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The inflationary account for the emergence of the seeds of cosmic structure falls short of actually

explaining the generation of primordial anisotropies and inhomogeneities. This description starts from a

symmetric background, and invokes symmetric dynamics, so it cannot explain asymmetries. To generate

asymmetries, we present an application of the continuous spontaneous localization model of wave

function collapse in the context of inflation. This modification of quantum dynamics introduces a

stochastic nonunitary component to the evolution of the inflaton field perturbations. This leads to passage

from a homogeneous and isotropic stage to another, where the quantum uncertainties in the initial state of

inflation transmute into the primordial inhomogeneities and anisotropies. We show, by proper choice of

the collapse-generating operator, that it is possible to achieve compatibility with the precise observations

of the cosmic microwave background radiation.
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I. INTRODUCTION

The measurement problem in quantum mechanics
remains, almost a century after the theory’s formulation,
the major obstacle to considering the theory as truly
fundamental. Despite heroic efforts by many insightful
physicists, the difficulties involved have not yielded and
we are still lacking any fully satisfactory option. The basic
issue, as described for instance in Ref. [1], is the fact
that the theory relies on two different and incompatible
evolution processes. Using Penrose’s characterization [2],
there is the U (unitary) process, where the state changes
smoothly according to Schrödinger’s deterministic differ-
ential equation, and the R (reduction) process, in which the
state of the system changes instantaneously, in an indeter-
ministic fashion. The U process is supposed to control a
system’s dynamics all the time that the system is left alone,
while the R process is called upon whenever a measure-
ment has been carried out.

The problem is that no one has been able to characterize
in general when a physical process should be considered a
measurement. This issue has been studied and debated
extensively in the scientific and philosophical literature
[3]. Of course, in laboratory situations, one clearly knows
when a measurement has been carried out. Nonetheless, as
characterized by Bell [4], a FAPP (for all practical pur-
poses) approach is not satisfactory at the foundational
level, as it involves treating the system differently from
the measuring device or the observer, and this division is
one for which the theory offers no specific internal rules.
Its most conspicuous inadequacy occurs in cosmological

applications, where one cannot use any interpretation that
relies on an observer, or on a measurement device [5].
One approach [6] to resolving this problem of standard

quantum theory is to modify it by incorporating novel
dynamical features responsible for ‘‘the collapse of the
wave function.’’ It may be characterized as the promotion
of quantum theory from a theory of measurement to a
theory of reality, in which some of the physical properties
of a given system take values, regardless of whether they
are observed or not. Such an approach can be applied to
cosmology, and we shall do so by focusing on the problem
of emergence of the seeds of structure in inflationary
cosmology.
According to the standard account of inflation, in its

early stages, a relatively generic state of the universe1 is
driven towards a homogeneous and isotropic Robertson
Walker (RW) space-time. This universe expands almost
exponentially, driven by the potential of the inflaton field,
which acts as a large effective cosmological constant. The
inflaton field fluctuation is a quantum field2 which is taken
to initially be in the so-called Bunch-Davies vacuum state.3

This state is completely homogeneous and isotropic, and
the dynamics preserves these properties. Therefore, it can-
not be used to explain the observed inhomogeneous and
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1There are several conditions that are required for this, but we
shall not elaborate on that here.

2There are scalar, vector, and tensor fields, but we will focus
here on just the scalar field which is responsible for the anisot-
ropies that have been observed in the cosmic microwave back-
ground (CMB), so far.

3The fact that, due to the kinetic term in the energy momentum
tensor of the scalar field, the space-time cannot exactly corre-
spond to the de Sitter metric, implies that the state is not exactly
the Bunch-Davies state. However, this difference is negligible
for our treatment.
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anisotropic distribution of the primordial energy density in
our universe. There are various proposals to address this
issue. One proposal postulates that the state vector can be
expanded in some ‘‘natural’’ basis and, somehow, it is one
of these basis states which describes our inhomogeneous
and anisotropic universe. As discussed in detail in Ref. [7],
none of these proposals can be regarded as satisfactory.

There are analogous instances where quantum theory
presents us with a symmetric quantum state whereas nature
exhibits asymmetric behavior. Perhaps the best known
example is the � decay of a J ¼ 0 nucleus. Although the
wave function is rotationally invariant, the alpha particles
are seen to move on linear trajectories. The problem was
studied by Mott [8], and was resolved by heavy usage of
the collapse postulate appropriate to a measurement situ-
ation [7]. However, in the cosmological problem at hand,
even if we wanted to, we could not achieve a similar
explanation, for we cannot call upon any external entity
making a measurement.

The inflaton field fluctuation, according to the standard
accounts, is supposed to describe the seeds of the growth of
structure and lead to the formation of galaxy clusters,
galaxies, stars, etc. The prediction, which involves the
expectation value of the product of two inflaton field
operators at the end of the inflationary period, is phenom-
enologically quite successful. But, as we have argued, in
order to be truly successful those accounts should also
explain the actual emergence of inhomogeneities and an-
isotropies from the quantum uncertainties of a quantum
state that is completely homogeneous and isotropic. The
issue is sometimes referred as that of the ‘‘classicalization
of the fluctuations.’’ There have been important efforts in
this direction, among which are works like [9,10] which
focus on the squeezing of the quantum state of the inflaton
field fluctuations as a result of the cosmological expansion
as well as others that focus on the role of decoherence [11],
as well as works where both aspects are emphasized [12].
As explained in detail in Ref. [7], those approaches are not
fully satisfactory. Basically, there is no way we can invoke
anything like a measurement postulate as part of the ex-
planation of the emergence of those primordial seeds of
structure. Not only were there no observers or anything to
play the role of a measuring apparatus at the time but,
because we and our measuring devices (and indeed any
conceivable kind of astronomers of alien civilizations) owe
their existence to the process generating those seeds, they
cannot be any part of their cause! A careful reading of, say
Ref. [9], uncovers the important role that measurements
would have to play in any such account.

To summarize, the problem is that one cannot explain
the emergence of the observed asymmetries in homogene-
ity and isotropy when one has a theory with an initial state,
the Bunch-Davies vacuum on the RW space-time, which is
100% homogeneous and isotropic and a dynamics that
does not break such symmetries. Nonetheless, we wish to

recover the phenomenological success of the standard
account, where quantum fluctuations in the vacuum state
are the source of the first inhomogeneities and anisotropies
(we emphasize that the so-called quantum fluctuations are
quantum uncertainties and should not be confused with
thermal or statistical fluctuations).
In the case of alpha decay, dynamical collapse theories,

either the Ghirardi-Rimini-Weber (GRW) [13] model or
the continuous spontaneous localization (CSL) [14] model,
satisfactorily resolves the problem. In CSL, which is usu-
ally considered to have superseded GRW, the Schrödinger
equation is modified by adding to the usual Hamiltonian a
nonunitary term iHC, where HC is a unitary ‘‘collapse
Hamiltonian.’’ HC depends upon a randomly fluctuating
classical fieldwðx; tÞ. The eigenstates ofHC are essentially
mass density eigenstates. This modified Schrödinger equa-
tion is supplemented by a second equation, the probability
rule, which gives the probability that nature chooses a
particular wðx; tÞ. The dynamics is such that, for each
wðx; tÞ of high probability, the collapse Hamiltonian
evolves the state vector toward one or another eigenstate
of mass density, and this occurs according to the Born
probability rule.
In the description of alpha decay, under the usual

Hamiltonian, the state vector describes the alpha particle
interacting with the gas atoms in its path. With the added
CSL dynamics, as more and more gas atoms get involved,
for each high probability wðx; tÞ, the collapse Hamiltonian
more and more rapidly drives the state vector toward
an approximate mass-density eigenstate describing the
alpha particle moving in a straight-line path among its
associated atoms.
Returning to the standard inflationary scenario, since

there is no physical mechanism in standard quantum theory
that could account for the emergence of the inhomogene-
ities and anisotropies, it is natural to consider addition of a
physical mechanism that can do so. The mechanism of
wave function collapse in the cosmological setting was
suggested and modeled in an ad hoc and phenomenologi-
cal way, in previous work along this line [15]. This led to
phenomenological constraints on the parameters character-
izing the suggested collapse mechanism, in order to ensure
the theory is able to reproduce the observational results. In
this manuscript, we consider this idea anew, employing
however the rather well developed CSL formalism for the
description of wave function collapse.
The article is organized as follows. Sections II, III, IV,

and V present the noncollapse setting, and the remaining
sections invoke the collapse.
Section II discusses the inflationary paradigm and gives

estimates of important numerical quantities. Section III
obtains the Hamiltonian for the quantum perturbations on
the inflaton field and presents the dynamical solutions
without collapse. Section IV discusses the the metric per-
turbation on the Robertson Walker metric known as the
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Newtonian potential. The connection between classical
gravity and quantum variables is obtained by invoking
semiclassical gravity, whereby the Newtonian potential is
related to a certain quantum expectation value, and this
important assumption is discussed. Section V reviews the
relation of experimentally observed quantities to the
Newtonian potential, and thereby to those quantum
expectation values. Section VI then reviews the CSL for-
malism. Section VII adds the CSL modification to the
Hamiltonian evolution of the inflaton perturbations.
Sections VIII and IX show how it is possible to obtain
agreement with the observations. Section X uses this result
to obtain expressions for some physical quantities, and
their probabilities of realization. Sections XI and XII dis-
cuss our conclusions.

Regarding notation, we will use signature ð� þþþÞ
for the metric and Wald’s convention for the Riemann
tensor.

II. INFLATION

The starting point for the discussion of inflation is the
action of a scalar field coupled to gravity:

S½�� ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

16�G
R½g�

� 1

2
ra�rb�gab � V½��

�
: (1)

The field equations derived from the action [Eq. (1)] are

Ga
b ¼ 8�GTa

b; (2)

where Ta
b is give by

Ta
b ¼ gac@c�@b�þ �a

b

�
� 1

2
gcd@c�@d�� Vð�Þ

�
: (3)

Now we address a fundamental issue, how to combine
quantum theory and gravitational physics. Despite impor-
tant advances, it is well known that we are still lacking a
fully workable and satisfactory theory of quantum gravity.
It is also well known that a quantum gravity approach
based on canonical quantization leads to what is, in effect,
a timeless theory [16].

On the other hand, time seems not only an important
aspect of any discussion of cosmology but, also, time is
needed for the CSL dynamical reduction theory which we
wish to incorporate. These considerations lead us to use the
approach based on semiclassical gravity, where matter
fields are treated at the quantum level whereas gravitation
(although quantum at the fundamental level) is assumed to
be in a regime where it can be treated in a classical manner
to a very good approximation [7]. The fact that inflation
is thought to occur at energy scales well below the
Planck mass lends support to this assumption. (For further
discussion on the issue and on the kind of treatment
capable of incorporating dynamical reduction in such a

context, see Ref. [17].4) This approach differs from that
followed in standard treatments. There (as here), the start-
ing point is a classical background for both the gravitation
and matter fields, but a quantum treatment is used for the
perturbations of both the metric and the inflaton. In the
present work we adopt in principle the strict semiclassical
approach described above, limiting the quantum treatment
to the perturbation of the inflaton field. This difference
should be kept in mind when comparing the standard
approach to our treatment using the CSL theory.
We now proceed to describe the basic setting of the

problem, starting with characterization of the background
metric and inflaton field, followed by the treatment of the
corresponding perturbed quantities.

A. The background

The analysis here will be based, as is usual, on
separating the metric and scalar field into a spatially
homogeneous-isotropic background part and a fluctua-
tion part. That is, the scalar field is written � ¼ �0 þ
��, while the metric is written as g ¼ g0 þ �g, where
�0 is a function of the conformal time5 � only, and
g0 characterizes the spatially flat Robertson Walker
cosmology, i.e.,

ds20 ¼ a2ð�Þ½�d�2 þ �ijdx
idxj�; �0ð�Þ: (4)

The background metric and scalar field are treated classi-
cally. The scalar field and Friedman evolution equations are

�00
0 þ 2

a0

a
�0

0 þ a2@�0
V½�0� ¼ 0;

3

�
a0

a

�
2 ¼ 4�G½�02

0 þ 2a2V½�0��;
(5)

where the prime denotes derivative with respect to the
conformal time �, whose range during the inflationary era
is negative, i.e., � 2 ð�1;��Þ with � > 0.
The scale factor corresponding to the inflationary era of

standard inflationary cosmology which follows from
Eq. (5) is, to a good approximation,

að�Þ ¼
��1

HI�

�
1þ�

; (6)

where the Hubble constant (the expansion rate in time t) is

HI � ½ð8�=3ÞGV½�0��1=2: (7)

4In contrast with the standard approach where the quantum-
classical cut is tied to the background-perturbation separation, in
the treatment developed in Ref. [17], the quantum-classical cut is
tied to the separation of gravitation and matter fields. In particu-
lar, the so-called zero mode of the inflaton field is treated at the
quantum level.

5Note that að�Þd� ¼ dt, where t is ordinary time, so if að�Þ �
�1=�, then að�Þ grows exponentially with t.
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Written in terms of H � a0ð�Þ=að�Þ, the so-called
slow-roll parameter � � 1�H 0=H 2 is considered to
be very small: � � 1 during the inflationary stage. As
for the scalar field �0, the slow-roll regime corresponds
to �0

0 ¼ �ða3=3a0Þ@�V.6 Also, it is assumed that the

change in the scalar potential is so small that the Hubble
parameter HI is essentially constant.

