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Perturbations of the linearized vacuum Einstein equations in the Bondi-Sachs formulation of general

relativity can be derived from a single master function with spin weight two, which is related to the Weyl

scalar�0, and which is determined by a simple wave equation. By utilizing a standard spin representation

of tensors on a sphere and two different approaches to solve the master equation, we are able to determine

two simple and explicitly time-dependent solutions. Both solutions, of which one is asymptotically

flat, comply with the regularity conditions at the vertex of the null cone. For the asymptotically

flat solution we calculate the corresponding linearized perturbations, describing all multipoles of

spin-2 waves that propagate on a Minkowskian background spacetime. We also analyze the asymptotic

behavior of this solution at null infinity using a Penrose compactification and calculate the Weyl scalar�4.

Because of its simplicity, the asymptotically flat solution presented here is ideally suited for test bed

calculations in the Bondi-Sachs formulation of numerical relativity. It may be considered as a sibling of

the Bergmann-Sachs or Teukolsky-Rinne solutions, on spacelike hypersurfaces, for a metric adapted to

null hypersurfaces.
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I. INTRODUCTION

Exact solutions of the Einstein field equations provide a
deeper insight into the classical theory of general relativity.
In this article, we present an exact time-dependent global
solution describing all multipoles of linearized spin-2
fields propagating on a Minkowskian background space
by using the Bondi-Sachs formulation [1–4] of general
relativity. The solution is given as a spectral series with
respect to spin-2 harmonics, where the coefficients are
simple rational expressions of the time and radial coordi-
nate. Therefore, we refer to it as SPIN-2. It is an ideal
textbook solution allowing one to demonstrate, when
working in the Bondi-Sachs frame work of general rela-
tivity, important features, such as the regularity conditions
at the vertices, the commonly used ð formalism, and the
subtleties at null infinity. In addition, since it describes all
radiation multipoles, SPIN-2 is also well suited as a test
bed solution for numerical relativity, when the Einstein
field equations are solved in a Bondi-Sachs framework (see
Ref. [4] for a review). Thus it might be considered as a
sibling, in null coordinates, of the Bergmann-Sachs solu-
tions [5] and the Teukolsky-Rinne solutions [6,7] using the
(3þ 1) formulation of general relativity.

Despite its simplicity, this is the first time that a regular
and asymptotically flat solution of the linearized vacuum
Einstein equation has been reported for all multipoles in
the Bondi-Sachs formulation. Linearized solutions on null
hypersurfaces were first discussed qualitatively by Bondi,
van der Burg, and Metzner [1], who gave an asymptotic

vacuum solution in terms of inverse powers of an areal
distance coordinate r of an axisymmetric metric with a
hypersurface orthogonal Killing vector. As their solution
was given by coefficients of a series of r�n (n > 0), it is not
regular at the vertices of the null cones. Winicour [8–10]
proposed a Newtonian approach to the Bondi-Sachs for-
mulation of general relativity which is related to a post-
Minkowskian expansion of the Bondi-Sachs metric. In
particular, he pointed out the necessity of imposing regular
boundary conditions at the vertex of a freely falling Fermi
observer in the background spacetime, and he introduced
spin-0 potentials [11] to solve for the perturbations.
Axisymmetric linearized solutions were revisited by
Papadopoulos et al. [12,13], who used Winicour’s idea of
the spin-0 potentials to find solutions of linearized vacuum
perturbations. Papadopoulos et al.’s algorithm was later
generalized by Lehner et al. [14,15] to three dimensions.
The spin-0 potential approach to find a radiative l multi-

pole can be summarized in three basic steps: First, one
guesses a regular solution at the vertex for a monopole
scalar field that obeys the flat space wave equation. Second,
one applies n times the z-translation operator expressed in
outgoing polar null coordinates [16] to the monopole so-
lution to find an n multipole of the scalar wave equation.
These multipoles are also a solution of the scalar wave
equation, because the z-translation operator commutes
with the axially symmetric d’Alembertian operator.
Finally, one finds the Bondi-Sachs metric functions by
applying the ð operator [11,17] to the n-multipole solution
of the scalar wave equation and integrates it to obtain the
Bondi-Sachs metric functions. This elegant method has
the disadvantage that it requires an infinite application of*thomas.maedler@obspm.fr
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the z-translation operator for generating a solution for all
n multipoles.

