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2Institute for Quantum Gravity (IQG), FAU Erlangen—Nurnberg, Staudtstrasse 7, 91058 Erlangen, Germany

(Received 15 February 2013; published 28 May 2013; corrected 7 June 2013)

We develop a systematic classical framework to accommodate the canonical quantization of geometric

and matter perturbations on a quantum homogeneous isotropic flat spacetime. The existing approach of

standard cosmological perturbations is indeed proved to be good only up to first order in the inhomo-

geneities, and only if the background is treated classically. To consistently quantize the perturbations and

the background, a new set of classical phase-space variables is required. We show that, in a natural gauge,

a set of such Dirac observables exists, and their algebra is of the canonical form. Finally, we compute the

physical Hamiltonian that generates the dynamics of such observables with respect to the homogeneous

part of a Klein-Gordon ‘‘clock’’ field T. The results of this work provide a good starting point to

understanding and calculating the effects that quantum cosmological spacetime in the background has on

the quantum perturbations of the metric tensor and of matter fields.
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I. INTRODUCTION

A. Motivation: Towards a new quantum theory

The framework we present in this paper is classical, but
the aim is the introduction of quantum test fields on a
quantum spacetime. While the theory of test quantum
fields propagating on classical Friedmann-Robertson-
Walker (FRW) spacetime is very well known, a theory of
quantum fields on a quantum universe in the background is
a scenario considered much less often. The first step in that
direction was made in Ref. [1]. In that work, the quantum
background was provided by the loop quantum cosmology
model1 of the homogeneous isotropic universe character-
ized by the scale factor e� coupled to a homogeneous

massless Klein-Gordon (K-G) field Tð0Þ (playing the role
of physical time), and the test field was a second K-G field
��. This model was derived from the (suitably simplified)
theory of two K-G fields, TðxÞ and �ðxÞ, coupled to the
gravitational field g��ðxÞ: the authors started with the

scalar constraint of the full theory, expanded it around
the homogeneous solutions (with � ¼ 0), and dropped
all the degrees of freedom except for (i) the scale � of

the universe, (ii) the homogeneous part Tð0Þ of the first K-G
field, and (iii) the perturbations �� of the second K-G
field. These three remaining degrees of freedom were
coupled to each other and subject to a quantum scalar
constraint defined by the truncated quantum constraint

operator Ĉ ¼ Ĉ� þ ĈTð0Þ þ Ĉ�� ¼ 0. (The vector con-

straint was satisfied automatically at the classical level in
the test field approximation, and therefore it was ignored at

the quantum level.) This idea was later generalized to the
Bianchi I quantum spacetimes [9].
The goal of this new approach to quantum field theory

(QFT) on quantum spacetimes was to gain some insight
into possible effects of the quantum nature of geometry on
the propagation of test fields. A first intriguing conclusion
came from the study of a mechanism of the emergence of a
classical spacetime from such a quantum system. The
classical spacetime emerges as a metric tensor effectively
felt by the modes of the quantum test field. It is obtained
from the quantum dynamics of the modes, and differs from
solutions to the classical Einstein’s equation with suitable
quantum corrections. For that reason, it was later called
‘‘dressed’’ [10]. If the test K-G field is massless, then all its
modes experience a single dressed metric, independently
of their momenta. This phenomenon may be interpreted as
the absence of so-called Lorenz symmetry violation. If
the test K-G field is massive, on the other hand, then the
dressed metric felt by each mode depends on the direction
of its momentum. In particular, the dressed metric is no
longer space isotropic, even in the case of an isotropic
quantum universe in the background [11]. One might say
that, from the point of view of each mode, the isotropy is
broken by quantum geometry effects! These results were
insensitive to possible choices of the quantum model for
the homogeneous degrees of freedom, be them loop
quantum cosmology [6–8] or Wheeler-deWitt quatum cos-
mology [12,13]. However, the findings outlined above
were derived using a quite crude approximation, and there-
fore one expects more from a systematic approach.
Since the concept of the test quantum field on the

quantum cosmological background spacetime has proved
to be quite fruitful, it is worth extending it to perturbations
of the gravitational field and to perturbations of the scalar
field T present in the background spacetime. An attempt
to achieve this goal was made in Ref. [10]. Therein, the
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approach of Ref. [1] was reconsidered. However, it was
developed in a somewhat different direction. Namely, as a
starting point a very well-known standard perturbation
theory of classical mathematical cosmology [14–16] was
taken. Each dynamical variable � (a coordinate in the
phase space) is expanded as

� ¼ ~�ð0Þ þ ���ð1Þ þ 1

2
�2��ð2Þ þ � � � ; (1)

where ~�ð0Þ encodes the background part. The background
part is decoupled from the higher-order perturbations. Thus,

the first-order perturbations ��ð1Þ gain their own phase
space and are subject to a theory introduced on a fixed

background ~�ð0Þ. Such a framework is powerful in cosmol-
ogy and useful for example in the context of QFTon curved
classical spacetime, because the background spacetime has
been fixed from the beginning as a solution to the unper-
turbed Einstein’s equations, and the phase space of the
system consists of the perturbation sector only. In
Ref. [10] that framework was quantized. Specifically, one
quantizes the perturbations order by order, decoupled from
the background and from each other. What we want to
consider instead is a joint quantization of the perturbations
and of the background (as was the case in Refs. [1,9]).
Therefore, we will propose in the current paper to go in an
alternative direction to that of Ref. [10]. To this end we need
to develop a classical framework that keeps the original
coupling between the perturbations and the background.
Another proposal for a systematic development of the theory
of quantum perturbations coupled to the quantum back-
ground was made in Ref. [17]. The starting point is the
classical framework of Ref. [18] available for the
k ¼ 1 cosmology (a spherical universe). Their framework
combines the loop quantum cosmology quantization of the
background with a unique quantization of scalar cosmologi-
cal perturbations on a classical background with k ¼ 1 [19].
This proposal is satisfactory from the point of view of
deriving a theory of perturbations from the full theory.
What we are looking for in the current paper is a similar
classical starting point available for a flat universe. A similar
idea is presented in [20], where the authors study the prob-
lem of evolution of perturbations around the cosmological
sector of general relativity in Ashtekar-Barbero variables.

B. Comparison and contrast
with the standard approach

The current paper2 provides such a classical framework,
suitable for the project of studying QFT on quantum space-
time. For the sake of self-sufficiency, we start from scratch.
We address the full theory of gravity coupled to two K-G
fields, and systematically develop a classical framework in
which the perturbations and the background together set a
phase space. To this end, in Sec. II we construct the full

phase space of the system of the two Klein-Gordon
fields coupled to the gravitational field. In Sec. III we briefly
present the first step of the standard approach of
cosmological perturbation theory, namely the definition of

the background variables ~�ð0Þ of Eq. (1).We do this to fix the
notation and in order to draw a comparison with our ap-
proach, which is constructed in the remainder of the paper.
In Sec. IV we introduce a global coordinate system on

the full phase space, in which every field is split into its
homogeneous and inhomogeneous parts,

� ¼ �ð0Þ þ ��: (2)

Note that, contrary to Eq. (1), here there are no higher-order
terms. This is because the expression (2) is not the first two
terms of the Taylor expansion (there is no ‘‘small parame-
ter’’ �, and both terms are finite), but rather an exact, unique
decomposition giving rise to a certain coordinate system on
the phase space.3 To give an example, for the K-G field TðxÞ
sector, we will define Tð0Þ to be the homogeneous part and
�TðxÞ the inhomogeneous part: this split is always well
defined, and does not involve any knowledge of the dynam-
ics [contrary to Eq. (1), where given an exact TðxÞ, the
definition of Tð0Þ is the part of TðxÞ that satisfies the un-
perturbed K-G equation]. Because of the kinematical nature
of this decomposition, it follows that in our sense �TðxÞ
does not involve any correction to the homogeneous part of

the field: it is all absorbed into Tð0Þ (which consequently
does not satisfy the unperturbed K-G equation).4

As was already said, the reader should not be mislead by
the symbol � in front of �: at this kinematical level nothing
is ‘‘small’’ yet. The next step of the program is to consider
the constraints of the full theory on the phase space thus
coordinatized, and to reduce them to the constraint surface.
In order to do this explicitly, however, we are forced at this
point to consider only those spacetimes for which �� is
indeed small. Therefore, in Sec. V we carry out a Taylor
expansion and Fourier-mode decomposition of the full
constraints as functions on the phase space expressed in

terms of � ¼ �ð0Þ þ ��, for �� � �ð0Þ. In Sec. VI we
study the gauge transformations generated by the con-
straints, which finally allow one to restrict to the reduced
physical phase space. In Sec. VII we construct the Dirac
observables, along with a one-dimensional group of auto-
morphisms of their algebra parametrized by the variable

Tð0Þ, and find the generator of such a group, i.e., the

2The first ideas were presented in Ref. [21].

3More rigorously, �� are functions on the phase space � of the
theory, rather then elements of the tangent space T~�ð0Þ� at a fixed
background solution ~�ð0Þ.

4Actually, if one considers the dynamics up to the first order,
the variables �ð0Þ do satisfy the Klein-Gordon-Einstein equations
(with �� ¼ 0), and the variables �� satisfy the linearized
equations on the background �ð0Þ. Thus, up to first order,
the two approaches agree. However, it will be clear that if the
quadratic order were considered then this would not be the case,
since �ð0Þ would know about the ‘‘backreaction of perturbations
on the background.’’
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physical Hamiltonian. A comparison with the main results
of standard cosmological perturbation theory is drawn in
Sec. VIII, where we explain why Mukhanov-Sasaki varia-
bles cannot fit together with a canonical quantization of the
background spacetime. Indeed, the structure needed for
such canonical quantization is the Poisson algebra of the
Dirac observables and the physical Hamiltonian. Not only
are Mukhanov-Sasaki variables are not Dirac observables
at higher orders, but they also present a nontrivial commu-
tation relation with the background variables. As we will
explain in detail, this fact is due to the dynamical nature of
the expansion (1). On the other hand, the essential feature

of our framework is that �ð0Þ and �� in Eq. (2) are subject
to the unchanged Poisson algebra of the full theory, con-

trary to ~�ð0Þ; ��ð1Þ; . . . ; ��ðnÞ; . . . of standard cosmological
perturbation theory. But starting with the correct classical
Poisson algebra is relevant for the (future) canonical quan-
tization. Of course, the price to pay is that in our approach

�ð0Þ is not a fixed background; it is a dynamical homoge-
neous space, its dynamics being generated by the same
Hamiltonian that generates the dynamics for the inhomo-
geneities ��.

All these differences are unavoidable in our program.
In fact, this feature of treating the homogeneous and in-
homogeneous parts on the same footing is precisely what
motivates us to think that our proposed approach is more
suitable for the canonical quantization of perturbations and
background. We conclude in Sec. IX with a discussion of
these results.

II. THE KLEIN-GORDON-EINSTEIN THEORY

We consider the gravitational field coupled to two Klein-
Gordon fields. The system is described by the following
action:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2�
R� 1

2
g��@�T@�T � VTðTÞ

� 1

2
g��@��@��� V�ð�Þ

�
; (3)

where � ¼ 8	G and R is the Ricci scalar of the gravita-
tional field g��. We can distinguish three sectors:

(i) The geometric (G) sector, associated to the metric
g��.

(ii) The time (T) sector, a Klein-Gordon ‘‘clock field’’
T.

(iii) The matter (M) sector, a Klein-Gordon field �.
The field T is referred to as time, because the value of its

spacially homogenous part (with respect to fixed coordi-

nates), Tð0Þ, will be used to parametrize a one-dimensional
group of automorphisms acting on the Dirac observables.

