
Ultrahigh energy collision with neither black hole nor naked singularity

Ken-ichi Nakao,1,* Masashi Kimura,2,† Mandar Patil,3,‡ and Pankaj S. Joshi3,§

1Department of Mathematics and Physics, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
2Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

3Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
(Received 28 March 2013; published 23 May 2013)

We explore the collision between two concentric spherical thin shells. The inner shell is charged,

whereas the outer one is either neutral or charged. In the situation we consider, the charge of the inner

shell is larger than its gravitational mass, and the inside of it is empty and regular. Hence, the domain just

outside it is described by the overcharged Reissner-Nordström geometry, whereas the inside of it is

Minkowskian. First, the inner shell starts to shrink from infinity with finite kinetic energy, and then the

outer shell starts to shrink from infinity with vanishing kinetic energy. The inner shell bounces on the

potential wall and collides with the ingoing outer shell. The energy of collision between these shells at

‘‘their center-of-mass frame’’ does not exceed the total energy of the system. By contrast, by virtue of the

very large gamma factor of the relative velocity of the shells, the energy of collision between two of the

constituent particles of these shells at their center-of-mass frame can be much larger than the Planck scale.

This result suggests that the black hole or naked singularity is not necessary for the ultrahigh energy

collision of particles.
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I. INTRODUCTION

Banados, Silk, and West (BSW) recently pointed out that
the Kerr black hole can act as a particle accelerator [1]: Two
particles dropped in from infinity at rest, traveling along the
timelike geodesics, can collide with arbitrarily large energy
at their center-of-mass frame if the Kerr black hole is
extremely spinning and the orbital angular momentum of
one of the particles takes a specific fine-tuned value. Then,
the possible astrophysical implications of this process
around the event horizon of the central supermassive black
hole in the context of annihilations of the dark matter
particles accreted from the galactic halo were investigated
[2]. The BSW process of particle acceleration suffers from
several drawbacks and limitations pointed out in Ref. [3],
such as, for example, a fine-tuning of the orbital angular
momenta of the particles, a neglect of the self-gravity of
particles in their analysis, and an upper bound on the spin of
the Kerr black hole formed in our Universe [4]. There are
many investigations of this acceleration mechanism in the
background of Kerr as well as many other black holes [5].

There are studies that point out other possibilities of the
high-energy collision except for the use of black holes
[6–8]. Two of us, Mandar Patil and Pankaj S. Joshi (PJ),
pointed out the other possibility. Particle collisions with
arbitrarily large energy at the center-of-mass frame may
occur in the naked singular Kerr spacetime if the total
angular momentum of the central naked singularity is
very close to the critical value [7]. This mechanism is

physically rather different from the BSW process. In the
case of the BSW process, one of the two particles asymp-
totically approaches the event horizon by virtue of its
special value of the orbital angular momentum. Since the
event horizon is generated by the outward null geodesics,
the world line of the particle asymptotically becomes out-
ward null. Hence, the relative velocity between this particle
and another particle falling to the Kerr black hole can be
very large. As a result, the center-of-mass energy of the
collision between these particles can be arbitrarily large.
By contrast, in the case of the PJ process, one of the two
particles falls inward but eventually turns to outward due to
the repulsive nature of the naked singularity or due to the
centrifugal potential. Then, it can collide with another
particle falling inward. In this mechanism, the large rela-
tive velocity between these two particles at the collision
event can be achieved by virtue of the deep gravitational
potential of the almost extreme naked singular geometry.
Like the BSW process, the PJ process of particle accel-

eration also would have certain drawbacks and limitations.
As in the case of BSW’s analysis, the self-gravities of the
particles are neglected in PJ’s analysis, and it is unclear
whether the naked singular Kerr geometry appears in our
Universe [9]. However, in the case of the PJ process, no
fine-tuning of the orbital angular momenta of the colliding
particles is necessary.
The issue of the self-gravity of the point particles is

difficult to deal with in general. If the effects of self-gravity
and gravitational radiation are important in a collision
between elementary particles, such a collision process
must be described by the quantum gravity: The gravita-
tional interaction between elementary particles is to be
necessarily quantum in nature. Hence, even if BSW or PJ

*knakao@sci.osaka-cu.ac.jp
†mkimura@yukawa.kyoto-u.ac.jp
‡mandarp@tifr.res.in
§psj@tifr.res.in

PHYSICAL REVIEW D 87, 104033 (2013)

1550-7998=2013=87(10)=104033(12) 104033-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.87.104033


analysis does not predict accurately the high energy
collision of the elementary particles, their result implies
that collisions of elementary particles with the center of
mass energy high enough to cause quantum gravitational
interactions may occur in the Kerr spacetime. However, it
is a fascinating primary question as to what happens when
the center-of-mass energy of a collision becomes compa-
rable to the total mass of the system within the framework
of general relativity.

Unfortunately, it is very difficult to treat analytically the
motion of matter in the Kerr spacetime, if we will take into
account the effect of the matter self-gravity. Hence, it is
worthwhile to notice that the similar processes to both of the
BSW and PJ processes may occur in the Reissner-
Nordström spacetime [6,10,11]: It is much easier than the
case of theKerr spacetime to treat analytically themotion of
matter in the Reissner-Nordström spacetime by virtue of its
spherical symmetry. In the case of a process similar to the
BSWone, a particle with charge of the same sign as that of
the extreme Reissner-Nordström black hole radially falls
toward the black hole from infinity. If the charge of the
particle is equal to its mass, the particle asymptotically
approaches the event horizon. After the charged particle
starts to fall, another neutral particle also starts a radial fall
toward the black hole from infinity. Then, it eventually
overtakes and collides with the charged particle previously
falling. The closer to the event horizon the collision event is,
the higher will be its energy at the colliding particles center-
of-mass frame, and arbitrarily large collision energy is, in
principle, possible. By contrast, in the case of the process
similar to PJ’s, two radially moving neutral particles can
collide with arbitrarily large energy at their center-of-mass
frame. One of the two particles falls inward from infinity
and eventually turns back outward due to the repulsive
nature of the central naked singularity. Then, it collides
with another particle, which starts to fall toward the naked
singularity after the first particle has started. The very large
collision energy is possible due to the deep gravitational
potential of almost extreme central naked singularity, like
in the case of the naked singular Kerr spacetime.

