Z 1

�1
dyPl0 ðyÞfðyÞlPl½gðyÞ�;

(77)

kð2Þ
ll0 ¼�

Z 1

�1
dyPl0 ðyÞ

�
dx

d‘

��1

S

�
lfðyÞl�1

�
d~r

d‘

�
S
Pl½gðyÞ�

� lfðyÞlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�gðyÞ2p �

d�

d‘

�
S
f�gðyÞPl½gðyÞ�þPl�1½gðyÞ�g

�
;

(78)

and

kð3Þ
ll0 ¼ �


Z 1

�1
dyPl0 ðyÞ

�
dx

d‘

��1

S
�ðyÞfðyÞlPl½gðyÞ�: (79)

Here, we recall that �ðyÞ, dx=d‘jS , d~r=d‘jS , and d�=d‘jS
are given in Eqs. (42) and (44)–(46), respectively. Then, by
using the orthonormality property of the Legendre poly-
nomials, Eq. (76) leads toX

l

Alkll0 ¼ 0: (80)

Let us now consider kll0 as elements of a matrix K. In
the spherically symmetric case,K is diagonal: kll0 ¼ gl	ll0

with gl being constants depending on the shell, M=R, and
field, 
, l, parameters. The borderlines associated with the
regions containing tachyonic modes for each l are obtained
by solving gl ¼ 0 for 
 as a function of M=R. In the
absence of spherical symmetry, the corresponding border-
lines inside which tachyonic modes exist can be obtained
similarly by vanishing the eigenvalues of K. The

vanishing-eigenvalue condition can be imposed on K by
solving the corresponding characteristic equation

detK ¼ 0: (81)

This will drive Eq. (80) to have a nontrivial solution for the
Al coefficients. We recall that eventually all modes should
be Klein-Gordon orthonormalized, which fixes any
remaining Al left free.
For computational purposes, we truncate (the infinite

matrix) K by imposing 0 � l, l0 � N for a large enough
N. This is justified since the kll0 elements decrease as the
values of l or l0 increase. By fixing the� and x0 parameters,
Eq. (81) is expected to be satisfied by N þ 1 values of 
,
which corresponds in the spherical case to the fact that for a
fixed M=R value, the boundary of the unstable regions,
associated with the marginal tachyonic modes, are at dif-
ferent 
 values, each one corresponding to a distinct
l ¼ 0; . . . ; N (see Figs. 3 and 4). Because in the prolate
and oblate cases we are interested in the regions where the
vacuum awakening effect occurs by the existence of any
tachyonic mode, we shall look for the 
 solutions of
Eq. (81) which lead to the boundary enclosing the largest
possible unstable region. (In the spherical case, it corre-
sponds to the boundary of the black and dark gray regions
in Fig. 3 associated with l ¼ 0.) For relatively small devi-
ations from sphericity, a quite reasonable approximation is
already obtained by taking N ¼ 0. By increasing N, we
introduce higher order corrections. These corrections are
seen to be more relevant as larger deviations from sphe-
ricity are considered as can be verified in Fig. 5 for a
considerably prolate shell.
In Figs. 6 and 7, we show the results obtained for some

prolate and oblate shells, respectively, assuming N ¼ 6.
For the sake of clarity, we have characterized the shells by
their equatorial-per-meridional size ratios n and proper
areas A as given in Eqs. (18) and (20), respectively, since
they have a more straightforward physical meaning than x0
and�. Figure 6 shows that the lines which limit the regions
where the vacuum is awakened by prolate shells differ
significantly from the spherical case for dense enough
configurations, 16�M2=A 	 1. In contrast to the spherical
case, where there is no equilibrium configuration for
16�M2=A � 1, in the prolate one, 16�M2=A can acquire
arbitrarily large values when n is arbitrarily small. Figure 7
puts in context the oblate case. We recall from Sec. II that
the degree of nonsphericity for this class of solutions is
restricted on account of the constraint (16): �> 1 ) x0 >
�, leading to 1< n & 1:3. This restriction reflects itself on
the allowed values for 16�M2=A. The excised regions at
the top and bottom of Fig. 7 come from this condition
applied to the oblate shell considered in the graph. From
this figure, we also see that the oblate shell with n ¼
1=0:85 	 1:18 is more favorable to trigger the effect than
the associated prolate one with n ¼ 0:85.
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IV. EXPONENTIAL GROWTH OF THE VACUUM
ENERGY DENSITY