To proceed with the canonical quantization of the theory,
it is convenient to pass to the Hamiltonian formalism. The
usual way to do so is to write the metric g�� in the

Arnowitt-Deser-Misner (ADM) form,

g��dx
�dx� ¼ �ðN2 � qabN

aNbÞdt2 þ 2qabN
bdtdxa

þ qabdx
adxb: (4)

Here, qab is the spatial metric, i.e., the metric that g��

induces on the spatial (Cauchy) surface � � M. N and Na

are called respectively the lapse function and the shift
vector field, and characterize the spacetime geometry in
the directions transverse to� embedded inM. In our paper,
the latin indices run through the set {1,2,3} and are char-
acteristic of the objects living in the tensor bundle of �.
They are raised and lowered by using the spatial metric. In
matrix form, the metric and its inverse are given by

g�� ¼ �N2 þ NaNa Na

Na qab

 !
;

g�� ¼ �1=N2 Na=N2

Na=N2 qab � NaNb=N2

 !
:

(5)

From here, we can perform the canonical analysis of the
action (3). First, we plug Eq. (4) into Eq. (3), and then use
the Codazzi equation to write R in terms of the three-

dimensional Ricci tensor Rð3Þ and the extrinsic curvature,

Kab ¼ � 1

2
ðLnqÞab ¼ � 1

2N
½ _qab � ðL ~NqÞab�

¼ 1

2N
½� _qab þraNb þrbNa�; (6)

where n is the unit vector field normal to �. One obtains

S ¼
Z

dt
Z

d3x
ffiffiffi
q

p �
N

2�
ðRð3Þ þ KabK

ab � ðqabKabÞ2Þ

þ 1

2N
ð _T � Na@aTÞ2 � N

2
qab@aT@bT � NVTðTÞ

þ 1

2N
ð _�� Na@a�Þ2 � N

2
qab@a�@b�� NV�ð�Þ

�
:

(7)

Knowing that Rð3Þ involves only spatial derivatives of qab,
it is easy to compute the conjugate momenta,

	ab ¼ �S

� _qab
¼

ffiffiffi
q

p
2�

ðqabqcd � qacqbdÞKcd;

	a ¼ �S

� _Na
¼ 0; 	 ¼ �S

� _N
¼ 0;

pT ¼ �S

� _T
¼

ffiffiffi
q

p
N

ð _T � Na@aTÞ;

	� ¼ �S

� _�
¼

ffiffiffi
q

p
N

ð _�� Na@a�Þ:

(8)

Using these, we can rewrite Eq. (7) in the canonical form,

S ¼
Z

dt
Z

d3x½	ab _qab þ pT
_T þ 	�

_�� NC� NaCa�;
(9)
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where

C ¼ 2�ffiffiffi
q

p
�
	ab	

ab � 1

2
ðqab	abÞ2

�
�

ffiffiffi
q

p
2�

Rð3Þ þ 1

2
ffiffiffi
q

p p2
T

þ
ffiffiffi
q

p
2

qab@aT@bT þ ffiffiffi
q

p
VTðTÞ þ 1

2
ffiffiffi
q

p 	2
�

þ
ffiffiffi
q

p
2

qab@a�@b�þ ffiffiffi
q

p
V�ð�Þ;

Ca ¼ �2qacrb	
bc þ pT@aT þ 	�@a�: (10)

Looking at the action (9), one can see that the phase space
� and coordinates thereon in which Poisson brackets have
the canonical form are manifest: we may separate them as

� ¼ �0
G � �T � �M; (11)

where the coordinates ðN;Na; qab; 	; 	a; 	
abÞ parametrize

the geometric sector �0
G, the coordinates ðT; pTÞ parame-

trize the time sector �T , and ð�;	�Þ parametrize the

matter sector �M. However, as N and Na are nondynam-
ical, we have four primary constraints (per point x 2 �):
	 ¼ 0 and 	a ¼ 0. These constraints can be directly
solved, and the transformations they generate can be
gauge-fixed by choosing arbitrary N ¼ Nðqab; 	ab; T;
pT;�; p�Þ and Na ¼ Naðqab; 	ab; T; pT;�; p�Þ; the other
variables do not depend on them, so they are all gauge
invariant under this choice. So the phase space of the
system reduces to

� ¼ �G � �T � �M; (12)

where �G is parametrized by ðqab; 	abÞ only. The Poisson
structure takes the canonical form in those coordinates: in
other words, the only nonvanishing brackets are

fqabðxÞ; 	cdðyÞg ¼ �ðc
a �

dÞ
b �

ð3Þðx; yÞ;
fTðxÞ; pTðyÞg ¼ �ð3Þðx; yÞ;
f�ðxÞ; 	�ðyÞg ¼ �ð3Þðx; yÞ:

(13)

Conservation of the primary constraints under the
evolution generated by the Hamiltonian,

H ¼
Z

d3x½NCþ NaCa�; (14)

implies four secondary constraints (per point x 2 �),

C ¼ 0; Ca ¼ 0: (15)

It can be shown that these constraints are conserved
with respect to H, so ðC;CaÞ constitutes the whole set of
constraints. Moreover, their constraint algebra closes, so
they form a set of first-class constraints (using Dirac’s
terminology).

Observables of the theory are those phase-space
functions F—called the Dirac observables—that
Poisson-commute with all the constraints,

fF;CðxÞg ¼ fF;CaðxÞg ¼ 0; for all x 2 �: (16)

This in particular means that any observable F does not
evolve, as it commutes with the Hamiltonian (14),

d

dt
F ¼ fF;Hg ¼ 0: (17)

This so-called problem of time is solved by introducing a
suitable automorphism on the Poisson algebra of Dirac
observables.
It is possible to show that the constraints ðC;CaÞ encode

an important geometrical feature of the theory: diffeomor-
phism invariance. Indeed, Ca and C generate the action on
the phase space of diffeomorphisms of � and diffeomor-
phisms off � (in the normal direction), respectively. For
this reason they are often called respectively the vector
constraint and scalar constraint.

III. BACKGROUND SECTOR OF �

We want to consider generic linear perturbations on a
fixed background. The ideal background (which is also the
physically meaningful one) presents the homogeneous and
isotropic space �. We are assuming throughout this paper
that � is a 3-torus endowed with a symmetry group by
choosing six vector fields: three generators of global trans-
lations and three generators of local rotations. We parame-
trize the 3-torus by the coordinates x1, x2, x3 2 ½0; 1Þ
[where the interval [0, 1) is endowed with the topology
of a circle]—what we could call the frame of ‘‘generalized
cosmological observers.’’ In terms of these coordinates the
symmetry generators are @a and �abcx

b@c. This structure
will be used to define the ‘‘background’’ sector, a subspace

�ð0Þ ¼ �ð0Þ
G � �ð0Þ

T � �ð0Þ
M � �G � �T � �M: (18)

�ð0Þ
G is the homogeneous isotropic part of the geometric

sector �G of the phase space. It consists of points

ðqð0Þab; 	
ab
ð0ÞÞ such that the vector fields @a and �abcx

b@c are

their symmetries,

qð0ÞabðxÞ ¼ e2��ab; 	ab
ð0ÞðxÞ ¼

	�e
�2�

6
�ab; (19)

where � and 	� are constant. Therefore, �ð0Þ
G is freely

parametrized by ð�;	�Þ.
In �ð0Þ

M , the matter field � is assumed to be absent, in the
sense that 	� ¼ 0 and � ¼ �0, the minimum of the

potential V�. For simplicity let us assume that

�0 ¼ V�ð�0Þ ¼ 0; (20)

although in the future it may also be interesting to study the
consequences of the spontaneous symmetry breaking in

this context. Therefore, �ð0Þ
M consists of one point: (0,0).

Contrary to �, a nontrivial time field T is necessary. To
be consistent with the homogeneity of the space, we
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choose the background T to be homogeneous as well; this
means that the infinitely many degrees of freedom sitting in
TðxÞ and pTðxÞ are reduced to a unique one. Hence,

ðTð0Þ; pð0Þ
T Þ freely parametrize �ð0Þ

T , where

TðxÞ ¼ Tð0Þ; pTðxÞ ¼ pð0Þ
T : (21)

The subspace �ð0Þ can be intersected with the constraint
surface

�C � � (22)

consisting of solutions to the constraints (15). Since every-
thing is spatially homogeneous, the vector constraint
CaðxÞ ¼ 0 is automatically satisfied for every point of

�ð0Þ. In fact, only the homogeneous part of the scalar
constraint survives (below, we denote the restriction of

the constraint C to �ð0Þ by Cð0Þ),

Cð0ÞðNÞ ¼
Z

d3xNðxÞCð0ÞðxÞ

¼ e�3�

�
1

2
ðpð0Þ

T Þ2 þ e6�VTðTð0ÞÞ � �

12
	2

�

�

�
Z

d3xNðxÞ: (23)

Therefore, at the intersection with the constraint surface

�C, the points of �
ð0Þ additionally satisfy a constraint,

1

2
ðpð0Þ

T Þ2 þ e6�VTðTð0ÞÞ � �

12
	2

� ¼ 0: (24)

These points correspond to an FRW spacetime,

gð0Þ��dx�dx� ¼ �dt2 þ e2�ðtÞ�abdx
adxb; (25)

satisfying Einstein’s equation with the energy-momentum

tensor given by the clock field T ¼ Tð0ÞðtÞ [which satisfies
the Klein-Gordon equation in a spacetime of the form (25)].

The dependence of �, 	�, T
ð0Þ, and pð0Þ

T on the variable t
[under the assumption NðtÞ ¼ 1, and recalling that in the
chosen coordinates

R
� d3x ¼ 1] is given by Hamilton’s

equations,

_� ¼ ��

6
e�3�	�;

_	� ¼ 3

2
e�3�ðpð0Þ

T Þ2 � �

4
e�3�	2

� � 3e3�VT;

_Tð0Þ ¼ e�3�pð0Þ
T ; _pð0Þ

T ¼ �e3�
@VT

@T
:

(26)

A solution of this system of equations that also satisfies
the constraint (24) yields the (dynamical) background

FRW metric gð0Þ�� on which usual perturbation theory is
developed.

As we are going to see that in our approach to the full
theory we do not intersect the homogeneous isotropic

sector �ð0Þ with the constraint surface �C, nor do we fix
the background dynamics to be of the form (26). Instead,

all of the homogeneous isotropic sector �ð0Þ will be
coupled to the perturbations and together they will
obey the dynamics of the full theory. Not surprisingly,
at linear order in the perturbations, the background
dynamics does reduce to Eq. (26), so indeed our homo-

geneous part of the metric gð0Þ�� is of the FRW type in that
approximation. Nevertheless, it is important to notice the
following.
(i) In our framework—designed for canonical

quantization—the degrees of freedom �, 	�, T
ð0Þ,

and pð0Þ
T will be treated on the same footing as the

remaining degrees of freedom.
(ii) Equations (24) and (26) are true only up to the

linear order: if one considers higher orders, the
backreaction is present, and our homogeneous iso-
tropic part will no longer be a solution to Eqs. (24)
and (26).

IV. COORDINATES ON THE FULL PHASE SPACE

Now, we go back to the full phase space, and define
on it some clever coordinate system, adapted to the
background-perturbation split (which will be performed
in the next section). All formulas appearing in the present
section are exact and valid for every point � 2 � of the full
phase space.

A. Extension of the background coordinates
to the full phase space �

The functions parametrizing the homogeneous

isotropic subspace �ð0Þ can be extended to the full
phase space. We do it in the following way. Given
ðqab; 	ab; T; pT;�; p�Þ 2 �, we define

� ¼ 1

2
ln

�
1

3
�ab

Z
�
d3xqab

�
;

	� ¼ 2e2��ab

Z
�
d3x	ab;

Tð0Þ ¼
Z
�
d3xT; pð0Þ

T ¼
Z
�
d3xpT:

(27)

In this way, �, 	�, T
ð0Þ, and pð0Þ

T become functions defined
on the phase space � of the full theory. Notice that each of
them is defined globally on �.5 We call them background
coordinates (or background variables) on �.6 Restricted to

the subspace �ð0Þ, they coincide with the coordinates in-
troduced in the previous section and are denoted in the
same way.

5Indeed, �abqabðxÞ> 0 ensures that even � is defined globally.
6This terminology comes simply from the fact that, in the next

section, we will be Taylor expanding certain phase-space func-
tions (namely, the constraints) around a neighborhood of points
ð�;	�; T

ð0Þ; 0; . . . ; 0Þ 2 �. As already explained, no dynamical
property is taken into account here.
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B. Perturbation coordinates on �

Next, for every x 2 �, on the full phase space � we
define the functions �qabðxÞ, �	abðxÞ, �TðxÞ, �pTðxÞ,
��ðxÞ, �	�ðxÞ which—together with the background

coordinates—form a coordinate system on �,

�qabðxÞ ¼ qabðxÞ � e2��ab;

�	abðxÞ ¼ 	abðxÞ � 	�

6
e�2��ab;

�TðxÞ ¼ TðxÞ � Tð0Þ; �pTðxÞ ¼ pTðxÞ � pð0Þ
T ;

��ðxÞ ¼ �ðxÞ; �	�ðxÞ ¼ 	�ðxÞ: (28)

Let us call them perturbation coordinates. They satisfy the
following identities:Z

d3x�ab�qabðxÞ ¼
Z

d3x�ab�	
abðxÞ ¼ 0;

Z
d3x�TðxÞ ¼

Z
d3x�pTðxÞ ¼ 0:

(29)

Such relations constrain the perturbation coordinates.
Using the background coordinates and the perturbation

coordinates,we are simply parametrizing points in� in terms

of their suitably defined components in�ð0Þ � � and the rest.
It is good to keep the phase-space picture inmind, since later

it will be essential thatwe do not forget about the background
sector (as is usually done in standard cosmological perturba-
tion theory by demoting its degrees of freedom to fixed
parameters instead of dynamical variables). Indeed, while
for the classical theory there is no difference, to properly
prepare the setup for quantization (of the full system: pertur-
bations and background) this is the correct way to go.

