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We compute the greybody factors for nonminimally coupled scalar fields in four-dimensional

Schwarzschild–de Sitter spacetime. In particular, we demonstrate that the zero-angular-momentum

greybody factor generically tends to zero in the zero-frequency limit like frequency squared if there is

nonvanishing coupling to the scalar curvature. This is in contrast with the minimally coupled case, where

this greybody factor is known to tend to a finite constant. We also study the Hawking radiation for

nonminimally coupled massless scalar fields in Schwarzschild–de Sitter spacetime, formulate a sensible

notion of a generalized absorption cross section and investigate its properties.
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I. INTRODUCTION

The study of phenomena in de Sitter spacetime is a
subject of importance beyond pure academic interest, given
that our cosmological neighborhood is presently under-
going accelerated expansion [1]. Moreover, de Sitter (dS)
spacetime is a very good approximation to the exponen-
tially expanding phase postulated by the inflationary para-
digm [2]. Finally, possible connections with conformal
field theories provided by the dS/CFT correspondence [3]
add value to the study of asymptotically dS spacetimes. On
the other hand, black holes are among the most relevant
objects in any gravitational theory, besides there being clear
indications of their presence at the center of galaxies [4]
and the possibility of black hole (BH) formation in particle
colliders [5]. These observations motivate the study of
black holes in asymptotically dS spacetimes.

Most of the literature investigating the scattering and
absorption properties of waves in BH spacetimes focus on
the asymptotically flat case. Recently, such problems have
been studied extensively [6–12]. In asymptotically flat
spacetimes it is common to express the outcome of
scattering a wave off a black hole in terms of an absorption
cross section. The absorption cross section is directly
connected to the greybody factors, i.e., the probability for
a given wave coming in from infinity to be absorbed by the
black hole [13,14]. This has been shown to be equal to the
transmission probability for an outgoing wave ‘‘emitted’’
from the black hole event horizon to reach the asymptotic
region (see, e.g., Ref. [14]). It is the nontriviality of
greybody factors that cause the semiclassical spectrum of

emission of black holes to depart from that of a pure
blackbody.
For asymptotically flat BH spacetimes there are indica-

tions that the greybody factor �lð!Þ for waves of arbitrary
spin s and angular quantum number l in any number of
dimensions d vanishes in the zero-frequency limit ! ! 0.
This general statement is confirmed by all cases studied so
far, and has actually been proven for massless minimally
coupled scalar fields in stationary black hole backgrounds
[15,16] in general spacetime dimensions. In d ¼ 4 this
phenomenon also occurs for massless spin-1=2 fermions,
gauge bosons and gravitons [17] and persists even in the
presence of nonminimal coupling of the scalar field with
the curvature scalar [18].
However, the l ¼ 0 greybody factor tends to a positive

constant in the infrared limit for a minimally coupled
massless scalar field in Schwarzschild–de Sitter spacetime
(SdS). The expression obtained in the zero-frequency limit
in four dimensions was first reported in Ref. [19], and the
result for arbitrary dimensions is [20]

�0ð! ¼ 0Þ ¼ 4ðrCrHÞd�2

ðrd�2
C þ rd�2

H Þ2 ; (1)

where rC and rH stand for the radial location of the
cosmological horizon and the black hole event horizon,
respectively. Several other authors have confirmed this
result, e.g., Refs. [14,21,22]. This means that at low en-
ergies the cosmological constant has an important effect on
the greybody factor of massless minimally coupled scalar
particles. The explanation put forward in Ref. [20] for this
phenomenon is that zero-energy particles are fully delo-
calized, and have therefore a finite probability to traverse
the distance between the two horizons [23]. This argument
then suggests that the infrared enhancement of transmitted
flux in SdS is not present when fields are massive, or
‘‘effectively massive’’ due to nonzero coupling to the
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scalar curvature, since the dispersion relation gets modified
by the addition of the mass. In this paper we will indeed
find that this phenomenon is specific to the massless case
with minimal coupling.

To the best of our knowledge, the greybody factors for
massless scalar fields propagating in the SdS geometry
have been computed only for minimal coupling. In this
paper we consider a massless scalar field with nonzero
coupling to the scalar curvature, �R�2, propagating in
four-dimensional SdS spacetime and compute the corre-
sponding greybody factors. Such a coupling can also be
interpreted as a mass term since the scalar curvature of the
background is constant in SdS spacetime. However, we
note that this masslike term is tied to the cosmological
constant so that it vanishes in the asymptotically flat limit.
(For a study of the effect of a scalar mass on the absorption
and emission spectra of a Schwarzschild black hole see
Ref. [24].) We show that, if � � 0, the greybody factor for
the l ¼ 0 mode tends to zero in general like !2. We also
show that the rate of Hawking radiation tends to zero as
! ! 0 if � � 0, unlike the case with � ¼ 0, in which this
rate remains finite in the low-frequency limit.

The definition of an absorption cross section in dS
spacetimes is an issue that has generated some controversy
[14]. We elucidate that this concept, as it is defined in
Ref. [20], is generally not meaningful in dS spacetimes.
However, for small black holes (rC � rH) it is possible to
define a generalized absorption cross section, albeit only
approximately.

