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In the near future, gravitational wave detection is set to become an important observational tool for

astrophysics. It will provide us with an excellent means to distinguish different gravitational theories. In

the effective form, many gravitational theories can be cast into an fðRÞ theory. In this article, we study the
dynamics and gravitational waveform of an equal-mass binary black hole system in fðRÞ theory. We

reduce the equations of motion in fðRÞ theory to the Einstein-Klein-Gordon coupled equations. In this

form, it is straightforward to modify our existing numerical relativistic codes to simulate binary black hole

mergers in fðRÞ theory. We consider a scalar field with the shape of a spherical shell containing binary

black holes scalar field. We solve the initial data numerically using the OLLIPTIC code. The evolution part

is calculated using the extended AMSS-NCKU code. Both codes were updated and tested to solve the

problem of binary black holes in fðRÞ theory. Our results show that the binary black hole dynamics in fðRÞ
theory is more complex than in general relativity. In particular, the trajectory and merger time are strongly

affected. Via the gravitational wave, it is possible to constrain the quadratic part parameter of fðRÞ theory
in the range ja2j< 1011 m2. In principle, a gravitational wave detector can distinguish between a merger

of a binary black hole in fðRÞ theory and the respective merger in general relativity. Moreover, it is

possible to use gravitational wave detection to distinguish between fðRÞ theory and a non–self-interacting
scalar field model in general relativity.
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I. INTRODUCTION

Einstein’s general relativity (GR) is currently the most
successful gravitational theory. It has excellent agreement
with many experiments (see e.g., [1–3]). However, most of
the tests involve weak gravitational fields. On the other
hand, recent cosmological observations require ad hoc
explanations to fit in the framework of GR theory, for
example the dark energy and dark matter problems [4–6].
In order to solve these difficulties, some alternative gravi-
tational theories have been proposed [7,8].

In effective form, many gravitational theories can be cast
into an fðRÞ theory [9–13]. Additionally, fðRÞ theory has a
relatively simple form. Therefore, it is a good alternative
gravitational model. In this work, we characterize the
gravitational waveform of binary black hole mergers in
fðRÞ theory.

In the near future, gravitational wave detection will be-
come an observational method for astrophysics [14–17].
The gravitational wave experiments can be excellent tools
for testing GR in a strong field regime. Moreover, it will be
possible to distinguish different gravitational theories.
Quantitatively, future experimental data can be used to
constrain fðRÞ parameters, and to confirm or to reject

alternative gravitational theories. With this in mind, we
analyze the waveforms in order to quantify the differences.
According to our results, it is possible to distinguish qua-
dratic models of fðRÞ and GR with future experimental
data.
The quadratic form of fðRÞ is given by fðRÞ ¼

Rþ a2R
2. The main free parameter is the coefficient of

the quadratic part a2. In the case a2 ¼ 0, fðRÞ theory
reduces to GR. In linearized fðRÞ it is possible to show
that Mercury’s orbit sets the value of ja2j � 1:2� 1018 m2

[18]. On the other hand, Eöt-Wash experiments restrict the
value of ja2j � 2� 10�9 m2 [19,20]. The Laser
Interferometer Space Antenna (LISA) may distinguish
ja2j � 1017 m2. Binary black holes in the mass range
30–300Msun are expected to merge at frequencies in the
most sensitive region of the Laser Interferometer
Gravitational Wave Observatory (LIGO) frequency band
[21]. Therefore, we focused our attention on an equal-mass
binary black hole system with total massM ¼ m1 þm2 ¼
100Msun. We find that the LIGO detection can distinguish
ja2j � 1011 m2.
The paper is organized as follows: in Sec. II, we sum-

marize the equations of fðRÞ theory. This is followed by a
description of the initial data setup in Sec. III. In Sec. IVA,
we describe the numerical techniques used to solve the
equations of motion. In Sec. IVB, we give some motiva-
tion and background for the configuration used in this
work. The evolution of the equal-mass binary black hole
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system is presented in Sec. IVC. Conclusions and discus-
sions are presented in Sec. V.

A. Notation and units

We employ the following notation: Space-time indices
take values between 0 and 3, with 0 representing the time
coordinate. The first Latin indices ða; b; c; . . . ; hÞ refer to
four-dimensional space-time and take values between 0
and 3, while Latin indices ði; j; k; l; . . .Þ refer to three-
dimensional space and take values from 1 to 3. The metric
signature is ð�1; 1; 1; 1Þ. Some references (e.g., [18]), use a
metric signature ð1;�1;�1;�1Þ. The difference is a
change of sign of the scalar curvature R as well as fðRÞ.
We use Einstein’s summation convention. The symbol
a :¼ b means that a is defined as being b. A dot over a

symbol, _~x, means the total time derivative, and partial
differentiation with respect to xi is denoted by @i.
Differentiation with respect to the Ricci scalar R is denoted

with a prime, for example f0 :¼ dfðRÞ
dR .

In order to simplify the calculations, we use geometric
units, where the speed of light c and the gravitational
constant G are normalized to 1. A variable in bold font,
i.e., x, denotes physical quantities in international system
units. Particularly, the value of a2 � 1 M2 in geometric
units corresponds to a2 � 1011 m2 for typical gravitational
wave sources of binary black hole for LIGO.

We use the following abbreviations: Einstein’s general
relativity (GR), Laser Interferometer Space Antenna
(LISA), Laser Interferometer Gravitational Wave
Observatory (LIGO), Einstein-Klein-Gordon (EKG),
Baumgarte-Shapiro-Shibata-Nakamura (BSSN), Arnowitt-
Deser-Misner (ADM) and binary black hole (BBH).

II. MATHEMATICAL BACKGROUND

In vacuum spacetimes, fðRÞ theory generalizes the
Hilbert-Einstein action to

S ¼
Z d4x

16�

ffiffiffiffiffiffiffi�g
p

fðRÞ; (1)

where GR is recovered by setting fðRÞ ¼ R. From this
action, we obtain the Euler-Lagrange equations of motion

f0Rab � 1

2
fgab � ½rarb � gabh�f0 ¼ 0: (2)

Using the definition of Einstein tensor Gab :¼ Rab �
gabR=2, we obtain after subtracting a Ricci tensor term
Rgab=2 in (2), and rearranging terms,

Gab ¼ 1

f0

�
rarbf

0 � gabhf0 � 1

2
gabðRf0 � fÞ

�
: (3)

On the other hand, considering the conformal transforma-
tion ~gab ¼ e2!gab, the Ricci tensor transforms into

~R ab ¼ Rab � 2rarb!� gabh!þ 2ra!rb!

� 2gabg
derd!re!: (4)

The corresponding Ricci scalar transforms as

~R ¼ e�2!ðR� 6h!� 6gderd!re!Þ: (5)

Therefore, the Einstein tensor transformation is given by

~Gab ¼ Gab � 2rarb!þ 2gabh!þ 2ra!rb!