C. Fourier-mode decomposition

The coordinates ðxaÞ ¼ ðx1; x2; x3Þ fixed on � can also
be used to introduce a mode decomposition (or real
Fourier transform) of fields. First, let us define the usual
Fourier transform [with respect to coordinates ðxaÞ for �]
of a field fðxÞ by

~fðkÞ ¼
Z

d3xe�ik�xfðxÞ: (30)

We think of k as a spatial vector (i.e., tangent to �),
which labels the mode of f. It takes values in the lattice
L ¼ ð2	ZÞ3.
For a real-valued f (suc as our fields) it is ~fð�kÞ ¼ ~fðkÞ.

Thus, to isolate the truly independent modes we work with
the real Fourier transform. We split the lattice L into
‘‘positive,’’ ‘‘negative,’’ and ‘‘zero’’ vectors,

Lþ ¼ fk 2 L: ðk1 > 0Þ _ ðk1 ¼ 0 ^ k2 > 0Þ _ ðk1 ¼ k2 ¼ 0 ^ k3 > 0Þg;
L� ¼ fk 2 L: ðk1 < 0Þ _ ðk1 ¼ 0 ^ k2 < 0Þ _ ðk1 ¼ k2 ¼ 0 ^ k3 < 0Þg;
L0 ¼ f0g:

(31)

Clearly, we have L ¼ Lþ [L� [L0. Then, we define
the real Fourier transform of fðxÞ as

�fðkÞ ¼

8>>><
>>>:
ð~fðkÞ þ ~fð�kÞÞ= ffiffiffi

2
p

; if k 2 Lþ;

ð~fðkÞ � ~fð�kÞÞ=i ffiffiffi
2

p
; if k 2 L�;

~fð0Þ; if k ¼ 0:

(32)

More explicitly, we have

�fðkÞ¼

8>>><
>>>:

1ffiffi
2

p R
d3xðeik�xþe�ik�xÞfðxÞ; if k2Lþ;

iffiffi
2

p R
d3xðeik�x�e�ik�xÞfðxÞ; if k2L�;R

d3xfðxÞ; if k¼0:

(33)

Knowing �fðkÞ, we can easily reconstruct the field: from the
Fourier antitransform, we write

fðxÞ ¼ ~fð0Þ þ X
k2Lþ

eik�x ~fðkÞ þ X
k2L�

eik�x ~fðkÞ

¼ ~fð0Þ þ X
k2Lþ

½eik�x ~fðkÞ þ e�ik�x ~fð�kÞ�; (34)

where we have used the fact that k 2 L� is equivalent to
�k 2 Lþ and then replaced the dummy index �k with k.
Inverting the definition (32) of �fðkÞ, one has

ffiffiffi
2

p
�fðkÞ ¼ ~fðkÞ þ ~fð�kÞ;

i
ffiffiffi
2

p
�fð�kÞ ¼ ~fðkÞ � ~fð�kÞ; for k 2 Lþ;

(35)

and thus, by adding and subtracting these two, one finds
respectively

~fðkÞ ¼ 1ffiffiffi
2

p ð �fðkÞ þ i �fð�kÞÞ;

~fð�kÞ ¼ 1ffiffiffi
2

p ð �fðkÞ � i �fð�kÞÞ; for k 2 Lþ:

(36)

Replacing these in Eq. (34), we finally obtain the inverse
transform,

fðxÞ ¼ �fð0Þ þ X
k2Lþ

�
�fðkÞ e

ik�x þ e�ik�xffiffiffi
2

p

þ i �fð�kÞ e
ik�x � e�ik�xffiffiffi

2
p

�
: (37)

Specifically, for our fundamental fields the mode
decomposition is the following:7

7Since we are using the Fourier transform with respect to the
fiducial metric, �ab, the wave vector ka is not the physical
momentum. To get the physical momentum, one needs to multi-
ply by the inverse of the scale factor.
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qabðxÞ ¼ e2��ab þ � �qabð0Þ þ
X

k2Lþ

�
� �qabðkÞ e

ik�x þ e�ik�xffiffiffi
2

p þ i� �qabð�kÞ e
ik�x � e�ik�xffiffiffi

2
p

�
;

	abðxÞ ¼ 	�e
�2�

6
�ab þ � �	abð0Þ þ X

k2Lþ

�
� �	abðkÞ e

ik�x þ e�ik�xffiffiffi
2

p þ i� �	abð�kÞ e
ik�x � e�ik�xffiffiffi

2
p

�
;

TðxÞ ¼ �Tð0Þ þ X
k2Lþ

�
� �TðkÞ e

ik�x þ e�ik�xffiffiffi
2

p þ i� �Tð�kÞ e
ik�x � e�ik�xffiffiffi

2
p

�
;

pTðxÞ ¼ �pTð0Þ þ
X

k2Lþ

�
� �pTðkÞ e

ik�x þ e�ik�xffiffiffi
2

p þ i� �pTð�kÞ e
ik�x � e�ik�xffiffiffi

2
p

�
;

�ðxÞ ¼ � ��ð0Þ þ X
k2Lþ

�
� ��ðkÞ e

ik�x þ e�ik�xffiffiffi
2

p þ i� ��ð�kÞ e
ik�x � e�ik�xffiffiffi

2
p

�
;

	�ðxÞ ¼ � �	�ð0Þ þ
X

k2Lþ

�
� �	�ðkÞ e

ik�x þ e�ik�xffiffiffi
2

p þ i� �	�ð�kÞ e
ik�x � e�ik�xffiffiffi

2
p

�
:

(38)

The k ¼ 0mode corresponds to the homogeneous part. So,
we have

�Tð0Þ ¼ Tð0Þ; �pTð0Þ ¼ pð0Þ
T : (39)

For the metric perturbations, the k ¼ 0 case is nonzero
only as a traceless matrix,

�ab� �qabð0Þ ¼ 0; �ab� �	abð0Þ ¼ 0: (40)

As a confirmation of this, notice that the k ¼ 0 mode is by
definition �fð0Þ ¼ R

d3xfðxÞ. But since Eq. (29) holds, we
have directly obtained the constraints just mentioned.

D. The scalar, vector, and tensor modes of the metric

The treatment of the metric and its momentum requires
more work. Indeed, since � �qabðkÞ defines a symmetric
3� 3 matrix per each k, once we fix the mode k we can
expand � �qabðkÞ on a basis for the six-dimensional vector
space of symmetric 3� 3 matrices. A good basis in
the space of symmetric bicovariant tensors is fAm

abg
(m ¼ 1; . . . ; 6), defined by

A1
ab ¼ �ab; A2

ab ¼
kakb
k2

� 1

3
�ab;

A3
ab ¼

1ffiffiffi
2

p ðkavb þ kbvaÞ; A4
ab ¼ 1ffiffiffi

2
p ðkawb þ kbwaÞ;

A5
ab ¼

k2ffiffiffi
2

p ðvawb þ vbwaÞ; A6
ab ¼

k2ffiffiffi
2

p ðvavb � wawbÞ;

(41)

where v and w are spatial vectors forming with k an
orthogonal basis of the momentum space R3 (with respect
to the fiducial metric �ab, which is also used to raise and
lower indices for v, w, and k). The normalization of v and
k is chosen to be v2 ¼ w2 ¼ 1=k2.

The subspaces spanned by ðA1; A2Þ, ðA3; A4Þ, and
ðA5; A6Þ are said to comprise the scalar modes, the vector

modes, and the tensor modes, respectively. They have the
following properties:
(i) Tensor matrices satisfy kaAm

abðkÞ ¼ 0.
(ii) Vector matrices satisfy kakbAm

abðkÞ ¼ 0.
Also, notice that all matrices except A1

ab satisfy

�abAm
abðkÞ ¼ 0: (42)

We decompose � �qabðkÞ in this basis,

� �qabðkÞ ¼ qmðkÞAm
abðkÞ; (43)

where qmðkÞ denotes themth component, form ¼ 1; . . . ; 6.
Similarly, one can expand � �	abðkÞ on the dual basis

fAab
m g,

� �	abðkÞ ¼ pmðkÞAab
m ðkÞ: (44)

The dual basis is given by

Aab
1 ¼ 1

3
�ab; Aab

2 ¼ 3

2

�
kakb

k2
� 1

3
�ab

�
;

Aab
3 ¼ 1ffiffiffi

2
p ðkavb þ kbvaÞ; Aab

4 ¼ 1ffiffiffi
2

p ðkawb þ kbwaÞ;

Aab
5 ¼ k2ffiffiffi

2
p ðvawb þ vbwaÞ; Aab

6 ¼ k2ffiffiffi
2

p ðvavb �wawbÞ:

(45)

It is easy to check the duality, i.e., that TrðAmA
nÞ ¼

Aab
m An

ba ¼ Aab
m An

ab ¼ �n
m. Moreover, all these A matrices

are normalized with respect to the scalar product induced
by the fiducial meric �ab, namely

ðA; A0Þ ¼ �ac�bdAabA
0
cd; ðA; A0Þ ¼ �ac�bdA

abA0cd;

(46)

except for A1, A2, A1, A2, for which we have
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ðA1; A1Þ ¼ 3; ðA2; A2Þ ¼ 2=3;

ðA1; A1Þ ¼ 1=3; ðA2; A2Þ ¼ 3=2:
(47)

These scalar matrices are left non-normalized to keep the
agreement with the formulas in Ref. [14]. Note however
that in our case the matrices A do not involve any dynami-
cal variable (in particular, they do not depend on �), so no
nontrivial Poisson algebra is hidden in the expansions (43)
and (44): everything is contained in our new variables
qmðkÞ and pmðkÞ. Finally, note that it is always possible
to choose v and w in such a way that A are symmetric
under k ! �k: we do this, so in the following we will have

Am
abðkÞ ¼ Am

abð�kÞ; Aab
m ðkÞ ¼ Aab

m ð�kÞ: (48)

E. Summary of the section: resulting coordinates on �

Let us summarize. We have introduced on the full phase
space � the following system of coordinates.

(i) The background coordinates: four numbers

ð�;	�; T
ð0Þ; pð0Þ

T Þ.
(ii) The perturbation coordinates (the homogeneous

part, that is, for k ¼ 0): 12 numbers

½� �qabð0Þ; � �	abð0Þ; � ��ð0Þ; � �	�ð0Þ�.
(iii) The perturbation coordinates (the inhomogeneous

part, that is, for k 2 L� f0g): 16 numbers per each

k ½qmðkÞ; pmðkÞ; � �TðkÞ; � �pTðkÞ; � ��ðkÞ; � �	�ðkÞ�.
Again, we remark that this terminology relates to the

next section (and the remainder of the paper), but up to now
the ‘‘perturbation components’’ are defined for every point
in the phase space �, and are finite.

The fundamental Poisson algebra of the original ADM
variables straightforwardly induces the following Poisson
algebra on the new ones:

f�;	�g ¼ 1; fTð0Þ; pð0Þ
T g ¼ 1;

f� �qabð0Þ; � �	cdð0Þg ¼ �c
ða�

d
bÞ �

1

3
�cd�ab;

f� ��ð0Þ; � �	�ð0Þg ¼ 1; fqmðkÞ; pnðk0Þg ¼ �n
m�k;k0 ;

f� �TðkÞ; � �pTðk0Þg ¼ �k;k0 ; f� ��ðkÞ; � �	�ðk0Þg ¼ �k;k0 ;

(49)

for k, k0 � 0, and the remaining Poisson brackets vanish.
This is a good point to compare our approach with the

standard one. In the standard perturbation theory one

would fix a specific background initial data ~�ð0Þ admitting
a symmetry group isomorphic to the symmetry group of
the flat 3-torus. What we did, instead, is fixed the 3-torus
and the symmetry group (by choosing six vector fields)
with no reference to any specific point in the phase space.
Next, we used any given point � (in general with no

symmetry vector fields) to define new initial data �ð0Þ via
the integrals in Eq. (27). The new data is symmetric
(homogeneous and isotropic). Having such a homogeneous

isotropic part �ð0Þ, we defined the remaining part ��. This
decomposition is unique for each point � of the phase
space, given the symmetry group. Now, contrary to stan-
dard cosmological perturbation theory, we are going to
write an expansion of, say, the energy density 
 as


ð�Þ ¼ 
ð0Þð�ð0ÞÞ þ 
ð1Þð�ð0Þ; ��Þ þ 
ð2Þð�ð0Þ; ��Þ þ � � � ;
(50)

where 
ð0Þ is not only the energy density of a background,
but is simply the part of the energy density 
ð�Þ, which is a
function of only the homogeneous isotropic part. Similarly,


ð1Þ is the part linear in ��, 
ð2Þ is the part quadratic in ��,
etc.8 Our expansion is unique given the background sym-
metry group, similar to how the standard cosmological
perturbation expansion is unique given the symmetric
background spacetime.