A system of concentric spherical shells with infinitesimal
width in the Reissner-Nordström spacetime is very useful to
study the effect of the self-gravity in the BSW and PJ
processes, since their dynamical degrees of freedom are
finite and, hence, the system is tractable analytically. The
stress-energy tensor diverges on the shells, since finite
energy and momentum concentrate on the infinitesimally
thin domains. This means that these shells are categorized
into the so-called curvature polynomial singularity [12]
through the Einstein equations. Since each shell has finite
mass and momentum, the volume integral of the stress-
energy tensor is finite: The components of the stress-energy
tensor are distributional sources of Einstein’s equations.
Here, we should note that the distributional source is a
technical simplification usually adopted in the theoretical

study of gravitational physics. For example, in the frame-
work of Newtonian gravity, massive point particles are a
useful idealization to study the celestial mechanics,
although real stars have finite sizes. By this idealization,
the dynamical degrees of freedom of the system become
finite, and, as a result, the analysis is very easy. If the size of
each star is much smaller than the size of the system, this
point-particle approximation will give a sufficiently accu-
rate prediction about each of their orbits. The divergences of
the gravitational potential and the gravitational force just at
the point particle are artificial due to this technical ideal-
ization, and the gravity of each star is assumed to be so
small that the Newtonian approximation is valid. By con-
trast, in the framework of general relativity, the point-
particle approximation is impossible, since the point particle
is so seriously singular that the spacetime metric cannot be
defined on it. However, the thin-shell approximation is
possible even in the framework of general relativity, since
the metric is defined on the infinitesimally thin shell even
though the stress-energy tensor diverges on it. We can derive
the equation of motion for the shell, which is consistent with
the Einstein equations by the so-called Israel formalism
[13,14]. If the shell is highly symmetric (e.g., spherically
symmetric), the degrees of freedom become finite, and, as a
result, the analysis is very easy. The divergence of the Ricci
tensor at the shell is artificial due to this technical simplifi-
cation. The thin-shell approximation is valid if the width of
the shell is much smaller than the size of the system.
Two of us, Massashi Kimura and Ken-ichi Nakao-along

with their collaborator, Hideyuki Tagoshi [6]–studied the
collision between two concentric spherical dust shells in the
Reissner-Nordström black hoke geometry; one of the two
shells has a charge, whereas another is neutral. This example
corresponds to the spherical shell version of the BSW
process. By virtue of the spherical symmetry, they treated
this system exactly and showed that the effect of the self-
gravity makes the collision energy finite as long as we focus
on the collision event observable for distant observers. Then,
the present authors investigated the collision between two
concentric neutral spherical dust shells in the naked singular
Reissner-Nordström geometry [11]: This example corre-
sponds to the spherical shell version of the PJ process.
They showed that the upper bound on the energy of the
collision between the shells appears due to the self-gravity
of the shells also in this case as long as we focus on the
collision event observable for the distant observers. But the
energy of the collision between two of the constituent
particles of these shells can still exceed the Planck scale.
Furthermore, in the case of the naked singular geometry, the
time scale for the high-energy collision to occur may be
much shorter than the case that corresponds to the BSW
process [11].
In this paper, we investigate a collision between two

concentric infinitesimally thin spherical shells made up of
dust particles in a situation of no black hole and no naked
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singularity, taking into account their self-gravity exactly. The
domain inside the inner shell is describedby theMinkowskian
geometry, whereas the outside of it is described by the over-
charged Reissner-Nordström geometry. The outer shell may
or may not have charge, but the outside of it is assumed to be
also described by the overcharged Reissner-Nordström ge-
ometry. Even in this situation, a very high-energy collision
between two of the constituent particles of these shells
through a similar mechanism to the PJ process may occur,
since the domain between these shells is described by the
naked singular Reissner-Nordström geometry.

This paper is organized as follows. In Sec. II, we
briefly review Israel’s formalism. Also in this section, we
show the situation we consider and derive equations of
motion for spherical shells. In Sec. III, the collision energy
of two of constituent particles of the shells at their center-
of-mass frame is shown. Sec. IV is devoted to a summary
and discussion.

In this paper, we adopt the geometrized unit in which the
speed of light and Newton’s gravitational constant are unity.

II. EQUATION OF MOTION FOR
SPHERICAL SHELLS

We consider two concentric spherical shells that are
infinitesimally thin. These shells may have a Uð1Þ charge
(see Fig. 1).

The trajectories of these shells in the spacetime are
timelike hypersurfaces: The inner hypersurface is denoted
by �1, whereas the outer hypersurface is denoted by �2.
Correspondingly, the inner shell is called shell 1, whereas
the outer shell is called shell 2. �1 and �2 divide the
spacetime into three domains: The innermost domain is
denoted by D1, the middle one is denoted by D2, and the
outermost one is denoted by D3. By the symmetry of this

system, the geometry of the domain Di (i ¼ 1, 2, 3) is
described by the Reissner-Nordström solution for which
the line element is given by

ds2 ¼ �fiðrÞdt2i þ
1

fiðrÞdr
2 þ r2ðd�2 þ sin 2�d�2Þ; (1)

with

fiðrÞ ¼ 1� 2Mi

r
þQ2

i

r2
;

where Mi is the mass parameter and Qi is the Uð1Þ charge
within the sphere of the radius r. We should note that the
coordinate ti is not continuous across the shells, whereas r,
�, and � are everywhere continuous. The Uð1Þ gauge field
in the domain Di is given by

A� ¼ Qi

r
�t
�:

In the Reissner-Nordström spacetime of the mass
parameter M and the charge Q, there is a spacetime
singularity at r ¼ 0. This singularity is timelike and,
thus, is necessarily locally naked. The location of the
horizon in the Reissner-Nordström spacetime is given by
a positive root of the equation fðrÞ � 1� 2M=rþ
Q2=r2 ¼ 0. There are two roots to this equation, given by

r ¼ r� � M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

q
:

There are two real positive roots of the equation ifM>Q.
The larger root r ¼ rþ is the location of the event horizon,
and this spacetime contains a spherically symmetric
charged black hole. The smaller root r ¼ r� corresponds
to the Cauchy horizon associated with the timelike singu-
larity at r ¼ 0. IfM ¼ Q, there is only one positive root. In
this case, the black hole has a degenerate event horizon at
r ¼ M ¼ Q; we call this the extreme black hole. In the
case ofM<Q, there is no real root of the equation fðrÞ ¼
0. Thus, the event horizon is absent, and the timelike
singularity at r ¼ 0 is exposed to the asymptotic observer
at infinity. This configuration, thus, contains a globally
visible naked singularity.
As mentioned, even though�A (A ¼ 1, 2) are spacetime

singularities, we can derive the equation of motion for each
spherical shell, which is consistent with the Einstein equa-
tions, by the so-called Israel formalism [13,14]. Let us
cover the neighborhood of one singular hypersurface �A

by a Gaussian normal coordinate �, where @=@� is per-
pendicular to �A and directs from DA to DAþ1. Then, the
sufficient condition to apply Israel’s formalism is that the
stress-energy tensor is written in the form

T�� ¼ X
A

SðAÞ���ð�� �AÞ;

where �A is located at � ¼ �A, �ðxÞ is Dirac’s delta

function, and SðAÞ�� is finite and called the surface stress-
energy tensor of �A.