þ gabg
derd!re!: (6)

Defining ! :¼ 1
2 ln�, we have

ra! ¼ 1

2�
ra�; (7)

rarb! ¼ � 1

2�2
ra�rb�þ 1

2�
rarb�: (8)

The substitution of (7) and (8) in (6) implies

~Gab ¼ Gab þ 3

2�2
ra�rb�� 3

4�2
gabg

derd�re�

� 1

�
ðrarb�� gabh�Þ: (9)

Substituting � :¼ f0 in (3) and the result in (9), we get

~Gab ¼ 3

2�2
ra�rb�� 3

4�2
gabg

derd�re�

� ðR�� fÞ
2�

gab: (10)

Since the conformal transformation satisfies ~gab ¼ �gab,
(10) takes the form

~Gab ¼ 3

2�2
~ra�

~rb�� 3

4�2
~gab~g

de ~rd�
~re�

� ðR�� fÞ
2�2

~gab: (11)

Defining � :¼
ffiffiffiffiffiffiffi
3

16�

q
ln�, we get

~Gab ¼ 8�

�
~ra�

~rb�� ~gab

�
1

2
~gde ~rd�

~re�þ V

��
; (12)

where

V :¼ Re4
ffiffiffiffiffiffiffi
�=3

p
� � f

16�e8
ffiffiffiffiffiffiffi
�=3

p
�

: (13)

The right-hand side of (12) has the form of the stress-
energy tensor of a scalar field (see e.g., [22,23]):

~T ab :¼ ~ra�
~rb�� ~gab

�
1

2
~rc�

~rc�þ V

�
: (14)

Therefore, in a vacuum, the fðRÞ theory equations of
motion are equivalent to GR equations coupled to a real
scalar field
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� ¼
ffiffiffi
3

p
4

ffiffiffiffi
�

p ln f0: (15)

The equation of motion of the scalar field is given by the
trace of (2) with gab

~hf0 ¼ 2~ra!~raf
0 � 2f� f0R

3
; (16)

where we have employed the conformal metric transfor-
mation. Substituting the definition of � we get

~h� ¼ 2f� f0R
4

ffiffiffiffiffiffiffi
3�

p
f02

¼ 2f� Rf0

16�f03
f00

dR

d�
¼ dV

d�
: (17)

The result is the dynamical equation of a real scalar field
with potential V. Therefore, the equations of motion for
fðRÞ theory are equivalent to Eqs. (12) and (17), which
form the EKG system of equations. Notice that the scalar
field is introduced for numerical simulation convenience.
Moreover, it is related to the Ricci scalar. Therefore, it does
not represent a physical freedom.

The equations of motion derived with the metric ~gab are
commonly referred to be in the Einstein frame. For physi-
cal interpretation, we need to transform them using the

physical metric gab ¼ e�4
ffiffi
�
3

p
�~gab. The equations in that

form are referred to be in the Jordan frame. We use
Newman-Penrose scalar�4 to analyze gravitational wave-

form. Therefore, it is calculated through ~�4 ¼ e�4
ffiffi
�
3

p
��4.

Since the Weyl tensor is conformal invariant, the pre-factor
comes from a tetrad transformation.

We use 3þ 1 formalism to solve (12) and (17). For
Einstein equations (12) we adopt the BSSN formulation
as in our previous work [24]. The scalar field equations
(17) can be decomposed using the 3þ 1 formalism as
follows (see, e.g., for detail about the 3þ 1 formalism
[25,26]): First it is useful to define an auxiliary variable
’ :¼ Ln�, where Ln denotes the Lie derivative along the
normal to the hypersurface �t. Expressing the Lie deriva-
tive in terms of the lapse function � and the shift vector �i,
the evolution of � is given by

@t� ¼ �’þ �i@i�: (18)

On the other hand, the evolution of ’ is given by the
substitution of Ln� in (17)

@t’ ¼ ��

�
��ij@i@j��

�
��i þ ��ij@j�

2�

�
@i�

�

þ � ��ij@i�@j�þ �’K � �
dV

d�
þ �i@i’; (19)

where we used the BSSN metric conformal transformation
��ij ¼ ��ij and the relationships

K ¼ ��ij

2�

@�ij

@t
; (20)

�i ¼ � 1ffiffiffiffi
�

p @jð ffiffiffiffi
�

p
�ijÞ; (21)

with K the trace of the extrinsic curvature, � the determi-
nant of the 3-metric and �i the contracted Christoffel
symbol. The quantities with an upper bar are represented
in the conformal metric of BSSN form.
The matter densities are given by

E :¼ nanbT
ab ¼ 1

2
Di�Di�þ 1

2
’2 þ V; (22)

pi :¼ ��ianbT
ab ¼ �’Di�; (23)

Sij :¼ �ia�jbT
ab

¼ Di�Dj�� �ij

�
1

2
Dk�Dk�� 1

2
’2 þ V

�
: (24)

For f, we consider a quadratic form fðRÞ ¼ Rþ a2R
2,

which results in the potential

V ¼ 1

32�a2
ð1� e4

ffiffiffiffiffiffiffi
�=3

p
�Þ2e�8

ffiffiffiffiffiffiffi
�=3

p
�: (25)

This potential is analytic around � ¼ 0 and it can be
expanded as

V ¼ 1

6a2
�2 � 2

3a2

ffiffiffiffi
�

3

r
�3 þ 14�

27a2
�4

� 8�

9a2

ffiffiffiffi
�

3

r
�5 þOð�6Þ: (26)

The coefficient of �2 is related to the mass of the scalar
field (m ¼ 1=

ffiffiffiffiffiffiffiffi
6a2

p
) and the other terms imply that the

scalar field has nonlinear self-interaction. With the signa-
ture convention taken in this work, only the positive values
of a2 are physically meaningful. Therefore, we demand
that a2 � 0.

A. Formalism for numerical
calculation of fðRÞ dynamics

The dynamical equations for fðRÞ theory can be written
as (2), or equivalently as (12). There is a key component in

BSSN formalism where ��i are consider to be new inde-
pendent functions. Similar to this, we promote � to a new
independent function. Then the evolution equation of � is
determined by (17). On the other hand, the definition of �
(15) is a constraint equation. For later reference, we sum-
marize the equations for numerical calculation of fðRÞ
dynamics as follows

~Gab ¼ 8� ~Tab; (27)

~h� ¼ dV

d�
: (28)

The constraint equation is
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ln f0 ¼ 4
ffiffiffiffi
�

p
ffiffiffi
3

p �: (29)

It is interesting to note that the original dynamical
equation (2) for fðRÞ theory includes 4th order derivative
terms of metric. This is because f depends on R, which
contains second derivative terms of the metric, and (2)
contains second derivative terms of f. After performing a
conformal transformation, we obtain the dynamical equa-
tion (12). If we look at the conformal metric ~gab instead of
gab as dynamical variables, (12) involves 3rd order deriva-
tives which come from the derivative of �. This is because
� itself is a function of R which contains second derivative
of conformal metric. In (27) and (28), we replace the 3rd
order derivative terms by promoting the auxiliary variable
� as an independent variable. This treatment introduces an
extra constraint equation (29) which is similar to the role of
the Gamma constraint equations in BSSN numerical
scheme. With this treatment, Eqs. (27) and (28) contain
at most second order derivative terms.