V. THE CONSTRAINTS UP TO THE FIRST ORDER

A. The expansion

We now turn to the constraints of the theory. At this
point, it is convenient to expand them for the ‘‘small’’
perturbation variables (28). That is, we are applying the
Taylor expansion formally given by

Fðfð0Þ þ �fÞ ¼ Fðfð0ÞÞ þ F0ðfð0ÞÞ�f
þ 1

2
F00ðfð0ÞÞ�f2 þOð�f3Þ: (51)

In our case, f stands for the fields, fð0Þ for the background
variables, and �f for the perturbation variables. The de-

composition f ¼ fð0Þ þ �f reads

qabðxÞ ¼ e2��ab þ �qabðxÞ;
	abðxÞ ¼ 	�

6
e�2��ab þ �	abðxÞ;

TðxÞ ¼ Tð0Þ þ �TðxÞ; pTðxÞ ¼ pð0Þ
T þ �pTðxÞ;

�ðxÞ ¼ ��ðxÞ; 	�ðxÞ ¼ �	�ðxÞ:

(52)

In light of the decomposition (52), we are to expand
accordingly the scalar and vector constraints,

CðxÞ ¼ Cð0ÞðxÞ þ Cð1ÞðxÞ þ Cð2ÞðxÞ þOð�f3Þ;
CaðxÞ ¼ Cð0Þ

a ðxÞ þ Cð1Þ
a ðxÞ þ Cð2Þ

a ðxÞ þOð�f3Þ;
(53)

whereCð0Þ (andCð0Þ
a ) collects all the terms which are zeroth

order in the perturbation variables �f (i.e., the first term in

the Taylor expansion),Cð1Þ (andCð1Þ
a ) collects the first-order

terms (the second term in the Taylor expansion), and Cð2Þ

(and Cð2Þ
a ) collects the second-order terms (the third term in

the Taylor expansion). The idea is thus that we retain the full
constraints and deal with their exact solutions, but we write

8To see this explicitly, we refer the reader to Sec. V, where we
will be expanding the constraints in this way.
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such solutions explicitly only up to the first order in the
perturbation variables. More precisely, we have that the
first-order expansion of the solutions satisfies

Cð0ÞðxÞ þ Cð1ÞðxÞ ¼ Oð�f2Þ;
Cð0Þ
a ðxÞ þ Cð1Þ

a ðxÞ ¼ Oð�f2Þ:
(54)

Therefore, in this linear approximation we will solve

Cð0ÞðxÞ þ Cð1ÞðxÞ ¼ 0; Cð0Þ
a ðxÞ þ Cð1Þ

a ðxÞ ¼ 0

(55)

and ignoreCðnÞ andCðnÞ
a for n ¼ 2; 3; . . . . On the other hand,

we will retain Cð2Þ to describe the dynamics at first order.
Now, using Eq. (33), we write the real Fourier trans-

forms of the constraints,

�Cð0Þ ¼ Cð0Þ Z d3xþ
Z

d3xCð1ÞðxÞ þ
Z

d3xCð2ÞðxÞ þOð�f3Þ;

�CðkÞ ¼ 1ffiffiffi
2

p
Z

d3xðeik�x þ e�ik�xÞ½Cð0Þ þ Cð1ÞðxÞ þ Cð2ÞðxÞ� þOð�f3Þ; if k 2 Lþ;

�CðkÞ ¼ iffiffiffi
2

p
Z

d3xðeik�x � e�ik�xÞ½Cð0Þ þ Cð1ÞðxÞ þ Cð2ÞðxÞ� þOð�f3Þ; if k 2 L�;

�Cað0Þ ¼ Cð0Þ
a

Z
d3xþ

Z
d3xCð1Þ

a ðxÞ þ
Z

d3xCð2Þ
a ðxÞ þOð�f3Þ;

�CaðkÞ ¼ 1ffiffiffi
2

p
Z

d3xðeik�x þ e�ik�xÞ½Cð0Þ
a þ Cð1Þ

a ðxÞ þ Cð2Þ
a ðxÞ� þOð�f3Þ; if k 2 Lþ;

�CaðkÞ ¼ iffiffiffi
2

p
Z

d3xðeik�x � e�ik�xÞ½Cð0Þ
a þ Cð1Þ

a ðxÞ þ Cð2Þ
a ðxÞ� þOð�f3Þ; if k 2 L�:

(56)

These contain many terms, but the following remarks will help us to simplify them.

(i) As already pointed out above, Cð0Þ
a vanishes identically.

(ii) We already said that we disregard the second-order terms except for the dynamics. Since as far asH is concerned we
are free to choose the lapse and the shift, we will select NðxÞ ¼ 1 and NaðxÞ ¼ 0 in Eq. (14), thereby obtaining

simply H ¼ R
d3xCðxÞ ¼ �Cð0Þ. It follows that we must retain the second order only in �Cð0Þ.

(iii) The terms
R
d3xCð1ÞðxÞ and

R
d3xCð1Þ

a ðxÞ can be seen to vanish because of Eq. (29). Also, one sees that

Cð0Þ R d3xðeik�x � e�ik�xÞ � Cð0Þ�k;0, so it vanishes for all k � 0.
Applying these remarks, we see the following.

(i) �Cað0Þ ¼ Oð�f2Þ is identically satisfied.

(ii) Using Eq. (23), the constraint �Cð0Þ reads

�Cð0Þ ¼ e�3�

�
1

2
ðpð0Þ

T Þ2 þ e6�VTðTð0ÞÞ � �

12
	2

�

�
þOð�f2Þ; (57)

which will later be used to solve for pð0Þ
T as a function of the other background variables.

(iii) We are left with four constraints per each k � 0,

�CðkÞ ¼ 1ffiffiffi
2

p
Z

d3xðeik�x þ e�ik�xÞCð1ÞðxÞ þOð�f2Þ; if k 2 Lþ;

�CðkÞ ¼ iffiffiffi
2

p
Z

d3xðeik�x � e�ik�xÞCð1ÞðxÞ þOð�f2Þ; if k 2 L�;

�CaðkÞ ¼ 1ffiffiffi
2

p
Z

d3xðeik�x þ e�ik�xÞCð1Þ
a ðxÞ þOð�f2Þ; if k 2 Lþ;

�CaðkÞ ¼ iffiffiffi
2

p
Z

d3xðeik�x � e�ik�xÞCð1Þ
a ðxÞ þOð�f2Þ; if k 2 L�:

(58)
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B. Explicit form

In order to find their explicit form, we need to first compute the linearized constraints as functions of a space point x,

Cð1ÞðxÞ, and Cð1Þ
a ðxÞ. Plugging the decompositions (52) into Eq. (10) and keeping only the terms linear in the perturbation

variables �f, we find9

Cð1Þ ¼ e�3�

�
e6�

2�
ðqabð0Þqcdð0Þ � qacð0Þq

bd
ð0ÞÞ@a@b�qcd �

1

4

�
�	2

�

18
þ ðpð0Þ

T Þ2
�
qabð0Þ�qab �

�	�

3
qð0Þab�	

ab þ pð0Þ
T �pT

þ e6�

2
VTðTð0ÞÞqabð0Þ�qab þ e6�V 0

TðTð0ÞÞ�T
�
;

Cð1Þ
a ¼ 	bc

ð0Þ@a�qbc � 2qð0Þab@c�	
bc � 2	bc

ð0Þ@c�qab þ pð0Þ
T @a�T:

(59)

In obtaining these linearized constraints, we used some nontrivial facts.
(i) The determinant q gets contributions only from the diagonal terms (since at zeroth order the nondiagonal terms are

zero), so one has

q ¼ qð0Þ þ �q11q
ð0Þ
22q

ð0Þ
33 þ qð0Þ11�q22q

ð0Þ
33 þ qð0Þ11q

ð0Þ
22�q33 ¼ e6� þ e4��ab�qab: (60)

(ii) For the spatial Ricci scalar Rð3Þ we used the relation

Rð3Þ ¼ qabð@c�a
c
b � @b�a

c
c þ �a

d
b�c

c
d � �a

d
c�b

c
dÞ: (61)

However, the last two terms are second order in �f because they involve products of two first-order objects (namely, the
spatial derivatives of qab sitting in Christoffel symbols, which are first order because the zeroth-order metric is
homogeneous). So one is left with

Rð3Þ ¼ ðqacð0Þqbdð0Þ � qabð0Þq
cd
ð0ÞÞ@a@b�qcd þOð�f2Þ: (62)

(iii) Since 	ab is a tensor density of weight 1, its covariant derivative is

ra	
bc ¼ @a	

bc þ �a
b
d	

dc þ �a
c
d	

bd � �d
d
a	

bc: (63)

Notice that in rb	
bc, which appears in the vector constraint, the last term cancels with the second one.

At this point, we can compute the real Fourier transforms (58). To see how it works, consider the first one, �CðkÞ
for k 2 Lþ. It is

EðkÞ :¼ �Cð1ÞðkÞ ¼ 1ffiffiffi
2

p
Z

d3xðeik�x þ e�ik�xÞCð1ÞðxÞ

¼ e�3�ffiffiffi
2

p
Z

d3xðeik�x þ e�ik�xÞ
�
e6�

2�
ðqabð0Þqcdð0Þ � qacð0Þq

bd
ð0ÞÞ@a@b�qcd �

1

4

�
�	2

�

18
þ ðpð0Þ

T Þ2
�
qabð0Þ�qab

� �	�

3
qð0Þab�	

ab þ pð0Þ
T �pT þ e6�

2
VTðTð0ÞÞqabð0Þ�qab þ e6�V 0

TðTð0ÞÞ�T
�

¼ e�3�ffiffiffi
2

p
Z

d3xðeik�x þ e�ik�xÞ
�
� e6�

2�
ðqabð0Þqcdð0Þ � qacð0Þq

bd
ð0ÞÞkakb�qcd �

1

4

�
�	2

�

18
þ ðpð0Þ

T Þ2
�
qabð0Þ�qab �

�	�

3
qð0Þab�	

ab

þ pð0Þ
T �pT þ e6�

2
VTðTð0ÞÞqabð0Þ�qab þ e6�V 0

TðTð0ÞÞ�T
�

¼ e�3�

�
� e6�

2�
ðqabð0Þqcdð0Þ � qacð0Þq

bd
ð0ÞÞkakb� �qcd � 1

4

�
�	2

�

18
þ ðpð0Þ

T Þ2
�
qabð0Þ� �qab � �	�

3
qð0Þab� �	ab þ pð0Þ

T � �pT

þ e6�

2
VTðTð0ÞÞqabð0Þ� �qab þ e6�V0

TðTð0ÞÞ� �T

�
; (64)

9We dropped all the terms coming from the matter field �, since they always involve a zeroth-order factor, i.e., either �ð0Þ or 	ð0Þ
� ,

which are zero by definition. In this sense, the role of � as a ‘‘test field’’ is mathematically justified.

ANDREA DAPOR, JERZY LEWANDOWSKI, AND JACEK PUCHTA PHYSICAL REVIEW D 87, 104038 (2013)

104038-10



where in the last step we used Eq. (33) with respect to the
perturbation variables. We can rewrite this as

EðkÞ ¼ � e��

2�
ðk2�ab � kakbÞAm

abðkÞqmðkÞ

� e�5�

4

�
�	2

�

18
þ ðpð0Þ

T Þ2 � 2e6�VTðTð0ÞÞ
�

� �abAm
abðkÞqmðkÞ �

�	�e
��

3
�abA

ab
m ðkÞpmðkÞ

þ e�3�pð0Þ
T � �pTðkÞ þ e3�V0

TðTð0ÞÞ� �TðkÞ; (65)

having replaced the explicit expression for the background
variables, and having expanded the perturbation variables
of the metric (and conjugate momentum) in the fAm

abg basis.
Repeating the computation for �CðkÞ in the k 2 L� case,
we obtain the same object, which is then regarded as the
scalar constraint satisfied by each mode k 2 L� f0g,

EðkÞ ¼ � 3e�5�

4

�
�	2

�

18
þ ðpð0Þ

T Þ2 � 2e6�VTðTð0ÞÞ
�
q1ðkÞ

� e��

�
k2q1ðkÞ þ e��

3�
k2q2ðkÞ � �	�e

��

3
p1ðkÞ

þ e�3�pð0Þ
T � �pTðkÞ þ e3�V0

TðTð0ÞÞ� �TðkÞ; (66)

where we used Eqs. (41) and (45) to write EðkÞ as a
function of the dynamical variables only.