Shell-2

Shell-1

D :   2 M > Q2 2

D :   3 M > Q3 3

D :   1 M = Q =01 1

FIG. 1. This is a snapshot of the spherically symmetric space-
time divided into two domainsD1,D2, andD3 by the trajectories
of shell 1 and shell 2, i.e., �1 and �2.
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The junction condition of the metric tensor is given as
follows. We impose that the metric tensor g�� is continu-

ous across �A, but its derivative is not necessarily so. The
unit normal vector to �A is @=@�. Hereafter, we denote it
by n�. The intrinsic metric of �A is given by

h�� ¼ g�� � n�n�:

Then, the extrinsic curvature is defined by

KðiÞ
�� ¼ h��h

�
�rðiÞ

� n�;

where rðiÞ
� is the covariant derivative with respect to the

metric in the domainDi. This extrinsic curvature describes
how �A is embedded into the domain Di. In accordance
with Israel’s formalism, the Einstein equations lead to

KðAþ1Þ
�� � KðAÞ

�� ¼ 8	

�
SðAÞ�� � 1

2
h�� trS

ðAÞ
�
: (2)

In this article, the surface stress-energy tensors of
the shells are assumed to be that of pressureless matter,
i.e., the dust

SðAÞ�� ¼ 
Au�u�;

where 
A is the energy per unit area on �A, and u� is the
four-velocity. We assume that
A is positive. By the spheri-
cal symmetry, the motion of shell A is described in the form
ti ¼ tið�Þ and r ¼ rð�Þ, where i ¼ A or i ¼ Aþ 1, and � is
the proper time of shell A. The four-velocity is given by

u� ¼ ð _ti; _r; 0; 0Þ;
where a dot means a derivative with respect to �. Then,
n� is given by

n� ¼ ð� _r; _ti; 0; 0Þ:
Together with u� and n�, the following unit vectors form
an orthonormal frame:

e
�
ð�Þ ¼

�
0; 0;

1

r
; 0

�
; e

�
ð�Þ ¼

�
0; 0; 0;

1

r sin �

�
:

The extrinsic curvature is obtained as

KðiÞ
��u�u� ¼ 1

fi _ti

�
€rþ f0i

2

�
;

KðiÞ
��e

�
ð�Þe

�
ð�Þ ¼ KðiÞ

��e
�
ð�Þe

�
ð�Þ ¼ �na@a ln r ¼ � fi

r
_ti;

and the other components vanish, where a prime means a
derivative with respect to r. By the normalization condition
u�u� ¼ �1, we have

_ti ¼ � 1

fi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2 þ fi

q
: (3)

We assume that there is no black hole initially, or,
equivalently, fi is initially everywhere positive. Then, ti
corresponds to the time coordinate, and its derivative _ti

should be positive initially. Thus, we should choose the
plus sign in the right-hand side of Eq. (3). If shell A enters
into a black hole and fi becomes negative, tðiÞ becomes a

spatial coordinate. If so, _tðiÞ may change its sign, and,

hence, there is a possibility that we have to choose the
minus sign in Eq. (3). But as long as we do not mention,
hereafter, we assume the plus sign in Eq. (3).

A. Effective potential

From the t-t and �-� components of Eq. (2), we obtain
the following relation:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2 þ fAþ1ðrÞ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2 þ fAðrÞ

q
¼ �mA

r
; (4)

with

mA :¼ 4	
Ar
2 ¼ constant:

Note thatmA is positive, since
A is assumed to be positive.
Let us rewrite Eq. (4) into the form of the energy

equation. First, we write it in the form

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2 þ fAþ1ðrÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2 þ fAðrÞ

q
�mA

r
(5)

and then take a square of its both sides:

_r2 þ fAþ1ðrÞ ¼ _r2 þ fAðrÞ þ
�
mA

r

�
2

� 2mA

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2 þ fAðrÞ

q
: (6)

Furthermore, we rewrite Eq. (6) in the form

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2 þ fAðrÞ

q
¼ r

2mA

�
fAðrÞ � fAþ1ðrÞ þ

�
mA

r

�
2
�
: (7)

By taking a square of the both sides of the above equation,
we have

_r2 þ VAðrÞ ¼ 0; (8)

where

VA � fAðrÞ �
�

r

2mA

�
2
�
fAðrÞ � fAþ1ðrÞ þ

�
mA

r

�
2
�
2
: (9)

Equation (9) is regarded as the energy equation for shell A.
The function VAðrÞ corresponds to the effective potential.
In the domain allowed for the motion of shell A, VA � 0
should be satisfied.
Here, note that the negativity of the right-hand side of

Eq. (4) implies fAþ1 < fA in the domain allowed for the
motion of shell A. Furthermore, since the left-hand side of
Eq. (5) is non-negative, the right-hand side of it should also
be non-negative. Substituting Eq. (7) into the right-hand
side of Eq. (5), we find that the following inequality should
be satisfied in the allowed domain:
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FAðrÞ � fAðrÞ � fAþ1ðrÞ �
�
mA

r

�
2

¼ 2mAEA

r
�Q2

Aþ1 �Q2
A þm2

A

r2
� 0; (10)

where

EA � MAþ1 �MA

mA

:

We should note that EA is not necessarily positive even in
the case ofmA > 0, sinceMAþ1 �MA does not necessarily
represent the energy of shell A [15].

B. Allowed domain for the motion of the shells

In the case of EA > 0, Eq. (10) leads to

r � �A; (11)

where

�A � Q2
Aþ1 �Q2

A þm2
A

2EAmA

:

In the case of EA ¼ 0, Eq. (10) leads to

Q2
Aþ1 �Q2

A þm2
A � 0: (12)

In the case of EA < 0, Eq. (10) leads to

r � �A: (13)

Since r is positive, the condition

Q2
Aþ1 �Q2

A þm2
A < 0 (14)

should hold so that Eq. (13) has a solution [19].
Here, we should note that there is a possibility that if

shell A is in the domain with QAþ1 >MAþ1, there is a
possibility that the domain with VA < 0 is not allowed
for the motion of shell A. We see such a case in the next
section.