Linearized and quadratic perturbations, with respect to
a Minkowski background, were considered by [18], who
presented their solutions in terms of Newman-Penrose
quantities [19] and, like Bondi, van der Burg, and Metzner
[1], who gave only leading order terms of a r�n expansion of
these quantities in the asymptotic regime. Bishop and col-
laborators [20,21] proposed a procedure to find linearized
perturbations on a Schwarzschild background. In their
approach ‘‘. . . some of the expressions get very complicated
. . . [20]’’ and therefore they only calculated a solution for
the l ¼ 2 multipole of the perturbations. Later, Reisswig,
Bishop, and Pollney [22] determined a l ¼ 3 multipole
using Bishop’s approach. However, solutions to the linear-
ized Einstein equations in the Bondi-Sachs framework can
be achieved in a simpler manner.

We solve the vacuum Einstein equations for the zeroth-
and first-order terms of an expansion of the metric in terms
of a measure of the deviation from spherical symmetry.
Thereby we assume that the null cones emanate from a
Fermi observer [23] following the timelike geodesic of the
background spacetime. As the boundary conditions at the
vertices are given by the regularity conditions of the Fermi
observer [24], we determine these boundary conditions for
the general three-dimensional case using spin-weighted
harmonics [11,17]. By utilizing these boundary conditions,
we then integrate the Einstein equations from the vertex to
infinity employing two different approaches: one in which
an asymptotically flat solution is obtained whereas in the
other one the solution diverges exponentially. Applying the
Penrose compactification [25] to the asymptotically flat
solution, the Weyl scalar �4 at null infinity is calculated
with the formalism of Ref. [26].

This article is organized as follows: In Sec. II, we
introduce the quasispherical approximation of a Bondi-
Sachs metric. In Sec. III, we derive the necessary equations
and framework to find solutions of the zeroth- and first-
order quasispherical approximation. In particular, we
introduce a function, which we call master function, which
is related with the Weyl scalar �0, and which allows us to
determine the linearized perturbation of a vacuum space-
time. We also present equations obtained with the ð
formalism that will be used to find a solution of the
perturbations. In Sec. IV, we determine the general bound-
ary conditions of the master function and the resulting
boundary conditions for the perturbations in three dimen-
sions using spin-spherical harmonics. In Sec. V, static and
time-dependent solutions of the master function are dis-
cussed. We find no nontrivial regular and asymptotically
flat static solutions. In the time-dependent case, we derive
two solutions, where one of which diverges exponentially
as r tends to infinity whereas the other one is asymptoti-
cally finite. For the asymptotically finite solution of the
master function, we calculate the resulting perturbations

and the Weyl scalar �4 at null infinity in Sec. VI adopting
the formalism of Ref. [26]. Finally, our results are summa-
rized in Sec. VII.
We use geometrized units in our calculations and the

conventions of Ref. [27] for curvature quantities. For
tensor indices, we use the Einstein sum convention, where
small latin indices ða; b; c; . . .Þ take values 0; . . . ; 3
and capital roman indices ðA; B;C; . . .Þ have values 2, 3
corresponding to angles � and �, respectively. Indices
embraced with parentheses are symmetrized like TðABÞ ¼
ðTAB þ TBAÞ=2. Bondi-Sachs coordinates are denoted by
xa, conformal Bondi-Sachs coordinates by x̂a, and confor-
mal inertial coordinates by ~xa. A quantity calculated in
conformal Bondi-Sachs coordinates is denoted by a hat
over the respective quantity, one in conformal coordinates
by a tilde, and a complex conjugated quantity by an over-
bar. The expression A¼̂B means that A� B ¼ Oð"2Þ in a
quasispherical approximation.

II. QUASISPHERICAL APPROXIMATION
OF THE BONDI-SACHS METRIC

Consider a smooth one-parameter family of metrics
gabð"Þ at null cones in a vacuum spacetime, where " is a
parameter that measures deviations from spherical symme-
try, and when " ¼ 0 we recover the metric of a spherically
symmetric spacetime. This spherically symmetric spacetime
is referred to as background spacetime and contains a unique
geodesic, the central geodesic, which traces the centers of
symmetry [28]. The metrics gabð"Þ are expressed in terms of
Bondi-Sachs coordinates xa [1–3]. Given the central timelike
geodesic of the background spacetime, the coordinate
x0 ¼ u is the proper time along the geodesic and is constant
along outgoing null cones for points that are not on this
geodesic. The two coordinates xA ¼ ðx2; x3Þ are angular
coordinates parameterizing spheres centered on points on
the timelike geodesic. Finally, the coordinate x1 ¼ r is an
areal distance coordinate, such that surfaces dr ¼ 0 ¼ du
have the area 4�r2. The line element of themetric is given by