The remainder of this paper is organized as follows. We
briefly describe Schwarzschild–de Sitter spacetime in
Sec. II and present the framework for finding the behavior
of a massless scalar field in this spacetime for general
coupling �. In Sec. III we explain how the greybody factor
is computed and find its low-frequency limit for � � 0 to
second order in �. We also derive a complementary low-
frequency approximation, valid only for small SdS black
holes but for arbitrary �. To conclude this section we
present numerical results for the greybody factors with
several values of �. Hawking radiation is analyzed in
Sec. IV and some properties of the generalized absorption
cross section are studied in Sec. V. We summarize our
results in Sec. VI. In the Appendix we briefly discuss the
scattering problem in a negative square-well potential,
which may be helpful in understanding the special nature
of minimal coupling � ¼ 0.

We use natural units such that c ¼ G ¼ ℏ ¼ kB ¼ 1 and
metric signature ð�;þ;þ;þÞ.

II. SCHWARZSCHILD–DE SITTER SPACETIME

The four-dimensional Schwarzschild–de Sitter space-
time has line element given by

ds2¼�fðrÞdt2þfðrÞ�1dr2þr2ðd�2þsin2�d�2Þ; (2)

where

fðrÞ ¼ 1� 2M

r
��

3
r2; (3)

with M being the black hole mass and �> 0. The metric
g�� defined by ds2 ¼ g��dx

�dx� is a solution of the

vacuum Einstein field equations with positive cosmologi-
cal constant �,

R�� � 1

2
g��Rþ�g�� ¼ 0; (4)

where R�� and R denote the Ricci tensor and scalar curva-

ture, respectively.
The roots of f occur at r ¼ rH, r ¼ rC and r ¼ �rH �

rC, where rH and rC are the event and cosmological
horizons of the SdS spacetime, respectively (with rH <
rC). It is easy to see that the metric (2) depends only on a
single dimensionless parameter, which is commonly taken
to be � � �M2=3, up to an overall constant scale factor.
The spacetime features two horizons only for 0< �<
1=27 [25,26] (see [27] for the higher-dimensional case).
For � ¼ 1=27 the two horizons merge and one obtains the
extreme SdS geometry, whereas if � > 1=27 there are no
horizons. In the present study we shall restrict ourselves to
the case 0< �< 1=27.
The temperatures associated with the black hole event

horizon and the cosmological horizon of the four-
dimensional SdS solution are given by [20,25]

TH ¼ 1

4�rH
ð1��r2HÞ; (5)

TC ¼ 1

4�rC
ð�r2C � 1Þ: (6)

We note that the temperature of the black hole is always
larger than the temperature of the universe (TH > TC),
since rH < rC, implying a net energy flow from the black
hole horizon towards the cosmological horizon [20].

A. Nonminimally coupled massless scalar field

We consider a massless Klein-Gordon field�ðx�Þ in the
background geometry (2), coupled to the gravitational
field, described by the action

S ¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½ðr��Þðr��Þ þ �R�2�; (7)

where g is the determinant of the spacetime metric and � is
the coupling between the scalar and the gravitational fields.
Some particular values of � are of specific interest: � ¼ 0
is the so-called minimal coupling, whereas � ¼ 1=6 is the
so-called conformal coupling for which the scalar field
theory becomes conformally invariant [28].
The massless scalar field satisfies the Klein-Gordon

equation,

½r�r� � �R��ðt; r; �; �Þ ¼ 0: (8)
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Taking advantage of the spherical symmetry of the
problem and of the existence of the Killing vector field
@t, we write the solutions to Eq. (8) in the form

�ðt; r; �; ’Þ ¼ c !lðrÞ
r

Ylmð�; ’Þe�i!t; ! > 0; (9)

where Ylmð�; ’Þ are the scalar spherical harmonics. The
radial part of the waves obeys the following equation:

�f
d

dr

�
f
d

dr
c !lðrÞ

�
þ VðrÞc !l ¼ !2c !l; (10)

where the effective potential VðrÞ is given by

VðrÞ ¼ fðrÞ
�
f0ðrÞ
r

þ lðlþ 1Þ
r2

þ 4��

�
; (11)

with the ‘‘prime’’ standing for the derivative with respect
to r.

In Fig. 1 we plot the effective potential (11) for �M2 ¼
0:01, l ¼ 0 and for several values of �. This effective
potential vanishes at the SdS black hole horizon rH and
at the cosmological horizon rC. It is apparent that the
effective potential presents different behaviors for different
values of the coupling parameter �.