The system of equations (27) and (28) takes the form of
coupled Einstein-Klein-Gordon equations. For the Einstein
equation we use the BSSN formulation. We monitor the
constraint equation (29) to check the consistency of our
numerical solutions.

III. INITIAL DATA

Under a 3þ 1 decomposition, the constraint equations
read as follows:

DjK
j
i �DiK ¼ 8�pi; (30)

Rþ K2 � KijK
ij ¼ 16�E; (31)

where R is the Ricci scalar, Kij is the extrinsic curvature,

K the trace of the extrinsic curvature, �ij the 3-metric, and

Dj the covariant derivative associated with �ij. E and pi

are the energy and momentum densities given in equations
(22) and (23).

A. Puncture method

The constraints can be solved with the puncture method
[27]. Following the conformal transverse-traceless decom-
position approach, we make the following assumptions for
the metric and the extrinsic curvature:

�ij ¼ c 4
0�̂ij; (32)

Kij ¼ c�2
0 Âij þ 1

3
K�̂ij; (33)

where Âij is trace-free and c 0 is a conformal factor. We

choose a conformally flat background metric, �̂ij ¼ �ij,

and a maximal slice condition, K ¼ 0. The last choice
decouples the constraint equations (30) and (31) to take
the form

@jÂ
ij ¼ 0; (34)

�c 0 þ 1

8
ÂijÂijc

�7
0 ¼ �c 0�

ij@i�@j�� 2�c 5
0V; (35)

where � is the Laplacian operator associated with
Euclidian metric. Notice that we have chosen ’ � Ln� ¼
0 initially. This is consistent to the quasiequilibrium pic-
ture. So pi ¼ 0 which results in (34).
In a Cartesian coordinate system ðxiÞ ¼ ðx; y; zÞ, there is

a nontrivial solution of (34) which is valid for any number
of black holes [28] (here the index n is a label for each
puncture):

Âij ¼ X
n

�
3

2r3n

�
xinP

j
n þ xjnPi

n �
�
�ij � xinx

j
n

r2n

�
Pn
kx

k
n

�

þ 3

r5n
ð	iklSnkxlnxjn þ 	jklS

n
kx

l
nx

i
nÞ
�
; (36)

where rn :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx� xnÞ2 þ ðy� ynÞ2 þ ðz� znÞ2

p
, 	ikl is

the Levi-Civita tensor associated with the flat metric, and
Pn and Sn are the ADM linear and angular momentum of
nth black hole, respectively.
The Hamiltonian constraint (35) becomes an elliptic

equation for the conformal factor c 0. The solution splits
as a sum of a singular term and a finite correction u [27],

c 0 ¼ 1þX
n

mn

2rn
þ u; (37)

with u ! 0 as rn ! 1. The function u is determined by an
elliptic equation on R3, which is derived from (35) by
inserting (37), and u is C1 everywhere except at the
punctures, where it is C2. The parameter mn is called the
bare mass of the nth puncture.

B. Numerical method

The Hamiltonian constraint (35) is solved numerically
using the OLLIPTIC code ([29]). OLLIPTIC is a parallel
computational code which solves three-dimensional sys-
tems of nonlinear elliptic equations with a 2nd, 4th, 6th,
and 8th order finite difference multigrid method [30–34].
The elliptic solver uses vertex-centered stencils and box-
based mesh refinement.
The numerical domain is represented by a hierarchy of

nested Cartesian grids. The hierarchy consists of LþG
levels of refinement indexed by l ¼ 0; . . . ; LþG� 1. A
refinement level consists of one or more Cartesian grids
with constant grid-spacing hl on level l. A refinement

factor of two is used such that hl ¼ hG=2
jl�Gj. The grids

are properly nested in that the coordinate extent of any grid
at level l > G is completely covered by the grids at level
l� 1. The level l ¼ G is the ‘‘external box’’ where the
physical boundary is defined. We used grids with l < G to
implement the multigrid method beyond level l ¼ G.
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For the outer boundary, we required an inverse power
fall-off condition,

uðrÞ ¼ Aþ B

rq
; for r � 1; q > 0; (38)

where the factor B is unknown. It is possible to get an
equivalent condition which does not contain B by calculat-
ing the derivative of (38) with respect to r, solving the
equation for B and making a substitution in the original
equation. The result is a Robin boundary condition:

uð ~xÞ þ r

q

@uð ~xÞ
@r

¼ A: (39)

For the initial data, we set q ¼ 1 and A ¼ 0.

C. Results

1. Test problem

As a test, we set the mass parameter of the black hole to
zero and consider a spherical symmetric field � and po-
tential V. The Hamiltonian constraint (35) reduces to a
second order ordinary differential equation

rc 00
0 þ 2c 0

0 þ �c 0ð�0Þ2 þ 2�VðrÞc 5
0 ¼ 0; (40)

where the prime denotes differentiation with respect to r. In
order to obtain a high-resolution reference solution, we
solve (40) using MATHEMATICA [35]. A useful transforma-
tion for the case V ¼ 0 is c 1 :¼ rc 0. Under this trans-
formation, regularity at the origin implies
lim r!0c 1ðrÞ ¼ 0. The boundary condition (39) with q ¼
1 and A ¼ 1 reduces to c 0

1ðrmax Þ ¼ 1, where rmax is the
radius of our numerical domain. The problem then becomes

c 00
1 þ �c 1ð�0Þ2 þ 2�VðrÞ c

5
1

r4
¼ 0; (41)

c 1ð0Þ ¼ 0; (42)

c 0
1ðrmax Þ ¼ 1: (43)

For the case V � 0, the term r�4 produces a singularity at
the origin.We cure artificially the singularity by solving the
equation with a term ðr4 þ 	Þ�1 instead of r�4. For the test,
the value of 	 is set to 10�12.