In this article, we assume M1 ¼ 0 ¼ Q1, M2 <Q2, and
M3 <Q3; shell 1 is charged, whereas shell 2 is not neces-
sarily charged. The domain D1 is then described by the
Minkowski geometry, whereasD2 andD3 are described by
the overcharged Reissner-Nordström geometry. Hence,
fAþ1 (A ¼ 1, 2) is everywhere positive. We can see that

VAð�AÞ ¼ fAþ1ð�AÞ> 0: (15)

Equation (15) implies that r ¼ �A is necessarily in the
domain forbidden for the motion of shell A. By the
assumption on Mi and Qiði ¼ 1; 2; 3Þ, since the left-hand
side of Eq. (5) is positive, the function FAðrÞ (10) takes a
positive value.

III. ENERGY OF COLLISION BETWEEN
TWO CONCENTRIC SHELLS

In accordance with Refs. [6,11], the energy Ecm of the
collision between the shells in the ‘‘center-of-mass frame’’
is given by

E2
cm ¼�g��ðm1u

�
1 þm2u

�
2 Þðm1u

�
1 þm2u

�
2Þ

¼m2
1þm2

2þ
2m1m2

f2
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf2�V1Þðf2�V2Þ

q
þ ffiffiffiffiffiffiffiffiffiffiffi

V1V2

p �;
(16)

wherewe have assumed that the sign ofur1 is opposite that of
ur2. We are also interested in the energy EP of the collision
between two of constituent particles of these shells in their
center-of-mass frame. We assume that all constituent par-
ticles have an identical mass m. Then, we obtain

E2
P ¼ �g��m

2ðu�1 þ u�2 Þðu�1 þ u�2Þ

¼ 2m2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðf2 � V1Þðf2 � V2Þ
p þ ffiffiffiffiffiffiffiffiffiffiffi

V1V2

p
f2

�
: (17)

From Eq. (17), we can expect that Ecm andEP are large if
the collision occurs at the minimum of f2. The function
f2ðrÞ takes a minimum value at

r ¼ rmin � Q2
2

M2

;

and the minimum value f2ðrminÞ is equal to 1� ðM2=Q2Þ2.
If Q2 is very close to M2, the minimum value f2ðrmin Þ is
very small, and Ecm and EP may be very large. We shall
estimate how large Ecm and EP of the collision at r ¼ rmin

can be. For this purpose, we parametrize Q2 as

Q2 ¼ ð1þ 
ÞM2;

and we assume 0< 
 � 1.

A. Shell 1

As mentioned, we assume both M1 and Q1 vanish, and,
hence, we have Q2

2 �Q2
1 þm2

1 ¼ Q2
2 þm2

1 > 0. This im-
plies that E1 should be positive, and, as a result,M2 should
also be positive: If E1 is negative, the areal radius r should
be less than zero by Eq. (13), but this is not the case of our
interest. Since we assume Q2 >M2, Q2 is necessarily
positive.
The effective potential of shell 1 is written in the form

V1ðrÞ ¼ 1� E2
1 þ

E1

m1r
ðQ2

2 �m2
1Þ �

�
Q2

2 �m2
1

2m1r

�
2
: (18)

The roots of V1ðrÞ ¼ 0 are

r ¼ �� � 1

2m1ðE1 � 1Þ
�
Q2

2 �
M2

2

E2
1

�
: (19)

By some consideration, we see that the motion of shell 1 is
necessarily unbound E1 > 1, and its allowed domain is
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r � �þ, as long as we assume Q2 >M2. The detail of the
consideration is given in Appendix A.

In order that the collision occurs at r ¼ rmin , r ¼ rmin

should be in a domain allowed for the motion of shell 1.
Thus, we have to impose �þ < rmin . Together with the
condition M2 ¼ E1m1 >m1, the condition �þ < rmin

leads to

E1 > 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
M2

Q2

�
2

s
¼ 1þ ð2
Þ1=2 þOð
Þ:

If E1 is slightly larger than unity, shell 1 shrinks to the
radius less than rmin .

The effective potential of shell 1 at r ¼ rmin is given by

V1ðrmin Þ ¼ 1� 1

4

�
E1 þ 1

ð1þ 
Þ2E1

�
2

¼ � 1

4

�
E1 � 1

E1

�
2 þ

�
1þ 1

E2
1

�

þOð
2Þ: (20)

If shell 1 is almost marginally bound, i.e., E1 ¼
1þ ð2
Þ1=2� with � larger than one but of order unity,
we have

V1ðrmin Þ ¼ �2ð�2 � 1Þ
þOð
2Þ:
From the above result, we can see that, in the almost
marginally bound case, the speed of shell 1 at r ¼ rmin ,

which is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�V1ðrmin Þ

p
, is very small. The high

speed of shell 1 at r ¼ rmin is achieved only if E1 � 1 is
almost equal to or larger than unity.

B. Shell 2

We assume that shell 2 starts to fall inward from infinity
at rest. This assumption is equivalent to the condition
E2 ¼ 1, i.e., M3 �M2 ¼ m2. As long as we see the effec-
tive potential V2, E2 ¼ �1 seems to also be a solution, but
it is not true due to Eq. (13): Negative E2 implies the bound
motion.

We adopt the following parametrization;

M3 ¼ M2 þ�M2 ¼ ð1þ�ÞM2;

Q3 ¼ ð1þ qÞQ2 ¼ ð1þ 
Þð1þ qÞM2;

m2 ¼ �M2:

Note that � is positive since m2 is positive.
By the careful analysis, we see that, in order that shell 2

that is at rest at infinity starts to fall inward and collides
with shell 1 at r ¼ rmin , the two cases appear. In the first
case, the following condition holds:

0<�< qð1þ 
Þ þ 
 (21)

for

� 


1þ 

< q � 0: (22)

By contrast, in the second case, the following condition
holds:

�m <�< qð1þ 
Þ þ 
; (23)

for

0< q< q	; (24)

where

�m ¼ ð1þ 
Þf1þ 
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 
Þ2 � 1

q
g



2
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ qðqþ 2Þ
f1þ 
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ 
Þ2 � 1

p g2
s

� 1

3
5; (25)

q	 ¼ 
2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ 
Þð2þ 
þ 
2Þp

2ð1þ 
Þ : (26)

The derivation of the above conditions is given in
Appendix B.