III. GREYBODY FACTOR

A. Asymptotic solution and greybody factor

In order to determine the greybody factors, we need
to know the asymptotic behavior of the radial function
c !lðrÞ.
Since VðrÞ goes to zero at the black hole event horizon,

near r ¼ rH we can write

c !lðrÞ � Atr
!le

�i!r� ; (12)

with r� being the tortoise coordinate defined by dr�=dr �
f�1.We imposed purely ingoing boundary conditions at the
black hole horizon, thus eliminating a term proportional to
eþi!r� from the general solution. We may write r� as

r� ¼
X3
n¼1

1

f0ðrnÞ log j1� rn=rj; (13)

where rn denotes the roots of f.
As we approach the cosmological horizon, again VðrÞ

goes to zero and therefore

c !l � Ain
!le

�i!r� þ Aout
!l e

þi!r� ; (14)

where Ain
!l represents the amplitude of the incoming wave,

while Aout
!l stands for the outgoing wave. Hence, the grey-

body factors can be expressed as

�lð!Þ ¼
��������A

tr
!l

Ain
!l

��������2

: (15)

Since jAin
!lj2 ¼ jAtr

!lj2 þ jAout
!l j2 (from flux conservation),

the greybody factors can also be written as

�lð!Þ ¼ 1�
��������A

out
!l

Ain
!l

��������2

: (16)

We will also refer to the greybody factor as transmission
coefficient.

B. Low-frequency approximation with small �

It was shown in Ref. [19] that for � ¼ 0 the transmission
coefficient for l ¼ 0 is finite and given by

lim
!!0

�0ð!Þ ¼ 4r2Hr
2
C

ðr2H þ r2CÞ2
: (17)

However, as we stated in the Introduction, if � � 0 the
transmission coefficient �0ð!Þ generally behaves like !2

in the low-frequency limit. This can be seen as follows.
Consider the limit ! ! 0 of �!0 � c !0=A

tr
!0, where

Atr
!l is defined by Eq. (12). We have �!0 ! 1 near the

black hole event horizon. Near the cosmological horizon
we have instead

lim
!!0

�!0 ¼ lim
!!0

�
Ain
!0

Atr
!0

e�i!r� þ Aout
!0

Atr
!0

eþi!r�
�
: (18)

Now, if there is a solution to Eq. (10) for l ¼ 0 and ! ¼ 0
that tends to 1 as r� ! �1 and to a constant a as
r� ! þ1, then we must have

a ¼ lim
!!0

�
Ain
!0

Atr
!0

þ Aout
!0

Atr
!0

�
: (19)

Then the ! ! 0 limit of �0ð!Þ ¼ jAtr
!0=A

in
!0j2 must be

nonzero. This is indeed what happens for � ¼ 0 [19].
However, generically the ! ¼ 0 solution which tends to
1 as r� ! �1 behaves as �00 � sr� in the limit r� !
þ1, where s is a constant. In such cases Aout

!0 ! �Ain
!0 in

the limit ! ! 0 and we have

s ¼ �2ilim
!!0

!
Ain
!0

Atr
!0

: (20)
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FIG. 1 (color online). Effective potential plotted for �M2 ¼
0:01 and l ¼ 0, for different choices of the coupling parameter �.
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This leads to the following small ! approximation of the
transmission coefficient:

�0ð!Þ ¼
��������A

tr
!0

Ain
!0

��������2� 4

s2
!2 (21)

as in the asymptotically flat case. In the rest of this sub-
section we calculate the constant s for small � to second
order in � and find the low-frequency behavior of �0ð!Þ to
this order.

We first write Eq. (10) with ! ¼ 0 in terms of
RðrÞ � �00ðrÞ=r as

d

dr

�
fðrÞr2 dR

dr

�
¼ 4��r2RðrÞ: (22)

We take Rð0ÞðrÞ ¼ 1=rH, i.e., �00 ¼ r=rH, as the lowest-
order solution. Then by writing

RðrÞ ¼ 1=rH þ �Rð1ÞðrÞ þOð�2Þ (23)

we have

d

dr

�
fðrÞr2 dR

ð1Þ

dr

�
¼ 4�

rH
r2: (24)

This equation can readily be solved by integration. We find

Rð1ÞðrÞ ¼ � 4ðr2C þ rCrH þ r2HÞ
rCrHð2rC þ rHÞ log

�
rC � r

rC � rH

�

� 4ðr2C þ rCrH þ r2HÞ
rHðrC þ rHÞð2rC þ rHÞ log

�
rþ rC þ rH
rC þ 2rH

�

þ 4rH
rCðrC þ rHÞ log

r

rH
: (25)

Next we note that Eq. (22) can be written as

d

dr

�
r
d�00

dr�
� fðrÞ�00

�
¼ 4��r2RðrÞ: (26)

Since fðrÞ ! 0 like rC � r as r ! rC whereas from
Eq. (13) we see that �00 diverges like ln ðrC � rÞ in this
limit, we conclude that fðrÞ�00 ! 0 as r ! rC. Recalling
that we have required d�00=dr� ! 0 as r ! rH and that
we have defined lim r!rCd�00=dr� ¼ s, we find

s ¼ 4��

rC

Z rC

rH

r2RðrÞdr: (27)

By substituting RðrÞ ¼ 1=rH þ �Rð1ÞðrÞ, where �Rð1ÞðrÞ is
given by Eq. (25) into this equation we find the constant s
to order �2 as

s ¼ 4�ðrC � rHÞ
rCrH

½1þ 4�GðrC; rHÞ�; (28)

where

GðrC; rHÞ ¼ 4

3
þ r2Cr

2
H

ðrC þ rHÞðr3C � r3HÞ
log

rC
rH

� r2C þ rCrH þ r2H
r2C � r2H

log
2rC þ rH
rC þ 2rH

: (29)

Hence by Eq. (21)

�0ð!Þ � r2Cr
2
H

4�2ðrC � rHÞ2
!2½1þ 4�GðrC; rHÞ��2 (30)

to second lowest order in �.