According to the standard scenario, this inflationary era
is followed by a brief reheating period in which the
inflaton field (including the fluctuation field) decays,
populating the universe with ordinary matter (a process
that, for simplicity, we take to occur instantaneously).
This is immediately followed by the radiation-dominated
era, which begins the evolution of standard hot big bang
cosmology, leading up to the present cosmological time.
While the functional form of að�Þ changes during these
later periods, that is irrelevant for our calculation, which
deals solely with the inflationary era at whose end, it is
assumed, the fluctuation field provides seeds of structure
which are transformed into anisotropies and inhomogene-
ities in the ordinary matter distribution by the reheating
conversion process.

We shall take inflation to start at � ¼ �T , assume that
the inflationary regime ends at the start of the radiation-
dominated era at � ¼ ��, and set a ¼ 1 at the ‘‘present
cosmological time.’’

The effects of the late time physics, comprising the
physical processes occurring between the time of reheating
and the time of decoupling (where the matter becomes
transparent to the radiation), to the extent that we shall
refer to them, will be taken as fully codified in what are
called transfer functions (which relate the primordial fluc-
tuations to those fluctuations that are directly observable in
the CMB) and which will be, for the most part, ignored in
the present work.

The only additional information (beyond the behavior of
quantities during the inflationary regime) we need, in order
to make the estimates below, is the relationship between
the scale factor at the end of inflation, the scale factor at the
time of decoupling and the scale factor today.

Of course, the quantities directly observed are those that
were present at the time of the decoupling (whose confor-
mal time is �D) which lies in the matter-dominated era.
However, we shall evaluate such quantities at the end of
inflation, at � ¼ ��. We can do this because the transfer
functions allow us to go backward from � ¼ �D to � ¼
��. For example, the famous acoustic peaks, the most
noteworthy feature of the CMB power spectrum, which
are related to aspects of plasma physics, can be effectively

subtracted out using the transfer functions. The results lead
back (as we shall discuss later in detail) to the scale-free
Harrison-Zeldovich (H-Z) spectrum at the end of inflation.
Therefore, it is the H-Z spectrum for which our calculation
must account. Alternatively said, if the transfer functions
were constants, we would be directly observing the H-Z
spectrum today.

B. Estimates

Now, we need to estimate the values of the conformal
time� ¼ �� at the end of inflation and the conformal time
� ¼ �T at which the inflation starts. This may be done as
follows.
Recall that the temperature of radiation, regardless of

era, scales7 like 1=a. The radiation temperature today
corresponds to 2:7K ¼ 2:4� 10�13 GeV. We adopt the
widespread assumption that the inflation scale, i.e., the
effective temperature at the end of inflation, corresponds
to the grand unification theory (GUT) scale of about
1015 GeV. Therefore, we estimate að��Þ ¼ 2:4� 10�28.
Next, we must find the value �� corresponding to this
scale factor.
Using the GUT inflationary scale for V � ðGUT scaleÞ4,

and as we use c¼ℏ¼1 (so 1GeV�1037 Mpc�1 and G ¼
M�2

Pl ), we employ Eq. (7) to determine HI � 3ðM2
GUT=

MPlÞ ¼ 3ðMGUT=MPlÞ2 � 1019 GeV ¼ 3 � 1011 GeV.
Knowingað��Þ andHI, we find �’10�22Mpc fromEq. (6).
(The result can be written � ’ ðMPl=MGUTÞ10�26 Mpc,
whereMPl is the Planck mass).
Next, in order to estimate the value of the conformal

time at the start of inflation, � ¼ �T , we assume that
inflation lasts, say, 70 e-folds (usually considered a lower
bound for inflation to solve the naturalness problems).
Thus T =� ¼ að��Þ=að�T Þ ¼ e70 � 1030. Combining
this with the previous result � ’ 10�22 Mpc. gives T ¼
108 Mpc. Note that this time becomes larger if we require
inflation to last more than that number of e-folds.
Also, we shall need an estimate of the comoving wave

number k ¼ jkj for the modes k which are relevant for the
observed CMB data.
These are obtained by noting that the surface of

last scattering/decoupling is at aLS ¼ 2:7Ko=3000Ko ¼
1=1100 and that the comoving radius R of the last scatter-
ing sphere is determined by the requirement that the pho-
tons that started from a point on that sphere at the time of
decoupling are just reaching us today. This gives R �
2=H0 � 6� 103 Mpc. The physical radius of that sphere
is then RPhys ¼ aLSR � 5:5 Mpc.

6This slow-roll stage corresponds mathematically to the
‘‘terminal velocity’’ of a body subject to a constant force in

addition to a friction term. Thus, the condition is @2�
@t2

¼ 0 which

corresponds in conformal time to �00
0 ¼ H�0

0. Using this in the
first equation in (5) leads to �0

0 ¼ �ða3=3a0Þ@�V.

7For a brief period prior to the end of reheating (which we take
here to occur essentially instantaneously at the end of inflation),
this relationship between the temperature and the scale factor
does not hold, because the radiation and particle content of the
universe are replenished at that time as a result of the process of
inflaton field decay.
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Now, the scales that are relevant range from those
corresponding to this radius to, say, 10�5 of this value.
This corresponds to angular scales of 2�� 10�5 which is
the smallest scale that can be seen with current technology
in the CMB. Thus, the relevant modes are those
whose physical wavelength aLS2�=k at last scattering
roughly lies between RPhys and 10�5RPhys. This gives

10�3 Mpc�1 & k & 102 Mpc�1.
We emphasize that this discussion about the values of k

is completely independent of the precise functional form of
að�Þ between the end of inflation and the decoupling time:
the only relevant data is the relationship between the values
of the scale factor at the end of inflation and the scale factor
at the decoupling time.

It is clear that the conditions kT � 1 and k� � 1,
which we shall use to make approximations, hold by
very wide margins for the relevant modes.

III. THE FLUCTUATION OF THE
INFLATON FIELD

Now we consider the fluctuation of the inflaton field,
��ðx; �Þ. We start with the perturbed action up to second
order in the scalar field fluctuation, written in term of the
auxiliary field y � a��,

�Sð2Þ ¼ 1

2

Z
d�d3xðy02 � ðryÞ2 þH 2y2 � 2H yy0Þ:

(8)

The Lagrangian density is then

�Lð2Þ ¼ 1

2
ðy02 � ðryÞ2 þH 2y2 � 2H yy0Þ: (9)

The canonical momentum � conjugate to y is � �
@�Lð2Þ=@y0 ¼ y0 �H y. Note that ��0 ¼ ðy=aÞ0 ¼ �=a.
WithH � a0ð�Þ=að�Þ and að�Þ ¼ �1=HI�, the nonvan-
ishing equal-time Poisson bracket and the Hamiltonian are

½yðxÞ;�ðx0Þ� ¼ �ðx� x0Þ;
�H ð2Þ ¼ 1

2

Z
dx

�
�2ðxÞ � 2

�
�ðxÞyðxÞ þ ðryðxÞÞ2

�
;

(10)

where here, and in what follows, we suppress the depen-
dence of all variables on �.

We next focus on the individual modes of the field:

yðxÞ ¼ 1

ð2�Þ3=2
Z

dkyðkÞeik	x;

�ðxÞ ¼ 1

ð2�Þ3=2
Z

dk�ðkÞeik	x:
(11)

In terms of yðkÞ, �ðkÞ, which are no longer real, the
nonvanishing equal-time Poisson bracket and the
Hamiltonian then become

½yðkÞ; �ðk0Þ� ¼ �ðk� k0Þ;
�Hð2Þ ¼ 1

2

Z
dk

�
�ðkÞ�
ðkÞ � 1

�
½�
ðkÞyðkÞ

þ �ðkÞy
ðkÞ� þ k2yðkÞy
ðkÞ
�
: (12)

In making the transition from this classical description
to the quantum description, we replace a c-number real
variable � by a Hermitian operator �̂, and replace the
Poisson bracket by i�1 � ðcommutator bracketÞ. (We shall
work in the Schrödinger picture, so the operators will be
time independent, and the state vector, evolving according
to Schrödinger’s equation, describes the time evolution.)
Thus, ŷðxÞy ¼ ŷðxÞ, and therefore ŷðkÞy ¼ ŷð�kÞ.
Similarly, �̂ðxÞy ¼ �̂ðxÞ, and therefore �̂ðkÞy ¼ �̂ð�kÞ.
Therefore, because the classical variables describing the
modes are not real, the operators ŷðkÞ and �̂ðkÞ are not
Hermitian. In order to work with Hermitian operators, we
turn to a description in terms of symmetric and antisym-
metric fields.

A. Symmetric and antisymmetric fields

Still in the classical theory, we write each field as the
sum of symmetric and antisymmetric parts:

yðxÞ ¼ 1

2
½yðxÞ þ yð�xÞ� þ 1

2
½yðxÞ � yð�xÞ�

� ySðxÞ þ yAðxÞ; (13)

and similarly for �ðxÞ. Putting (13) into (10), and usingR
dxfSðxÞgAðxÞ ¼ 0, Eq. (10) becomes

�Hð2Þ ¼ 1

2

Z
dx½�2

SðxÞ �
2

�
�SðxÞySðxÞ þ ðrySðxÞÞ2�

þ 1

2

Z
dx½�2

AðxÞ �
2

�
�AðxÞyAðxÞ þ ðryAðxÞÞ2�;

(14)

i.e., �Hð2Þ ¼ �Hð2Þ
S þ �Hð2Þ

A .

The equal-time Poisson brackets of the symmetric and
antisymmetric fields follow from (10):

½ySðxÞ; �Sðx0Þ� ¼ 1

2
½�ðx� x0Þ þ �ðxþ x0Þ�;

½yAðxÞ; �Aðx0Þ� ¼ 1

2
½�ðx� x0Þ � �ðxþ x0Þ�;

(15)

and ½ySðxÞ; �Aðx0Þ� ¼ ½yAðxÞ; �Sðx0Þ� ¼ 0.
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B. Modes, symmetric case

Now, we consider the individual modes of the field,

ySðxÞ ¼ 1

ð2�Þ3=2
Z

dkeik	xySðkÞ;

�SðxÞ ¼ 1

ð2�Þ3=2
Z

dkeik	x�SðkÞ:
(16)

Because ySðxÞ, �SðxÞ are symmetric, we get ySð�kÞ ¼
ySðkÞ, �Sð�kÞ ¼ �SðkÞ. Because ySðxÞ, �SðxÞ are real,
we get y
SðkÞ ¼ ySð�kÞ, �


SðkÞ ¼ �Sð�kÞ. So, y
SðkÞ ¼
ySðkÞ, �


SðkÞ ¼ �SðkÞ: these classical variables are real.

Therefore, the nonvanishing Poisson bracket is, using (15),

½ySðkÞ; �Sðk0Þ�
¼ ½ySðkÞ; �


Sðk0Þ�
¼ 1

ð2�Þ3
Z

dx
Z

dx0e�ik	xeik0	x0 ½ySðxÞ; �Sðx0Þ�

¼ 1

2
½�ðk� k0Þ þ �ðkþ k0Þ�: (17)

In evaluating the Hamiltonian, the first term is

1

2

Z
dx�2

SðxÞ

¼ 1

2

Z
dx�SðxÞ�


SðxÞ

¼ 1

2ð2�Þ3
Z

dx
Z

dk
Z

dk0eik	xe�ik0	x�SðkÞ�Sðk0Þ

¼ 1

2

Z
dk�2

SðkÞ

¼
Z
þ
dk�2

SðkÞ: (18)

In the last step, the integral over all k is converted to the
integral over the upper half k-plane, since the lower half
k-plane makes the identical contribution. Similar steps are
to be taken for the other terms in the Hamiltonian, which
then becomes

�Hð2Þ
S ¼

Z
þ
dk

�
�2

SðkÞ �
2

�
�SðkÞySðkÞ þ k2y2SðkÞ

�
:

(19)

Finally, in limiting to the upper half k-plane, we note
that the �ðkþ k0Þ term in the Poisson bracket is not used
in calculating the equations of motion, so the Poisson
bracket is effectively just the first term in (17). However,
there is a factor of 1=2 in the Poisson bracket which makes
this not quite canonical. So, we shall define new variables:

XSðkÞ �
ffiffiffi
2

p
ySðkÞ; PSðkÞ �

ffiffiffi
2

p
�SðkÞ: (20)

In terms of these variables, the equal time Poisson
bracket and Hamiltonian are

½XSðkÞ; PSðk0Þ� ¼ �ðk� k0Þ;
�Hð2Þ

S ¼ 1

2

Z
þ
dk

�
P2
SðkÞ �

2

�
PSðkÞXSðkÞ þ k2X2

SðkÞ
�
:

(21)

Lastly, we proceed to quantize, so Eq. (21) becomes

½X̂SðkÞ; P̂Sðk0Þ� ¼ i�ðk� k0Þ;
�Hð2Þ

S ¼ 1

2

Z
þ
dk

�
P̂2
SðkÞ �

1

�
½P̂SðkÞX̂SðkÞ

þ X̂SðkÞP̂SðkÞ� þ k2X̂2
SðkÞ

�
: (22)

Again, we emphasize that, while the classical variables are
functions of conformal time �, we are choosing to work in
the Schrödinger picture. Thus, the operators are � inde-
pendent (except for the Hamiltonian where the � depen-
dence is explicit): the � dependence is relegated to the
behavior of the state vector.