We considered 2 cases

Case I: �ðrÞ ¼ �0 tanh ½ðr� r0Þ=
�;
VðrÞ ¼ 0:

Case II: �ðrÞ ¼ �0e
�ðr�r0Þ2=
;

VðrÞ ¼ 1

32�a2
ð1� e4

ffiffiffiffiffiffiffi
�=3

p
�Þ2e�8

ffiffiffiffiffiffiffi
�=3

p
�;

where in both cases r0 ¼ 120M, 
 ¼ 8M,�0 ¼ 1=40. For
case II, we set a2 ¼ 1. The numerical domain is a cubic
box of size 4000 (rmax ¼ 2000) and 11 refinements levels.
We use the fourth order finite difference stencil since it

provides a good convergence property at the boundary for
large domains (see [29] for details). The convergence tests
consist of a set of six solutions with grid points Ni 2
f43; 51; 75; 105; 129; 149g. The comparison with the refer-
ence solution was performed along the Y axis using a 6th
order Lagrangian interpolation. For each resolution, the
difference Ei :¼ jui � �uj gives an estimation of the error.
Here ui denotes the solution produced with OLLIPTIC, i is
an index which labels the grid size, �u the reference solution
and j 	 j the absolute value (computed point by point).
The functions are interpolated in a domain with grid size
�y ¼ 1. The error satisfies Ei 
 Chpi , where C is a con-

stant, hi 
 1=Ni is the grid size and p the order of con-
vergence. Using the L1 norm of the error and performing a
linear regression of ln jEijL1

vs ln jhij, we estimate the

convergence order p and the constant C.
Figure 1 shows the result of case I. There is a good

agreement between the several resolutions and the refer-
ence solution. The plot does not show noticeable differ-
ences [see Fig. 1(a)]. The solution has convergence
properties, and the estimated error diminishes with in-
creased resolution [Fig. 1(b)]. The scaled error Ei=h

p
i

also shows good convergence with convergence order p ¼
3:7� 0:2 given by linear regression [Fig. 1(c)].
The results for case II are presented in Fig. 2. The

solution is similar to case I, an almost constant solution
between 0 and r0 which joins a inverse power solution after
Y ¼ r0. However, the solution of case II is around 2 orders
of magnitude larger than the solution of case I. Contrary to

0
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−

ū|

(b)

[×10−4]
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i
−
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ū
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FIG. 1 (color online). Initial data convergence test for case I.
The upper panel (a), shows the reference solution and 4 solutions
computed with OLLIPTIC. The middle panel (b), presents the
estimated error. The lower panel (c), shows the scaled error for
convergence order p ¼ 3:7� 0:2.
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case I, there are noticeable differences between the refer-
ence solution and the lower-resolution ones [Fig. 2(a)]. The
solution shows convergence properties and the scaled error
shows convergence consistently with p ¼ 3:9� 0:3
[Figs. 2(b) and 2(c)].

2. Initial data for evolution

The solution of (35) provides initial data for our evolu-
tions. The initial parameters of the BBH are: puncture mass
parameter m1 ¼ m2 ¼ 0:487209 (approximate apparent
horizon mass equals to 0.5), initial position ðx; y; zÞ ¼
ð0;�5:5; 0Þ and linear momentum ðpx; py; pzÞ ¼
ð�0:0901099;�0:000703975; 0Þ. The linear momentum
parameter is tuned for nonspinning quasicircular orbits in
GR.

For the scalar field part, we consider that the BBH is
surrounded by a scalar field with a shell shape profile
initially

�ðrÞ ¼ a22
a22 þ 1

�0e
�ðr�r0Þ2=
; (44)

with r0 ¼ 120M, 
 ¼ 8M and several values of �0 (see
below). When a2 goes to zero, both � and V go to zero.
Therefore, standard general relativity is recovered. On the
other hand, when a2 ! 1, the amplitude of the scalar field
tends to �0 while the potential vanishes. Our model
provides a unified scheme to investigate standard GR
(a2 ¼ 0), usual fðRÞ (0< a2 <1) and the free EKG
system in GR (a2 ! 1).

From the solution of the conformal factor it is possible to
estimate the ADM mass through

MADMjr¼r0 ¼ � 1

2�

I
S
@jc dSj; (45)

where the integration is performed in a sphere S of radius
r0 (formally the ADM mass is computed taking the limit
r0 ! 1). In our calculations r0 ¼ 1537:5 and the integra-
tions are done numerically using 6th order Lagrange inter-
polation in the sphere and 6th order Boole’s quadrature
[36,37].
The estimation of the ADM mass gives us a way to

analyze the parameters �0 and a2. On one hand, it is
possible to computeMADM for the case a2 ! 1 for several
values of �0 (see Table I). The result is a quadratic rela-
tionship (see Fig. 3). The quadratic behavior is consistent
with the fact that the coefficient of c 0 in (35) for the scalar
field profile (44) is quadratic in the amplitude �0.
On the other hand, for fixed �0, we analyzed the func-

tional behavior of MADM as a function of a2. Figure 4
shows the result (in this example �0 ¼ 0:001642). For
this particular value of �0, the ADM mass reaches its
maximum value MADM ¼ 1:16023966 when a2 ¼
2:64353. The estimation of the value a2 comes from the
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FIG. 2 (color online). Initial data convergence test for case II.
The upper panel (a), shows the reference solution and 4 solutions
computed with OLLIPTIC. The middle panel (b), presents the
estimated error. The lower panel (c), shows the scaled error for
convergence order p ¼ 3:9� 0:3.

TABLE I. ADM mass as function of �0 for a2 ! 1 (Fig. 3).
The values are well represented by a quadratic functionMADM ¼
Aþ B�2

0 with A ¼ 0:99067 and B ¼ 40569� 48.

# �0 MADM # �0 MADM

1 0 0.990669 7 0.004 1.632418

2 0.0001 0.991069 8 0.005 1.994890

3 0.0005 1.000670 9 0.006 2.439376

4 0.001 1.030680 10 0.007 2.966764

5 0.002 1.150790 11 0.008 3.578118

6 0.003 1.351237 12 0.009 4.274675

FIG. 3 (color online). ADM mass MADM as a function of �0

for a2 ! 1. The functional behavior is well represented by a
quadratic function.

ZHOUJIAN CAO, PABLO GALAVIZ, AND LI-FANG LI PHYSICAL REVIEW D 87, 104029 (2013)

104029-6



maximization of the product of the coefficients of c 0 and
c 5

0 [see the right-hand side of (35)]:

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~�0 � ~a2Þ~a32

q
ð1� e~a2Þ2e�2~a2


�0ðr ¼ r0 þ
ffiffiffiffiffiffiffiffiffi

=2

p Þ2Vðr ¼ r0Þ (46)

where we define ~�0 :¼ 4
ffiffiffiffiffiffiffiffiffi
�=3

p
�0 and ~a2 :¼ ~�0a

2
2=ða22 þ 1Þ. Notice that with respect to the radial coordinate

r the coefficients are evaluated in their respective maxi-
mums. We are looking for the values ð�0; a2Þ which max-
imize the product instead of the maximum value of C.
Therefore, we can drop all the multiplicative constants.
The maximization of C is performed with respect to the
variable ~a2. The extrema of the function reduces to com-
puting the roots of

C0ð~a2Þ 
 4~a2ð~a2 þ e~a2 þ ~�0 � 1Þ � 3ðe~a2 � 1Þ ~�0: (47)

We computed the values numerically using MATHEMATICA.
Figure 5 shows the result. From the numerical data, it

appears that ~a2 is a linear function of ~�0 [see Fig. 5(a)].