One obtains �Cð1Þ
a ðkÞ in a similar way. Moreover, since

�CaðkÞ really encodes three constraints, we need to separate
them. To do this, we project �CaðkÞ along the three orthogo-
nal vectors k, v, and w at our disposal,

MðkÞ¼ ka �CaðkÞ; VðkÞ¼va �CaðkÞ; WðkÞ¼wa �CaðkÞ:
(67)

Explicitely, these three constraints are satisfied by each
mode k 2 L� f0g and are given by

MðkÞ ¼ 	�e
�2�

6
q1ðkÞ � 2	�e

�2�

9
q2ðkÞ � 2e2�

3
p1ðkÞ

� 2e2�p2ðkÞ þ pð0Þ
T � �TðkÞ;

VðkÞ ¼ 	�e
�2�

3
q3ðkÞ þ 2e2�p3ðkÞ;

WðkÞ ¼ 	�e
�2�

3
q4ðkÞ þ 2e2�p4ðkÞ:

(68)

Notice that, apart from the background variables, the
linearized constraints EðkÞ and MðkÞ only involve the

scalar modes [namely q1ðkÞ, q2ðkÞ, p1ðkÞ, p2ðkÞ, � �TðkÞ,
and � �pTðkÞ], whereas VðkÞ and WðkÞ only involve vector
modes [namely q3ðkÞ, q4ðkÞ, p3ðkÞ and p4ðkÞ]. It follows
that the linearized constraints E and M only constrain
the scalar sector, while V and W constrain the vector
sector. Interestingly, the tensor sector is left completely
unconstrained.

C. Preliminary analysis of independent
degrees of freedom

Recalling that each constraint reduces the number of
degrees of freedom by two (one for the reduction onto the
constraint surface, and one for fixing a gauge—or equiv-
alently for identifying each one-dimensional orbit with a
single point), we can then proceed with the counting of the
degrees of freedom.

(i) For k ¼ 0, up to the first order the constraints �Cð0Þ
and �Cað0Þ constrain only the background coordinates
�, 	�, T

ð0Þ, and pð0Þ
T by Eq. (57). This constraint can

be solved for pð0Þ
T and used to gauge fix Tð0Þ. On the

other hand, the traceless variables � �qabð0Þ, � �	abð0Þ
and the variables ��ð0Þ, �	�ð0Þ are unconstrained.

(ii) For every k � 0 and given background coordinates

�, 	�, T
ð0Þ, and pð0Þ

T , the scalar sector of the phase
space is coordinatized by ðq1ðkÞ; p1ðkÞ; q2ðkÞ;
p2ðkÞ; � �TðkÞ; � �pTðkÞ; � ��ðkÞ; � �	�ðkÞÞ, so it has

dimension eight. On it there are the two constraints
EðkÞ and MðkÞ, so the dimension is reduced by
2� 2 ¼ 4. We conclude that the corresponding
sector of the reduced phase space has dimension
8� 4 ¼ 4; in other words, there are four gauge-
invariant (i.e., physical) scalar degrees of freedom.

Two of them can be chosen to be ð� ��ðkÞ; � �	�ðkÞÞ.
The other two independent degrees of freedom can
be chosen to be particular functions of the remain-

ing variables ½q1ðkÞ; p1ðkÞ; q2ðkÞ; p2ðkÞ; � �TðkÞ;
� �pTðkÞ� (see below).

(iii) For every k � 0 and given �, 	�, the vector
sector of the phase space is coordinatized by
ðq3ðkÞ; p3ðkÞ; q4ðkÞ; p4ðkÞÞ, so it has dimension
four. Imposed on those variables there are two
constraints, VðkÞ and WðkÞ, so the dimension is
reduced by 2� 2 ¼ 4. We conclude that the re-
duced phase space has dimension 4� 4 ¼ 0; in
other words, vector modes are completely non-
physical, and can be gauged away.

(iv) For every k � 0 and given background coordinates

�, 	�, T
ð0Þ, and pð0Þ

T , the tensor sector of the phase
space is coordinatized by ðq5ðkÞ; p5ðkÞ; q6ðkÞ;
p6ðkÞÞ, so it has dimension four. Up to the first
order, there are no constraints imposed on those
variables, so there is no reduction in dimension: we
conclude that the reduced phase space has dimen-
sion four, i.e., there are four degrees of freedom.
Obviously, they are ðq5ðkÞ; p5ðkÞ; q6ðkÞ; p6ðkÞÞ
themselves. These (or rather, the two configuration
variables q5 and q

6) are the two polarizations of the
graviton.

For the reader familiar with the perturbative approach
to the canonical gravity often used in cosmology, it is
important to notice the difference of our approach. In the
standard approach, one often introduces functions of the
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perturbation coordinates which Poisson-commute with the
linearized constraints E, M, V, and W. In that approach
they are Dirac observables and play a fundamental role. In
our approach, the transformations generated by the second-
order terms of the Taylor expansion of the full constraints
also contribute to the gauge transformations. Moreover, for

us �Cð2Þð0Þ is also a generator of gauge transformations.
Therefore, Poisson commuting with E, M, V, and W is
not sufficient to be gauge invariant in the sense of the
current paper. The consequence is that, within the approach
presented in this work, gauge-invariant observables
(the Dirac observables) are not just simple combinations
of the perturbation coordinates on the phase space even up
to the first order. Having said this, in the following we may
use the terminology ‘‘gauge-invariant variables’’ for those
coordinates that commute withE,M, V, andW. One should
however bear in mind that they are not gauge invariant in
the full theory, and in fact we will be carrying out gauge
fixing in order for them to represent observable quantities.

VI. THE CONSTRAINTS UP TO THE FIRST
ORDER: SOLUTIONS AND GAUGE FIXING

A. Solution to the constraints

In this subsection, we solve the constraints up to the first
order. Every solution to the full constraint coincides with
one of our solutions up to the second (or higher) order in the
perturbation variables. Specifically, wewill show the general
solution to all the constraints, thus reducing to the constraint
surface �C � �. Next, we will choose a family of slices of
�C transverse to the orbits of the gauge group generated by
the constraints. We will finally find field variables freely
parametrizing the slices and use them to fix the gauge, thus
reducing to the physical phase space �phys.

To start with, the constraint (57) up to the first order
reads

1

2
ðpð0Þ

T Þ2 þ e6�VTðTð0ÞÞ � �

12
	2

� ¼ 0: (69)

We solve it with respect to pð0Þ
T , finding

pð0Þ
T ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

6
	2

� � 2e6�VTðTð0ÞÞ
r

: (70)

The gauge transformations generated by �Cð0Þ can be used

to arbitrarily fix the value of Tð0Þ,

Tð0Þ � � ¼ 0: (71)

The vector constraint equations

VðkÞ ¼ 0; WðkÞ ¼ 0; for all k2L�f0g; (72)

can be immediately solved for the momenta p3 and p4,

p3ðkÞ ¼ �	�e
�4�

6
q3ðkÞ; p4ðkÞ ¼ �	�e

�4�

6
q4ðkÞ:

(73)

The associated configuration variables, ðq3ðkÞ; q4ðkÞÞ, are
free. They can be used to parametrize the gauge orbits of
the constraints vaCaðkÞ and waCaðkÞ [which, at linear
order, are nothing but VðkÞ and WðkÞ] in the constraint
surface �C � �.
Let us now consider the scalar constraint equations,

EðkÞ ¼ 0; MðkÞ ¼ 0; for all k 2 L� f0g: (74)

We proceed as above: we simply solve them for the mo-
menta p1 and p2. The result is the following:

p1ðkÞ ¼ 3e4�

�	�

V 0
T� �TðkÞ þ 3pð0Þ

T e�2�

�	�

� �pTðkÞ

�
�
	�e

�4�

8
þ 3k2

�2	�

þ 9ðpð0Þ
T Þ2e�4�

4�	�

� 9e2�

2�	�

VT

�

� q1ðkÞ þ k2

�2	�

q2ðkÞ;

p2ðkÞ ¼
�
pð0Þ
T e�2�

2
� e4�

�	�

V0
T

�
� �TðkÞ � pð0Þ

T e�2�

�	�

� �pTðkÞ

þ
�
	�e

�4�

8
þ k2

�2	�

� 3ðpð0Þ
T Þ2e�4�

4�	�

� 3e2�

2�	�

VT

�

� q1ðkÞ �
�

k2

3�2	�

þ	�e
�4�

9

�
q2ðkÞ: (75)

In this way, ðq1ðkÞ; q2ðkÞ; � �TðkÞ; � �pTðkÞÞ can be used as
free coordinates on the constraint surface �C. Two of these
free variables should be chosen to parametrize the gauge

orbits of �CðkÞ and ka �CaðkÞ. The remaining two functions
will represent the ‘‘physical’’ degrees of freedom.
Finally, as for the tensor sector, we notice that it is

completely unconstrained. Therefore, all variables
½q5ðkÞ; p5ðkÞ; q6ðkÞ; p6ðkÞ� are free: they are the ‘‘physical’’
degrees of freedom associated with the graviton. The re-
maining variables [namely, the traceless matrices � �qabð0Þ
and � �	abð0Þ, as well as all the modes ��ðkÞ and �	�ðkÞ]
are also free.
Of course all the ‘‘free’’ functions listed above are still

subject to the gauge transformations, and hence they rep-
resent the physical degrees of freedom in a gauge-
dependent way.

B. Gauge fixing

At this point, we are following the so-called reduced
phase space formalism, in which one first solves the con-
straints, and then identifies each gauge orbit with a point in
the physical phase space. This procedure is generally
regarded as ideal, but can be implemented explicitly only
in a few cases. Indeed, it is usually a hard task to identify a
set of gauge-invariant functions to coordinatize the physi-
cal phase space, and moreover they usually have a very
complicated Poisson algebra, which makes canonical
quantization practically impossible.
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A way out of this problem is the so-called gauge-fixing
procedure. One chooses a set of functions to play the role
of gauge parameters, i.e., parametrizing the gauge orbits
of the constraints. Points along the same orbit are physi-
cally equivalent, so we can simply choose one to repre-
sent that specific orbit (physical state of the system). This
amounts to fixing the value of the gauge parameters,
choosing a ‘‘slice’’ in the constraint surface which mirrors
the physical phase space. This slice is endowed with a
symplectic form by simply pulling back the kinematical
symplectic form along the embedding, and hence it is a
good phase space. It is coordinatized by the remaining
variables, which thus represent the physical degrees of
freedom of the system. More precisely, the interpretation
of these surviving variables is the following. We imagine
that we are dealing with Dirac observables (i.e., functions
that commute with all the constraints), denoted O�;G.

Now, �I is the value of O�;G when restricting to the

chosen slice (here collectively denoted by the gauge-
fixing conditions G� ¼ 0). There is a well-developed
formalism [20,22–29] to treat these objects, and we will
be using part of it when studying the dynamics. For now,
it is enough to know that gauge fixing is a ‘‘legal’’
procedure to reduce to the physical phase space.

In our case, we have to deal with four constraints
�CðkÞ; �CaðkÞ for each k � 0 and with �Cð0Þ. Good gauge
parameters for such constraints can be chosen to be

ðq1ðkÞ; q2ðkÞ; q3ðkÞ; q4ðkÞ; Tð0ÞÞ. The gauge-fixing condi-
tions that we choose are the following:

q1ðkÞ ¼ q2ðkÞ ¼ q3ðkÞ ¼ q4ðkÞ ¼ 0;

for all k 2 L� f0g; (76)

Tð0Þ � � ¼ 0; with � 2 R: (77)

Note that the value � of the gauge parameter Tð0Þ is left
free: it will be used to label the Dirac observables and its
changes will be used to describe their dynamics.