C. Low-frequency approximation with small �

In this section we present an analytic computation that
provides an approximation to the greybody factor of small
dS black holes in the low-frequency regime. The calcula-
tion is performed using matched asymptotic expansions, a
technique first employed in this context in Ref. [29]. Our
calculation follows along the same lines as Refs. [30,31].
The main interest of this result is that it is valid for

arbitrary angular quantum number l and coupling �. On
the other hand, the accuracy of the result is guaranteed only
if the two asymptotic regions significantly overlap, which
implies that it is only valid for small frequencies. In addi-
tion, the procedure is justified, as we shall see, only for the
class of ‘‘small’’ black holes (compared with the character-
istic dS scale), i.e., � � 1. Thus the approximation for the
greybody factor we shall obtain below, Eq. (43), and the
result of the previous section, Eq. (30), are valid in comple-
mentary regions of parameter space.
The starting point is the radial wave equation (10),

written in terms of X!lðrÞ � c !lðrÞ=r, namely

r2f
d

dr

�
r2f

d

dr
X!l

�
� r2f½lðlþ 1Þ þ 4��r2�X!l

þ!2r4X!l ¼ 0: (31)

We then analyze this wave equation in two distinct,
but overlapping, regions. The near region is defined
by r� rH � 1=! whereas the far region is such that
r� rH � 2M. The two regions overlap if !M � 1.
The essential point of considering small SdS black holes

is that in the near region r� rH � 2M we can discard
the effects of the cosmological constant. Hence, r2fðrÞ �
r2 � 2Mr and the near region wave equation becomes

ðr2 � 2MrÞ d
dr

�
ðr2 � 2MrÞ d

dr
XðnearÞ
!l

�
� ½ðr2 � 2MrÞlðlþ 1Þ � ð2MÞ4!2�XðnearÞ

!l ¼ 0: (32)

The (purely ingoing) solution of this equation can be
written in terms of a hypergeometric function [31]:
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XðnearÞ
!l ðrÞ¼A

�
1�2M

r

��2iM!
�
2M

r

�
lþ1

	F

�
lþ1;lþ1�4iM!;1�4iM!;1�2M

r

�
;

(33)

with A being the constant amplitude. It can be shown that

XðnearÞ
0l ðrÞ ¼ ð�1ÞlAPl

�
1� r

M

�
; (34)

where PlðxÞ are the Legendre polynomials [32].
For the far region solution we can neglect the effects of

the black hole, soM� 0 and fðrÞ � 1��r2=3. By defin-
ing a new variable x � 1��r2=3 the radial wave equa-
tion then becomes

xð1� xÞ d
2XðfarÞ

!l

dx2
þ

�
1� 5

2
x

�
dXðfarÞ

!l

dx

�
�
lðlþ 1Þ
4ð1� xÞ �

3!2

4�x
þ 3�

�
XðfarÞ
!l ¼ 0; (35)

whose general solution can again be expressed in terms of
hypergeometric functions as

XðfarÞ
!l ðxÞ¼Cxi

!
2

ffiffi
3
�

p
ð1�xÞl=2Fð�þ;��;�;xÞþDx�i!2

ffiffi
3
�

p

	ð1�xÞl=2Fð1þ�þ��;1þ����;2��;xÞ;
(36)

where

�
 ¼ 1

4

0
@3þ 2l
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9� 48�
p þ 2i!

ffiffiffiffi
3

�

s 1
A; (37)

� ¼ 1þ i!

ffiffiffiffi
3

�

s
: (38)

(See also Ref. [33].)
Having the two asymptotic solutions at hand, one can

now match them in the overlapping region 2M � r �
1=!. This requires finding the large-r behavior of
Eq. (33) and the small-r limit of Eq. (36), which corre-
sponds to x ! 1. In the overlapping region both solutions
are expressed as a superposition of two terms, with corre-

sponding behaviors �rl and �r�ðlþ1Þ. By matching the
respective coefficients we determine the constants C andD
as functions of all the parameters in our problem, namely
!,�,M, l and �. Obviously, both coefficients C andD are
proportional to the amplitude A, so when one computes
their ratio, A cancels out.

The greybody factor is computed from Eq. (16) so we
must relate coefficients C and D with Ain

!l and Aout
!l . The

solution near the cosmological horizon, x� 0, behaves
like

X!l � Cxi
!
2

ffiffi
3
�

p
þDx�i!2

ffiffi
3
�

p
: (39)

Also, in this spacetime region (x� 0) the coordinate x is
related with the tortoise coordinate r� through

r� � � 1

2

ffiffiffiffi
3

�

s
log

x

2
: (40)

Thus, comparing Eq. (39) with Eq. (14) we conclude that

C ¼ Ain
!l

rC
2�i!2

ffiffi
3
�

p
; D ¼ Aout

!l

rC
2i

!
2

ffiffi
3
�

p
; (41)

and therefore the greybody factor may be expressed as

�lð!Þ ¼ 1� jDj2
jCj2 : (42)