However, a comparison of the data with the fitted linear
function showed us that a higher order polynomial is better
a approximations. We choose a second order polynomial
since higher order polynomials do not exhibit a significant
reduction of the errors. The results for ð�0; a2Þ variables
confirm that a quadratic fit is a better approximation [see
Fig. 5(b)]. Note that in the interval investigated a2 
 2:64.
In international system units, it corresponds to 1011 m2

(considering the typical gravitational wave sources of
BBH for LIGO). This value maximizes the fðRÞ effect
for BBH collisions.

IV. EVOLUTION OF EQUAL MASS BINARY
BLACK HOLES IN fðRÞ THEORY

A. Numerical method

The evolution of the black hole and scalar field is solved
using the AMSS-NCKU code (see [24,29,38–40]).
Although AMSS-NCKU code supports both vertex center
and cell center grid style, we use the cell center style. We
use finite difference approximation of 4th order. We update
the code to include the dynamics of real scalar field equa-
tions (18) and (19). We use the outgoing radiation bound-
ary condition for all variables. In addition, we update our
code to support a combination of box and shell grid struc-
tures (according to [41,42]).
The numerical grid consists of a hierarchy of nested

Cartesian grid boxes and a shell which includes six coor-
dinate patches with spherical coordinates ð�;
; rÞ. For
symmetric spacetimes, the corresponding symmetric
patches are dropped. Particularly, we adopt equatorial
symmetry. For the nested Cartesian grid boxes, a moving
box mesh refinement is used. For the outer shell part, the

FIG. 5 (color online). Estimated values of ð�0; a2Þ which max-
imize MADM. The upper panel (a) shows the result in the
variables ð ~�0; ~a2Þ, where we fit a second order polynomial.
The lower panel (b) shows the result in the variables ð�0; a2Þ.
Notice that in both cases the behavior seems to be linear,
however by using a linear fit in the tilde variables the result
does not fit the data in the ð�0; a2Þ (dashed line).

FIG. 4 (color online). ADMmassMADM as function of log ða2Þ
(see Table II). The amplitude of the scalar field is �0 ¼
0:001642. The cross-circle symbol denotes the maximum value
MADM ¼ 1:16023966 located at a2 ¼ 2:64353. The value of a2
is estimated from the maximization of (46).

TABLE II. ADM mass as function of a2 (Fig. 4). The value of
the maximum (# 8) is estimated using the minimization of (46).
The parameter �0 of the scalar field is 0.001642.

# a2 MADM # a2 MADM

1 0 9.906691 9 4 1.153111

2 0.2 9.930327 10 6 1.140796

3 0.4 1.006901 11 8 1.132395

4 0.6 1.033066 12 10 1.126691

5 0.8 1.063929 13 20 1.113947

6 1 1.092333 14 40 1.106991

7 2 1.155675 15 60 1.104598

8 2.64791 1.160240 16 80 1.103388
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local coordinates of the six shell patches are related to the
Cartesian coordinates by

�x patch: � ¼ arctan ðy=xÞ; 
 ¼ arctan ðz=xÞ; (48)

�y patch: � ¼ arctan ðx=yÞ; 
 ¼ arctan ðz=yÞ; (49)

�z patch: � ¼ arctan ðx=zÞ; 
 ¼ arctan ðy=zÞ; (50)

where both angles ð�;
Þ range over ð��=4:�=4Þ.
Notice that positive and negative Cartesian patches are

related through the same coordinate transformation. This
coordinate choice is right handed in þx, �y, þz patches
and left handed in �x, þy, �z patches. Disregarding
parity issues, left-handed coordinates do not bring us any
inconvenience. We have applied this coordinate choice to
characteristic evolutions in [43]. For an alternative ap-
proach, see [41,42]. The coordinate radius r relates to the
global Cartesian coordinate through

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

q
: (51)

All dynamical equations for numerical evolution are writ-
ten in the global Cartesian coordinate. The local coordi-
nates ð�;
; rÞ of the six shell patches are used to define the
numerical grid points with which the finite difference is
implemented. The derivatives involved in the dynamical
equations in the Cartesian grid xi ¼ ðx; y; zÞ are related to
the spherical derivatives in the shell coordinates ri ¼
ð�;
; rÞ through

@

@xi
¼

�
@rj

@xi

�
@

@ri
; (52)

@2

@xi@xj
¼

�
@rk

@xi
@rl

@xj

�
@2

@rk@rl
þ

�
@2rk

@xi@xj

�
@

@rk
: (53)

The spherical derivatives in (52) and (53) are approximated
by center finite difference.

In the spherical shell two patches share a common radial
coordinate and adjacent patches share the angular coordi-
nate perpendicular to the mutual boundary. Therefore, it is
not necessary to perform a full 3D interpolation between
the overlapping shell ghost zones. Moreover, it is enough
to perform a 1D interpolation parallel to the boundary (see
[41,44] for details). For this purpose, we use 5th order
Lagrangian interpolation with the most centered possible
stencil.

For the interpolation between shells and the coarsest
Cartesian grid box, we use a 5th order Lagrange interpo-
lation. This is a 3D interpolation done through three direc-
tions successively. The grid structure for boxes and shells
are different. There is no parallel coordinate line between
the grid structures. Therefore, we have a region which is
double covered. Similar to the mesh refinement interface,
we also use six buffer points in the box and shell. The
buffer points are repopulated at a full Runge-Kutta time

step. For parallelization, we split the shell patches into
several subdomains in three directions. The same is done
for boxes.
We have tested the convergence behavior of the updated

AMSS-NCKU code. Figure 6, shows the waveform pro-
duced with three resolutions. The corresponding values of
the grid size for the finest refinement level are 0:009M,
0:0079M, and 0:007M. From here on, we refer to these
values as the low (L), medium (M), and high (H) resolu-
tions, respectively. We shift the time in order to align the
waveforms at the maximum amplitude of�4;22. The results

presented in Secs. IVB and IVC are performed with the
medium resolution.
Equation (15) represents a constraint equation which is

introduced by reducing the 4th order derivative dynamical
formulation to the 2nd order. Based on 3þ 1 formalism,
we have

ð4ÞR ¼ �2LnK þ Rþ K2 þ KijK
ij � 2

�
DiD

i�: (54)

Substituting LnK with the evolution equations for Kij

results in

ð4ÞR ¼ 8�ð3E� SÞ � R� K2 þ KijK
ij (55)

¼ 16�ðDi�Di�þ 3VÞ � R� K2 þ KijK
ij: (56)

Therefore, the constraint equation reads as

ln ð1þ 2a2½16�ðDi�Di�þ 3VÞ � R� K2 þ KijK
ij�Þ

¼ 4
ffiffiffiffi
�

p
ffiffiffi
3

p �: (57)

FIG. 6 (color online). Convergence test of the waveform. Real
part of ‘ ¼ 2, m ¼ 2 mode of �4. The evolution corresponds to
the parameters a2 ¼ 2:64418 and �0 ¼ 0:000959 (see
Table III). The plot shows the differences between the low (L)
and medium (M) resolutions (solid line), and the medium (M)
and high (H) resolutions (dashed line). The difference between
the medium and high is scaled by 1.88 which corresponds to 4th
order convergence (dotted line). The corresponding values of the
grid size for the finest refinement level are (L) 0:009M, (M)
0:0079M and (H) 0:007M.
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From here on, we will refer to (57) as the fðRÞ constraint.
In Fig. 7, we show an example of the violation of this
constraint during our simulations. This violation of the
fðRÞ constraint is much smaller than that of the
Hamiltonian constraint.