VII. THE PHYSICAL PHASE SPACE,
OBSERVABLES, AND THEIR DYNAMICS

A. Physical phase space and observables

Mathematically, the physical phase space �phys for the

theory we are considering in this paper is the space of the
orbits in the constraint surface �C of the gauge-
transformation group generated by the scalar constraints
CðxÞ and the vector constraints CaðxÞ. The space �phys can

be embedded in �C as a slice which intersects each orbit
exactly once. This is exactly what we did up to the first
order in the previous section by solving the constraints and
fixing a gauge. We denote the image of the embedding by
��
phys, that is

�phys ! ��
phys � �C � �; (78)

where � is the parameter used in the gauge conditions. The
surface ��

phys can be parametrized by the following varia-

bles, originally defined in all of the kinematical phase
space �:

ð�IÞ ¼ ð�;	�; � �qabð0Þ; � �	abð0Þ; � ��ð0Þ; � �	�ð0Þ;
� �TðkÞ; � �pTðkÞ; q5ðkÞ; p5ðkÞ; q6ðkÞ; p6ðkÞ;
� ��ðkÞ; � �	�ðkÞÞ; for all k 2 L� f0g: (79)

The embedding (78) determines the surface ��
phys in � up to

the first order as follows:

q1ðkÞ ¼ q2ðkÞ ¼ q3ðkÞ ¼ q4ðkÞ ¼ p3ðkÞ ¼ p4ðkÞ ¼ 0;

p1ðkÞ ¼ 3e�2�

�	�

ðpð0Þ
T � �pTðkÞ þ e6�V 0

T� �TðkÞÞ;

p2ðkÞ ¼ �pð0Þ
T e�2�

�	�

� �pTðkÞ þ e�2�

�
pð0Þ
T

2
� e6�

�	�

V 0
T

�
� �TðkÞ;

Tð0Þ ¼ �;

pð0Þ
T ¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

6
	2

� � 2e6�VTðTð0ÞÞ
r

: (80)

The pullback of the coordinates (79) to �phys defines the

coordinates

ð��
I Þ ¼ ð��; 	�

�; � �qabð0Þ�; � �	abð0Þ�; � ��ð0Þ�; � �	�ð0Þ�;
� �TðkÞ�; � �pTðkÞ�; q5ðkÞ�; p5ðkÞ�; q6ðkÞ�; p6ðkÞ�;
� ��ðkÞ�; � �	�ðkÞ�Þ; for all k 2 L� f0g (81)

on �phys. Note that, as emphasized by our notation, each of

the functions ��
I depends on the fixed value of �. We will

come back to that dependence below, while defining the
dynamics.
What is independent of the embedding (78) is the sym-

plectic form �phys, i.e., the pullback to �phys of the sym-

plectic form in �. This is the physical symplectic form. To
explicitly find it, we simply pull back the kinematical
symplectic form,

�¼d�^d	�þdTð0Þ ^dpð0Þ
T þ1

2
d� �qabð0Þ^d� �	abð0Þ

þd� ��ð0Þ^d� �	�ð0Þþ
X

k2L�f0g

�
d� �TðkÞ^d� �pTðkÞ

þX6
m¼1

dqmðkÞ^dpmðkÞþd� ��ðkÞ^d� �	�ðkÞ
�
: (82)

Owing to the convenient choice of gauge-fixing conditions,

the pullbacks of dTð0Þ; dq1; . . . ; dq4 by Eq. (78) vanish
identically. Therefore the pullback of the symplectic
form reads simply
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�phys ¼ d�� ^ d	�
� þ 1

2
d� �qabð0Þ� ^ d� �	abð0Þ�

þ d� ��ð0Þ� ^ d� �	�ð0Þ�

þ X
k2L�f0g

�
d� �TðkÞ� ^ d� �pTðkÞ�

þ X6
m¼5

dqmðkÞ� ^ dpmðkÞ�

þ d� ��ðkÞ� ^ d� �	�ðkÞ�
�
: (83)

The Poisson algebra that �phys defines on �phys is easily

found,

f��; 	�
�gphys ¼ 1;

f� �qabð0Þ�; � �	cdð0Þ�gphys ¼ �c
ða�

d
bÞ �

1

3
�cd�ab;

f� ��ð0Þ�; � �	�ð0Þ�gphys ¼ 1;

fq5ðkÞ�; p5ðk0Þ�gphys ¼ �k;k0 ;

fq6ðkÞ�; p6ðk0Þ�gphys ¼ �k;k0 ;

f� �TðkÞ�; � �pTðk0Þ�gphys ¼ �k;k0 ;

f� ��ðkÞ�; � �	�ðk0Þ�gphys ¼ �k;k0 :

(84)

This is the canonical Poisson algebra, the simplest we
could hope to obtain—an encouraging fact, in light of the
future canonical quantization.

Thus, we conclude that the reduced (physical) phase
space �phys is coordinatized by the functions (81).

Each of the variables (81) defines a Dirac observable.
Conversely, every Dirac observable can be represented
by a function fð��

I Þ. The physical Poisson bracket between
two such observables can be calculated from Eq. (84). This
concludes the characterization of the kinematical structure
of the physical degrees of freedom of the theory.

B. Dynamics in �phys

The dynamics of the theory is encoded in the depen-
dence of the variables (81) parametrizing �phys on the

gauge parameter �. Since the Poisson algebra (84) is
canonical for every �, the dependence of the variables on
� is a flow of canonical transformations generated by some
�-dependent function h�phys defined on �phys, and such that

d

d�
��
I ¼ f��

I ; h
�
physgphys: (85)

We call this function a physical Hamiltonian [30,31].
Obviously, it does not have the form of the canonical
Hamiltonian

R
d3xNðxÞCðxÞ þ NaðxÞCaðxÞ, because the

canonical Hamiltonian vanishes identically on �C in which
�phys is embedded. On the other hand, hphys must follow

somehow from the canonical dynamics
R
d3xNðxÞCðxÞ þ

NaðxÞCaðxÞ. Therefore, to derive the physical Hamiltonian

we go back to the constraint surface �C in the kinematical
phase space �, and even to � itself (because �C is not
equipped with a symplectic form or with the Poisson
bracket).
Let us use the projection

�: �C ! �phys (86)

to pullback every function f defined on �phys to a function

on �C,

O f ¼ �	f; (87)

called a Dirac observable. It is constant on each orbit of the
gauge transformations, and extended arbitrarily to the ki-
nematical phase space �. This Dirac observableOf weakly

Poisson-commutes with the constraints, so in particular�
Of;

Z
d3xNðxÞCðxÞ þ NaðxÞCaðxÞ

����������C

¼ 0: (88)

Conversely, every Dirac observable defines a function f on
�phys. The kinematical Poisson algebra of the Dirac ob-

servables corresponding to the variables parametrizing the
physical phase space �phys is consistent with the physical

Poisson algebra in �phys, that is

fOf;Of0 gj�C
¼ Off;f0gphys j�C

: (89)

At this point, let us choose a trivial potential VT for the
theory (3),

VT ¼ 0: (90)

It follows that the theory is invariant with respect to the
translation

T � T þ �: (91)

Therefore, if O is a Dirac observable, so is the following
function O�:

O �ðT; . . .Þ :¼ OðT � �; . . .Þ; (92)

where ‘‘. . .’’ stands for the remaining variables, which are
the same on both sides of the equality. In particular, given
��
I and ��þ��

I , the corresponding Dirac observables O��
I

and O��þ��
I

are related as follows:

O ��þ��
I

ðT; . . .Þ ¼ O��
I
ðT ���; . . .Þ: (93)

It follows that

d

d�
O��

I
¼ � @

@Tð0Þ O��
I
: (94)

But the right-hand side can be calculated from Eq. (88),
where we still have freedom in choosing the lapse function
and the shift vector. To find the most convenient choice, let
us write
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CðxÞ ¼ 1

2
ffiffiffiffiffiffiffiffiffi
qðxÞp ðpTðxÞ2 � hðxÞ2Þ

¼ pTðxÞ þ hðxÞ
2
ffiffiffiffiffiffiffiffiffi
qðxÞp ðpTðxÞ � hðxÞÞ (95)

[we can always do so, since CðxÞ ¼ 0 and p2
T=2

ffiffiffi
q

p 
 0
imply that CðxÞ � p2

T=2
ffiffiffi
q

p � 0, and can it then be written

as the negative of a square]. The function hðxÞ2 can be
explicitly calculated from the scalar constraint, and it has
the form

h2 ¼ �4�

�
	ab	

ab � 1

2
ðqab	abÞ2

�
þ 1

�
qRð3Þ � 	2

�

� qqab@a�@b�� 2qV�ð�Þ � qqab@aT@bT: (96)

It is immediately seen that h2 (and hence its square root h)

does not involve Tð0Þ nor pð0Þ
T ,

@

@Tð0Þ hðxÞ ¼ 0;
@

@pð0Þ
T

hðxÞ ¼ 0: (97)

Now, a good choice for the lapse and shift is10

N ¼ 2
ffiffiffi
q

p
=ðpT þ hÞ; Na ¼ 0: (98)

In this way, the canonical Hamiltonian H present in
Eq. (88) reduces to

H ¼
Z

d3xðpTðxÞ � hðxÞÞ ¼ pð0Þ
T � ~h; (99)

where we have used the fact that
R
d3xpTðxÞ ¼ pð0Þ

T and

have defined

~h :¼
Z

d3xhðxÞ ¼ �	hphys: (100)

From all this, it follows that

0 ¼ fO��
I
; pð0Þ

T � ~hg ¼ @

@Tð0ÞO��
I
� fO��

I
; ~hg: (101)

Note that pð0Þ
T is a Dirac observable. But Eq. (99) implies

that ~h as well, and hence

~h ¼ Ohphys ; (102)

where hphys is a function defined on �phys by ~h. Finally, we

have

d

d�
O��

I
¼ �Of��

I ;hphysgphys : (103)

The purpose of the next subsection is to explicitly express
the physical Hamiltonian as a function of the free coordi-
nates ð��

I Þ on the physical phase space,

hphysð��
I Þ ¼ ~hð��

I ; qn ¼ 0; Tð0Þ ¼ �;

pn ¼ pnð��
I Þ; pð0Þ

T ¼ pð0Þ
T ð��

I ÞÞ;
(104)

where pnð��
I Þ; . . . (with n ¼ 1, 2, 3, 4) is given by dropping

the subscripts �, using Eq. (80), and restoring the subscripts
� again.

C. Explicit form of the physical Hamiltonian

The derivation in the previous section—a self-contained
construction that is a special case of the powerful theory of
relational observables [20,22–27]—is exact. However, to
explicitly express Eq. (104), we need to go back to the
expansion in the perturbation variables.
Let us consider the argument (96) of the square root.

Plugging the expansions (52) into it, we find

h2 ¼ �4�

�
ðe2��ac þ �qacÞðe2��bd þ �qbdÞ

�
	�

6
e�2��ab þ �	ab

��
	�

6
e�2��cd þ �	cd

�

� 1

2

�
ðe2��ab þ �qabÞ

�
	�

6
e�2��ab þ �	abÞ

�
2
�
þ 1

�
ð�ð0Þqþ �ð1Þqþ �ð2ÞqÞð�ð0ÞRð3Þ þ �ð1ÞRð3Þ þ �ð2ÞRð3ÞÞ

� �	2
� � ð�ð0Þqþ �ð1Þqþ �ð2ÞqÞ½ð�ð0Þqab þ �ð1Þqab þ �ð2ÞqabÞð@a�@b�þ @aT@bTÞ þ 2V�ð�Þ�: (105)

Here, we have denoted by �ðiÞq, �ðiÞRð3Þ, and �ðiÞqab the ith order of q, Rð3Þ, and qab, respectively. The expansions of such
phase-space functions can be found in the Appendix.

Expanding these products and keeping terms up to second order, one finally groups the various terms according to their
order. Formally, h2 is of the form

h2 ¼ Aþ B�þ C�0; (106)

where � and �0 are respectively linear and quadratic in the perturbation variables. Explicitly,

A ¼ �	2
�

6
; (107)

10Another choice for the lapse function would be N ¼ 2
ffiffiffi
q

p
=ðpT � hÞ. In this case, H ¼ pð0Þ

T þ ~h. But since ~h 
 0, from H ¼ 0 it
would follow that pð0Þ

T � 0. This is mathematically acceptable (it corresponds to a contracting FRW universe, but is not the physical
universe in which we live, which is expanding, and hence pð0Þ

T 
 0).
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B� ¼ �	2
�e

�2�

9
�ab�qab þ 2�	�e

2�

3
�ab�	

ab þ e2�

�
@a@b�qab � e2�

�
�ab@e@

e�qab; (108)

C�0 ¼ ��	2
�e

�4�

9

�
�ab�cd � 1

2
�ac�bd

�
�qac�qbd � 4�e4�

�
�ab�cd � 1

2
�ac�bd

�
�	ac�	bd � 2�	�

3
�qab�	

ab

þ 2�	�

3
�ab�cd�qab�	

cd þ 1

�
�ab�qab@

c@d�qcd � 1

�
�ab�qab�

cd@e@
e�qcd � 2

�
�ab�qbc@

c@d�qda

þ 1

�
�ac�bd�qab@e@

e�qcd þ 1

�
�qab�

cd@a@b�qcd þ 1

�
�cd@a�qab@

b�qcd � 1

4�
�ab�cd@e�qab@

e�qcd

� 1

2�
�ab@d�qac@

c�qbd � 1

�
�cd@a�qac@

b�qbd þ 3

4�
�ac�bd@e�qab@

e�qcd � �	2
� � e4��ab@a��@b��

� e6�V00
�ð0Þ��2 � e4��ab@a�T@b�T: (109)

Now, recall the Taylor expansion of a square root of two variables,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ B�þ C�0

p
¼ ffiffiffiffi

A
p þ B�

2
ffiffiffiffi
A

p þ 1

2
ffiffiffiffi
A

p
�
C�0 � ðB�Þ2

4A

�
: (110)

Thus, we can write hphys as

hphys ¼ hð0Þphys þ hð1Þphys þ hð2Þphys ¼
ffiffiffiffi
A

p þ 1

2
ffiffiffiffi
A

p
Z

d3xB�þ 1

2
ffiffiffiffi
A

p
Z

d3x

�
C�0 � ðB�Þ2

4A

�
: (111)

Let us consider the three orders separately.