1. Case with negative charge or without charge

From the conditions (22), we obtain

q ¼ � 
w�
1þ 


with 0 � w� < 1: (27)

Substituting Eq. (27) into Eq. (21), we have

0<�< 
ð1� w�Þ:
Thus, we get

� ¼ 
ð1� w�Þx� with 0< x� < 1: (28)

By using the expressions (27) and (28), we have

V2ðrmin Þ ¼ � ½ð1� w�Þx� þ w��2
ð1� w�Þ2x2�

þOð
Þ< 0: (29)

2. Case with positive charge

From the conditions (24), we obtain

q ¼
�



2

�
1=2

wþ with 0 � wþ < 
�1=2
ffiffiffi
2

p
q	: (30)

Note that j
�1=2
ffiffiffi
2

p
q	 � 1j � 1. From Eq. (23), we have

�¼�mð1�xþÞþ½qð1þ
Þþ
�xþ with 0<xþ<1:

Substituting Eq. (30) into the above expression, we have

� ¼
�



2

�
1=2

wþ þ 
ðwþ � wþxþ þ xþÞ þOð
3=2Þ: (31)

By using the expressions (30) and (31), we have

V2ðrmin Þ ¼ � 2


w2þ
xþð1� wþÞf2wþ þ xþð1� wþÞg

þOð
3=2Þ< 0: (32)
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C. Energy of collision

We consider the collision of two shells such that shell 1,
which is initially ingoing, turns back as an outgoing shell
and then collides with the ingoing shell 2 at r ¼ rmin .
In this subsection, we estimate the center-of-mass energy
for this collision.

1. Case with negative charge or without charge

By using Eqs. (16), (20), and (29), we have

Ecm ¼ M3

E1

½1þ ðE2
1 � 1Þfð1� w�Þx� þ w�g�1=2 þOð
Þ:

The above equation implies that the collision energy
of the shells at their center-of-mass frames does not exceed
the total energy of the system M3. However, the gamma
factor of the relative velocity between the shells can be
very large:

� � �g��u
�
1 u

�
2

¼ 1

2


�ð1� w�Þx� þ w�
ð1� w�Þx�

��
E2
1 � 1

E1

�
þOð
0Þ;

and, hence, EP can also be very large. By using Eqs. (17),
(20), and (29), we have

EP ¼ m


1=2

�ð1� w�Þx� þ w�
ð1� w�Þx�

�
1=2

�
E2
1 � 1

E1

�
1=2 þOð
1=2Þ

’ 9:4
 1018
�ð1� w�Þx� þ w�

ð1� w�Þx�
�
1=2

�
E2
1 � 1

E1

�
1=2



�
m

mp

��
10�38




�
1=2

GeV; (33)

where mp is the mass of a proton.

The above result implies that EP can be indefinitely large

in the limit of ð1� w�Þx� ! 0 with ½ð1�w�Þx�þw��1=2

fixed. However, we should note that the number of
constituent particles of the shell N � m2=m should be
much larger than unity so that the continuum approxima-
tion is valid. By the definition of N, we have

N ¼ 
ð1� wÞxM2

m

¼ 1:2
 1019ð1� w�Þx�
�




10�38

��
M2

M�

��
mp

m

�
;

where M� is the solar mass. The above result implies that
ð1� w�Þx� must not be too small so that N is larger than
unity. But our result still implies that, through the collision
between two shells with charge of the different sign or with
no charge, the energy of the collision between their con-
stituent particles can exceed the Planck scale.

2. Case with positive charge

By using Eqs. (16), (20), and (32), we have

Ecm ¼ M3

E1

�
1þ 1

2
ðE2

1 � 1Þf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2þ þ Vðwþ; xþÞ

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðwþ; xþÞ

q
g
�
1=2 þOð
1=2Þ;

where

Vðw; xÞ :¼ xð1� wÞ½2wþ xð1� wÞ�: (34)

Equation (34) implies that the collision energy of the shells
at their center-of-mass frames does not exceed the total
energy of the system M3 also in the positive charge case.
However, also in this case, since the gamma factor of the
relative velocity between the shells can be very large, EP

can also be very large. By using Eqs. (17), (20), and (32),
we have

EP ¼ m

ð2
Þ1=4
2
4�

E1 � 1

E1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2þ þ Vðwþ; xþÞ

q
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vðwþ; xþÞ
p

wþ

3
51=2

þOð
1=4Þ

’ 7:9
 1018

2
4�

E1 � 1

E1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2þ þ Vðwþ; xþÞ

q
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vðwþ; xþÞ
p

wþ

3
51=2�

m

mp

��
10�76




�
1=4

GeV: (35)

In this case, the fine-tuning of 
 required for the ultrahigh
energy collision is more severe than the negative charge or
neutral case.

The above result implies that EP can be indefinitely large
in the limit of wþ ! 0 with xþ fixed. However, we should

note that we have assumed that 
1=2wþ � 
xþ, i.e.,wþ �

1=2xþ, when we derived Eq. (31). Thus, in Eq. (35), such a
limit must not be taken. But our result still implies that,
through the collision between two shells with the same sign
of charge, the energy of the collision between their con-
stituent particles can exceed the Planck scale.

IV. SUMMARYAND DISCUSSION

We studied a collision between two concentric spherical
thin dust shells: The inner shell is over-charged, whereas
the outer one may or may not be charged. The domain in
the inner shell is assumed to be described by the
Minkowskian geometry, whereas the domain between the
two shells and the domain outside the outer shell are
assumed to be described by the overcharged Reissner-
Nordström geometry. First, the inner shell starts to
fall inward from infinity with finite initial velocity and
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eventually turns outward due to its self-electric force that
overcomes its self-gravitational force. The outer shell starts
to fall inward from infinity with vanishing initial velocity
after a sufficient time after the inner shell has left. It will
collide with inner shell going outward.

We found that if the Reissner-Nordström geometry
between these shells is almost extreme but a bit over-
charged, the energy of the collision between two of the
constituent particles of these shells at their center-of-mass
frames can be much larger than the Planck scale even if
the mass of the particle is order of proton mass, the energy
of the collision between two shells at their center-of-mass
frames cannot exceed the total energy of the system. We
would like to stress that neither black hole horizon nor the
naked singularity is necessary to achieve very high energy
of the collision between constituent particles of the shells
in this case. The necessary condition to achieve the high
energy is that the collision occurs at r ¼ rmin � Q2

2=M2,
where Q2 and M2 are the charge and mass parameters of
the Reissner-Nordström geometry between these shells.

It is an important fact that the inner overcharged shell
can shrink to r < rmin if the initial inward velocity of the
inner shell at infinity exceeds a small threshold value.
Furthermore, the inner shell can shrink to an arbitrarily
small radius: We can see from Eq. (19) that, in the limit
E1 ! 1, the radius of the turning point r ¼ �þ vanishes.
This means that even if no naked singularity forms,
a domain described by the overcharged Reissner-
Nordström geometry arbitrarily close to the naked singu-
larity may appear as a transient phenomenon. The physical
phenomena similar to the PJ process may occur in such a
domain, even though no naked singularity forms.