C. Modes, antisymmetric case

Here we proceed in a manner exactly parallel to that
used in the previous case.
We start with

yAðxÞ ¼ 1

ð2�Þ3=2
Z

dkeik	xiyAðkÞ;

�AðxÞ ¼ 1

ð2�Þ3=2
Z

dkeik	xi�AðkÞ:
(23)

However, as yAðxÞ, �AðxÞ are antisymmetric, we get
yAð�kÞ ¼ �yAðkÞ, �Að�kÞ ¼ ��AðkÞ. Because yAðxÞ,
�AðxÞ are real, we get y
AðkÞ ¼ �yAð�kÞ, �


AðkÞ ¼��Að�kÞ. So, y
AðkÞ ¼ yAðkÞ, �

AðkÞ ¼ �AðkÞ: the i fac-

tors in the definitions of yAðkÞ,�AðkÞwere chosen to make
these real so that they become Hermitian operators in the
transition to quantum theory. So, although �ðkÞ is not
Hermitian, it has been expressed in terms of Hermitian
operators:

�ðkÞ ¼ �SðkÞ þ i�AðkÞ: (24)

The nonvanishing equal time Poisson bracket is,
using (15),

½yAðkÞ; �Aðk0Þ�
¼ ½yAðkÞ; �


Aðk0Þ�
¼ 1

ð2�Þ3
Z

dx
Z

dx0e�ik	xeik	x0 ½yAðxÞ; �Aðx0Þ�

¼ 1

2
½�ðk� k0Þ � �ðkþ k0Þ�: (25)

The rest of the argument goes through just as for the
symmetric case. The only difference is that the sign of
�ðkþ k0Þ is positive for the symmetric case, Eq. (17), but
negative for the antisymmetric case, Eq. (25). However,
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when we limit to the upper half k-plane, �ðkþ k0Þ
plays no role. Therefore, after quantization, we obtain the
antisymmetric version of Eq. (22):

½X̂AðkÞ; P̂Aðk0Þ� ¼ i�ðk� k0Þ;
�Hð2Þ

A ¼ 1

2

Z
þ
dk

�
P̂2
AðkÞ �

1

�
½P̂AðkÞX̂AðkÞ

þ X̂SðkÞP̂AðkÞ� þ k2X̂2
AðkÞ

�
: (26)

In this way, the field has become a simple collection of
independent modified-harmonic oscillators, with each
mode evolving independently. If we define

X̂ � ffiffiffiffiffiffiffi
dk

p
X̂�ðkÞ; P̂ � ffiffiffiffiffiffiffi

dk
p

P̂�ðkÞ; (27)

with indices � ¼ S, A, k suppressed, the commutation
relations and Hamiltonian for a mode characterized by
k � jkj is

½X̂; P̂� ¼ i;

Ĥk ¼ 1

2

�
P̂2 � 1

�
½P̂ X̂þX̂ P̂� þ k2X̂2

�
:

(28)

D. Noncollapse theory: Expectation values

We emphasize that, in our treatment, the Hamiltonian

Ĥk is not the sole cause of the dynamics. We have yet to
incorporate the CSL modification of quantum theory
(Sec. VI and beyond). Nonetheless, it is interesting, and
shall prove useful, to calculate expectation values due to
the collapse-free dynamics characterized by Hk alone.

This is easy to do. For any operator Â, hc ; tjÂjc ; ti
satisfies

d

d�
hc ; �jÂjc ; �i ¼ �ihc ; �j½Â; Ĥk�jc ; �i: (29)

Because Ĥk is quadratic, the set of expectation values of
any power of operators forms a closed set which can be
solved. The initial condition is that the mode wave function
is in the Bunch-Davies vacuum, which is just the harmonic
oscillator ground state, at the initial time � ¼ �T :

hpjc ;�T i ¼ 1

ð�kÞ1=4 e
�p2=2k;

hxjc ;�T i ¼ ð�=kÞ1=4e�x2k=2:
(30)

(We emphasize that this initial condition is specified at a
fixed time and not, as often done, in the limit as � ! �1:)

Writing hÂi � hc ; �jÂjc ; �i, the first order equations,
the consequent equations of motion and their solutions are

d

d�
hX̂i ¼ hP̂i � hX̂i

�
;

d

d�
hP̂i ¼ �k2hX̂i þ hP̂i

�
; (31a)

d2

d�2
hX̂i ¼ �

�
k2 � 2

�2

�
hX̂i; d2

d�2
hP̂i ¼ �k2hP̂i; (31b)

hX̂i ¼ C1

�i

k
eik�

�
1þ i

k�

�
þ C2

i

k
e�ik�

�
1� i

k�

�
; hP̂i ¼ C1e

ik� þ C2e
�ik�: (31c)

(It is notable that hP̂i has the usual harmonic oscillator solution, even though the Hamiltonian is not the usual harmonic
oscillator Hamiltonian.) From the initial conditions [Eq. (30)], we see that hX̂i and hP̂i vanish initially,C1 ¼ C2 ¼ 0, so for
all �,

hX̂i ¼ hP̂i ¼ 0: (32)

The second order equations, with Q � hX̂2i, R � hP̂2i, S � h½cXPþ dPX�i, are
d

d�
Q ¼ S� 2Q

�
;

d

d�
R ¼ �k2Sþ 2R

�
;

d

d�
S ¼ 2½R� k2Q�: (33)

Because the algebra of the commutator brackets is identical to that of the Poisson brackets, and for the classical variables
the product of two solutions is the solution for the product, the same is true for the solutions of Eq. (33). They are the
product of the solutions [Eq. (31c)]:

Q ¼ �C1

1

k2
e2ik�

�
1þ i

k�

�
2 � C2

1

k2
e�2ik�

�
1� i

k�

�
2 þ C3

1

k2

�
1þ 1

ðk�Þ2 ;
�
; (34a)

R ¼ C1e
2ik� þ C2e

�2ik� þ C3; (34b)

S ¼ �2iC1

1

k
e2ik�

�
1þ i

k�

�
þ 2iC2

1

k
e�2ik�

�
1� i

k�

�
þ C3

2

k2�
: (34c)

The initial conditions are
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Qð�T Þ ¼ 1=2k; Rð�T Þ ¼ k=2; Sð�T Þ ¼ 0:

(35)

Assuming kT � 1, we obtain C1 ¼ �C2 ¼ 0, C3 ¼ k=2
and so

Q ¼ hX̂2i ¼ 1

2k

�
1þ 1

ðk�Þ2 ;
�
; R ¼ hP̂2i ¼ k

2
;

S ¼ h½cXPþ dPX�i ¼ 1

k�
: (36)

It may be noted in passing, as a consequence of Eq. (36),
that an alternative choice of canonically conjugate
variables exhibits squeezing:*24 ffiffiffi

k

2

s
X̂ �

ffiffiffiffiffi
1

2k

s
P̂

352+
¼ 1

4

�
1� 1

k�

�
2 þ 1

4
;

a behavior noted [9,10,12] as characteristic of the evolution
of the cosmological quantum fluctuations. Here, both
variables initially [� ¼ �T , with ðkT Þ�1 considered neg-
ligibly small] have the usual harmonic oscillator ground
state minimum uncertainty in position and momentum but,
for a range of �, the uncertainty of one of them decreases
below that value, achieving a minimum at k� ¼ �1.8

It shall be seen that the result hP̂2i ¼ k=2 which, to-
gether with Eqs. (24), (20), (27), and (32) et. seq. implies

h�̂ðkÞ�̂ðk0Þ
i ¼ hð�̂SðkÞ þ i�̂AðkÞÞð�̂Sðk0Þ � i�̂Aðk0ÞÞi
¼ h�̂SðkÞ�̂Sðk0Þi þ h�̂AðkÞ�̂Aðk0Þi

¼ 2

��
P̂ffiffiffiffiffiffiffiffiffi
2dk

p
�
2
�
�kk0

¼ hP̂2i�ðk� k0Þ
¼ k

2
�ðk� k0Þ; (37)

in the usual treatment is what is cited as causing
agreement between the theory of inflaton perturbations
and the effectively observed H-Z spectrum of temperature
fluctuations.

IV. THE FLUCTUATION OF THE METRIC:
NEWTONIAN POTENTIAL

In order to connect with observations, we need to study
the metric perturbation � known as the Newtonian poten-
tial at the end of the inflationary period. As we have men-
tioned, immediately following that time, the universe
entered into the brief so-called ‘‘reheating period,’’ when
the inflaton field is supposed to have decayed, in a not
completely understood manner, into the matter content of
the present universe: dark matter, baryons, electrons, pho-
tons, etc. As we shall see, the Newtonian potential is related

to the fluctuation (inhomogeneity) in the inflaton field, so
that it ends up being tied to the inhomogeneities of the
matter created during reheating. During reheating, it is
supposed that the Newtonian potential did not change in
any appreciable manner from its value at the end of infla-
tion. Thus, this primordial Newtonian potential can be used
to determine the ensuing evolution of the matter inhomo-
geneities, entailing well-known physics such as baryon
acoustic oscillations, and other processes described by the
so-called transfer functions.
Eventually, the universe evolved to what is variously

called the time of last scattering or the time of decoupling
of the photons from the plasma, or the time of recombina-
tion of electrons and protons, when the atoms formed and
universe suddenly became transparent to the radiation
which we now detect. At that time, the universe is consid-
ered to have been in local thermal equilibrium. The quan-
tity that we presently measure is the temperature variation
as a function of coordinates on the celestial sphere,
�Tð�;’Þ= �T [�Tð�;’Þ � Tð�;’Þ � �T, where �T is the
mean temperature over the sky]. This temperature variation
is due to the inhomogeneities in the matter density distri-
bution at the time of last scattering.
The satellites measure the temperature by detecting the

blackbody microwave radiation at a number of frequen-
cies. If 	 is the frequency at the peak of the spectrum, we
have the relations

�T
�T

¼ �	

	
� 1

3
�; (38)

where the last step uses the transfer functions to strip
away the physics ensuing between the end of reheating
and the time of decoupling, effectively considering that we
are directly observing �. The effect of � is, first, a
gravitational red- or blueshift. Second there is an effect
on the rate of expansion of the universe whose combined
(Sachs-Wolfe) effect gives the 1=3 factor.9

The Newtonian potential is related to the fluctuation of
the inflaton field as follows. When the perturbation of the
Robertson Walker space-time is taken into account, with
the appropriate choice of gauge (conformal Newton
gauge), and ignoring the vector and tensor part of the
metric perturbations, Eq. (4) is replaced by

ds2 ¼ að�Þ2½�ð1þ 2�Þd�2 þ ð1� 2�Þ�ijdx
idxj�;

where� and� are functions of the space-time coordinates
�, xi.
Next, consider Einstein’s equations to first order in the

perturbations. The expression for the energy-momentum
tensor Ta

b for the inflaton field is Eq. (3). Its linear

perturbation components are

8The minima at k� ¼ þ1 would correspond to �> 0which is
not physical.

9The red-/blueshift contribution is �	
	 ¼ �

ffiffiffiffiffiffi
gðeÞ
00

pffiffiffiffiffiffiffiffiffiffiffi
g½ðoÞ00

p � � where

gðe;oÞ00 represent the ‘‘time-time’’ metric components at the events

of emission and observation, respectively. For details about the
�2=3 contribution, see Ref. [18], p. 139, or Ref. [19].
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�T0
0 ¼ a�2½�02

0 ���0
0��

0 � @�Va
2���;

�T0
i ¼ @ið�a�2�0

0��Þ;
�Ti

j ¼ a�2½�0
0��

0 ��02
0 �� @�Va

2����i
j:

(39)

Then, Einstein’s equations to first order, �G
	 ¼
8�G�T
	, lead to � ¼ � and

r2�þ
� ¼ 4�Gð!��þ�0
0��

0Þ; (40)

where 
 � H 2 �H 0 and ! � 3H�0
0 þ a2@�V.

As discussed following Eq. (6), the slow-roll approxi-
mation corresponds to ! ¼ 0. We are ignoring here terms
of order �, which implies 
 ¼ 0. Thus Eq. (40) and its
Fourier transform become

r2�ð�;xÞ ¼ 4�G�0
0ð�Þ��0ð�;xÞ

¼ 4�G�0
0ð�Þ

a
�ð�;xÞ;

�k2�ð�;kÞ ¼ 4�G�0
0ð�Þ��0ð�;kÞ

¼ 4�G�0
0ð�Þ

a
�ð�;kÞ: (41)

Now we make the transition to quantum theory.
The usual procedure is to quantize both sides of Eq. (41),

so that �̂ðkÞ � �̂ðkÞ. But then, as a consequence of

Eqs. (41) and (32), h�̂ðkÞi � h�̂ðkÞi ¼ 0. Therefore,

hc ; �j�̂ðxÞjc ; �i ¼ 0.
How is this to be interpreted? One would like to identify

the expectation value of the Newtonian potential operator
with the value of the Newtonian potential in nature.
However, for a state jc ; �i representing nature, the expec-
tation value should vary with position. Therefore, the state
jc ; �i does not represent nature. It may then be considered
as a superposition of possible states of nature, but there
is no guideline how to determine the states in the
superposition.