The zeroth order, hð0Þphys, corresponds to the homogeneous Hamiltonian

hð0Þphys ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð	�

�Þ2
6

s
¼: Hhom; (112)

i.e., the Hamiltonian that generates the dynamics for the geometry in the case that no perturbations are considered (FRW
spacetime).

As for the first order, notice that it involves an integral over the whole space of objects which are linear in the
perturbations: it is not a surprise that, once we Fourier-transform it, it vanishes identically.

The second order is thus the first correction to the dynamics. After some algebra, and using the simple rules presented in
the Appendix for dealing with the Fourier transform, we obtain an object of the form

hð2Þphys ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6

�ð	�
�Þ2

s �
Dð0Þ þ X

k2L�f0g
DðkÞ

�
; (113)

where Dð0Þ contains � �qabð0Þ� and � ��ð0Þ� (and their conjugate momenta), while DðkÞ contains the k � 0 modes, which
can be expanded as � �qabðkÞ� ¼ AðkÞmabq�m (and the same for its momentum). Using the properties of all these objects, and
imposing the constraints and the gauge conditions, one finds that on the physical phase space �phys it is

Dð0Þ ¼ �2�e4�
�
�ab�cd� �	acð0Þ�� �	bdð0Þ� � �ð	�

�Þ2e�4��

18
�ab�cd� �qacð0Þ�� �qbdð0Þ� � �	�

�

3
� �qabð0Þ�� �	abð0Þ�

� 1

2
½ð� �	ð0Þ�Þ2 þ e6�

�
V 00
�ð0Þð� ��ð0Þ�Þ2�; (114)
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DðkÞ ¼ X
m¼5;6

�
�2�e4�

�ðpmðkÞ�Þ2 � �	�
�

3
qmðkÞ�pmðkÞ� � �ð	�

�Þ2e�4��

18
ðqmðkÞ�Þ2 � k2

8�
ðqmðkÞ�Þ2

�

� 1

2

�
ð� �pTðkÞ�Þ2 � �	�

�� �TðkÞ�� �pTðkÞ� þ �2ð	�
�Þ2

4
ð� �TðkÞ�Þ2 þ e4�

�
k2ð� �TðkÞ�Þ2

�

� 1

2
½ð� �	ðkÞ�Þ2 þ e4�

�
k2ð� ��ðkÞ�Þ2 þ e6�

�
V 00
�ð0Þð� ��ðkÞ�Þ2�: (115)

In this way, we have derived the explicit form of hphys [see Eq. (104)] up to the second order. It is convenient to group the

terms according to their dependence on the fields,

hphys ¼ Hhom þHk¼0 þ
X

k�0;m¼5;6

HG
m;k þ

X
k�0

HT
k þX

k

HM
k ; (116)

where

Hhom ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð	�

�Þ2
6

s
;

Hk¼0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6

�ð	�
�Þ2

s �
2�e4�

�
�ab�cd

�
� �	acð0Þ� þ 	�

�e
�4��

12
�ae�cf� �qefð0Þ�

��
� �	bdð0Þ� þ 	�

�e
�4��

12
�bg�dh� �qghð0Þ�

�

þ �ð	�
�Þ2e�4��

24
�ab�cd� �qacð0Þ�� �qbdð0Þ�

�
;

HG
m;k ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

�ð	�
�Þ2

s �
2�e4�

�

�
pmðkÞ� þ 	�

�e
�4��

12
qmðkÞ�

�
2 þ 1

2

�
�ð	�

�Þ2e�4��

12
þ k2

4�

�
ðqmðkÞ�Þ2

�
;

HT
k ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

�ð	�
�Þ2

s �
1

2

�
� �pTðkÞ� � �	�

�

2
� �TðkÞ�

�
2 þ 1

2
e4�

�
k2ð� �TðkÞ�Þ2

�
;

HM
k ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

�ð	�
�Þ2

s �ð� �	ðkÞ�Þ2
2

þ 1

2
ðe4��

k2 þ e6�
�
V00
�ð0ÞÞð� ��ðkÞ�Þ2

�

(117)

can be thought of as the various Hamiltonians generating the dynamics on the different sectors of the physical phase space.
This concludes our exposition of the physical dynamics of the theory.

VIII. A REMARK ABOUT THE MUKHANOV-SASAKI VARIABLES

This is a good point to bridge our approach with the one used in the standard cosmological perturbation theory (and, at
the same time, to show why our approach is better suited in the context of quantum field theory on a quantum cosmological

spacetime). The fact is that, if we consider only the constraints EðkÞ, MðkÞ, WðkÞ, VðkÞ [that is the linear parts �CðkÞð1Þ,
�Cð1Þ
a ðkÞ of the constraints of the full theory], then the gauge-fixing procedure we just presented is not necessary: indeed, the

gauge-invariant scalar degrees of freedom are known, and are called Mukhanov-Sasaki variables [32]. In terms of our
variables, they are

QðkÞ ¼ � �TðkÞ þ 3pð0Þ
T e�2�

�	�

q1ðkÞ � pð0Þ
T e�2�

�	�

q2ðkÞ;

PðkÞ ¼ � �pTðkÞ � �	�

2
� �TðkÞ � 3e�2�

�
pð0Þ
T

2
þ e6�

�	�

V 0
TðTð0ÞÞ

�
q1ðkÞ þ e4�

�	�

V 0
TðTð0ÞÞq2ðkÞ:

(118)

They are used in standard cosmological perturbation theory, because QðkÞ and PðkÞ commute with the linearized
constraints and have the canonical Poisson algebra

fQðkÞ; Eðk0Þg ¼ fQðkÞ;Mðk0Þg ¼ 0; fPðkÞ; Eðk0Þg ¼ fPðkÞ;Mðk0Þg ¼ 0; (119)

fQðkÞ; Pðk0Þg ¼ �k;k0 ; fQðkÞ; Qðk0Þg ¼ fPðkÞ; Pðk0Þg ¼ 0: (120)
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Therefore, one does not need to fix a gauge, because the
Dirac observables coordinatizing the physical phase space
are already available: ðq5ðkÞ; p5ðkÞ; q6ðkÞ; p6ðkÞ; QðkÞ;
PðkÞÞ, with the canonical Poisson algebra.

However, there is a very important reason for us not to
follow this route. Recall that in our approach the back-

ground variables �, 	�, T
ð0Þ, and pð0Þ

T are treated on the
same footing as the perturbation variables (i.e., they are
variables of the phase space, to be quantized). But
Eq. (118) shows that QðkÞ and PðkÞ are functions of the
background variables, which means that whenever com-
puting Poisson brackets involving them one has to take into
account the Poisson algebra of the background variables as
well. Secondly, we have different constraints; namely, we
also regard the contribution to gauge transformations com-

ing from the second-order terms of �CðkÞ and CaðkÞ, and we
consider the constraint �Cð0Þ. The variables QðkÞ and PðkÞ
are not invariant with respect to all those gauge trans-
formations. For this reason, even though QðkÞ and PðkÞ

are perfectly good variables for studying quantized inho-
mogeneous perturbations on a curved fixed classical back-
ground, they are not suited for the purpose of quantizing
the perturbations and the background simultaneously.
Nevertheless, it is interesting to note that, with respect to

these variables, the dynamics seemingly simplifies a lot.
Indeed, let us go back to Eq. (117). There, we grouped the
terms in such a way that the Hamiltonians take the form of
the Hamiltonian of the harmonic oscillator. More precisely,
defining the new ‘‘momenta’’

� ��abð0Þ� :¼ �	abð0Þ�þ	�
�e

�4��

12
�ac�bd� �qcdð0Þ�;

PmðkÞ� :¼pmðkÞ�þ	�
�e

�4��

12
qmðkÞ�;

� �PTðkÞ� :¼� �pTðkÞ���	�
�

2
� �TðkÞ�;

(121)

we see th at Eq. (117) reduces to

Hhom ¼
ffiffiffiffi
�

6

r
	�

�;

Hk¼0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6

�ð	�
�Þ2

s �
2�e4�

�
�ab�cd� ��acð0Þ�� ��bdð0Þ� þ �ð	�

�Þ2e�4��

24
�ab�cd� �qacð0Þ�� �qbdð0Þ�

�
;

HG
m;k ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

�ð	�
�Þ2

s �
2�e4�

�ðPmðkÞ�Þ2 þ 1

2

�
�ð	�

�Þ2e�4��

12
þ k2

4�

�
ðqmðkÞ�Þ2

�
;

HT
k ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

�ð	�
�Þ2

s �ð� �PTðkÞ�Þ2
2

þ 1

2
e4�

�
k2ð� �TðkÞ�Þ2

�
;

HM
k ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

�ð	�
�Þ2

s �ð� �	ðkÞ�Þ2
2

þ 1

2
ðe4��

k2 þ e6�
�
V00
�ð0ÞÞð� ��ðkÞ�Þ2

�
:

(122)

From here, we see immediately how the various degrees of
freedom behave.

(i) The (two polarizations of the) graviton behaves as a
free relativistic particle with mass induced by the
background geometry [via the term proportional to
ð	�

�Þ2].
(ii) The perturbations of the clock field T propagate as

massless relativistic particles.
(iii) The (perturbations of the) test field �

propagates as a massive relativistic particle,
where the mass is given by the second deriva-
tive of its potential V� (as happens in flat

spacetime).
In particular, HT is the Hamiltonian acting on the physi-

cal scalar sector, and by using Eq. (118) on the reduced
phase space one sees that it reduces to

HT
k ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

�ð	�
�Þ2

s �ðPðkÞ�Þ2
2

þ 1

2
e4�

�
k2ðQðkÞ�Þ2

�
: (123)

In other words, if we stop at the linear order, our scalar
sector (and its dynamics) coincides with the one found in
standard cosmological perturbation theory.
However, it is important to observe that—from the point

of view of the full theory (which we are considering)—the
transformation (121) is not canonical. In particular, as was
already pointed out, the Poisson algebra with the back-
ground geometry is nontrivial,

f��;� ��abð0Þ�g¼e�4��

12
�ac�bd� �qcdð0Þ�;

f	�
�;� ��abð0Þ�g¼	�e

�4��

3
�ac�bd� �qcdð0Þ�;

f��;PmðkÞ�g¼e�4��

12
qmðkÞ�;

f	�
�;P

mðkÞ�g¼	�
�e

�4��

3
qmðkÞ�;

f��;� �PTðkÞ�g¼��

2
� �TðkÞ�; f	�

�;� �PTðkÞ�g¼0:

(124)
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We thus have a dilemma: the simple form of the
Hamiltonian is traded for a more complicated Poisson
algebra, which mixes the perturbations to the clock field
with the background geometry. It is important to realize
this fact when carrying out the canonical quantization of
linearized inhomogeneous modes and of the homogeneous
isotropic background! We think that a simple kinematics is
a better starting point, and thus would choose the original
momenta, rather than the new ones (121).

Finally, notice that the test-field variables � ��� and � �	�
�

are real canonical variables (i.e., the only nontrivial Poisson

brackets are f� ��ðkÞ�; � �	�ðk0Þ�g ¼ �k;k0). Therefore, for

each mode of the test field � the Hamiltonian does have
the canonical form of the harmonic oscillator. Because of
this fact, the very result of our systematic analysis obtained
in the current paper coincideswith that of Ref. [11] obtained
by using short cuts, after the restriction to �.