ds2 ¼�e2�ð"Þþ4�ð"Þdu2�2e2�ð"Þdudr

þ r2hABð"Þ½dxA�UAð"Þdu�½dxB�UBð"Þdu�; (1)

where hAC¼hCB¼�A
B and ½detðhABÞ�;r¼0¼½detðhABÞ�;u

[3]. The latter condition on the metric 2-tensor hAB is a
consequence of the requirement of the radial coordinate to
be an areal distance coordinate. This implies that hAB has
only two independent degrees of freedom to describe the
geometry of the 2-surfaces dr ¼ 0 ¼ du. The metric func-
tions in (1) are assumed to obey an expansion in terms of the
parameter " like

� ¼ �0 þ
X1
n¼1

�ðnÞ"n; � ¼ �0 þ
X1
n¼1

�ðnÞ"n;

hAB ¼ qAB þ X1
n¼1

�ðnÞ
AB"

n; UA ¼ X1
n¼1

UA
ðnÞ"

n;

(2)
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where qAB is a unit sphere metric with respect to the coor-
dinates xA, and we denote its associated covariant derivative

by DA, i.e., DAqBC ¼ 0. Note the symmetric tensors �ðnÞ
AB

contain only two degrees of freedom and are traceless
because of the determinant condition on hAB. The metric
functions have to obey regularity conditions at the vertices of
the outgoing null cones, because the vertices trace the origin
of a Fermi normal coordinate system [23] along the central
geodesic. According to the vertex lemma in Ref. [24] that
lists the regularity properties of a Bondi-Sachs metric at the
vertex, we require the metric functions to have the following
limiting behavior at r ¼ 0:

Oð"0Þ: f�0;�0g ¼ Oðr2Þ; (3a)

Oð"nÞ: f�ðnÞ
AB; �ðnÞ;�ðnÞg ¼ Oðr2Þ; UA

ðnÞ ¼ OðrÞ: (3b)

Since the metric functions are given by a power series in
terms of ", any quantity derived from the metric gabð"Þ is
given by a power series in terms of ". For any tensorT ð"Þ,
we introduce the notation

T ð"Þ ¼ X1
n¼0

T
n

"n; (4)

where T
0

is T ð"Þ evaluated in the background spacetime

and T
n

is the nth perturbation of T ð"Þ with respect to the
background spacetime.

WithRab denoting the Ricci tensor, the vacuum Einstein
equations Rab ¼ 0 for the line element (1) can be grouped
into three sets, a group of three so-called supplementary
equations ðRuu ¼ 0 and RuA ¼ 0Þ, one trivial equation
(Rur ¼ 0) and six main equations consisting of four
hypersurface equations

Rrrð"Þ ¼ 0; RrAð"Þ ¼ 0; (5a)

Rð2DÞð"Þ :¼ r2gABð"ÞRABð"Þ ¼ 0; (5b)

and two equations

RTT
ABð"Þ :¼ RABð"Þ � 1

2
gABð"ÞRð2DÞð"Þ ¼ 0: (6)

This grouping is given by the Bondi-Sachs lemma [1–3]
obtained from the twice contracted Bianchi identities: If the
main equations hold on one null cone and if the optical
expansion of null rays [29] does not vanish on the cone (i.e.,
� is finite), then the trivial equation is fulfilled algebraically
and the supplementary equations hold provided they hold at
a radius r > 0. Therefore, the supplementary equations can
be seen as constraint equations for the metric functions at
given radius r > 0. As we intent to solve the Einstein equa-
tions on the entire null cone including its vertex, the regular-
ity conditions at the vertices can be used to replace these
constraints. Although the quasispherical approximation

being introduced is completely general, we consider for
simplicity hereafter only the zeroth- and first-order terms
in the " expansion of the main equations, whose relevant
Ricci tensor components are given in Appendix A.

III. SOLUTION PROCEDURE FOR
THE BACKGROUND SPACETIME
AND LINEAR PERTURBATIONS

A. Background spacetime

Here we show that the background spacetime must be
Minkowskian, when a regular vertex and a vacuum space-
time are assumed.