Moreover, in the usual approach, hc ; �Dj�̂ðxÞ�
�̂ðx0Þjc ; �Di (�D represent the conformal time of decou-
pling) can be readily shown to be rotationally invariant, a
function of x̂ 	 x̂0. Therefore, again, jc ; �i does not repre-
sent the state of our universe, but at best is some superpo-
sition of possible states.

So, as we have emphasized, the homogeneous and
isotropic initial state and dynamics does not explain the
observed inhomogeneity and anisotropy.

Therefore, as previously mentioned, following
Refs. [7,15] we take a different approach, utilizing the
semiclassical description of gravitation [20,21], where
gravity is treated classically while other fields are treated
in the standard quantum field theory (in curved space-time)
fashion. The classical gravity and the quantum fields are
thus related by

Gab ¼ 8�GhT̂abi: (42)

There is an immediate objection to semiclassical gravity.
Suppose a quantum experiment is performed with two
possible macroscopic outcomes, a large object being put
in one or another place. Using the Schrödinger equation to
describe this, including the apparatus, the resulting state
vector describes a superposition of these two outcomes.

Then, hT̂abi is large in two places and so, according to
semiclassical gravity, the gravitational field acts as if there
were sources in two places. Such an experiment was
actually performed [22] and, as expected, the gravitational
field (as measured by a Cavendish balance) was that due to
only a source in one place. However, this objection no
longer obtains if the Schrödinger equation is modified, à la
CSL, to include collapse, since then the state vector rapidly
ends up describing the object in one place only.10

However, the resolution of this problem by invoking
collapse brings on another problem. As is well known,
introducing CSL dynamical collapse violates the conser-
vation of energy, so the divergence of the energy-
momentum tensor does not vanish. In the current epoch
this energy nonconservation is quite small, and in the
present application it is also small compared to the retained
terms, so it may practically be neglected. However, from a
fundamental point of view, if the divergence of the energy-
momentum tensor does not vanish, and it is equated to the
Einstein tensor, then of course this conflicts with the van-
ishing divergence of the latter.
Here we shall take the view that Einstein’s equations are

an emergent, approximate description of the collective
behavior of the fundamental degrees of freedom of quan-
tum space-time, and as such those equations will not hold
under all circumstances. It has been argued in Ref. [17] that
this should be considered in analogy with the breakdown of
the Navier-Stokes characterization of a fluid. This can be
expected to occur, not only for phenomena at scales
smaller than the mean intermolecular distance of the fluid
constituents, but also when there are important energy
fluxes between the micro- and macroscopic degrees of
freedom, such as when a part of the fluid undergoes a
phase transition.
In the same manner, the collapse should be thought of

as accompanied by a backreaction in the fundamental
quantum gravity degrees of freedom, which are not fully
represented in the metric characterization. Then, a more
precise description would include a compensating term
appearing in the Einstein’s equation. Another approach,
discussed for instance in Ref. [23], involves assigning
energy and momentum to the stochastic field driving the
CSL dynamics such that the stress tensor then does have
vanishing divergence. We shall not explore this issue any
further in the present work.

10For more discussion about the applicability of semiclassical
gravity to the problem at hand, see Ref. [17] where the first steps
of a formalism capable of incorporating collapse of the wave
function at the semiclassical level was developed.
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It follows from Eqs. (41) and (42) that

�k2�ð�;kÞ ¼ 4�G�0
0ð�Þh�̂�0ðk; �Þi

¼ 4�G�0
0ð�Þ

a
h�̂ðk; �Þi (43)

(h�̂ðk; �Þi � hc ; �j�̂ðkÞjc ; �i). When inflation starts at
time � ¼ �T , it is supposed that the state is described by
the Bunch-Davies vacuum, so hc ;�T j�̂ðkÞjc ;�T i ¼
0, and the space-time is homogeneous and isotropic. While
this would remain the case were there only Hamiltonian
dynamics, the addition of CSL dynamics causes
h�̂ðk; �Þi � 0 thereafter. The CSL Hamiltonian depends
upon a classical random function of time wðtÞ [more pre-
cisely, one wðtÞ for each momentum mode]. Each set of
such wðtÞ’s gives rise to a different possible inhomogene-
ous and anisotropic universe.

V. THE OBSERVATIONAL QUANTITIES

The quantity that is measured is �Tð�; ’Þ= �T, which is a
function of the coordinates on the celestial two-sphere.
This data is expressed in terms of spherical harmonics as

�Tð�;’Þ
�T

¼ X
lm

�lmYlmð�; ’Þ;

�lm ¼
Z

d2�
�Tð�; ’Þ

�T
Y

lmð�;’Þ:

(44)

We emphasize, as already discussed, that we are factoring
out the late time physics, so ‘‘observations’’ means what
would be observed if the transfer functions were constants.

The experimental results are usually expressed in terms
of the quantity

Cl ¼ 1

2lþ 1

X
m

j�lmj2: (45)

Then, the ‘‘observation’’ is that the quantity

OBl � lðlþ 1Þð2lþ 1Þ�1
X
m

j�lmj2 ¼ lðlþ 1ÞCl (46)

is essentially independent of l. This ‘‘scale invariant’’
(the reason for the name and the arcane dependence on l
shall be given subsequently), or ‘‘Harrison-Zel’dovich’’
spectrum, is what must be accounted for by the theory.

Our approach produces explicit expressions for the
quantities that are most directly extracted from the data.
Using Eqs. (38) and (43), we obtain

�Tð�; ’Þ
�T

¼ c
Z

d3keik	x
1

k2
h�̂ðk; �Þi;

where c � � 4�G�0
0ð�Þ

3a
and � ¼ ��:

(47)

Here, x is the coordinate of the point on the intersection of
our past light cone with what will eventually become the
last scattering surface in the direction on the sky specified
by �, ’. Then, according to Eq. (44),

�lm ¼ c
Z

d2�Y

lmð�; ’Þ

Z
d3keik	x

1

k2
h�̂ðk; �Þi: (48)

Thus, �lm depends upon h�̂ðk; �Þi, a well-defined quantity
in our treatment, which has a stochastic dependence, i.e., it
depends upon a random function. (This differs from the
standard treatment, where no comparable expression can
be given.) The stochasticity occurs because the collapse
theory gives an ensemble of possible universes (one
for each possible random function, only one of which is
actually realized) and the associated probabilities of real-
ization. We shall see that there is not a large deviation from
the mean, so we may consider, according to this theory, that
our universe is typical.
Continuing, it follows from Eq. (48) and the well-known

expansion eik	x ¼ 4�
P

l;mi
ljlðkrÞYlmð�;’ÞY


lmðk̂Þ that

�lm ¼ il4�c
Z

d3kjlðkRDÞY

lmðk̂Þ

1

k2
h�̂ðk; �Þi: (49)

Here, RD is the comoving radius of the last scattering
sphere, so x ¼ RDðsin ð�Þ sin ð’Þ; sin ð�Þ cos ð’Þ; cos ð�ÞÞ,
and k̂ is the unit vector in the direction k ¼ kk̂. Therefore,

j�lmj2 ¼ ð4�cÞ2
Z

d3kd3k0jlðkRDÞjlðk0RDÞYlmðk̂ÞY

lmðk̂0Þ

� 1

k2k02
ðh�̂ðk; �Þih�̂ðk0; �Þi
Þ: (50)

We may consider that the average over the ensemble
of possible universes fairly reflects the value expected to
be obtained in our own universe. As shall be seen, the
form of our expression for the ensemble average at the end

of the inflationary period is ðh�̂ðk; �Þih�̂ðk0; �Þi
Þ ¼
fðkÞ�ðk� k0Þ. Then,

j�lmj2 ¼ ð4�cÞ2
Z

d3kj2l ðkRDÞjYlmðk̂Þj2 1

k4
fðkÞ

¼ ð4�cÞ2
Z 1

0
dkjlðkRDÞ2 1

k2
fðkÞ: (51)

Now, we note that if fðkÞ ¼ �k where � is a constant,
the result becomes independent of RD. That is what is
referred to as a scale invariant spectrum. In that case,

j�lmj2 ¼ ð4�cÞ2�
Z 1

0
dxj2l ðxÞ

1

x
¼ ð4�cÞ2� 1

2lðlþ 1Þ :
(52)

Therefore, our estimate for the quantity that is usually
the focus of the analysis is

Cth
l ¼ 1

2lþ 1

Xl
m¼�l

j�lmj2 ¼ ð4�cÞ2� 1

2lðlþ 1Þ : (53)

Thus we have obtained the result that lðlþ 1ÞCl is con-
stant, independent of l, in agreement with ‘‘observation,’’
as mentioned following Eq. (46). However, as we have
seen, that only occurs if

h�̂ðkÞi2 � k: (54)
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So, we now turn to add CSL dynamics to the dynamics
discussed in Sec. III D [which is governed by the

Hamiltonian Ĥk, Eq. (28)], to see whether, under the
combined dynamics, the ensemble of possible universes

can satisfy [Eq. (54)]. That requires hP̂i2 � k.

VI. CSL

We shall be using just the simplest form of CSL, which
describes collapse toward one or another eigenstates of an

operator Â with rate ��.
As we have seen, the relevant operators on which we

should focus our attention are the �̂ðk; �Þ � P̂, and their

expectation values h�̂ðk; �Þi � hP̂i � 0. We may call P̂
our ‘‘focus’’ operator to differentiate it from the ‘‘collapse

generating’’ operator Â. (Note that we could choose

Â ¼ P̂, or make another choice for Â.)

There are two equations we must consider.
The first is a modified Schrödinger equation, whose

solution is

jc ; ti ¼ T e�
R

t

0
dt0½iĤþ 1

4�½wðt0Þ�2�Â�2�jc ; 0i: (55)

(T is the time-ordering operator.) wðtÞ is a random classi-
cal function of time, of white noise type, whose probability
is given by the second equation, the probability rule:

PDwðtÞ � hc ; tjc ; tiYt
ti¼0

dwðtiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��=dt

p : (56)

The state vector norm evolves dynamically (does not equal 1),
so Eq. (56) says that the state vectors with largest norm are
most probable. That the total probability is 1 can be seen from

Z
PDwðtÞ ¼

Z
Dwðt� dtÞ

Z 1

�1
dwðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��=dt

p hc ; t� dtje�dt0½�iĤþ 1
4�½wðt0Þ�2�Â�2�e�dt0½iĤþ 1

4�½wðt0Þ�2�Â�2�jc ; t� dti

¼
Z

Dwðt� dtÞ
Z 1

�1
dwðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��=dt

p hc ; t� dtje�dt0
2�½wðt0Þ�2�Â�2 jc ; t� dti

¼
Z

Dwðt� dtÞhc ; t� dtjc ; t� dti ¼ 	 	 	 ¼ hc ; 0jc ; 0i ¼ 1: (57)

To see how the dynamics collapses to eigenstates jani of Â (assuming Ĥ ¼ 0), write jc ; 0i ¼ P
N
n¼1 cnjani so, according

to Eqs. (55) and (56),

jc ; ti ¼ e�
1
4�

R
t

0
w2ðt0Þ XN

n¼1

cnjanieBðtÞan��ta2n ; P ¼ e�
1
2�

R
t

0
w2ðt0Þ XN

n¼1

jc2nje2BðtÞan�2�ta2n ; (58)

where BðtÞ � R
t
0 dt

0wðt0Þ. Writing wðtiÞ ¼ Bðti þ dtÞ �
BðtiÞ, so

Q
dwðtiÞ ¼

Q
dBðtiÞ, we can integrate P over

all BðtiÞ except BðtÞ, obtaining the result

P0ðBðtÞÞdBðtÞ ¼ XN
n¼1

jcnj2 dBðtÞffiffiffiffiffiffiffiffiffiffiffi
2��t

p e� 1
2�t½BðtÞ�2�tan�2 : (59)

According to Eq. (59), the probability is the sum of
Gaussians, each drifting by an amount �ant, but of width
� ffiffiffiffiffi

�t
p

. Therefore, after a while, they evolve into essentially
separate Gaussians. Then, there are ranges of BðtÞ which
correspond to each possible outcome. If�K

ffiffiffiffiffi
�t

p � BðtÞ �
2�tan � K

ffiffiffiffiffi
�t

p
, (K > 1 is some suitably large number),

the associated probability integrated over this range of BðtÞ
is essentially jcnj2, and the state vector given by Eq. (58) is
essentially jc ; ti � jani.

It should be emphasized that, when Ĥ � 0, the
Hamiltonian dynamics interferes with the collapse dynam-
ics, and various behaviors may ensue. In some cases,
collapse nonetheless takes place. In some cases, a kind of
stasis or equilibrium between the two competing dynamics
is reached. In other cases, the unitary and nonunitary
dynamics interfere with each other in interesting ways.