Substituting into the above expression the coefficients C
and D obtained from the matching procedure, we arrive at
the following analytic small-frequency approximation for
the greybody factor of small dS black holes:

�lð!Þ ¼ 16�7=2ð�1Þll!ðð2lÞ!Þ2�ð2lþ 2Þ�ð�l� 1=2Þ
� cos ð� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9� 48�
p Þ � cosh ð2�!Mffiffiffi

�
p Þ

	
sinh ð�!Mffiffiffi

�
p Þ�lþ1=2

sinh ð4�!MÞjHð!Þj2 ; (43)

where the function Hð!Þ has been defined as

Hð!Þ¼ð2lÞ!�ð2lþ2Þ�
�
lþ1

2

�
�ð�l�4i!MÞ�ð	þÞ�ð	�Þ

þð�4Þlðl!Þ2�lþ1
2�

�
�l�1

2

�
�ð1þl�4i!MÞ

	�ð
þÞ�ð
�Þ; (44)

and

	
 ¼ 1

4

�
1� 2l
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9� 48�
p � 2i

!Mffiffiffiffi
�

p
�
; (45)



 ¼ 1

4

�
3þ 2l
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9� 48�
p � 2i

!Mffiffiffiffi
�

p
�
: (46)

This result is fully consistent with Refs. [14,19,20],
meaning that the zero-frequency limit of the greybody
factor for l ¼ � ¼ 0 reproduces Eq. (17) in the small
SdS black hole regime. For � � 0 Eq. (43) becomes in
the low-frequency limit

�lð!Þ ¼ �ðl!Þ2�lj�ð
0þÞ�ð
0�Þj2
4lj�ðlþ 1

2Þ�ðlþ 3
2Þj2

ðrH!Þ2; (47)

where 
0
 ¼ 

j!¼0. This result reproduces Eq. (30) for
l ¼ 0 with small � at zeroth order in �. Moreover, it
is applicable to more general cases, with � � 0 (not
necessarily small) and general l.
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D. Computational methods and numerical results

In this section we present results valid for arbitrary
frequencies that were obtained by solving numerically
Eq. (10). We develop this solution from r ¼ rHð1þ "1Þ
to r ¼ rCð1� "2Þ, with "1, "2 � 1. The reflection

coefficient jAout
!l =A

in
!lj2 may be obtained by comparing the

numerical solution with the asymptotic form (14).
In Fig. 2 we plot our numerical results for the grey-

body factor. We see that the results go to zero as ! ! 0,
except for the minimally coupled case. The behavior of
the transmission coefficient in the SdS spacetime (except
for the minimally coupled case) keeps the same struc-
ture as in asymptotically flat spacetimes: it is zero in the
low-frequency limit and tends to unity in the high-
frequency limit. The explanation for this behavior in
asymptotically flat spacetimes relies on the semiclassical
approximation, in which we can relate the apparent
impact parameter with the wave frequency and angular
momentum as b � ðlþ 1=2Þ=!. Roughly speaking, for
a fixed l, if b > bc, where bc is the critical impact
parameter [34], the transmission coefficient is zero. As
! increases, b approaches the value of bc, and when
b < bc the particle is absorbed by the black hole. In
Sec. VA we develop the geodesic analysis in the SdS
spacetime, and, although the concepts of impact parame-
ter are physically different in asymptotically flat and
dS spacetimes, this analysis may be helpful in under-
standing the absorption process in asymptotically dS
spacetimes.
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In Fig. 3 we compare the numerical results for the
greybody factor with the ones obtained using the analytical
approximation (30). We find good agreement for low !
even in the conformally coupled case (� ¼ 1=6). [We
recall that Eq. (30) is valid in the small-� regime.]

In Fig. 4 numerical results are compared with the
analytic results for small black holes, given by Eq. (43),
for �M2 ¼ 10�6, l ¼ 0, 1, 2, with � ¼ 0 (left plots), and
� ¼ 1=6 (right plots). We note an excellent agreement in
the low-frequency limit, which is the regime of validity of
approximation (43). This can be regarded as a simple
consistency check of our results.

IV. ENERGY EMISSION

The number of massless scalar particles emitted by
the black hole per unit time, also called flux spectrum, is
given by

dNð!Þ
dt

¼ d!

2�

1

e!=TH � 1

X1
l¼0

ð2lþ 1Þ�lð!Þ: (48)

The differential energy emission rate reads

d2Eð!Þ
dtd!

¼ 1

2�

!

e!=TH � 1

X1
l¼0

ð2lþ 1Þ�lð!Þ: (49)

In Fig. 5 we plot d2Eð!Þ=ðdtd!Þ. As for the transmis-
sion coefficient, the emission rate for zero frequency is
nonzero only in the case of a minimally coupled scalar

field. Therefore, we conclude that the conjectured distinc-
tive feature caused by the presence of the nonvanishing
cosmological constant, namely the emission of a signifi-
cant number of ultrasoft quanta, pointed out in Ref. [20]
(even in the four-dimensional case—cf. Sec. V of that
paper), will not occur for the case of a nonminimally
coupled scalar field. Note, however, that there is still an
enhancement in the emission of soft quanta for low � with
the rate dropping to zero rapidly as ! becomes very close
to zero.
It is apparent in Fig. 5 that the difference in the emission

rates for distinct couplings is only considerable in the low-
frequency regime. In other words, the coupling to the
scalar curvature becomes irrelevant above intermediate
values of the frequency (!�M�1). We also note that
these differences for low frequencies become more and
more pronounced as the value of � increases. On the other
hand, the enhancement in the emission rate occurring at
low frequencies becomes less significant as the coupling
parameter � grows.