B. Initial scalar field setup

One way to interpret fðRÞ theory is as an effective model
of quantum gravity. In the astrophysical context, it is
natural to assume that the systems are in their ground
states, and correspondingly, the scalar field takes the profile
of the ground state of the related quantum gravity system.
We simulate the development of the scalar field from the
ground state of the Schrödinger-Newton system considered
in [45]. Other authors model the dark matter halo [46] in
the center of a galaxy with a similar profile (see e.g., [47]).
Our result shows that the scalar field evolves from the
ground state configuration to a shell-type profile [similar
to (44)]. Moreover, the shell forms in the early stages of the

evolution. Figure 8 shows two snapshots, the initial ground
state profile and the final shell configuration. In our test, the
initial profile of the scalar field is some general Gaussian
shape, and the shell shape soon forms. Our results imply
that the formation of a shell shape is generic in coupled
systems of scalar field and BBH.
Considering the development of a scalar field shell in the

early stages of the formation of a BBH system, we start the
evolution with the profile (44). The parameters used in our
simulations are listed in Table III. We divide the parame-
ters into three groups. The first group, a2 ¼ 0, �0 ¼ 0
corresponds to general relativity. The second group,
a2 ! 1 corresponds to the free EKG equations. In this
case, the scalar field in the far zone is weak. Therefore, the
waveforms in the Jordan frame are similar to the wave-
forms in the Einstein frame. The third group, 0< a2 <1
corresponds to general fðRÞ theory. In this case, the value
a2 is the one which maximizes MADM for given �0.

C. Results

In this subsection, we present the numerical simulation
results for the BBH evolution in fðRÞ theory. We focus on
the comparison between fðRÞ and GR evolution. We refer
to the difference between them as the fðRÞ effect.

1. Dynamics of the scalar field induced
by binary black holes

The characteristic dynamics of the scalar field in our
simulations is the following. Starting from a shell shape,
the scalar field collapses toward the central BBH. Then, the
maximum of the scalar field reaches the black holes. At
that moment in the evolution, a burst of gravitational
radiation is produced. After that, the scalar field continues
collapsing toward the origin of the numerical domain. The
BBH excites the surrounding scalar field. The perturba-
tions produced by the BBH collapses to the origin, thereby
joining the main part of the scalar field. After reaching the
origin, the scalar field is scattered in the outgoing direction.
Once the scalar field moves outside of the orbit of the BBH,
it is attracted by the BBH again and remains there for some

FIG. 8 (color online). Snapshots of a scalar field evolving with
a BBH. Time ¼ 0 M corresponds to the ground state of the
Schrödinger-Newton system considered in [45]. At time ¼
186:85 M, a shell shape forms.

FIG. 7 (color online). L2 norm of Hamiltonian constraint
violation and fðRÞ constraint violation (57). Here, a2 ! 1 and
�0 ¼ 0:000959.

TABLE III. Parameters of the scalar field. There are three
groups of parameters. a2 ¼ 0 corresponds to general relativity;
a2 ! 1 group corresponds to the EKG equations in general
relativity; and 0< a2 <1 corresponds to general fðRÞ theory.
MADM �0 a2

0.99067 0 0

0.99062 0.000048 1
0.99980 0.000480 1
1.02756 0.000959 1
0.99067 0.000048 2.61877

1.00490 0.000480 2.64297

1.04790 0.000959 2.64418
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time. The scalar field slowly radiates to the exterior of the
numerical domain. In the process, part of the scalar field is
absorbed by the black holes.

In Fig. 9(a) we show the maximum of j�jwith respect to
time. Since the scalar field approximates a shell shape, we
only consider the radial position. The change in the am-
plitude of the scalar field represents the collapsing stage
(increments) and the scattering stage (decrements). There
are two main peaks around time ¼ 125 M. The first peak
corresponds to the initial collapse (before reaching the
BBH). The second peak corresponds with the excitation
of the scalar field produced by the BBH. A small third peak
corresponds to the attraction produced by the BBH.

Figure 9(b) shows the radial position of max ðj�jÞ with
respect to time (solid line) and the radial position of a
component of the BBH (dashed line). The main collapsing
and scattering process is clear. There are four coincidences
of the scalar field and the BBH. Three of them correspond
to the peaks shown in Fig. 9(a). We enlarge the detail of the
encounters in Fig. 9(c).

As mentioned above, the collision between the scalar
field and the BBH produces a burst of gravitational radia-
tion. Fig. 10 shows the corresponding waveform of the
evolution presented previously (with parameters a2 ! 1
and �0 ¼ 0:000959). In this plot, we extract the waves at
r ¼ 200 M. After the radiation produced by the initial data
configuration (so-called junk radiation), there is a peak at

about time ¼ 340 M (dashed line). This burst of radiation
is not present in the BBH case (solid line). Moreover, the
pattern is encoded in every even m mode of �4.
Figure 11 shows the dependence of the amplitude of the

burst as a function of �0. The functional behavior is well
represented by a quadratic function Aþ B�0 þ C�2

0, with

A ¼ 3:04� 10�4 � 3� 10�6, B ¼ �0:08� 0:01, and
C ¼ 2273� 14.
In the above description, we have presented the results

for the free EKG system (a2 ! 1). For our representative
fðRÞ case, where a2 is finite but nonvanishing, the behavior
of the scalar field is qualitatively different. We compared
the cases �0 ¼ 0:000959 and a2 ¼ 2:64418 with �0 ¼
0:000048 and a2 ¼ 2:61877. Figure 12 shows the results.
Contrary to the free EKG case, we found only one collaps-
ing stage without the scattering to infinity phase. In both

FIG. 9 (color online). Dynamics of scalar field induced by
BBH. The parameters are a2 ! 1 and �0 ¼ 0:000959 (see
Table III). The upper panel (a) shows the maximum of j�j as
a function of time. The external lower panel (b) shows the radius
position of one black hole and the corresponding radius position
of the maximum of the scalar field. Internal lower panel
(c) shows the magnification of the collision part of the scalar
field and the black hole.

FIG. 10 (color online). Comparison of the initial part of the
waveform for a BBH collision in GR and fðRÞ theory with
parameters a2 ! 1 and �0 ¼ 0:000959. The collision between
the scalar field and the BBH produces a burst of gravitational
radiation at roughly time ¼ 340 M.