It is useful to have an expression for the density matrix
which describes the ensemble of evolutions. This is ob-
tained from Eq. (55):

�ðtÞ ¼
Z

PDwðtÞ jc ; tihc ; tj
hc ; tjc ; ti ¼

Z
DwðtÞjc ; tihc ; tj

¼
Z

DwðtÞT e�
R

t

0
dt0½iĤþ 1

4�½wðt0Þ�2�Â�2�jc ; 0i

� hc ; 0je�
R

t

0
dt0½�iĤþ 1

4�½wðt0Þ�2�Â�2�

¼ T e�
R

t

0
dt0½iðĤL�ĤR�þ�

2½ÂL�ÂR�2��ð0Þ; (60)

where the subscripts L and R mean that the associated
operators are to be put to the left or right of �ð0Þ, and theT
reverse-time-orders operators to the right of �ð0Þ. The
evolution equation for the density matrix is therefore the
simplest of Lindblad equations,

d

dt
�ðtÞ ¼ �i½Ĥ; �ðtÞ� � �

2
½Â; ½Â; �ðtÞ��: (61)

It follows that the ensemble expectation value of an opera-

tor hÔi ¼ TrÔ�ðtÞ satisfies
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d

dt
hÔi ¼ �i½Ô; Ĥ� � �

2
½Â; ½Â; Ô��: (62)

VII. APPLICATION OF CSL

CSL dynamics tries to collapse state vectors toward eigenstates of Â. It gives an ensemble of different evolutions of the

state vector, each characterized by a different wðtÞ. It is to be applied to the modes described by the focus operator P̂, the

operator X̂, and Hamiltonian Ĥk given in Eq. (28). According to Eq. (54), using the relations which gave us Eq. (37),

h�̂ðkÞih�̂ðk0Þi
 ¼ hð�̂SðkÞ þ i�̂AðkÞÞihð�̂Sðk0Þ � i�̂Aðk0ÞÞi ¼ h�̂SðkÞih�̂Sðk0Þi þ h�̂AðkÞih�̂Aðk0Þi

¼ 2

�
P̂ffiffiffiffiffiffiffiffiffi
2dk

p
�
2
�kk0 ¼ hP̂i2�ðk� k0Þ; (63)

what we need to find is the ensemble average hP̂i2, and determine under what circumstances, if any, this is �k. We must
therefore choose a collapse-generating operator Â. We shall consider the simplest possibilities in this paper, Â ¼ X̂ and
Â ¼ P̂. These correspond to the basic inflaton perturbation operators �’ðxÞ, �’0ðxÞ.

Using Eq. (62), one can readily obtain a set of coupled equations for the ensemble average of the expectation value of
any power of operators, just as was done in Sec. III D. However, the ensemble average of a product of expectation values, in
particular,

hP̂i2 �
Z

PDwð�Þ hc ; �jP̂jc ; �i2
hc ; �jc ; �i2 ¼

Z
Dwð�Þ hc ; �jP̂jc ; �i2

hc ; �jc ; �i ; (64)

cannot be obtained in this way, and is not so easy to calculate directly. However, for this problem, there is a relationship

between hP̂i2 and hP̂2i which allows us to obtain the former more easily.

Because the initial state is a Gaussian and the Hamiltonian and collapse Hamiltonian are quadratic in X̂, P̂, the form of
the state vector in the momentum basis at any time is

hpjc ; �i ¼ e�Að�Þp2þBð�ÞpþCð�Þ: (65)

The initial conditions are Að�T Þ ¼ 1=2k, Bð�T Þ ¼ Cð�T Þ ¼ 0. [By solving the Schrodinger equation with this
ansatz, which we shall eventually do, one finds that A is independent of wðtÞ, B is linear in wðtÞ and C is quadratic in wðtÞ.]
Therefore, the momentum matrix element is

hc ; �jP̂jc ; �i ¼
Z

dppe�ðAþA
Þp2þðBþB
ÞpþðCþC
Þ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðAþ A
Þp ðBþ B
Þ

ðAþ A
Þ e
ðBþB
Þ2
4ðAþA
ÞeðCþC
Þ: (66)

We also note that the state vector norm is

hc ; �jc ; �i ¼
Z

dpe�ðAþA
Þp2þðBþB
ÞpþðCþC
Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðAþ A
Þp e
ðBþB
Þ2
4ðAþA
ÞeðCþC
Þ: (67)

Therefore, by Eq. (64),

hP̂i2 ¼
Z

Dwð�Þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðAþ A
Þp � ðBþ B
Þ
2ðAþ A
Þ

�
2
e
ðBþB
Þ2
4ðAþA
ÞeðCþC
Þ: (68)

Now, hP̂2i can be written as

hP̂2i ¼
Z

Dwhc ; �jP̂2jc ; �i ¼
Z

Dw
Z

dpp2e�ðAþA
Þp2þðBþB
ÞpþðCþC
Þ

¼
Z

Dw
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðAþ A
Þp �

1

2ðAþ A
Þ þ
� ðBþ B
Þ
2ðAþ A
Þ

�
2
�
e
ðBþB
Þ2
4ðAþA
ÞeðCþC
Þ ¼ 1

2ðAþ A
Þ þ hP̂i2; (69)

where the last step follows from ðAþ A
Þ being independent of wðtÞ, from the integral of Eq. (67) being 1 as it is the
probability of all possible wðtÞ’s [Eq. (57)], and from Eq. (68).

To summarize,
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hP̂i2 ¼ hP̂2i � 1

2ðAþ A
Þ ; (70)

i.e., ½2ðAþ A
Þ��1 is the standard deviation of the squared
momentum. It is also the width of every packet in momen-
tum space.

Thus, to calculate hP̂i2, we shall find the second term on
the right-hand side of Eq. (70) from the Schrödinger equa-
tion and we shall find the first term by using the density
matrix.

VIII. P̂ AS GENERATOR OF COLLAPSE

A. Use of Schrödinger equation

The Schrödinger equation is the time derivative of

Eq. (55). In the momentum representation, with Â ¼ P̂,
it is

@

@�
hpjc ;�i ¼ �i

2

�
p2 � i

�

�
p

@

@p
þ @

@p
p

�
� k2

@2

@p2

�
� hpjc ;�i �

�
1

4�
w2ð�Þ �wð�Þpþ�p2

�
� hpjc ;�i: (71)

We note that � is a dimensionless number. Inserting
Eq. (65) into Eq. (71), we find the equation A satisfies is

d

d�
A ¼

�
i

2
þ �

�
� 2

�
A� 2ik2A2: (72)

This Ricatti equation is solved by writing A � _Z=½2ik2Z�.
Putting this into Eq. (72) we get

� €Z ¼ 2ik2
�
i

2
þ �

�
�Z� 2 _Z: (73)

Defining � � k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2i�

p
, the two solutions are

1

�
cos�� and

1

�
sin��: (74)

Therefore,

Að�Þ ¼ 1

2ik2�

�� cos��� �� sin��þ Cð�� cos��� sin��Þ
cos��þ C sin��

�
: (75)

The constant C is determined by the initial condition Að�T Þ ¼ 1=2k:

C ¼ ð1� ikT Þ cos�T þ �T sin�T

ð1� ikT Þ sin�T � �T cos�T
: (76)

Putting C into Eq. (75) yields

Að�Þ ¼ i

2k2�
þ �

2ik2

�ð1� ikT Þ cos�ð�þT Þ þ �T sin�ð�þT Þ
ð1� ikT Þ sin�ð�þT Þ � �T cos�ð�þT Þ

�
� i

2k2�
þ �

2k2
: (77)

The last step has utilized the approximations kT � 1,
j�j � T , � � k� i�k for � � 1, yet �kT � 1 (to be
justified in Sec. XD) so cos�ð�þT Þ � i sin�ð�þT Þ.
Therefore, we have the result, at � ¼ ��, that

1

2ðAþ A
Þ ¼
k2

�þ �


¼ kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2i�

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2i�

p

¼ kffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2

pp : (78)

B. Calculation of hP2i
For this case, Eq. (62) becomes

d

d�
hÔi ¼ �i½Ô; Ĥ� � �

2
½P̂; ½P̂; Ô�: (79)

Referring to Sec. III D, where we considered the
Hamiltonian dynamics alone, the first order equations (31)

are unchanged, so here too hX̂i ¼ hP̂i ¼ 0.

The second order equations (33) for Q � hX̂2i, R �
hP̂2i, S � hX̂ P̂þP̂ X̂i are unchanged except for the first:

_Q ¼ S� 2Q

�
þ �; _R ¼ �k2Sþ 2R

�
;

_S ¼ 2½R� k2Q�: (80)

The general solution is therefore the sum of the three
solutions [Eq. (34)] to the homogeneous equations added
to an inhomogeneous solution:

Q ¼ ��=2; R ¼ ��k2=2; S ¼ �=2: (81)

For example, the equation which replaces Eq. (34b) is
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R ¼ C1e
2ik� þ C2e

�2ik� þ C3 þ �k2�

2
: (82)

The constants are determined by the conditions at � ¼
�T , which are Q ¼ 1=2k, R ¼ k=2, S ¼ 0. Assuming
kT � 1, it follows from the modified Eq. (34):

k

2
¼ C1 þ C2 þ C3 � �k2T

2
;

1

2k
¼ �C1

1

k2
� C2

1

k2
þ C3

1

k2
� �T

2
;

0 ¼ �2iC1

1

k
þ 2iC2

1

k
þ �

2
:

(83)

The solution is

C1 ¼ � i�

8k
¼ �C2; C3 ¼ k

2
þ �k2T

2
: (84)

Putting Eq. (84) into Eq. (82), setting � ¼ ��, and using
k� � 1, kT � 1, we get

R ¼ �k2T
2

þ k

2
: (85)

When �kT � 1 it is clear that the first is the dominant
term, but we include the second term to enable considera-
tion of the case � � 0.

Therefore, by Eq. (70), using the results (78) and (85),
we obtain

hP̂i2 ¼ �k2T
2

þ k

2
� kffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2

pp : (86)

If we set � ¼ 0 (turn off CSL), we have the standard

quantum mechanics result hP̂i2 ¼ 0 since hP̂i ¼ 0.
We see that agreement with the observed scale-invariant

spectrum, hP̂i2 � k, can be achieved if we assume the first
term is dominant and we also set

� ¼ ~�=k: (87)

We note that this replaces the dimensionless collapse rate

parameter � with parameter ~� of dimension time�1.
In that case we obtain:

hP̂i2 ¼
~�kT
2

þ k

2
� kffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ð~�=kÞ2

qr : (88)

It is also worth noting that, if � � 1 but still ~�T � 1,
then

h½P̂� hP̂i�i2
hP̂2i

� 1
~�T

� 1;

and the universes in the ensemble do not deviate much
from each other.

IX. X̂ AS GENERATOR OF COLLAPSE

This proceeds in a manner parallel to the previous
section.

A. Use of Schrödinger equation

In the position representation, with Â ¼ X̂, the
Schrödinger equation is

@

@�
hxjc ; �i ¼ �i

2

�
� @2

@x2
þ i

�

�
x
@

@x
þ @

@x
x

�
þ k2x2

�
� hxjc ; �i �

�
1

4�
w2ð�Þ � wð�Þxþ �x2

�
� hxjc ; �i: (89)

We note that � has dimensions time�2. The wave function
in the position representation is hxjc ; �i ¼ exp ½�A0x2 þ
B0xþ C0�, where A0 ¼ 1=4A (A is the coefficient of p2 in
the exponent of the Fourier transform of hxjc ; �iÞ satisfies

d

d�
A0 ¼

�
ik2

2
þ �

�
þ 2

�
A0 � 2iA02: (90)

This Ricatti equation is solved by writing A0 � _Z=½2iZ�.
Putting this into Eq. (90), we get

� €Z ¼ �2�Zþ 2 _Z: (91)

Defining  �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 2i�

p
, the two solutions are

e�i�½1 ib��: (92)

Using _Z ¼ 2� exp i�,

A0ð�Þ ¼ 2�

2i

�
e2i� þ C

e2i�ð1� i�Þ þ Cð1þ i�Þ
�
: (93)

The constant C is determined by the initial condition
A0ð�T Þ ¼ k=2:

C ¼ �e�2iT 
2T � kT þ ik

2T þ kT þ ik
: (94)

Putting C into Eq. (93) yields

A0ð�Þ ¼ 2�

2i

�
e2iðTþ�Þ½2T þ kT þ ik� � ½2T � kT þ ik�

e2iðTþ�Þ½2T þ kT þ ik�ð1� i�Þ � ½2T � kT þ ik�ð1þ i��
�
� 2�

2ðiþ �Þ ; (95)

where the last step has utilized kT � 1, and exp 2ð�ImÞT � 1.
Using A ¼ 1=4A0, we find
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1

2ðAþ A
Þ ¼ jA0j2
ReðA0Þ ¼ ðk=2Þ ð1þ 4ð�=k2Þ2Þ

Fð�=k2Þ þ 2ð�=k2Þ2F�1ð�=k2Þ � 2ð�=k2Þðk�Þ�1
; (96)

where FðxÞ ¼ 1ffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4x2

pp
(Fð0Þ ¼ 1).

B. Calculation of hP2i
For this case, Eq. (62) becomes

d

d�
hÔi ¼ �i½Ô; Ĥ� � �

2
½X̂; ½X̂; Ô�: (97)

Referring to Sec. III D, where we considered the
Hamiltonian dynamics alone, the first order equations

(31) are unchanged, so here too hX̂i ¼ hP̂i ¼ 0.