From R
0

rr ¼ 0, R
0

ð2DÞ ¼ 0 (Appendix A1), and the

regularity conditions (3a) it follows that

�0ðxaÞ ¼ 0; �0ðxaÞ ¼ 0: (7)

Hence the background metric is Minkowskian with respect
to outgoing null coordinates and has the line element

ds2 ¼ �du2 � 2dudrþ r2qABðxCÞdxAdxB: (8)

Hereafter, we set �0 ¼ �0 ¼ 0 in all equations and use the
standard spherical coordinates xA ¼ ð�;�Þ to parameterize
the unit sphere metric, i.e., qABðxAÞ ¼ diagð1; sin 2�Þ.

B. Linear perturbations

1. A master equation for vacuum perturbations

In this section, we derive a differential equation for a
master function that allows us to determine all linear
perturbations in Bondi-Sachs coordinates with respect to
a Minkowski background spacetime.
From (A3) and the regularity conditions (3b) it can be

concluded that

�ð1ÞðxaÞ ¼ 0; (9)

which is hereafter imposed in the calculations. Setting

R
1

rA ¼ 0 [from Eq. (A4)] yields

0 ¼ ðr4qAEUE
ð1Þ;rÞ;r þ r2qEFDE�

ð1Þ
AF;r: (10)

From this equation it is clear that if either �ð1Þ
AB or UA

ð1Þ is
known on the interval r 2 ½0;1Þ, Eq. (10) can be used to
solve for the other respective field. Inserting (7) and (9)

into (A5) and setting R
1

ð2DÞ ¼ 0 gives

0 ¼ ��;r �DADB�ð1Þ
AB � 1

r2
DAðr4UAÞ;r; (11)

which allows us to determine an intermediate variable ��
that is related algebraically with �ð1Þ by

�� ¼ 2rð1þ 2�ð1ÞÞ: (12)
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The two equations (10) and (11) link the three perturbation
variables. In particular, UA

ð1Þ and �ð1Þ can be calculated

once �ð1Þ
AB is known; or �ð1Þ

AB and �ð1Þ are determined from

UA
ð1Þ. In what follows we determineUA

ð1Þ and�ð1Þ from �ð1Þ
AB.

Defining the functionals Að�ð1Þ
ABÞ and BðDAXBÞ acting

on �ð1Þ
AB and arbitrary covectors XA, respectively, like

Að�ð1Þ
ABÞ :¼ rðr�ð1Þ

AB;uÞ;r �
1

2
ðr2�ð1Þ

AB;rÞ;r; (13a)

BðDAXBÞ :¼ DðAXBÞ � 1

2
qABðqEFDEXFÞ; (13b)

allows us to write the evolution equations R
1 ðTTÞ
AB ¼ 0

[Eq. (A6)] briefly as

0¼Að�ð1Þ
ABÞþ r2BðqAEDBU

E
ð1Þ;rÞþ2BðqAEDBU

E
ð1ÞÞ: (14)

Taking the covariant derivative DB of (10) we can derive

0 ¼ r2BðqAEDBU
E
ð1Þ;rrÞ þ 4rBðqAEDBU

E
ð1Þ;rÞ

þBðDBD
E�ð1Þ

AE;rÞ: (15)

From the following calculation:

@

@r

�
r2
��

@

@r
ð14Þ � ð15Þ

�
r� ð14Þ

��
þ r2ð15Þ (16)

we obtain the equation

0 ¼ ½r3A;rð�ð1Þ
ABÞ � r2Að�ð1Þ

ABÞ�;r þ r2BðDAD
E�ð1Þ

BE;rÞ
� ½r3BðDAD

E�ð1Þ
BE;rÞ�;r: (17)

Defining the auxiliary variable �AB :¼ r�ð1Þ
AB, using the

definition (13a) allows us to write (17) as

0¼
�
r4
�
�AB;rru�1

2
�AB;rrr

��
;r
� r2BðDAD

E�BE;rrÞ: (18)

This a second-order differential equation for c AB :¼
�AB;rr, i.e.,

0 ¼ 1

r2
½r4ð2c AB;u � c AB;rÞ�;r � 2DAD

Ec BE

þ qABðDEDFc EFÞ: (19)