As mentioned, the infinitesimally thin shell is a tech-
nical simplification. Although the stress-energy tensor of
the shell diverges, this prescription is based on the
assumption that the self-gravity of each constituent par-
ticle of the thin shells is negligible; the local dynamics
of each particle is described in the framework of the
special relativity. However, if the collision energy of the
particles at the center-of-mass frame exceeds the Planck
scale, the colliding particles will make the spacetime
highly curved, and black holes may form. Their motions
after ultrahigh energy collision cannot be described in
the framework of the special relativity. This means that
the motion of the shells after the collision is a highly
nontrivial problem, but this issue is out of the scope of
this article.
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APPENDIX A: SHELL 1

Here, we show that E1 must be larger than unity, and the
allowed domain for the motion of shell 1 is restricted to
r � �þ, where �þ is given in Eq. (19). As mentioned, E1

should be positive, and an inequality 0<M2 <Q2 holds.
First, we note that there is only one root of the equation

dV1ðrÞ=dr ¼ 0; the root is given by

r ¼ �m � Q2
2 �m2

1

2E1m1

¼ 1

2E1m1

�
Q2

2 �
M2

2

E2
1

�
:

We can see that �m is positive if and only if E1 is larger than
M2=Q2, which is less than unity. Hence, in the case of E1 >
M2=Q2, V1ðrÞ has one extremum at r ¼ �m. We can easily
see that this extremum is the maximum, and V1ð�mÞ ¼ 1.
Here, note that V1ðrÞ ! 1� E2

1 in the limit r ! 1. Hence,
in the case of 0< E1 < 1, the spatial asymptotic region is a
domain forbidden for the motion of shell 1. Since V1ðrÞ is
monotonically decreasing in the domain of r > �m in the
case of E1 ¼ 1, we can see V1ðrÞ> 0 in the domain of
r � �m. Thus, the spatial asymptotic region is the forbid-
den domain also in the case of E1 ¼ 1. Only in the case of
E1 > 1, the spatial asymptotic domain is allowed for the
motion of shell 1.

1. 0 < E1 <M2=Q2

In this case, V1ðrÞ is a monotonically increasing function
of r, and only r ¼ �þ is a positive root of V1ðrÞ ¼ 0.
V1ðrÞ � 0 in the domain r � �þ, whereas V1ðrÞ< 0 in
the domain of r < �þ. Since V1ð�1Þ> 0 by Eq. (15), we
find that �1 >�þ, and, hence, even if V1ðrÞ � 0 in the
domain r � �þ, the domain r � �þ cannot be allowed for
the motion of shell 1 by Eq. (11). As a result, in the case of
0< E1 <M2=Q2, there is no domain allowed for the mo-
tion of shell 1.

2. E1 ¼M2=Q2

There is no allowed domain for the motion of shell 1,
since V1 is identically equal to 1� ðM2=Q2Þ2, which is
positive.

3. M2=Q2 < E1 � 1

Only r ¼ �� is a positive root of V1ðrÞ ¼ 0. Since
V1ðrÞ � 0 in the domain r � ��, whereas V1ðrÞ< 0 in
the domain r < ��, the situation of this case is very similar
to the case of 0< E1 <M2=Q2. By the similar argument to
the case of 0< E1 <M2=Q2, we can see that there is no
allowed domain for the motion of shell 1 in the case of
M2=Q2 < E1 � 1.

4. E1 > 1

Both r ¼ �þ and r ¼ �� are positive roots of
V1ðrÞ ¼ 0. In this case, V1ðrÞ � 0 in the domain r � ��
or r � �þ, whereasV1ðrÞ> 0 in the domain �� < r < �þ.
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We find from Eq. (15) that �� <�1 <�þ holds, and,
hence, the domain r < �� is forbidden for the motion of
shell 1 by Eq. (11). The allowed domain for the motion of
shell 1 is only r � �þ.

In summary, shell 1 is necessarily unbound E1 > 1,
and the allowed domain is r � �þ, as long as we assume
0<M2 <Q2.

APPENDIX B: SHELL 2

In this appendix, we derive the conditions (21)–(26).

1. From the overcharge condition

Since we assume that the domain D3 is described by the
overcharged Reissner-Nordström geometry Q3 >M3, we
have

�< ð1þ 
Þqþ 
: (B1)

Since� is positive, ð1þ 
Þqþ 
 should be positive so that
the above inequality has a solution. Hence, we have

q >� 


1þ 

: (B2)

2. From the marginally bound condition

In the marginally bound case, the effective potential V2

of shell 2 is written in the form

V2ðrÞ ¼ �M2

�r
A1ð�; qÞ �

�
M2

2�r

�
2
A2ð�;qÞ;

where

A1ð�; qÞ � �ð�þ 2Þ � ð1þ 
Þ2qðqþ 2Þ;
A2ð�; qÞ � ½ð1þ 
Þq���½ð1þ 
Þqþ��


 ½ð1þ 
Þðqþ 2Þ ���½ð1þ 
Þðqþ 2Þ þ��:
Since V2ðrÞ should be negative in the domain allowed for
the motion of shell 2, the following condition should be
satisfied so that shell 2 can start to fall inward from infinity;

A1ð�; qÞ> 0 (B3)

is satisfied, or both A1 ¼ 0 and A2 > 0 hold
simultaneously.

From Eq. (B3), we obtain the following constraint on�;
in the case of qðqþ 2Þ> 0,

�> b (B4)

should hold, where b is a larger root of A1ðb; qÞ ¼ 0:

b ¼ �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1þ 
Þ2qðqþ 2Þ

q
;

whereas, in the case of qðqþ 2Þ � 0, Eq. (B3) necessarily
holds, since � is positive.