V. GENERALIZEDABSORPTION CROSS SECTION

The definition of absorption cross section in nonasymp-
totically flat spacetimes cannot be formulated as it is done
in asymptotically flat geometries. In the latter case, one

may consider an impinging plane wave, �inc ¼ ei!ðz�tÞ,
which is a solution of the field equation in the asymptotic
region since the metric there approaches that of Minkowski
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FIG. 4 (color online). Left plots: Greybody factor for small black holes in which �M2 ¼ 10�6, � ¼ 0, and l ¼ 0, 1, 2. Note the
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spacetime. After being scattered off the spherically sym-
metric black hole, the scalar field in the asymptotic region
r ! 1 can be decomposed into spherical harmonics [35]

�sca � i
X1
l¼0

ð�1Þlð2lþ 1Þ
2!

	 ½e�i!r þ R!le
i!r�

r
Plðcos �Þe�i!t; (50)

with jR!lj2 being the reflection coefficient. Then, using the
definition of the absorption cross section [36]

� � absorbed flux

incidentwave current
; (51)

one concludes that the total absorption cross section for an
asymptotic plane wave incident on an asymptotically flat
spherically symmetric spacetime is

� ¼ X1
l¼0

�l ¼ �

!2

X1
l¼0

ð2lþ 1Þ�lð!Þ; (52)

where �l represents the absorption cross section of each
partial wave [37], usually referred to as partial absorption
cross section.
In the case of asymptotically dS spacetimes it is easy to

see that a plane wave is no longer an asymptotic solution of
the field equation. Indeed, c !lðrÞ ¼ e
i!r does not satisfy
Eq. (10) near the cosmological horizon rC, and therefore a
sum over angular modes like the one displayed on the
right-hand side of Eq. (50) does not yield an asymptotic
solution. However, c !lðrÞ ¼ e
i!r� is an asymptotic solu-
tion of the Regge-Wheeler equation (10) and one might try
to construct an analogue of a plane wave out of such
solutions.
Let us consider then an incident wave of the form

�dS
inc ¼

r�
r
ei!ðr� cos ��tÞ; (53)

which can also be decomposed into spherical waves. This
is understood by first recalling the identity [38]

ei!r� cos� ¼ X1
l¼0

ilð2lþ 1Þjlð!r�ÞPlðcos �Þ; (54)

and then using the asymptotic form of the spherical Bessel
functions of the first kind, jlðxÞ, thus obtaining

r�
r
ei!r� cos � � i

X1
l¼0

ð�1Þlð2lþ 1Þ
2!

	 ½e�i!r� � ð�1Þlei!r� �
r

Plðcos �Þ: (55)

This approximation is valid as an expansion for !r� � 1.
It turns out that the wave (53) is not an asymptotic

solution of the Klein-Gordon equation (8). Accordingly,

� ¼ r�1e�i!ðt�r�ÞYlmð�; ’Þ is also not an asymptotic
solution of Eq. (8), even though it is an asymptotic solution
of the Regge-Wheeler equation (10) [39].
Nevertheless, for small black holes there exists an inter-

mediate region rH � r � rC where f � 1 and r� � r. In
this region the wave (53) is an approximate solution of the
field equation, meaning that the Klein-Gordon operator
defined by the left-hand side of Eq. (8) does not annihilate
(53) but instead yields terms that are suppressed by powers
of rH=r and of r=rC.
Let us now return to expression (55), which represents a

scattered wave in pure dS spacetime at any radial coordi-
nate r that is large compared to the wavelength 1=! but
small relative to the cosmological horizon rC. In the pres-
ence of a black hole, the scattered wave will be modified by
the inclusion of a nontrivial reflection coefficient,

�dS
sca� i

X1
l¼0

ð�1Þlð2lþ1Þ
2!

	½e�i!r� þR!le
i!r� �

r
Plðcos�Þe�i!t; (56)
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with R!l ¼ Aout
!l =A

in
!l and Ain

!l ¼ ið�1Þl ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2lþ 1Þp

=!.

Despite the similarity between Eqs. (56) and (50), in order
to define the absorption cross section one must still deter-
mine the flux of the wave (56) at some intermediate radius
r 2 ðrH; rCÞ and the current of the incident wave.

The wave flux is given by

F ¼ �
Z

Jrr2d�; (57)

where d� is the solid angle element and Jr is the radial
(contravariant) component of the current, which is defined
for a wave � as

J� � 1

2i
ð��@����@��

�Þ: (58)

Using Eqs. (56)–(58), it can be shown that the flux com-
puted using the scattered wave is

F ¼ �

!

X1
l¼0

ð2lþ 1Þ�lð!Þ; (59)

which is independent of the radial coordinate r. To find
Eq. (59) we have used �lð!Þ ¼ 1� jR!lj2.