Based on our previous definition of the intermediate vari-
able �AB, we find the following equation:

ðr�ð1Þ
ABÞ;rr ¼ c AB; (20)

which allows us to determine �ð1Þ
AB from c AB. The remain-

ing perturbations UA
ð1Þ and �ð1Þ are then obtained by inte-

grating hierarchically (10) and (11).
Since a solution of Eq. (19) is the starting point

to determine all nontrivial metric fields, we shall call it
the master equation of linearized vacuum perturbations

in Bondi-Sachs coordinates. The 2-tensor field c AB, which
is determined by this differential equation, shall be referred
to as the master function of the linearized vacuum pertur-
bations. By calculating the linearized Riemann tensor with
respect to (1), we find that c AB determines the components
RrArB via

RrArB ¼ � 1

2
rc AB: (21)

2. Representation of the perturbations and their
equations in a spin framework

In Eqs. (10), (11), and (19) the angular derivatives are
covariant derivatives on a unit sphere. In principle, these
covariant derivatives could now be expressed by the cor-
responding partial ones utilizing the representation of the
unit sphere metric in terms of the coordinates � and �.
However, we follow the approach of Goldberg et al. [17]
that became standard [4] when working in numerical
relativity with the Einstein equations in Bondi-Sachs for-
mulation. On the 2-surfaces du ¼ 0 ¼ dr, we introduce a
complex dyad qA and its complex conjugated �qA to rep-
resent the unit sphere metric qAB and its corresponding
covariant derivative DA. The dyad is defined by qAqA ¼
qA;u ¼ qA;r ¼ 0 and qA �qA ¼ q with q > 0. The latter defi-

nition covers both commonly used normalizations, the
traditional one q ¼ 1 [11,17,30,31] and the numerical
one q ¼ 2 [4,15,32], which is employed in numerical
relativity. The unit sphere metric qAB represented by the
dyad is

qAB ¼ 1

q
ðqA �qB þ �qAqBÞ: (22)

According to our choice of angular coordinates, xA ¼
ð�;�Þ, qA can be expressed as qA ¼ ðq=2Þ1=2ð1; isin�1�Þ
with i ¼ ffiffiffiffiffiffiffi�1

p
.

Any traceless, symmetric tensor �ðA1...AsÞ of rank s on the
2-surfaces du ¼ 0 ¼ dr can be expressed by the dyad qA

and a complex scalar field � like

�ðA1...AsÞ ¼
1

qjsj
ð� �qA1

. . . �qAs
þ ��qA1

. . . qAs
Þ; (23)

where

� ¼ �ðA1...AsÞq
A1 . . . qAs ; (24a)

�� ¼ �ðA1...AsÞ �q
A1 . . . �qAs : (24b)

When the spacelike vectors ReðqAÞ and ImðqAÞ are rotated
in their complex plane by a real angle #, the quantity �
transforms under this rotation as �0 ¼ eis#� and it is said
to have the spin weight s [11,17]. For the covariant deriva-
tives DB�ðA1...AsÞ with respect to the unit sphere, we define

the ð and ð operator as
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ð� :¼
ffiffiffi
2

q

s
qA1 . . .qAsqBDB�ðA1...AsÞ (25a)

�ð� :¼
ffiffiffi
2

q

s
qA1 . . .qAs �qBDB�ðA1...AsÞ; (25b)

which correspond to the following derivatives of� in terms
of the coordinates xA:

ð� ¼ ðsin s�Þ
�
@

@�
þ i

sin �

@

@�

��
�

sin s�

�
; (26a)

�ð� ¼
�

1

sin s�

��
@

@�
� i

sin �

@

@�

�
ð�sin s�Þ: (26b)

Based on (25), we find the commutator of the ð and ð
operator as

½�ð; ð�� ¼ 2sK�; (27)

where K ¼ 1 is the Gaussian curvature of the 2-surfaces
du ¼ 0 ¼ dr, for r > 0, and which is calculated from
K :¼ ð1=q2ÞqA �qBqE �qFRABEFðqCDÞ.