Finally, we investigate the exponential growth of the
vacuum energy density induced by the existence of
tachyonic modes. Although the vacuum energy density
will be a nontrivial point-dependent function, the total
vacuum energy will be time conserved [1]. Let us suppose
that a spheroidal shell evolves from (i) an initial static
configuration ðx0; �;MÞin where Eq. (31) is only allowed
to have time-oscillating solutions to (ii) a new static con-
figuration ðx0; �;MÞout where Eq. (31) is permitted to also
have tachyonic ones. Because the oscillating in-modes will
eventually evolve into tachyonic and oscillating out-

modes, the vacuum energy density hT̂00i � h0injT̂00j0ini
will grow exponentially. Here, we assume the vacuum
j0ini to be the no-particle state defined according to the
oscillating in-modes (see, e.g., Ref. [3] for a more com-
prehensive discussion).
A general expression for the exponential growth of the

expectation value of the stress-energy-momentum tensor
was calculated in Ref. [1]. By applying it to the spherical
shell case, we obtain the following leading contribution to
the vacuum energy density:

hT̂00i ¼ hT̂�
00iHð�‘Þ þ hT̂þ

00iHð‘Þ þ hT̂00iS; (82)

FIG. 6 (color online). Diagram showing the boundaries
which circumscribe the regions where the vacuum awakening
effect is triggered by prolate-spheroidal shells with
n ¼ 0:25, 0.5 and 0.75. The spherical (n ¼ 1) case is plotted
for comparison. The vertical dashed line indicates the
conformal-coupling value 
 ¼ 1=6. Configurations allowing
for tachyonic modes are those to the left of the curves on
the left-hand side and to the right of the curves on the right-
hand side.

FIG. 7 (color online). Diagram showing the boundaries which
limit the regions where the vacuum awakening effect is triggered
by an oblate-spheroidal shell with n ¼ 1=0:85 	 1:18. Prolate,
n ¼ 0:85, and spherical, n ¼ 1, cases are plotted, as well, for the
sake of comparison (restricted to the domain of the oblate case,
which is indicated by the horizontal dotted lines). The vertical
dashed line indicates the conformal-coupling value 
 ¼ 1=6.
Configurations allowing for tachyonic modes are those to the
left of the curves on the left-hand side and to the right of the
curves on the right-hand side.

FIG. 5 (color online). Diagram showing how higher order N
approximations converge to the actual boundaries which curb
the tachyonic unstable regions for a considerably prolate shell,
n ¼ 0:25. Configurations allowing for tachyonic modes are
those to the left of the curves on the left-hand side and to
the right of the curves on the right-hand side. We note that in
the 16�M2=A � 1 regime, the N ¼ 0 approximation is
already quite satisfactory in contrast to the 16�M2=A 	 1
regime. For N ¼ 8, only few points were obtained due to the
computational cost.
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where we recall that ‘ is the proper distance along geo-
desics intercepting orthogonally S [as defined below
Eq. (21)] and Hð‘Þ is the Heaviside step function. Here,

hT̂�
00i, hT̂þ

00i, and hT̂00iS are the vacuum contributions to the
energy density inside, outside, and on the shell, respec-
tively, where

hT̂�
00i �

�

8�

e2
��t

r2�

�
1� 2M

R

�

� d

dr�

��
1� 4


4 ��

�
r2�

dðc�
��0
ðr�Þ=r�Þ2
dr�

�
; (83)