FIG. 11 (color online). Burst amplitude as a function of the
initial scalar parameter �0. In this case a2 ! 1. The fitting
parameters are A ¼ 3:04� 10�4 � 3� 10�6, B ¼ �0:08�
0:01, and C ¼ 2273� 14. Notice that the value of A is approxi-
mately equal to the amplitude of the waveform for GR.
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cases, almost all of the scalar field was absorbed by the
black holes. During the collapsing process, the scalar field
excites the spacetime. The backreaction excites the scalar
field, thereby producing several zigzags in its maximum
amplitude [see Fig. 12(d)]. After the maximum of the
scalar field passes over the black hole, the dynamics of
the scalar field become much richer. The scalar field is
constantly excited near the black hole. Figure 12(e) shows
that the scalar field is trapped in the inner region of the
BBH’s orbit. The black holes play the role of a semire-
flective boundary. A minor amount of scalar field escapes
to infinity. In comparison with the free EKG system, the
case �0 ¼ 0:000959 and finite a2 introduces a large
amount of eccentricity to the BBH system. However, there
is no burst of gravitational radiation (which corresponds to
the one presented in Fig. 10).

2. Dynamics of the binary black hole
induced by the scalar field

The trajectory of the BBH is strongly affected by the
scalar field. When the scalar field is present, the BBH
merges faster. Notice that the ADM mass is not the main
cause of the fast merge. As shown in Table III, for cases

�0 ¼ 0:00048 and �0 ¼ 0:000959, the ADM mass is
larger than in the GR case. On the other hand, when �0 ¼
0:000048, the ADMmasses for a2 ! 1 and a2 ¼ 2:61877
are smaller and equal to the GR case respectively.
However, in both cases with nonvanishing scalar field,
the BBH merges faster than in the GR case (see Fig. 13).
For larger values of �0, for example 0.00048, the scalar

field increases the eccentricity of the BBH’s orbit in addi-
tion to making it merge faster. This extra eccentricity de-
pends on the parameter a2. When a2 is big, the resulting
eccentricity is large [see Fig. 14(a)]. In addition, we observe
that the fðRÞ effect makes the BBHmerge faster in finite a2
case than in the free EKG case. Previously in Sec. IVC1,
we noticed that the interaction between the scalar field and
the black hole is weaker in finite a2 case than in the free
EKG case. The behavior shown in Fig. 14(a) is consistent
with this conclusion. When the interaction is stronger, it
introduces more eccentricity to BBH evolution. More ec-
centric BBH orbits produce more gravitational radiation
[48]. Therefore, the mergers are faster.
Although the coordinate information is gauge depen-

dent, it is possible to verify a change in the eccentricity
by looking at the gravitational waves [see Fig. 14(b)].
Notice that the amplitude of the gravitational radiation
burst in the finite a2 case is smaller than in the free EKG
case. In Fig. 10, we can see the change in the eccentricity
for the case of �0 ¼ 0:000959.
So far, we have shown that small �0 for free EKG cases

introduces more fðRÞ effects than finite a2 cases. On the
other hand, large �0 for free EKG cases introduces less
fðRÞ effects than finite a2 cases. It is possible that the
nonlinear terms of the finite a2 cases are the cause of these
differences.
Considering the fðRÞ effect introduced by the scalar

field, we can distinguish the parameter a2 through gravi-
tational wave detection. LIGO’s main BBH sources are

FIG. 12 (color online). Dynamics of scalar field induced by
BBH. The parameters are {�0 ¼ 0:000048, a2 ¼ 2:61877g
(solid line) and {�0 ¼ 0:000959, a2 ¼ 2:64418g (dashed line).
The upper panel (a) shows the maximum of j�0j as a function of
time. The internal upper panel (b) shows a magnification of the
initial evolution. The external lower panel (c) shows the radius
positions of one black hole for each case (dotted and dash-dotted
lines) and the corresponding radius positions of the maximum of
the scalar field. Internal lower panel (d) shows a magnification of
the collapse of the scalar field. Internal lower panel (e) shows a
magnification of the merger phase. Notice that in this case the
scalar field is constantly excited.

FIG. 13 (color online). Coordinate separation between the
black holes. Comparison between the GR vacuum case (solid
line), a characteristic fðRÞ case (dashed line), and the free EKG
case (dotted line). The fðRÞ effect makes the BBH merge faster
than the GR vacuum independently of the total ADM mass.
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black holes with several tens of solar mass. If a2 is bigger
than 1011 m2, we expect to be able to distinguish between
fðRÞ theory and GR, via the gravitational detection. On the
other hand, LISA (or some similar spacecraft experiment)
can distinguish between fðRÞ and GR if a2 > 1017 m2 [18].
All together, the merger phase of BBH collisions allows
distinction between the theories, as proposed by [49].

3. Difference between fðRÞ and other Einstein-Klein-
Gordon models in GR

We have seen above that it is possible to distinguish
between fðRÞ theory and GR via the gravitational waves.
Astrophysical models often include EKG equations for the
description of certain phenomena. For example, there are
models of dark matter which use EKG in the weak field
limit [50–53]. One example of a relativistic scalar field is
boson stars [54–58]. Therefore, it is interesting to ask if
gravitational wave detection can be used to distinguish

FIG. 14 (color online). The upper panel (a) shows the coor-
dinate separation between the black holes. The lower panel
(b) shows the waveform (‘ ¼ 2, m ¼ 2 mode). The fðRÞ effect
introduces extra eccentricity to the BBH orbit.

FIG. 15 (color online). Trajectories and waveforms. Comparison between BBH mergers in GR, a representative case of fðRÞ and the
corresponding free EKG model. Panel (a): BBH trajectory for vacuum GR (solid line), fðRÞ theory (dashed line), and free EKG matter
model in GR (dotted line). We show the trajectory of one of the two black holes, the trajectory of the companion black hole is
symmetric with respect to the Z axis. The scalar field amplitude parameter is �0 ¼ 4:8� 10�4. Panel (b): The corresponding
waveform (real part of �4, mode ‘ ¼ 2, m ¼ 2). Panel (c): Same as in panel (a) but with �0 ten times smaller (�0 ¼ 4:8� 10�5).
Panel (d): Corresponding waveform for the case �0 ¼ 4:8� 10�5.
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BBH collisions in fðRÞ theory from another system which
also contains scalar fields.

In the rest of this section, we analyze the differences
between the free EKG system (a2 ! 1) and the fðRÞ
theory. The main difference between free EKG and fðRÞ
theory is the nonlinear self interactions, present only in
fðRÞ theory. If the scalar field is strong, it is easy to
distinguish between free EKG and fðRÞ. If the scalar field
is weak, a deeper analysis is necessary in order to distin-
guish between the theories. Our quantitative results support
this statement.