To write (10), (11), and (19) in a spin representation, we
define the spin-weighted quantities

c :¼ qAqBc AB; (28a)

J :¼ qAqB�ð1Þ
AB; (28b)

U :¼ qAU
A
ð1Þ; (28c)

where U has spin weight 1 and c and J have spin
weight 2 [33]. According to (24a), the metric perturbations

UA
ð1Þ and �ð1Þ

AB can be found from U and J as

UA
ð1Þ ¼

1

q
ðU �qA þ �UqAÞ; (29a)

�ð1Þ
AB ¼ 1

q2
ðJ �qA �qB þ �J qAqBÞ: (29b)

Multiplying (19) with qAqB yields the spin representation
of the master equation

0 ¼ 1

r2
½r4ð2c ;u � c ;rÞ�;r � ð�ðð� 4Þc : (30a)

From the definition of c AB we deduce an equation that
determines J from c :

ðrJ Þ;rr ¼ c : (30b)

Multiplying (10) with qA and using (22) allows us to write
(10) as

0 ¼ ðr4U;rÞ;r þ r2ffiffiffiffiffiffi
2q

p �ððJ ;rÞ: (30c)

The spin representation of Eq. (11) can be found as

0 ¼ ��;r � 1

2q
ðð2 �J þ �ð2J Þ � 1

r2
ffiffiffiffiffiffi
2q

p ½r4ðð �Uþ �ðUÞ�;r;
(30d)

where �� has a spin weight zero, because it is a tensor of
rank zero. Although it is not required hereafter, we give for
completeness the evolution equation (14) in terms of the
spin-weighted variables

0 ¼ 2ðrJ Þ;ur � 1

r

�
r2J ;r � r2

�
q

2

�
1=2

ðU
�
;r
: (31)

In Eqs. (30c), (30d), and (31) it is seen that the ð and �ð
operators raise and lower, respectively, the spin weight
when applied to a spin-weighted quantity, since the overall
spin weight in these equations must coincide with the spin
weight of the variable that does not carry an ð or �ð operator.
Equations (30) are the equations that need to be solved for

the perturbations in the spin representation. Equation (30a) is
a wave equation for the spin-2 field c and we show in
Appendix B how it is related with the flat-space wave equa-
tion of a spin-0 field. The field c is, in fact, the linearized
Weyl scalar 2r�0 [19]. Since a solution of (30a) determines
all linear perturbations with respect to a Minkowskian back-
ground, the perturbations describe the propagation of spin-2
waves on a Minkowskian background spacetime.

3. Decomposition of the perturbations into
spin-weighted harmonics

A standard approach to solve the linearized Einstein
equations is to decouple the angular dependence from the
equations by expressing the perturbations in terms of a
spectral basis depending on the angular coordinates, only,
and where the coefficients of such spectral series depend
on all other coordinates but the angles. By inserting such
spectral series into the equations, one then is able to derive
differential equations for the coefficients of these series.
Hereafter we follow this approach.
Since in Eqs. (30a), (30c), and (30d) the angular deriva-

tives are expressed in terms of the ð operator, we

decompose c , J , U and �� with respect to a basis of
spin-weighted harmonics sYlm which are eigenfunctions

of the operator �ðð. Let YlmðxAÞ be the conventional
spherical harmonics [34], and then the spin-s weighted
spherical harmonics, sYlmðxAÞ, are derived from the spheri-

cal harmonics, YlmðxAÞ, like [30]
sYlm ¼ kðl; sÞðsYlm for s > 0; (32a)

sYlm ¼ Ylm for s ¼ 0; (32b)

sYlm ¼ ð�Þjsjkðl; jsjÞ�ðjsjYlm for s < 0; (32c)

where kðl; sÞ :¼ ½ðl� sÞ!=ðlþ sÞ!�1=2 and sYlm ¼ 0 for

jsj> l. The following properties of the ð operator and
the sYlm are used [35]:

s
�Ylm ¼ ð�Þmþs�sYlð�mÞ; (33a)

ððsYlmÞ ¼ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl� sÞðlþ sþ 1Þp
sþ1Ylm; (33b)

�ððsYlmÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ sÞðl� sþ 1Þ

p
s�1Ylm; (33c)

�ðððsYlmÞ ¼ �ðl� sÞðlþ sþ 1ÞsYlm; (33d)
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where (33d) shows that sYlm are the eigenfunctions of the

operator �ðð [36]. In particular, if s ¼ 0, the operator �ðð
corresponds to the angular momentum operator since
�ððYlm ¼ �lðlþ 1ÞYlm. We make the following ansatz for
c , J , and U:

c ðxaÞ ¼ X1
l¼2

Xl
m¼�l

c lmðu; rÞ2YlmðxAÞ; (34a)