hT̂þ
00i �

�

8�

e2
��t

r2þ

�
1� 2M

rþ

�

� d

drþ

��
1� 4


4 ��

�
r2þ

�
1� 2M

rþ

� dðcþ
��0
=rþÞ2

drþ

þ 
M
��

ðcþ
��0
ðrþÞ=rþÞ2

�
; (84)

hT̂00iS � �

8�
e2

��t

�
1� 2M

R

�
1=2 


R

�
ð1� 4
Þ

�
3M

R
� 2

þ 2

�
1� 2M

R

�
1=2

�
þM

R

� ðcþ
��0
ðrþÞ=rþÞ2
��

	ð‘Þ;
(85)

with � being a positive constant of order one related to
the decomposition of the in-modes in terms of the out-

modes and �� denoting the largest � selected from the
set of all tachyonic solutions. By analyzing the factor
multiplying the delta distribution in Eq. (85), one can
verify whether the vacuum contribution to the energy
density is positive or negative on the shell. Our conclu-
sions are depicted in Fig. 3: the black and dark gray
regions are associated with shell configurations where

hT̂00iS grows positively and negatively, respectively.
Similarly, one concludes from Eq. (83) that the total
vacuum energy inside our spherical shells is positive,
null, and negative when 
 < 1=4, 
 ¼ 1=4, and 
 >
1=4, respectively.

As a matter of fact, eventually the scalar field and
background spacetime must evolve into some final stable
configuration, where tachyonic modes are not present, in
order to detain the exponential growth of the stress-
energy-momentum tensor. The precise dynamical
description of how the ‘‘vacuum falls asleep’’ again is
presently under debate [14]. In spite of the quantum
subtleties involved in this discussion, at some point the
scalar field is expected to lose coherence after which a
classical general-relativistic analysis should be suitable.
The evolution of axially symmetric rather than

spherically symmetric systems may lead to new interest-
ing features.

V. CONCLUSIONS

It was recently shown that relativistic stars are able to
induce an exponential enhancement of the vacuum fluctu-
ations for some nonminimally coupled free scalar fields. In
Ref. [2] it was assumed spherical symmetry to describe
compact objects, which is expected to be a very good
approximation for most relativistic stars [15]. In this paper,
however, we were interested in analyzing how deviations
from sphericity would impact on the vacuum awakening
effect. For this purpose we have considered a class of
axially symmetric spheroidal shells. This has allowed us
to pursue our goal, while avoiding concerns about how to
model the interior spacetime of nonspherical compact
sources. Figure 6 shows that for dense enough configura-
tions, 16�M2=A 	 1, the awakening of the vacuum be-
comes more sensitive to prolate deviations from sphericity.
Figure 7 unveils that oblate shells with n ¼ n0 seem to be
more efficient to awake the vacuum in comparison to
prolate ones with n ¼ 1=n0.
As a consistency check, we have performed an analyti-

cal investigation for the spherically symmetric shell case in
order to test the numerical codes used to discuss the
general axially symmetric one. It was shown, in particular,
that in contrast to the relativistic stars analyzed in Ref. [2],
spherically symmetric shells are able to awaken the vac-
uum for conformally coupled scalar fields, 
 ¼ 1=6 (see
Figs. 3 and 4). The exponential growth of the vacuum
energy density was analyzed for the spherically symmetric
case in Sec. IV.
The present paper is part of a quest which aims at under-

standing the vacuum awakening effect in the context of
physically realistic stars, where (i) deviations from spheric-
ity, (ii) rotation, and (iii) realistic equations of state must be
considered. In Ref. [2], the authors focused on (iii), while in
the present paper we have privileged (i). We are presently
giving attention to (i) and (ii) by analyzing the vacuum
awakening effect in the spacetime of spheroidal rotating
shells [16]. The full consideration of the three aspects all
together will be necessary for a sharp prediction about what
scalar fields would have their vacua awakened by realistic
relativistic stars. It would be particularly interesting to see
whether neutron stars would be able to awake the vacuumof
minimally and conformally coupled scalar fields.
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