The incident current corresponding to wave (53) is
found to be

j ~Jincj ¼ !
r2�
r2

�
f�1cos 2�þ r2�

r2
sin 2�

�
1=2

: (60)

This result is general and could be applied for both asymp-
totically dS and flat spacetimes. In the latter case, we may
take the limit r ! 1, in which case r� ! r and f ! 1,

so that j ~Jincj ¼ !. This, together with Eq. (59) and the
definition of the absorption cross section (51), results
in Eq. (52).

On the other hand, for asymptotically dS spacetimes if
we take the limit r ! rC then r� ! 1 and f ! 0, which
makes the incident current diverge. This would lead to an
ill-defined absorption cross section and it is a consequence
of the wave (53) not being a true asymptotic state.

However, for the case of small SdS black holes there
exists an intermediate region where f � 1 and r� � r, and

therefore j ~Jincj � !. Hence, it is physically sensible to
define an absorption cross section only for small SdS black
holes, i.e., for � � 1. For this reason we refer to the
quantity � in Eq. (52) when used in asymptotically dS
spacetimes as the ‘‘generalized’’ absorption cross section,
and to the quantity �l as the partial ‘‘generalized’’ absorp-
tion cross section. [We note that � in Eq. (52) was referred
to as absorption cross section in Ref. [20] for asymptoti-
cally dS spacetimes without explaining when this notion is
physically meaningful].

A. Analytic results

Our numerical results show that, in the low-frequency
regime, the partial generalized absorption cross section is

nonzero for all l modes. This contrasts with the case of the
scalar field in Schwarzschild spacetimes, in which the
greybody factor in the low-frequency regime behaves
generally as !2lþ2, and the partial absorption cross section
as !2l (see, for instance, Ref. [40]). Here, as shown in
Eq. (47), the greybody factors behave generally as !2,
except for the minimally coupled case, where the greybody
factor is constant in the low-frequency regime, as ex-
pressed in Eq. (17).
Although the concept of absorption cross section

cannot be straightforwardly adopted in asymptotically dS
spacetimes, it is interesting that numerical results for
expression (52) are consistent with what one could call
the ‘‘high-frequency generalized absorption cross section,’’
as we show here.
Let us present a geodesic analysis to illustrate how this

quantity can be found. We start by recalling that the motion
of a massless particle in the spacetime defined by the line
element (2) is governed by

� f _t2 þ f�1 _r2 þ r2 _�2 ¼ 0; (61)

where we have assumed � ¼ �=2, without loss of general-
ity (taking advantage of the spherical symmetry), and the
overdot represents the derivative with respect to an affine
parameter. The constants of motion are

E � f _t; (62)

L � r2 _�: (63)

Writing Eq. (61) in terms of these constants, we get

_r 2 þ fL2

r2
¼ E2; (64)

which is similar to the equation for the total mechanical
energy. In this analogy, the second term on the left-hand
side of Eq. (64) plays the role of an ‘‘effective potential’’
for the particle’s motion of total energy E2. This effective
potential possesses a maximum at r ¼ 3M, which implies
that critical orbits exist in SdS spacetime at radius rc ¼
3M. This result does not depend on the value of the
cosmological constant and, therefore, is the same for
Schwarzschild and SdS spacetimes.
Making use of the analogy with asymptotically flat

spacetimes once again, we can define the quantity b ¼
L=E, which is an analog of the apparent impact parameter
[26,34]. This quantity b, which is related to the initial
conditions of the particle motion, has a critical value bc
when E2 equals the maximum of the effective potential,
given by

bc ¼ 3M

�
1

3
� 3�M2

��1=2
: (65)

Classically, if b < bc, then the particle is absorbed by the
black hole; if b > bc, the particle is scattered away from
the black hole; if b ¼ bc, the particle ends on the unstable

GREYBODY FACTORS FOR NONMINIMALLY COUPLED . . . PHYSICAL REVIEW D 87, 104034 (2013)

104034-9



orbit at r ¼ rc, circling the black hole an infinite number of
times.

We may push this analogy further and define what would
be the ‘‘high-frequency generalized absorption cross
section’’ as

�hf � �b2c ¼ 9�M2

�
1

3
� 3�M2

��1
: (66)

We note that �hf ! 27�M2 as � ! 0, which is a well-
known result for Schwarzschild black holes. In the next
subsection we compare �hf with the numerical results for
the quantity (52) in the high-frequency limit and obtain an
excellent agreement.

B. Numerical results

In Fig. 6 we plot our numerical results for the general-
ized absorption cross section�, defined by (52). It diverges
when ! ! 0 in the minimally coupled case, but remains
finite for � � 0, as we can see from the log plots in the
same figure. The results presented in Fig. 6 agree very well
with the high-frequency limit given in Eq. (66), which is
represented by the straight line, despite the absence of a
clear physical meaning for the quantity � in generic
asymptotically dS spacetimes.