IX. SUMMARY, CONCLUSIONS, AND OUTLOOK

In this paper, we provided a framework for the quantiza-
tion of linear perturbations (inhomogeneities) on a quantum
background spacetime. We hope to have convinced the
reader that, in light of canonical quantization, the classical
Poisson algebra is the most fundamental feature to be pre-
served at the quantum level. This imposes a different choice
of fundamental variables than that usually taken when quan-
tizing perturbations on a fixed classical background space-
time. In particular, we showed that Mukhanov-Sasaki
variables are not suited for this purpose. However, a natural
gauge fixing exists, which allows to use the old variables as
fundamental operators, and provides a true dynamics in
terms of the homogeneous part of the clock scalar field, T.
Of course, it is expected that this formalism can be developed
for other choices of physical time as well [33–35].

Technically, the goal of this work was the derivation of
the formulas (116) and (117) for the physical Hamiltonian
hphys. Therein, the Hamiltonian is expressed by the Dirac

observables ��
I [Eq. (81)]. Given a value of the parameter �,

the observables parametrize the phase space of solutions to
the constraints modulo the gauge transformations. The first
two Dirac observables, �� and 	�

�, are identified with the
background degrees of freedom. The remaining Dirac ob-

servables are perturbations: � �qabð0Þ�, � �	abð0Þ�, � ��ð0Þ�,
� �	�ð0Þ�, � �TðkÞ�, � �pTðkÞ�, q5ðkÞ�, p5ðkÞ�, q6ðkÞ�, p6ðkÞ�,
� ��ðkÞ�, � �	�ðkÞ�, where k 2 L� f0g. Their Poisson alge-
bra is canonical [Eq. (84)]; it is defined by the proper
kinematical Poisson algebra of the full theory of the gravi-
tational field coupled to two K-G fields. The constraints are
solved up to the first order, and the Hamiltonian itself is
derived up to the second order in the perturbation variables.
The physical Hamiltonian generates the dynamics via
d��

I =d� ¼ �f��
I ; hphysg, derived up to the first order in the

perturbation variables. The dynamics of the background
degrees of freedom ��, 	�

� is an undecoupled part of the

dynamics of all the system parametrized by both the back-
ground variables and the variables we perturb with respect
to. Going to higher orders in the perturbations amounts to
simply adding to hphys higher-order terms in the perturbation

variables and imposing so-called linearization-stability con-
straints linear in the perturbations [36–43].
The effective difference between our results and the

results of the standard approach to cosmological perturba-
tions consists in the status of the Mukhanov-Sasaki varia-
bles QðkÞ and PðkÞ. To begin with, they are not Dirac
observables themselves in our approach; however, as any
other function on the phase space they can be assigned
Dirac observables QðkÞ� and PðkÞ� in a �-dependent man-
ner. They still provide the corresponding term of the
physical Hamiltonian with the canonical form (123).
Nonetheless, in our framework they do not Poisson-
commute with the background degrees of freedom [see
Eq. (124)]. This last fact has to be taken into account
in the process of quantization. The consequence is
that—whereas according to the standard approach the
perturbations of the K-G field T that are nonvanishing in
the background define the Hamiltonian term HT of the
same form as the Hamiltonian term HM of the perturba-
tions of the test K-G field field � in the massless
case—according to our approach the Hamiltonians take
substantially different forms [see Eq. (117)]. It will make
a difference between the dynamics on the quantum back-
ground of the quantum perturbations of the clock field T on
the one hand and the dynamics of the quantum test scalar
field � on the other.
Our results provide a good starting point to understand-

ing and calculating effects that a quantum cosmological
spacetime in the background has on the quantum perturba-
tions of the metric tensor and the K-G field, specifically in
the case of the K-G field that does not vanish in the
background (in the zeroth order).
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APPENDIX A: USEFUL FORMULAS FOR THE
DERIVATION OF THE PHYSICAL HAMILTONIAN

In this Appendix, we collect some nontrivial formula
used in the main text for the computation of the physical
Hamiltonian.
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1. Expansion of the curvature

The biggest trouble with Eq. (105) is due to the curvature

terms. In this section we expand Rð3Þ, exposing �ð1ÞRð3Þ and
�ð2ÞRð3Þ in terms of the linear perturbations. The next
section is dedicated to the expansion of other (less) trouble-
some quantities, namely the determinant of the spatial
metric.

The starting point is Eq. (61),

Rð3Þ ¼ qabð@c�a
c
b � @b�a

c
c þ �a

d
b�c

c
d � �a

d
c�b

c
dÞ:
(A1)

We know that Christoffel symbols always involve deriva-
tives of the metric, so they are at least of first order. Thus,
the last two terms are of second order themselves, so they

are contracted by qabð0Þ, and contribute to �ð2ÞRð3Þ. On the

other hand, the first two terms contain parts of the first
order, so they should in general be contracted with

(qabð0Þ þ �ð1Þqab). To find what the perturbation �ð1Þqab is,

we use the definition of the inverse metric, qabqbc ¼ �a
c .

From this, it follows that

�a
c ¼ ðqabð0Þ þ �ð1ÞqabÞðqð0Þbc þ �qbcÞ
¼ qabð0Þq

ð0Þ
bc þ qabð0Þ�qbc þ �ð1Þqabqð0Þbc

¼ �a
c þ qabð0Þ�qbc þ �ð1Þqabqð0Þbc (A2)

up to first order. So, by contracting both sides with qcdð0Þ we
see that

�ð1Þqab ¼ �qacð0Þq
bd
ð0Þ�qcd: (A3)

Thus, one should be not fooled into thinking that �ð1Þqab is
simply�qabwith its indices raised via the backgroundmetric;
indeed, it is almost like that, except that there is a minus sign
in front of it! Knowing Eq. (A3), we can rewrite Eq. (A1) as

Rð3Þ ¼ ðqabð0Þ � qaeð0Þq
bf
ð0Þ�qefÞ@c�a

c
b

� ðqabð0Þ � qaeð0Þq
bf
ð0Þ�qefÞ@b�a

c
c

þ qabð0Þ�a
d
b�c

c
d � qabð0Þ�a

d
c�b

c
d: (A4)

Now, inevitably, we need to take a look at the Christoffel
symbols themselves. We have

�a
c
b ¼ 1

2
qcdð@aqbd þ @bqad � @dqabÞ ¼ 1

2
ðqcdð0Þ þ �ð1ÞqcdÞð@a�qbd þ @b�qad � @d�qabÞ

¼ 1

2
ðqcdð0Þ � qceð0Þq

df
ð0Þ�qefÞð@a�qbd þ @b�qad � @d�qabÞ

¼ e�2�

2
�cdð@a�qbd þ @b�qad � @d�qabÞ

� e�4�

2
�ce�df�qefð@a�qbd þ @b�qad � @d�qabÞ; (A5)

having used the explicit form of qabð0Þ. From this, we can compute the different objects we need,

@c�a
c
b ¼

e�2�

2
ð@a@d�qbd þ @b@

d�qad � @d@d�qabÞ � e�4�

2
ð@e�qefÞð�df@a�qbd þ �df@b�qad � @f�qabÞ

� e�4�

2
�qefð�df@a@

e�qbd þ �df@b@
e�qad � @e@f�qabÞ;

@b�a
c
c ¼ e�2�

2
�cd@a@b�qcd � e�4�

2
�ce�dfð@a�qcdÞð@b�qefÞ � e�4�

2
�qef�

ce�df@a@b�qcd;

�a
d
b�c

c
d ¼

e�4�

4
�cd@a�qbe@

e�qcd þ e�4�

4
�cd@b�qae@

e�qcd � e�4�

4
�cd@e�qab@

e�qcd;

�a
d
c�b

c
d ¼

e�4�

4
�ce�df@a�qcd@b�qef þ e�4�

2
@d�qac@

c�qbd � e�4�

2
�cd@e�qac@

e�qbd: (A6)

Now we plug these into Eq. (A4) and retain only the terms up to second order. The result is

Rð3Þ ¼ �ð1ÞRð3Þ þ �ð2ÞRð2Þ; (A7)

where

�ð1ÞRð3Þ ¼ e�4�@a@d�qad � e�4��ab@e@
e�qab; (A8)
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�ð2ÞRð3Þ ¼ �2e�6��ab�qbc@
c@d�qda þ e�6��ac�bd�qab@e@

e�qcd þ e�6��qabð�cd@a@b�qcdÞ

þ e�6�ð@a�qabÞð�cd@b�qcdÞ � e�6�

4
ð�ab@e�qabÞð�cd@e�qcdÞ � e�6�

2
�abð@d�qacÞð@c�qbdÞ

� e�6��cdð@a�qacÞð@b�qbdÞ þ 3e�6�

4
�ac�bdð@e�qabÞð@e�qcdÞ: (A9)

2. Expansion of the determinant

Here we present the expansion of the determinant q, also present in Eq. (105). One simply applies the definition (up to
second order)

3!q ¼ �abc�defqadqbeqcf ¼ �abc�defðqð0Þad þ �qadÞðqð0Þbe þ �qbeÞðqð0Þcf þ �qcfÞ
¼ 3!qð0Þ þ �abc�defð�qadqð0Þbe q

ð0Þ
cf þ qð0Þad�qbeq

ð0Þ
cf þ qð0Þadq

ð0Þ
be�qcfÞ

þ �abc�defðqð0Þad�qbe�qcf þ �qadq
ð0Þ
be�qcf þ �qad�qbeq

ð0Þ
cf Þ

¼ 3!e6� þ e4��abc�defð�qad�be�cf þ �ad�qbe�cf þ �ad�be�qcfÞ
þ e2��abc�defð�ad�qbe�qcf þ �qad�be�qcf þ �qad�qbe�cfÞ

¼ 3!e6� þ 2e4�ð�ad�qad þ �be�qbe þ �cf�qcfÞ þ e2�ðð�be�cf � �bf�ceÞ�qbe�qcf
þ ð�ad�cf � �af�cdÞ�qad�qcf þ ð�ad�be � �ae�bdÞ�qad�qbeÞ

¼ 3!e6� þ 6e4��ab�qab þ 3e2�ð�ab�qab�
cd�qcd � �ab�cd�qac�qbdÞ; (A10)

having used the well-known relations between � and �. So, we can write

q ¼ qð0Þ þ �ð1Þqþ �ð2Þq ¼ e6� þ e4��ab�qab þ e2�

2
ð�ab�qab�

cd�qcd � �ab�cd�qac�qbdÞ: (A11)

3. Fourier-mode expansion

Here, we explain how to get to Eq. (113) via the real Fourier transform. Since hð2Þphys is of second order in the

perturbations, upon plugging the expansions (38) into it we will obtain something which comprises terms of the form

Gabcd ¼
Z

d3x

�
� �fabð0Þ þ 1ffiffiffi

2
p X

k2Lþ

ð� �fabðkÞðeik�x þ e�ik�xÞ þ i� �fabð�kÞðeik�x � e�ik�xÞÞ
�

�
�
� �gcdð0Þ þ 1ffiffiffi

2
p X

k02Lþ

ð� �gcdðk0Þðeik0�x þ e�ik0�xÞ þ i� �gcdð�k0Þðeik0�x � e�ik0�xÞÞ
�
: (A12)

These can be seen to reduce to

Gabcd ¼ � �fabð0Þ� �gcdð0Þ
Z

d3xþ � �fabð0Þ
ffiffiffi
2

p X
k2Lþ

� �gcdðkÞ�k;0 þ � �gcdð0Þ
ffiffiffi
2

p X
k2Lþ

� �fabðkÞ�k;0

þ X
k;k02Lþ

ð� �fabðkÞ� �gcdðk0Þð�k;�k0 þ �k;k0 Þ � � �fabð�kÞ� �gcdð�k0Þð�k;�k0 � �k;k0 ÞÞ; (A13)

having used the fact that Z
d3xeiðk�k0Þ�x ¼ �k;k0 : (A14)

But since k, k0 only take values onLþ, then both �k;�k0 and �k0;0 vanish when we perform the sum over k0. In other words,
Gabcd is finally reduced to

Gabcd ¼ � �fabð0Þ� �gcdð0Þ þ
X

k2Lþ

ð� �fabðkÞ� �gcdðkÞ þ � �fabð�kÞ� �gcdð�kÞÞ: (A15)
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Thus, we are reduced to a sum over all k. In the case that there are derivatives the result is the same; therefore, to expand in
modes k, we first separate the k ¼ 0 mode and then simply write a sum of decoupled terms over k 2 L� f0g, each of
which perfectly resembles the corresponding one on the coordinate space (with the difference that @a is replaced
with ka).

11 Applying these rules, we indeed recover Eq. (113) in a reasonable amount of time.
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