The second order equations (33) for Q � hX̂2i,
R � hP̂2i, S � hX̂ P̂þP̂ X̂i are unchanged except for the
second:

_Q ¼ S� 2Q

�
; _R ¼ �k2Sþ 2R

�
þ �;

_S ¼ 2½R� k2Q�: (98)

The general solution is therefore the sum of the three
solutions [Eq. (34)] to the homogeneous equations added
to an inhomogeneous solution:

Q ¼ ��=2k2; R ¼ ��=2; S ¼ 3�=2k2: (99)

For example, the equation which replaces Eq. (34b) is

R ¼ C1e
2ik� þ C2e

�2ik� þ C3 þ ��

2
: (100)

The constants are determined by the conditions at
t ¼ �T , which are Q ¼ 1=2k, R ¼ k=2, S ¼ 0.
Assuming kT � 1, it follows from the modified Eq. (34):

k

2
¼ C1 þ C2 þ C3 � �T

2
;

1

2k
¼ �C1

1

k2
� C2

1

k2
þ C3

1

k2
� �T

2k2
;

0 ¼ �2iC1

1

k
þ 2iC2

1

k
þ 3

�

2k2
:

(101)

The solution is

C1 ¼ � 3i�

8k
¼ �C2; C3 ¼ k

2
þ �T

2
: (102)

Putting Eq. (102) into Eq. (100), setting� ¼ ��, and using
k� � 1, �T � k, we get

R ¼ �T
2

þ k

2
: (103)

Therefore, by Eq. (70), using the results (95) and (103), we
obtain

hP̂i2¼�T
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4þ4�2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�2i�

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ2i�

p

¼�T
2

þk

2
�ðk=2Þ

� ð1þ4ð�=k2Þ2Þ
Fð�=k2Þþ2ð�=k2Þ2F�1ð�=k2Þ�2ð�=k2Þðk�Þ�1

:

(104)

Once more, if we turn off CSL, we find hP̂i2 ¼ 0.
We see that agreement with the observed scale-invariant

spectrum, hP̂i2 � k, can be achieved if we assume that the
first term dominates, and if we set

� ¼ ~�k: (105)

We note that this replaces the collapse rate parameter �

of dimension time�2 with the parameter ~� of dimension
time�1. In that case we obtain

hP̂i2 ¼
~�kT
2

þ k

2

�
1� ð1þ 4ð~�=kÞ2Þ

Fð~�=kÞ þ 2ð~�=kÞ2F�1ð~�=kÞ � 2ð~�=kÞðk�Þ�1

�
: (106)

The validity of our approximations shall be discussed in
Sec. XD.

X. PHYSICAL QUANTITIES

As we have shown, our theory can describe the Harrison-
Zel’dovich scale-invariant spectrum. Moreover, it can
be used to find expressions for various physical quantities,
such as �lm, �TðnÞ, �ðxÞ (and their probabilities of

taking on various values), which is not possible with the

usual approach. That is, we can calculate expressions for

quantities corresponding to an individual universe, not

just for the ensemble of universes. This we shall now

demonstrate, using collapse generator Â ¼ P̂ discussed in

Sec. VIII.

First, we need the expression for hc ; �jP̂jc ; �i=
hc ; �jc ; �i � hP̂i. To get this, we return to the
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Schrödinger equation (71) for hpjc ; �i ¼ exp ½�Ap2 þ
Bpþ C�. With use of Eq. (77) for the already-obtained
variable A, we find the equation for B:

d

d�
B ¼ � 1

�
B� 2ik2ABþ w

� � 1

�
B� 2ik2

�
i

2k2�
þ �

2k2

�
Bþ w

¼ �i�Bþ w or

BðtÞ ¼
Z �

�T
d�0wð�0Þe�i�ð���0Þ: (107)

Thus, according to Eqs. (66), (67), and (107),

hP̂ið�Þ¼ BþB


2ðAþA
Þ
¼k2

R

Z �

�T
d�0wð�0Þe�Sð���0ÞcosRð���0Þ; (108)

where we have written

� ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2i�

p � R� iS; so R2 � S2 ¼ k2;

RS ¼ �k2; so R ¼ kFð�Þ; S ¼ �k

Fð�Þ : (109)

Now we can express physical quantities in terms of hP̂i.
As was done in obtaining (63), and using (108) we write

h�̂ðk;�Þi ¼ h�̂Sðk;�Þiþ ih�̂Aðk;�Þi

¼ hP̂Si þ ihP̂Ai
2

ffiffiffiffiffiffiffi
dk

p

¼ k2

2R

Z �

�T
d�0½wSðk;�0Þ

þ iwAðk;�0Þ�e�Sð���0Þ cosRð���0Þ; (110)

where we have introduced white noise functions wðk; �Þ.
These are only defined in the upper half k-plane. However,
the Fourier transform of �̂ðkÞ is �̂ðxÞ which is real. This
implies wSð�kÞ ¼ wSðkÞ and wAð�kÞ ¼ �wAðkÞ, so
Eq. (110) holds for all k.

To go along with the expression (108) for hP̂i, we must
have the probability of wð�Þ. To get the probability, we
could go back to Schródinger’s equation (71) and calculate
C. However, since the probability is hc ; �jc ; �i, it is
easier to use Eq. (71) to get

d

d�
hc ;�jc ;�i

¼�w2ð�Þ
2�

hc ;�jc ;�iþ2wð�Þ
�hc ;�jP̂jc ;�i�2�hc ;�jP̂2jc ;�i

¼
�
�w2ð�Þ

2�
þ2wð�ÞhP̂i�2�hP̂2i

�
hc ;�jc ;�i

¼
�
� 1

2�
½wð�Þ�2�hP̂i�2� �k

Fð�Þ
	
hc ;�jc ;�i; (111)

where the last step follows since Eq. (70) holds without the
ensemble average. Thus, we obtain the probability density,

PðwÞ¼ hc ;��jc ;��i¼e�
1
2�

R��

�T
d�½wð�Þ�2�hP̂ið�Þ�2 ; (112)

where hP̂ið�Þ is given by Eq. (108) [the factor
exp��kð�þT Þ=Fð�Þ has been absorbed in the normal-
ization appropriate to Dw].
To go to the continuum case, replace

R
d� by

R
d�dk

and wð�Þ by wðk; �Þ in Eq. (112).
In order to do calculations with the probability (112), it

is convenient to define a new random variable:

vð�Þ � wð�Þ � 2�hP̂ið�Þ
¼ wð�Þ � 2S

Z �

�T
d�0wð�0Þe�Sð���0Þ cosRð���0Þ:

(113)

The Jacobian determinant of the transformation from var-
iables wð�Þ to vð�Þ is 1 (essentially, the matrix trans-
formation has all diagonal elements ¼ 1, and zeros to the
right of the diagonal). The probability density of vð�Þ is
very simple,

PðvÞ ¼ e�
1
2�

R��

�T
d�vð�Þ2 ; vð�Þ ¼ 0;

vð�Þvð�0Þ ¼ ��ð�� �0Þ: (114)

However, since the physical quantities are expressed in
terms of w, we need to invert Eq. (113) to obtain the
expression for w in terms of v. This is done in the
Appendix, with the result

wð�Þ ¼ vð�Þ þ 2S

k

Z �

�T
d�0½S sin kð�� �0Þ

þ k cos kð�� �0Þ�vð�0Þ: (115)

We shall provide a few examples of the use of this
formalism.We shall show, using it, that we obtain the result

(86) for hP̂i2. We shall calculate the probability distribution
of the temperature fluctuations (which shall prove to be a
Gaussian) as well as the correlation function of the tem-
perature fluctuations. Finally, we exhibit the expression for
�lm, and the ensemble average of j�lmj2.

PEDRO CAÑATE, PHILIP PEARLE, AND DANIEL SUDARSKY PHYSICAL REVIEW D 87, 104024 (2013)

104024-16



A. Calculation of hP̂i2—Again

As a consistency check, we employ a different way of

calculating hP̂i2 than was done in Sec. VIII. Using
Eqs. (108) and (115), and taking � ¼ 0, we write

hP̂i ¼ k2

R

Z 0

�T
d�0eS�0

cosRð�0Þ

�
�
vð�0Þ þ 2S

k

Z �0

�T
d�1½S sin kð�0 � �1Þ

þ k cos kð�0 � �1Þ�vð�1Þ
�
: (116)

We immediately note that hP̂i ¼ 0, since vð�Þ ¼ 0.
The order of integration of the double integral can next

be exchanged, and the integral over �0 performed. There is
a term which cancels the single integral in Eq. (116), and
the result is

hP̂i ¼ k

R

Z 0

�T
d�1vð�1Þ½k cos k�1 � S sin k�1�: (117)

Therefore, with use of Eq. (114), and neglecting terms
small compared to kT , we obtain

hP̂i2 ¼ �k2

R2

Z 0

�T
d�1½k cos k�1 � S sin k�1�2

� �k2T
2R2

½S2 þ k2� ¼ �k2T
2

: (118)

This is the same result as in Eq. (86).

B. Temperature fluctuation

The temperature fluctuation at the end of inflation is
given by Eq. (47) with � ¼ ��. (Since k� � 1, we shall
replace � by 0.) With use of Eq. (110), we therefore have

�T

T
¼ c

Z dk

k2
eikRDk̂	n̂h�̂ðk; 0Þi ¼ c

Z dk

k2
eikRDk̂	n̂ k2

2R

Z 0

�T
d�0½wSðk; �0Þ þ iwAðk; �0Þ�eS�0

cosR�0

¼ c
Z
þ
dk

k2
k2

R

Z 0

�T
d�0eS�0

cosRð�0Þ½cos ðkRDk̂ 	 n̂ÞwSðk; �0Þ � sin ðkRDk̂ 	 n̂ÞwAðk; �0Þ�: (119)

To conveniently calculate probabilities, we need to replace the w’s by v’s, using Eq. (115). Just as in the previous section,
we may then exchange the order of the double integral, obtaining

�Tðn̂Þ
T

¼ c
Z
þ
dk

k2
k

R

Z 0

�T
d�1½cos ðkRDk̂ 	 n̂ÞvSðk; �1Þ � sin ðkRDk̂ 	 n̂ÞvAðk; �1Þ�½k cos ðk�1Þ � S sin ðk�1Þ�: (120)

1. Probability distribution of the temperature fluctuations

The probability that �Tðn̂Þ=T ¼ C is given by

PðCÞ¼
Z
Dve�

R
0

T
d�
R

þdk 1
2�ðkÞ½v2

SðkÞþv2
AðkÞ��ð�Tðn̂Þ=T�CÞ: (121)

Writing Eq. (120) as

�Tðn̂Þ
T

¼
Z 0

�T
d�1

Z
þ
dk½fSðk; �1ÞvSðk; �1Þ þ fAðk; �1ÞvAðk; �1Þ�; (122)

Eq. (121) becomes

PðCÞ ¼
Z

Dve�
R

0

T
d�
R

þ dk 1
2�ðkÞ½v2

S
ðkÞþv2

A
ðkÞ� 1

2�

Z 1

�1
d!ei!ð

R
0

�T
d�1

R
þ dk½fSðk;�1ÞvSðk;�1ÞþfAðk;�1ÞvAðk;�1Þ��CÞ

¼ 1

2�

Z 1

�1
d!e�i!Ce�!2

R
0

�T
d�1

R
þ dk�ðkÞ

2 ½f2
S
ðk;�1Þþf2

A
ðk;�1Þ� ¼ e

�1
2

C2R
0

�T
d�1

R
þ dk�ðkÞ½f2

S
ðk;�1Þþf2

A
ðk;�1Þ�: (123)

Thus, we see that the probability is Gaussian, with variance

�
�Tðn̂Þ
T

�
2 ¼ c2

Z
þ
dk�ðkÞ 1

ðRkÞ2
Z 0

�T
d�1½k cos ðk�1Þ � S sin ðk�1Þ�2 � c2

Z
þ
dk�ðkÞ T

2k2
¼ �c2 ~�T

Z 1

0

dk

k
: (124)

We have set �ðkÞ ¼ ~�=k in the observed range of k, 10�3 Mpc�1 < k < 102 Mpc�1, in order to obtain agreement with

the Harrison-Zel’dovich spectrum. However, ½�Tðn̂Þ=T�2 is the ensemble average (over possible universes) of a measured
quantity so it seems reasonable to expect that the integral in Eq. (124) should converge, and it does not.
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One might think the issue of the divergence of the above
integral could be resolved simply by taking into account
the fact that the temperature fluctuations seen in the CMB,
are the result of modifications by ‘‘late time’’11 processes
of the primordial seeds of cosmic structure we have calcu-
lated. The fact however, is that such modifications12 occur
after the reheating stage, and are therefore of no help at the
time just prior to reheating, which is the era to which our
calculations refer.13

If there were no modification in this estimate for the
inflationary regime itself, the resulting ensuing fluctuations
would be predicted to be of arbitrarily large magnitude and
a perturbative treatment would, of course, be invalid.

The issue is intimately tied with the universal scale
invariance of the H-Z spectrum and is thus a problem
that, although often unrecognized, afflicts the standard
treatment of inflationary perturbations. Let us consider
for instance the treatment presented in Ref. [19].