The solution of the inequality qðqþ 2Þ � 0 is �2 �
q � 0. However, since �
ð1þ 
Þ�1 is larger than �2 for


 > 0, we should consider from Eq. (B2) that the solution
of the inequality qðqþ 2Þ � 0 is �
ð1þ 
Þ�1 < q � 0.
The solution of the inequality qðqþ 2Þ> 0 is q <�2 or

0< q. However, Eq. (B2) implies that q must be larger
than �2, and, hence, we should consider that the solution
of the inequality qðqþ 2Þ> 0 is q > 0. In the case of
qðqþ 2Þ> 0, b must be less than ð1þ 
Þqþ 
 so that
Eqs. (B1) and (B4) are consistent with each other. By the
definition of b, we have

ð1þ 
Þqþ 
� b

¼ ð1þ 
Þð1þ qÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 
Þ2ð1þ qÞ2 � 
ð2þ 
Þ

q
:

We can see from the above equation that ð1þ 
Þqþ 
�
b > 0 is satisfied because of q > 0. Hence, the consistency
between Eqs. (B1) and (B4) adds no further constraint.
In the case of qðqþ 2Þ> 0, i.e., q > 0, A1, vanishes

only for � ¼ b. In this case, we can see

qð1þ 
Þ � b < 0; (B5)

qð1þ 
Þ þ b > 0; (B6)

ðqþ 2Þð1þ 
Þ � b > 0; (B7)

ðqþ 2Þð1þ 
Þ þ b > 0: (B8)

First, we prove Eq. (B5). We have

qð1þ 
Þ � b ¼ qð1þ 
Þ þ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1þ 
Þ2qðqþ 2Þ

q
:

Since q > 0, we can see

½qð1þ 
Þ þ 1�2 � ½1þ ð1þ 
Þ2qðqþ 2Þ�
¼ �2
ð1þ 
Þq < 0:

Hence, we obtain Eq. (B5).
Next, we prove Eq. (B6). We have

qð1þ 
Þ þ b ¼ qð1þ 
Þ � 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1þ 
Þ2qðqþ 2Þ

q
:

Since q > 0, we have

½qð1þ 
Þ � 1�2 � ½1þ ð1þ 
Þ2qðqþ 2Þ�
¼ �2ð2þ 
Þð1þ 
Þq < 0:

Hence, we have Eq. (B6).
By the overcharge condition (B1), i.e., qð1þ 
Þ þ�>

�
, we can see that Eqs. (B7) and (B8) should be satisfied:

ðqþ 2Þð1þ 
Þ � b

¼ qð1þ 
Þ � bþ 2ð1þ 
Þ>�
þ 2ð1þ 
Þ
¼ 2þ 
 > 0;

ðqþ 2Þð1þ 
Þ þ b

¼ qð1þ 
Þ � bþ 2b > 2þ 
þ 2b > 0:
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Equations (B5)–(B8) imply that A2 is negative, and,
thus, this case is not of our interest.

In summary, we have found that the overcharge
condition (B1) and marginally bound conditions (B3) and
(B4) imply

0<�< ð1þ 
Þqþ 
 for � 


1þ 

< q � 0; (B9)

b < �< ð1þ 
Þqþ 
 for 0< q: (B10)

3. To reach r¼ rmin

In order that a collision can occur at r ¼ rmin , we have

F2ðrmin Þ ¼ �ð1þ 
Þ�4Gð�;qÞ> 0 (B11)

and

V2ðrmin Þ ¼ � 1

4�2
ð1þ 
Þ�4Hð�;qÞ � 0; (B12)

where

Gð�; qÞ ¼ �2 � 2ð1þ 
Þ2�þ ð1þ 
Þ2qðqþ 2Þ; (B13)

Hð�; qÞ ¼ ½�2 þ 2ð1þ 
Þ2�� ð1þ 
Þ2qðqþ 2Þ�2
� 4
ð2þ 
Þð1þ 
Þ2�2: (B14)

First, we consider the condition (B18). The condition
(B18) is rewritten in the form of Gð�;qÞ< 0. It can be
easily seen that qðqþ 2Þ should be less than ð1þ 
Þ2 so
that this inequality has a solution with respect to �. If
qðqþ 2Þ � 0, i.e., �
ð1þ 
Þ�1 < q � 0, holds, this con-
straint is satisfied. On the other hand, if qðqþ 2Þ> 0, i.e.,
q > 0, holds, the constraint qðqþ 2Þ< ð1þ 
Þ2 leads to

0< q<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1þ 
Þ2

q
� 1:

Then, we obtain

0<�< bþ for � 


1þ 

< q � 0; (B15)

b� <�< bþ for 0< q<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1þ 
Þ2

q
� 1; (B16)

where b� are the roots of Gðb�; qÞ ¼ 0:

b� ¼ ð1þ 
Þ2 � ð1þ 
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 
Þ2 � qðqþ 2Þ

q
:

In order to see which are sharp conditions, the pair of
Eqs. (B9) and (B10) or the pair of Eqs. (B15) and (B16), we
investigate which is larger, bþ or qð1þ 
Þ þ 
. We have

qð1þ 
Þ þ 
� bþ ¼ qð1þ 
Þ � ð1þ 
þ 
2Þ � ð1þ 
Þ



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 
Þ2 � qðqþ 2Þ

q
:

Here, we define the following quantity:

c � qð1þ 
Þ � ð1þ 
þ 
2Þ:
If c is negative, the quantity qð1þ 
Þ þ 
� bþ is also
negative. We can easily see that c is negative in the case of

�
ð1þ 
Þ�1 < q � 0. By contrast, in the case of 0< q<ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1þ 
Þ2p � 1, we have

c < ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1þ 
Þ2

q
� 1�ð1þ 
Þ � ð1þ 
þ 
2Þ

¼ ð1þ 
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1þ 
Þ2

q
� ½1þ ð1þ 
Þ2�:

We can see

½ð1þ 
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1þ 
Þ2

q
�2 � ½1þ ð1þ 
Þ2�2

¼ �½1þ ð1þ 
Þ2�< 0:

Hence, c is negative also in the case of 0< q<ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1þ 
Þ2p � 1. Thus, we obtain

qð1þ 
Þ þ 
 < bþ for

� 


1þ 

< q <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1þ 
Þ2

q
� 1:

Now, from the overcharge condition (B1), the margin-
ally bound conditions (B3) and (B4), and the constraint
(B11), we have

0<�< qð1þ 
Þ þ 
 for � 


1þ 

< q � 0; (B17)

max ½b�; b�<�< qð1þ 
Þ þ 


for 0< q<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1þ 
Þ2

q
� 1: (B18)

Here, let us focus on the condition (B18). In order that
Eq. (B18) is satisfied, b� must be less than qð1þ 
Þ þ 
.
Thus, we have

qð1þ 
Þ þ 
� b�

¼ cþ ð1þ 
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 
Þ2 � qðqþ 2Þ

q
> 0:

Since c is negative, jcj should be less than ð1þ 
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ 
Þ2 � qðqþ 2Þp
. Thus, we have

c2�½ð1þ
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ
Þ2�qðqþ2Þ

q
�2

¼2ð1þ
Þ2q2�2
2ð1þ
Þq�
ð2
2þ3
þ2Þ<0:

In order that the above inequality folds, q should satisfy

0< q< q	;

where

q	 :¼ 
2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ 
Þð2þ 
þ 
2Þp

2ð1þ 
Þ :
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Since we are interested in the case of 0< 
 � 1, we have

q	 ¼
ffiffiffiffiffiffiffiffi

=2

p þOð
3=2Þ< ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1þ 
Þ2p � 1. In order to

know which is larger, b or b�, we should again note that
b is the larger root of A1ðb; qÞ ¼ 0, whereas b� are the
roots of Gðb�; qÞ ¼ 0 with bþ > b�. We should also note
that there is only one root of the equation A1ð�;qÞ ¼
Gð�; qÞ; it is given by

� ¼ bm :¼ ð1þ 
Þ2qðqþ 2Þ
1þ ð1þ 
Þ2 :

The function A1ð�; qÞ takes a minimum value at � ¼ �1,
whereas the function Gð�;qÞ takes a minimum value at
� ¼ ð1þ 
Þ2. Thus, we have �1< bm, b, b� < ð1þ 
Þ2.
From these facts, we can see that b < bm < b� for
A1ðbm;qÞ ¼ Gðbm;qÞ> 0, b ¼ bm ¼ b� for A1ðbm; qÞ ¼
Gðbm; qÞ ¼ 0, and b > bm > b� for A1ðbm;qÞ ¼
Gðbm; qÞ< 0. We have

A1ðbm; qÞ ¼ Gðbm; qÞ

¼ ð1þ 
Þ2qðqþ 2Þ
½1þ ð1þ 
Þ2�2 ½ð1þ 
Þ2qðqþ 2Þ
� fð1þ 
Þ4 � 1g�:

From the above equation, we can see that A1ðbm;qÞ ¼
Gðbm; qÞ> 0 for q > q2, A1ðbm; qÞ ¼ Gðbm; qÞ ¼ 0 for
q ¼ q2, and A1ðbm;qÞ ¼ Gðbm; qÞ< 0 for 0< q< q2
(note that we focus on the case of q > 0), where

q2 :¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ 
Þ4 þ ð1þ 
Þ2 � 1

p
1þ 


:

Hence, we have

b > b� for 0< q< q2;

b ¼ b� for q ¼ q2; b < b� for q > q2:

In the case of 0< 
 � 1, we have q2 ¼ 2þOð
Þ, and,
hence, we find that q	 < q2. This implies that b > b� holds
for 0< q< q	. Thus, Eq. (B18) should be replaced by

b < �< qð1þ 
Þ þ 
 for 0< q< q	: (B19)

Next, we consider the condition (B12). In order that
r ¼ rmin is in the allowed domain for the motion of shell
2, Hð�; qÞ should be non-negative. This condition is writ-
ten in the form

jIð�;qÞj> 2�ð1þ 
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 
Þ2 � 1

q
; (B20)

where

Ið�; qÞ :¼ �2 þ 2ð1þ 
Þ2�� ð1þ 
Þ2qðqþ 2Þ: (B21)

a. Case with negative charge or without charge

In this case, the condition (B17) leads to qðqþ 2Þ< 0.
Then, since �> 0, we can easily see Ið�; qÞ> 0. The
condition (B20) is written in the form

�2 þ 2ð1þ 
Þ½1þ 
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 
Þ2 � 1

q
�

� ð1þ 
Þ2qðqþ 2Þ> 0: (B22)

The above condition is always satisfied under the condition
(B17), since qðqþ 2Þ< 0 and �> 0. As a result, the
sphere r ¼ rmin is in the allowed domain for the motion
of shell 2 under the condition (B17).

b. Case with positive charge

We consider the case of q > 0, and Eq. (B19) should be
satisfied. Here, note again that A1ðb; qÞ ¼ 0, and, hence,
we can easily see that

Hðb; qÞ ¼ �4b2
ð2þ 
Þ< 0: (B23)

Hence, in the case of � ¼ b, shell 2 cannot arrive at
r ¼ rmin . We have

Ið�;qÞ � 0 for d� � � � dþ; (B24)

Ið�;qÞ> 0 for �< d�; dþ <�; (B25)

where d� are the roots of Iðd�; qÞ ¼ 0:

d� ¼ �ð1þ 
Þ2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 
Þ4 þ ð1þ 
Þ2qðqþ 2Þ

q
: (B26)

Since d� < 0< b and fðbÞ þ 2b
ð2 þ 
Þ > 0, we
have d� < 0< dþ < b. This means that Ið�;qÞ> 0 for
�> b. Thus, the condition (B20) leads to

Jð�; qÞ :¼ Ið�;qÞ � 2�ð1þ 
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 
Þ2 � 1

q

¼ A1ð�; qÞ � 2�

�
1þ 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 
Þ2 � 1

q �



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 
Þ2 � 1

q
> 0: (B27)

Together with �> 0, the above condition leads to
�>�m, where

�m :¼ ð1þ 
Þ
�
1þ 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 
Þ2 � 1

q �



2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qðqþ 2Þ

f1þ 
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ 
Þ2 � 1
p g2

s
� 1

3
75:

Since A1ðqð1þ 
Þ þ 
; qÞ ¼ 
ð2þ 
Þ, we have
Jðqð1þ 
Þ þ 
;qÞ
¼ 


�
ð1þ 2
Þð2þ 
Þ � 2ð1þ 
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 
Þ2 � 1

q �

� 2qð1þ 
Þ
�
1þ 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 
Þ2 � 1

q �



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 
Þ2 � 1

q
:

From the above equation and Eq. (B27), we obtain
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q < q2 :¼ 
½ð1þ 2
Þð2þ 
Þ � 2ð1þ 
Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ 
Þ2 � 1
p �

2½1þ 
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ 
Þ2 � 1
p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ 
Þ2 � 1

p
¼

�



2

�
1=2

�
1þ 3

4

þOð
3=2Þ

�
:

Since q	 ¼ ð
=2Þ1=2½1� 
=4þOð
3=2Þ�, we have q2 >
q	. Hence, instead of Eq. (B19), the following condition
should hold:

�m <�< ð1þ 
Þqþ 
 for 0< q< q	:
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r
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The above equation can be satisfied only if the shell exits
in a black hole domain, i.e., fAþ1 < 0, since _tAþ1 can be
negative there. By the similar argument as in the case of
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Q2
Aþ1 �Q2

A þm2
A � 0 for EA ¼ 0; (B30)

r � �A for EA < 0: (B31)

In the case of EA > 0, Q2
Aþ1 �Q2

A þm2
A should be posi-

tive so that Eq. (B29) is satisfied.
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