In Fig. 7, we present the total and partial generalized
absorption cross sections for �M2 ¼ 0:01 and � ¼ 1=6
(conformal coupling). The sum in Eq. (52) is performed up
to l ¼ 20. It can be seen that the partial generalized
absorption cross sections are nonzero for ! ¼ 0, and that
they get smaller for bigger values of l, presenting a value
�10�19M2 already for l ¼ 6. This is in agreement with
Eq. (47). As in Fig. 6, the total generalized absorption cross
section exhibited in Fig. 7 presents an excellent agreement
with the high-frequency result given by Eq. (66). We note

that the � dependence in �hf is not significant for this
agreement.

VI. CONCLUSION

In this paper we have analyzed the greybody factor of
Schwarzschild–de Sitter black holes for nonminimally
coupled scalar fields. In particular, it was shown that the
zero-angular-momentum greybody factor in the zero-
frequency regime is nonzero only for the minimally
coupled (and massless) scalar field. For all other couplings
to the scalar curvature, which may equivalently be re-
garded as mass terms, the greybody factors tend to zero
like!2, irrespective of the value of the coupling parameter
�. In this sense the minimally coupled case is special.
A nonvanishing greybody factor in the low-frequency

regime implies a nonzero Hawking emission in the same
limit. For � � 0, however, the emission rate in this limit is
always zero. There is nevertheless an enhancement in the
emission rate but it only occurs at finite, albeit small,
frequencies.
We have obtained numerical results that are in good

agreement with the analytical low-� approximations
derived in the low-frequency regime. The numerical
results also match the analytical small-� approximation
in the low-frequency regime for the case of small
Schwarzschild–de Sitter black holes. We observed that
the coupling to the scalar curvature only has a significant
effect on the emission rate at low frequencies, ! & M�1,
and that the above-mentioned enhancement is more pro-
nounced for larger black holes (larger �) but becomes less
significant as the coupling parameter � grows.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

σ  
/M

2

Mω

Generalized absorption cross section for SdS black holes, ΛM 2 = 0.001

ξ = 0
ξ = 1/42
ξ = 1/21
ξ = 1/14

ξ = 2/21
ξ = 5/42
ξ = 1/7
ξ = 1/6

ξ = 4/21
high frequency

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 0  0.002  0.004  0.006  0.008  0.01

lo
g 1

0[
σ 

/M
2 ]

Mω

FIG. 6 (color online). Generalized absorption cross section
plotted as a function of the frequency for �M2 ¼ 0:001 and
for different choices of the coupling �. The summation in l has
been performed up to l ¼ 3. The straight line is the high-
frequency limit, given by Eq. (66).

 50

 60

 70

 80

 90

 100

 110

 0  0.5  1  1.5  2  2.5  3

σ  
/M

2

Mω

Generalized absorption cross section for SdS black holes, ΛM 2 = 0.01, ξ = 1/6

total
high frequency

-20

-15

-10

-5

 0

 5

 0  0.5  1  1.5  2  2.5  3

lo
g 1

0[
σ l

 / M
2 ]

Mω

l = 0
l = 1
l = 2
l = 3
l = 4
l = 5
l = 6

FIG. 7 (color online). Total and partial generalized absorption
cross sections for �M2 ¼ 0:01 and conformally coupled scalar
field, � ¼ 1=6, considering contributions of the angular momen-
tum up to l ¼ 20. The total generalized absorption cross section
is in excellent agreement with the high-frequency limit. The
partial contributions are shown in the log plot. One can see that,
although finite, the partial generalized absorption cross sections
at ! ¼ 0 are very small for l > 0, and get smaller for larger
values of l.

CRISPINO et al. PHYSICAL REVIEW D 87, 104034 (2013)

104034-10



Finally, we developed a sensible notion of a generalized
absorption cross section in asymptotically de Sitter space-
times and investigated its properties. In this respect we
found an excellent agreement between its high-frequency
behavior and a geometric-optics description.
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APPENDIX: SQUARE-WELL POTENTIAL

In order to understand the change in the low-frequency
behavior of the transmission coefficient at certain values of

parameters in the potential, such as � for the potential (11),
the scattering problem in a negative square-well potential
is instructive. Thus, we consider the scattering problem

� d2c

dx2
þ VðxÞc ðxÞ ¼ !2c ðxÞ; (A1)

where

VðxÞ ¼
��!2

0; if 0< x< a;

0; otherwise:
(A2)

The transmission coefficient �ð!Þ can readily be found as

�ð!Þ ¼ 4!2�2

4!2�2cos 2�aþ ð!2 þ�2Þ2sin 2�a
; (A3)

where we have defined � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ!2

0

q
.

If!0a � n� for any integer n, then for small! we have

�ð!Þ � 4!2

!2
0sin

2!0a
: (A4)

We can readily see that the ! ¼ 0 solution which equals 1
for x < 0, takes the value c ðxÞ ¼ cos!0a�!0ðx� aÞ	
sin!0a for x > a. With dc =dx ¼ s ¼ �!0 sin!0a we
can write Eq. (A4) as �ð!Þ � 4!2=s2 [see Eq. (21)]. If
!0a ¼ n� for some integer n, then the ! ¼ 0 solution
which equals 1 for x < 0 takes the constant value ð�1Þn for
x > a. For these cases we indeed find �ð!Þ ! 1, which is a
constant, in the limit ! ! 0.
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