Consider the expression for the Newtonian potential at a
point x. To do this, one uses Eq. (8.5) of that book and
writes

�ðxÞ ¼ 1

ð2�Þ3=2
Z

dk�ke
ik	x: (125)

The ensemble average of the square is then

�2ðxÞ ¼ 1

ð2�Þ3
Z

dkdk0�k�


k0eiðk�k0Þ	x: (126)

Next one uses the definition (8.11) of Ref. [19] which
indicates that we might write the ensemble average as

�k�


k0 ¼ �ðk� k0Þ2�2�2

�ðkÞ=k3; (127)

where in their notation �2
�ðkÞ is the power spectrum (for

the gravitational potential �) and is taken to be a function
only of k � kkk. Thus, substituting in (126) we find

�2ðxÞ ¼ 1

4�

Z
dk�2

�ðkÞ=k3: (128)

Now we take Eq. (8.103) of Ref. [19] which indicates that
the spectrum is scale independent. This requires �2

�ðkÞ to
be constant, independent of k and, in fact, given by
4ð"þ pÞ=Cs, where " and p are the energy density and
pressure of the background inflaton field, respectively, and
where Cs is the effective ‘‘speed of sound’’ [see Eq. (8.50)
of Ref. [19]] which for a canonical scalar field is just the
speed of light. We thus obtain

�ðxÞ2 ¼ 2ð"þ pÞ
Cs

Z 1

0
k2dk=k3

¼ 2ð"þ pÞ
Cs

Z 1

0
dk=k (129)

which diverges just as our estimate of the temperature
fluctuation in (124).
So, it seems that the problem we face here is not intrinsic

to the CSL theory or, more generally, to the hypothesis that
some kind of collapse of the wave function plays an
important role in inflationary cosmology. What the analy-
sis in the present paper does is show the problem more
explicitly. After all what the collapse does, roughly speak-
ing, is provide a mechanism to convert quantum mechani-
cal uncertainties already there in the initial state into a
range of actual values at a later time.
Of course, if the problem lies beyond the collapse ap-

proach and seems intrinsic to the inflationary proposal for
generation of primordial cosmological inhomogeneities
and anisotropies, that does not mean it can be ignored.
One approach might be to consider a similar problem that
appears in any treatment of quantum fields: the uncertainty
in the value of a field in its vacuum state at any point in
Minkowski space-time is infinite. This is often taken to
indicate that one cannot consider such a quantity as the
field at a point and must, rather, focus attention on things
like smeared fields over space-time regions. After all,
quantum fields are distribution-valued operators rather
than ordinary operators on Hilbert space. In the inflationary
context however it is rather unclear what would be the
appropriate smearing one should consider.
For our problem, we might rather consider the possibil-

ity that (124) be made finite as the result of a more

complicated behavior of �ðkÞ � ~�=k as k ! 0 and
k ! 1. For example, we might set

�ðkÞ ¼
~�

k1 þ kþ ðk2=k2Þ
so that

Z 1

0
dk�ðkÞ � ~� ln

k2
k1

(130)

for k2 � k1 and the interval ðk2; k1Þ very much wider than
the range of k appropriate to the CMB. That would in effect
make a prediction, that the H-Z scale invariant spectrum
not hold outside a particular range of k.
On the other hand, this issue might be resolved by things

unrelated to the CSL collapse rate and therefore using the
above argument to modify it might be premature. One

11That refers to the regime well after inflation has ended.
12These are due to well understood physics connected with the
behavior of the plasmas of ordinary matter (quark-gluon plasma
before hadronization forms the nucleons, nucleon-electron-
photon plasma before nucleosynthesis, and hydrogen-helium
plasma after nucleosynthesis) codified in the so-called transfer
functions which describe how each mechanism alters the tem-
perature structure. For example, transfer functions are known to
exhibit a damping effect known as ‘‘Silk Damping’’ at short
distances (large k) due to viscosity/photon diffusion.
13Strictly speaking at the end of inflation the conditions are still
far from thermal equilibrium, there is therefore no temperature
and in fact no radiation. It is only after the reheating that the
decay of the inflation is supposed to lead the system towards a
state of ‘‘thermal equilibrium.’’ However, the quantities we are
computing have their counterpart as the inflaton-energy-density
fluctuations and Newtonian potential fluctuations.
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possibility that would certainly help in this regard is the
known fact that, during the slow-roll inflation, the expan-
sion rate is not exactly de Sitter like. This leads, in the
usual analysis, to a modification of the H-Z spectrum

corresponding to a factor kðns�1Þ where the ‘‘spectral in-
dex’’ ns is known both theoretically and empirically to be
smaller than 1 [24]. This would remove the divergence
coming from the k ! 1 behavior. Regarding the diver-
gence arising from the k ! 0 behavior it seems that the
most natural resolution would come from noting that the

region that undergoes inflation would in all likelihood have
started as a very small patch, which despite the nearly
exponential expansion resulting from inflation will remain
finite. Thus, the range of physically relevant values of k
would be bounded from below by some kfinite > 0.

2. Correlation of the temperature fluctuation

The correlation function of the temperature fluctuation
can be found from Eq. (120):

�Tðn̂Þ
T

�Tðn̂0Þ
T

¼ c2
Z
þ
dk�ðkÞ 1

ðRkÞ2 cos ½kRDk̂ 	 ðn̂� n̂0Þ�
Z 0

�T
d�1½k cos ðk�1Þ � S sin ðk�1Þ�2

¼ 4ð�cÞ2T
Z 1

0
dk�ðkÞX

lm

j2l ðkRDÞYlmðn̂ÞY

lmðn̂0Þ ¼ �c2T

Z 1

0
dk�ðkÞX

l

ð2lþ 1Þj2l ðkRDÞPlðn̂ 	 n̂0Þ:

(131)

[Note,
P

lð2lþ 1Þj2l ðxÞ ¼ 1, so Eq. (131) agrees with the
divergent Eq. (124) when n̂ ¼ n̂0.]

C. �lm

From the definition (44) of �lm and Eq. (120) we can
exhibit the expression for �lm:

�lm ¼ c
Z
þ
dk

1

kR

Z 0

�T
d�1

X
l

ð2lþ 1ÞjlðkRDÞPlðk̂ 	 n̂0Þ

� ½EðlÞvSðk; �1Þ þ iOðlÞvAðk; �1Þ�
� ½k cos ðk�1Þ � S sin ðk�1Þ�; (132)

where EðlÞ is 1 if l is even and 0 if l is odd, andOðlÞ is 0 if l
is even and 1 if l is odd.

However, it is easiest to use the second equation of (131)
to find

j�lmj2 ¼ ð2�cÞ2T
Z 1

0
dk�ðkÞj2l ðkRDÞ

¼ ð2�cÞ2 ~�T
Z 1

0

dk

k
j2l ðkRDÞ

¼ ð2�cÞ2 ~�T
2lðlþ 1Þ ; (133)

which is to be compared with the scale invariant observa-
tions expressed in Eqs. (51) and (52). In Eq. (133) we have

set �ðkÞ ¼ ~�=k, although we earlier specified that it might
behave differently as k ! 0 and k ! 1. This different
behavior has been ignored in calculating the integral in
(133), which converges perfectly well without it. Thus,
such possibly different behavior is now constrained to
have a negligible effect on the integral in Eq. (133).

This concludes our demonstration that the dynamics
produces agreement with the observed Harrison-
Zel’dovich spectrum.

D. Estimates

It is necessary to make some order of magnitude esti-
mates to justify the approximations we have made. We start
from the fact that the temperature fluctuations in the CMB

are �T
T ¼ 1=3�� 10�5. We can now use that together with

our other results to check the self-consistency of assump-
tions made in earlier sections. We note that we took the
dominant term in Eq. (88) to be

hP̂i2 �
~�kT
2

: (134)

This led to the result (124),�
�T

T

�
2 ¼ �

4

�
4�G�0

0

3a

�
2
~�T I ; (135)

where I � 1=~�
R
dk�ðkÞ is at least as large asR

102

10�3 dk=k � 11:5.

Using the definition H � a0ð�Þ=að�Þ in the second
equation of (5) and taking the derivative with respect to
� we find

6HH 0 ¼ 4�Gð2�00
0�

0
0 þ 4aa0V½�0�

þ 2a2@�0
V½�0��0

0Þ: (136)

Substituting here the expression for �00
0 from the first

equation of (5) gives

6HH 0 ¼ 4�Gð�4H ð�0
0Þ2 þ 4aa0V½�0�Þ

¼ 16�GH ð�ð�0
0Þ2 þ a2V½�0�Þ: (137)

Therefore

H 0 ¼ 8�G

3
ð�ð�0

0Þ2 þ a2V½�0�Þ: (138)

Now, using the definition of the slow-roll parameter
� � 1�H 0=H 2, the expression above for H 0 and the
second equation of (5) again to give H 2, we have
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� ¼ 3ð�0
0Þ2

ð�0
0Þ2 þ a2V½�0�Þ

� 3ð�0
0Þ2

ða2V½�0�Þ
; (139)

where in the last step we have used the standard infla-
tionary requirement that the potential term is much larger
than the kinetic term. Therefore we have ð�0

0Þ2 � �a2V=3.
Using this result, we can rewrite the quantity c2 appear-

ing in Eq. (135) as�
4�G�0

0

3a

�
2 ¼ ð4�Þ2

27
G2�V � �

V

M4
Pl

� �

�
MGUT

MPl

�
4
:

(140)

Thus, ð�TT Þ2 � �½V=ðMPlÞ4�~�T I .
However as discussed in Ref. [25], the effect of reheat-

ing (unless some very unusual coincidences occur) is to
multiply this result by 1=�2. Thus, we have�

�T

T

�
2 � 1

�

V

ðMPlÞ4
~�T I : (141)

The observations yield ð�TT Þ2 � 10�10. The small

departure from flatness of the spectrum is taken to indicate

� � 10�2. With V1=4 given by the GUT scale as
� 1015 GeV � 10�4MPl, and taking I � 10, we conclude
that

~�T is of order 103 � 1: (142)

In Sec. VIII, following Eq. (77), we used �kT ¼ ~�T �
1, so this justifies the approximation made there.

Since we had estimated T to be of order 108 Mpc ¼
1022 sec , we have

~� � 10�5 Mpc�1 � 10�19 sec�1: (143)

Curiously, this is not far removed from the value
10�16 sec�1 suggested by GRW [13] in their theory of
instantaneous collapses on position, and adopted in the
CSL [14] theory of continuous dynamical collapse on
mass density.

Thus, for the modes of interest we have ~�=k in the range
of 10�2 to 10�7. We use this estimate to consider the
magnitude of the subleading term in Eq. (88),

hP̂i2 ¼ ðk=2Þ
0B@~�T þ 1�

ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ð~�=kÞ2

qr
1CA; (144)

where we indeed see that it is much smaller than the
leading one.
Therefore, we have a self-consistent assignment of val-

ues for the parameters which satisfies the approximations
made and matches the theory with the observations.

XI. COLLAPSE ON FIELD OPERATORS

We have presented two examples that lead to the H-Z
spectrum. In one case, the collapse-generating operator is

P̂� �̂ðkÞ (Sec. VIII), whose Fourier transform is the field

operator �̂ðxÞ. In the other case it is X̂ � ŷðkÞ (Sec. IX),
whose Fourier transform is the field operator ŷðxÞ. In this
section we shall take a look at the state vector evolution
written in terms of these field operators. We shall give the
argument in detail in the first case: the second case pro-
ceeds exactly similarly.
The state vector evolution given by Eq. (55), applied to

the full set of commuting collapse-generating operators we
have discussed, is

jc ; �i ¼ T e�i
R

�

�T
d�0Ĥ�

R
�

�T
d�0R

þ dk 1
4�ðkÞ½wSðk;�0Þ�2�ðkÞ ffiffi

2
p

�̂SðkÞ�2�
R

�

�T
d�0R

þ dk 1
4�ðkÞ½wAðk;�0Þ�2�ðkÞ ffiffi

2
p

�̂AðkÞ�2 jc ;�T i
¼ T e�i

R
�

�T
d�0Ĥ� 1

4 ~�

R
�

�T
d�0R

þ dk½ ffiffi
k

p
wSðk;�0Þ�2~�

ffiffiffiffiffiffi
2=k

p
�̂SðkÞ�2� 1

4~�

R
�

�T
d�0R

þ dk½ ffiffi
k

p
wAðk;�0Þ�2~�

ffiffiffiffiffiffi
2=k

p
�̂AðkÞ�2 jc ;�T i; (145)

where we have written � ¼ ~�=k and, following Eq. (20), we have written P̂S;AðkÞ ¼
ffiffiffi
2

p
�̂S;AðkÞ. We now define

wSðk; t0Þ �
ffiffiffiffiffiffiffiffi
2=k

p
wRðk; t0Þ, wAðk; t0Þ �

ffiffiffiffiffiffiffiffi
2=k

p
wIðk; t0Þ, and wðk; t0Þ � wRðk; t0Þ þ iwIðk; t0Þ. We also recall that

�̂ðkÞ ¼ �SðkÞ þ i�AðkÞ. Therefore, Eq. (145) may be written as

jc ; �i ¼ T e�i
R

�

�T
d�0Ĥ�2 1

4~�

R
�

�T
d�0R

þ dk½wðk;�0Þ�2 ~�k�1=2�̂ðkÞ�½w
ðk;�0Þ�2~�k�1=2�̂yðkÞ�jc ;�T i
¼ T e�i

R
�

�T
d�0Ĥ� 1

4 ~�

R
�

�T
d�0R dk½wðk;�0Þ�2 ~�k�1=2�̂ðkÞ�½w
ðk;�0Þ�2~�k�1=2�̂yðkÞ�jc ;�T i; (146)

where we have replaced 2� the integral by an integral which includes the lower half k-plane by defining
wRð�k; t0Þ � wRðk; t0Þ, wIð�k; t0Þ � �wIðk; t0Þ.