First row of Fig. 15 shows the results for �0 ¼ 0:00048.
Figure 15(a) shows the trajectory of one of the components
of the binary (the companion black hole trajectory is
symmetric with respect to the X axis). We can see several
crosses of the trajectories. This indicates different fluctua-
tions on the inspiral rate. This results from the extra
eccentricity introduced by the scalar field. In Sec. IVC2
and Fig. 14, we saw that the eccentricity is larger in the free
EKG system than in the representative case of fðRÞ theory.
In addition, the BBH in fðRÞ theory merges faster than in
the free EKG. Therefore, it is possible to distinguish be-
tween free EKG models and fðRÞ theory.

The second row of Fig. 15 shows the results for �0 ¼
0:000048 (the value is ten times smaller). In this case, there
are no noticeable differences between free EKGmodels and
fðRÞ theory. This is consistent with our assumption that the
self-interaction becomes weak for small scalar fields.
However, the quantitative difference of the ‘ ¼ 2, m ¼ 2
mode of �4 is significant (see Fig. 16(a). Moreover, the
relative difference is larger than ten percent [see
Fig. 16(b)]. Once again, there is a small peak at roughly
time ¼ 240 M in Fig. 16(b). The peak is the result of a burst
of gravitational radiation produced by the free EKGmodel,
which is absent in the fðRÞ case (see also Fig. 10). We
expect that we will be able to characterize the differences

using more detailed quantitative data analysis techniques.
We plan to present the results in a forthcoming paper.

V. DISCUSSION

Extending the work of [18], where the extreme mass
ratio BBH systems were considered to be the gravitational
wave sources for LISA, we studied an equal mass BBH
system. In order to simulate BBH in fðRÞ theory with our
existing numerical relativistic code, we performed trans-
formations of the dynamical equations of fðRÞ theory from
the Jordan frame to the Einstein frame. In this way, we
performed full numerical relativistic simulations. The main
result in [18] is that the gravitational wave detection with
LISA can distinguish between fðRÞ theory and GR if the
parameter ja2j> 1017 m2. Our results imply that the gravi-
tational wave detection with LIGO can do the same for
ja2j> 1011 m2.
Mathematically, the dynamical equations of fðRÞ theory

in the Einstein frame require a scalar field. We found an
interesting dynamics between this scalar field and the
BBH. For example, the BBH excites the scalar field for
free EKG cases (a2 ! 1) near the collision. The scalar
field is constantly excited close to the BBH for finite a2
cases. Moreover, the interaction introduces extra eccen-
tricity to the evolution of the BBH orbit. We found that the
BBH eccentricity is affected by the initial parameter of the
scalar field �0 depending on the value of a2. For small �0,
the excitation of the BBH orbit is larger in the representa-
tive fðRÞ case in comparison with the free EKG system. On
the other hand, for larger values of �0 the excitation of the
BBH orbit is smaller in the representative fðRÞ case in
comparison with the free EKG system.
Using gravitational waves, it is possible to distinguish

among fðRÞ theory, general relativity, and a free Einstein-
Klein-Gordon system. We found that the perturbation pro-
duced by the scalar field depends on the initial scalar field
configuration. Specifically, the waveform exhibits a radia-
tion burst which depends quadratically on the initial scalar
field amplitude. The burst is a particular feature of the
system which is useful when distinguishing between fðRÞ
and GR. For an initial amplitude of scalar field �0 ¼
0:000048, the relative difference in the gravitational wave-
form between fðRÞ theory and the free EKG model is more
than 10%. Therefore, gravitational wave astronomy may
provide the necessary information to rule in or rule out
some alternative gravitational theories.
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FIG. 16 (color online). Upper panel (a): Difference between
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4 in fðRÞ theory (a2 ¼ 2:61877) and free

EKG model. Lower panel (b): Relative difference in amplitude
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BINARY BLACK HOLE MERGERS IN fðRÞ THEORY PHYSICAL REVIEW D 87, 104029 (2013)

104029-13



[1] C.M. Will, Living Rev. Relativity 9, 3 (2006).
[2] I. H. Stairs, Living Rev. Relativity 6, 5 (2003).
[3] N. Ashby, Living Rev. Relativity 6, 1 (2003).
[4] D. Huterer, arXiv:1010.1162.
[5] E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod.

Phys. D 15, 1753 (2006).
[6] M. Li, X.-D. Li, S. Wang, and Y. Wang, Commun. Theor.

Phys. 56, 525 (2011).
[7] B. Jain and J. Khoury, Ann. Phys. (Berlin) 325, 1479

(2010).
[8] A. Silvestri and M. Trodden, Rep. Prog. Phys. 72, 096901

(2009).
[9] A. D. Felice and S. Tsujikawa, Living Rev. Relativity 13

(2010).
[10] T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451

(2010).
[11] B. Huang, S. Li, and Y. Ma, Phys. Rev. D 81, 064003

(2010).
[12] X. Zhang and Y. Ma, Phys. Rev. Lett. 106, 171301 (2011).
[13] X. Zhang and Y. Ma, Phys. Rev. D 84, 064040 (2011).
[14] A. Abramovici, W. E. Althouse, R.W. P. Drever, Y. Gursel,

S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E.
Spero, and K. S. Thorne, Science 256, 325 (1992).

[15] C. Bradaschia, R. del Fabbro, A. di Virgilio, A. Giazotto,
H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O.
Cregut, P. Hello et al., Nucl. Instrum. Methods Phys. Res.,
Sect. A 289, 518 (1990).

[16] M. Maggiore, Phys. Rep. 331, 283 (2000).
[17] X. Gong, S. Xu, S. Bai, Z. Cao, G. Chen, Y. Chen, X. He,

G. Heinzel, Y.-K. Lau, C. Liu et al., Classical Quantum
Gravity 28, 094012 (2011).

[18] C. P. L. Berry and J. R. Gair, Phys. Rev. D 83, 104022
(2011).

[19] C. D. Hoyle, D. J. Kapner, B. R. Heckel, E. G. Adelberger,
J. H. Gundlach, U. Schmidt, and H. E. Swanson, Phys.
Rev. D 70, 042004 (2004).

[20] D. J. Kapner, T. S. Cook, E. G. Adelberger, J. H. Gundlach,
B. R. Heckel, C.D. Hoyle, and H. E. Swanson, Phys. Rev.
Lett. 98, 021101 (2007).

[21] B. Vaishnav, I. Hinder, D. Shoemaker, and F. Herrmann,
Classical Quantum Gravity 26, 204008 (2009).

[22] R.M. Wald, General Relativity (The University of
Chicago Press, Chicago, 1984).

[23] S.M. Carroll, Spacetime and Geometry: An Introduction
to General Relativity (Benjamin Cummings, San
Francisco, 2003).

[24] Z. Cao, H.-J. Yo, and J.-P. Yu, Phys. Rev. D 78, 124011
(2008).

[25] M. Alcubierre, Introduction to 3þ 1 Numerical Relativity,
International Series of Monographs on Physics (Oxford
University, New York, 2008).

[26] E. Gourgoulhon, 3þ 1 Formalism in General Relativity
(Springer, New York, 2012).
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