We may now convert to a real noise function and a Hermitian field operator defined as

wðx; �0Þ � 1

ð2�Þ3=2
Z

dkeik	xwðk; �0Þ; ~�ðxÞ � 1

ð2�Þ3=2
Z

dkeik	x
1

k1=2
�̂ðkÞ ¼ ð�r2Þ�1=4�̂ðxÞ: (147)

Putting the inverse Fourier transforms of Eq. (147) into (146), we get the result we have been seeking:

jc ; �i ¼ T e�i
R

�

�T
d�0Ĥ� 1

4 ~�

R
�

�T
d�0R dx0½wðx0;�0Þ�2~� ~�ðx0Þ�2 jc ;�T i: (148)
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This is just the standard CSL state vector evolution, where
the collapse-generating operators (toward whose joint
eigenstates collapse tends) are ~�ðxÞ for all x.

Similarly, in the second case, defining

~yðxÞ � 1

ð2�Þ3=2
Z

dkeik	xk1=2yðkÞ ¼ ð�r2Þ1=4ŷðxÞ;
(149)

the result is

jc ;ti¼T e�i
R

�

�T
d�0Ĥ� 1

4 ~�

R
�

�T
d�0Rdx½wðx;�0Þ�2~�~yðxÞ�2 jc ;�T i:

(150)

This is just the standard CSL state vector evolution, where
the collapse-generating operators (toward whose joint
eigenstates collapse tends) are ~yðxÞ for all x.

Are there fundamental reasons determining the appear-

ance of the operators ð�r2Þ�1=4�̂ðxÞ [or ð�r2Þ1=4ŷðxÞ]
rather than the more natural �̂ðxÞ [or ŷðxÞ]? Perhaps a truly
satisfactory answer will have to wait for a general theory
expressing, in all situations, from particle physics to cos-
mology, the exact form of the CSL-type of modification to
the evolution of quantum states. However, we might look at
the particular situation at hand and offer a two part
response.

First, note that the dimensions of wðx0; �0Þ and ~� ~�ðx0Þ
have to be the same to achieve the CSL form exhibited in
(148). In order that the exponent in (148) be dimensionless,

the dimension of wðx0; �0Þ is ðtimeÞ�5=2, so ~�ðx0Þ must

have the dimension ðtimeÞ�3=2. Now, in order that the
Hamiltonian in (10) have the dimension ðtimeÞ�1, �̂ðx0Þ
has the dimension ðtimeÞ�2. Therefore, if the collapse-
generating operator is to be of the form ðoperatorÞ �
�̂ðx0Þ, that operator must have the dimension ðtimeÞ1=2,
which of course is the dimension of ð�r2Þ�1=4.

But, second, then it follows that the collapse-generating
operator is effectively �̂ðxÞ. As we have seen, if we set

Ĥ ¼ 0 in Eq. (148), then at infinite time the collapse takes
the system into some eigenstate of the complete commut-
ing set of operators ~�ðxÞ. But, that state will also be an
eigenstate of the complete commuting set of operators

�̂ðxÞ, since if ~�ðxÞj�i ¼ uðxÞj�i, then �̂ðxÞj�i ¼
ð�r2Þ1=4uðxÞj�i.

Therefore, we may regard the collapse-generating op-

erator ð�r2Þ�1=4�̂ðxÞ as the theory’s way of giving us, in
the most natural way, collapse toward eigenstates of the
inflaton fluctuation momentum field �̂ðxÞ consistent with
the CSL state vector evolution form. It is therefore quite
remarkable that such collapse leads to a prediction that
agrees with the scale invariant spectrum, in agreement with
the current cosmological observations.

A similar case may be made for Eq. (150) and its
effective collapse-generating operator, the inflaton fluctua-
tion field ŷðxÞ.

XII. DISCUSSION

In this manuscript, we treat the emergence of the seeds
of cosmic structure from the dynamics of the fluctuation of
the inflaton field. This is the approach employed in the
usual quantum treatment of this problem but, as previously
discussed, that approach does not really account for the
emergence of primordial inhomogeneities and anisotropies
of the universe. Our approach differs from the standard one
in that the evolution of the state vector from the initial
Bunch-Davies vacuum to the end of the inflation era in-
vokes a version of the CSL dynamical collapse theory
adapted to this setting. We have taken as the basic theo-
retical setting the approximation known as semiclassical
gravity. Here, gravitation is treated at the classical level
while the matter fields are treated at the quantum level, and
their energy momentum is taken to appear in Einstein’s
equations as the corresponding expectation value.
In this treatment, the expectation value of an operator

differs from that given in the standard quantum mechanical
treatment, as a result of the CSL theory’s modification of
Schrödinger’s equation. To apply the CSL theory, it is
necessary to select the collapse-generating operator, to-
ward whose eigenstates the collapse occurs. We have
considered two cases. One is where the collapse-generating
operator represents the Fourier mode of the inflaton field
perturbation. The other is where the collapse-generating
operator represents the Fourier mode of the momentum
conjugate to the inflaton field perturbation.
As we have indicated, the quantity of direct observational

interest, j�lmj2, which characterizes the distribution of the
temperature fluctuations across the celestial sphere in terms
of an expansion in spherical harmonics, refers to the time of
the decoupling�D. Instead, we evaluated that quantity at the
end of inflation, at � ¼ �� � 0. The changes over this
interval, from �� to �D, are codified in transfer functions
Tkð�r; �DÞ: when taken into account, effectively give direct
observational access to the spectrum at the end of inflation.
This turns out to be the Harrison-Zel’dovich scale-invariant
spectrum. That is what the theory must give.
We have seen that agreement between observations and

theory will result if hP̂i2ðkÞ turns out to be proportional to
k. This is achieved in the two cases of collapse-generating
operators we considered, by choosing the collapse rate
parameter � of the CSL theory to have a simple depen-
dence upon the mode’s momentum magnitude k.
In the case where we take as ‘‘collapse-generating op-

erator’’ the operator P̂, it is necessary that � ¼ ~�=k. � in

this case is dimensionless, so ~� has the dimension of rate.
In the case where we take as ‘‘collapse-generating op-

erator’’ the operator X̂, it is necessary that � ¼ ~�k. � in this

case has dimensions ðtimeÞ�2 so, again, ~� has the dimen-
sion of rate.
If we take seriously the idea that the choice of�ðkÞ at large

and small values of kmust be chosen to make the integral in
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(124) finite, we would expect deviations in the H-Z spectral
form, for large and small k that, although unobservable
today, could be potentially detected in future experiments.

Finally, one could ask which one of the two options we
have discussed (or perhaps another one) might be the
correct one? Why, in order to be consistent with observa-
tions (the H-Z spectrum), does the CSL parameter � have
(in each case) a particular, simple, dependence on k, lead-

ing to the collapse-generating operators ð�r2Þ�1=4�̂ðxÞ
and ð�r2Þ1=4ŷðxÞ? We have no deeper reason, other than
‘‘it works out that way.’’

One may argue, utilizing the remarks above, that the
H-Z spectrum arises from choosing �ðkÞ in the simplest
way consistent with the constraints that the effective col-

lapse parameter ~� ought to have the dimension of rate, that
the evolution of each mode contains just one dimensional

parameter, k, and our results for hP̂i2ðkÞ. This is suggestive,
but it is not a fundamental or conclusive argument. For
example, in the more general context of the inflationary
problem we have considered, there are other quantities
with the same dimension as k, such as the Planck mass,

the GUT scale, the ðinflationary potentialÞ1=4, the mass of
the inflaton field, or a combination of these. If they are

included along with k, there are other options to give ~� the
dimension of rate which do not yield the H-Z spectrum.
Therefore, one still wishes for a deeper reason for the
choices we have uncovered. A response to this important
question may have to wait for the so-far phenomenologi-
cally motivated inclusion of dynamical collapse in quan-
tum physics to be replaced by a general and fundamental
theory, perhaps for a natural relationship between dynami-
cal collapse and gravitation [2,26] to be uncovered.

We conclude that the CSL theory, with a suitable choice of
the operator controlling the collapse, is capable of address-
ing the shortcomings in the standard inflationary account
of the emergence of the seeds of cosmic structure. That is, it
can choose a universe possessing inhomogeneities and
anisotropies. Our results are in agreement with observation
in the regimes so far investigated empirically. We have
argued that they are also consistent with and, indeed, require
deviations at much smaller angular scales, which could be
uncovered when the required technology becomes available.

While this paper was being written, we learned of the
results of a similar study that came to a different conclusion
[27]. We believe that the reason their uncertainty, or spread
of the final wave function for the relevant modes k, be-
comes large and ours small is connected with the fact that
we are considering a different observable. They looked at
(or took as ‘‘focus’’ operator) the field amplitude for the v
field (the Mukahnov-Sasaki variable, which is a combina-
tion of the perturbed scalar field and the Newtonian poten-
tial). We took as focus operator themomentum conjugate to
the field variable, as discussed at the start of Sec. VI.

This difference arises due to the different ways that
gravitation is considered within the two approaches.

The work of Ref. [27] follows the now-traditional approach
of treating the gravitational perturbations just as any other
field which can be subjected to direct quantization. The
present work follows an approach initiated in Ref. [15],
which is based on the idea that here one is dealing with a
situation where gravitation must be considered as emergent
and not suitable for the standard quantization procedure.
This view led us to adopt a semiclassical treatment of the
gravitational perturbations (for a more in-depth discussion
of this point see Sec. VIII of Ref. [7]).
It is well known that the exponential expansion of the

scale factor produces an extreme squeezing in the quantum
states. Expressed in terms of suitable canonical variables,
that leads to an enormous growth in the uncertainty of the
field amplitude, and an enormous decrease in the uncer-
tainty of the conjugate momentum. The paper [27] focuses
on an amplitude operator which, in the absence of collapse,
exhibits a large increase in the uncertainty due to the cosmic
expansion. On the contrary, we have been led to focus on the

operator P̂ that, in the absence of collapse, exhibits no
increase in the uncertainty (it remains constant). It seems
therefore that the results can be understood as follows: The
localizing effect of CSL is not enough to overcome the large
increase in the uncertainty of the operator considered in
Ref. [27], but on the other hand it is enough to produce the
desired localization in the operator whose uncertainty
would have remained constant in the absence of the local-
ization effects of CSL. This is consistent with our finding

that the fractional dispersion in P̂ decreases likeT �1. (We
re-emphasize that the focus operator, the object for which
we compute expectation values, should not be confused

with the ‘‘collapse generating operator’’ Â, which is the
object driving the CSL dynamics.)
In fact, as an exercise (although there is no physical

motivation in our considerations for doing so), we have
carried out an analysis similar to the one performed in

Secs. VIII and IX for P̂, but taking the focus operator to

be X̂. In that case we find that the uncertainty in the value of

X̂ for the state that results from the CSL evolution diverges
when the conformal time for the end of inflation � ! 0.
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APPENDIX: FINDING wð�Þ IN TERMS OF vð�Þ
In this Appendix, we invert Eq. (113),

vð�Þ ¼ wð�Þ � 2S
Z �

�T
d�0wð�0Þe�Sð���0Þ cosRð���0Þ;

(A1)

solving for wð�Þ in terms of vð�Þ.
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We extend the integral’s lower limit to �1, keeping in
mind that wð�Þ ¼ vð�Þ ¼ 0 for �<�T , and extend the
upper limit to 1 by putting a factor �ð�� �0Þ in the
integrand [�ðxÞ is the step function]. Upon expressing
wð�0Þ in the integrand in terms of its Fourier transform
~wð!Þ, and changing the integration variable to x � �0 �
�, we obtain

vð�Þ ¼ wð�Þ � 2S
Z 1

�1
dx�ð�xÞeSx cosRx

�
Z 1

�1
d!ei!ðxþ�Þ ~wð!Þ

¼ wð�Þ �
Z 1

�1
d!ei!� 2SðSþ i!Þ

ðSþ i!Þ2 þ R2
~wð!Þ: (A2)

Taking the Fourier transform yields

~vð!Þ ¼ ~wð!Þ k2 �!2

ðSþ i!Þ2 þ R2
or

~wð!Þ ¼ ~vð!Þ � 2SðSþ i!Þ
!2 � k2

~vð!Þ;
(A3)

where we have used (109). When taking the Fourier
transform of (A3), the integration path is taken below the
poles on the real axis, so that wð�Þ depends upon vð�0Þ for
�0 � �. This results in

wð�Þ ¼ vð�Þ � 2S
Z 1

�1
d�0vð�0Þ

�
Sþ d

d�

�
1

2�

Z 1

�1
d!ei!ð���0Þ 1

ð!� k� i�Þð!þ k� i�Þ
¼ vð�Þ þ 2S

k

Z 1

�1
d�0vð�0Þ

�
Sþ d

d�

�
�ð�� �0Þ sin kð�� �0Þ; (A4)

which is the result reported in Eq. (115).
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