J ðxaÞ ¼ X1
l¼2

Xl
m¼�l

Jlmðu; rÞ2YlmðxAÞ; (34b)

UðxaÞ ¼ X1
l¼1

Xl
m¼�l

Ulmðu; rÞ1YlmðxAÞ: (34c)

The perturbation variable �� is a spin-0 field; thus it would
be the most natural to express it in a 0Ylm basis. However,

an inspection of (30d), while using (33), shows that the

terms containing �ð2J þ ð2 �J and �ðUþ ð �U have an
angular behavior like

0Ylm þ ð�Þm0Ylð�mÞ:

Therefore, by defining the following spin-0 harmonic:

ZlmðxAÞ :¼ 1

2
½0YlmðxAÞ þ ð�Þm0Ylð�mÞðxAÞ� (35)

and making for �� the ansatz

��ðxaÞ :¼ X1
l¼1

Xl
m¼�l

�lmðu; rÞZlmðxAÞ; (36)

we can decouple the angular derivatives in (30d) with the

angular part of ��.
Inserting (34) and (36) into (30) and using (33) yields an

hierarchial set of differential equations coupling the coef-
ficients c lm, Jlm, Ulm, and �lm:

0¼ 1

r2
½r4ð2c lm;u�c lm;rÞ�;rþðlþ2Þðl�1Þc lm;

(37a)

ðrJlmÞ;rr ¼ c lm; (37b)

ðr4Ulm;rÞ;r ¼ r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ2Þðl�1Þ

2q

s
Jlm;r; (37c)

�lm;r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl�1Þlðlþ1Þðlþ2Þp

q
Jlm

� 1

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þ
2q

s
ðr4UlmÞ;r: (37d)

IV. BOUNDARY CONDITIONS AT THE VERTEX

The metric perturbations variables, J , U, and ��, are
functions on null cones u ¼ constwith their vertices traced
by the central geodesic of a spherically symmetric back-
ground spacetime. The null cones, however, are not
differentiable at their vertices; consequently the metric

perturbation variables are also not differentiable there. As
the perturbation J defines the complex master function c ,
the variable c is a priori also not differentiable at the
vertex. In this section we follow the procedure as in
Ref. [24] to discuss the boundary conditions for c and
the metric variables at the vertex. Thereby, we assume a
Minkowskian observer and the existence of an convex
normal neighborhood along the central geodesic of the
spherically symmetric background spacetime.
Since the master function c is determined from pertur-

bation �ð1Þ
AB like c ¼ ð1=2Þðr�ð1Þ

ABq
AqBÞ;rr and since �ð1Þ

AB ¼
Oðr2Þ at r ¼ 0, we conclude the limiting radial behavior of
c to be

c ðxaÞ ¼ OðrÞ: (38)

To find the exact behavior of c near r ¼ 0, we assume that
c obeys, at r ¼ 0, an infinite power series expansion for c
in terms of r like

c ðxaÞ ¼ X1
n¼1

~c nðu; xAÞrn; (39)

where the coefficient functions ~c nðu; xAÞ are assumed
smooth functions for all values of u and xA. According to
the vertex lemma of Ref. [24], the radial coefficients
of (39) must obey the field equations. Inserting (39) into
(30a) yields

0 ¼ �r�ððc 1 �
X1
n¼1

fðnþ 1Þðnþ 4Þ ~c nþ1 þ ð�ðð� 4Þ ~c nþ1

� 2ðnþ 4Þ ~c n;ugrnþ1: (40)

For this equation to be fulfilled, we deduce the conditions

0 ¼ �ððc 1; (41a)

0 ¼ ðnþ 1Þðnþ 4Þ ~c nþ1 þ ð�ðð� 4Þ ~c nþ1

� 2ðnþ 4Þ ~c n;u ðn � 1Þ: (41b)

To decouple the angular and time dependence, we make
the ansatz [37]

~c nðu; xAÞ ¼
Xnþ1

l¼2

Xl
m¼�l

cl:m:nðuÞ2YlmðxAÞ: (42)

Inserting (42) into (41a) yields

0 ¼ �ððc 1 ¼
X2

m¼�2

ð�5Þð2� 2Þc2:m:1ðuÞ2YlmðxAÞ; (43)

showing that c2:m:1ðuÞ are five functions for themmodes of
the l ¼ 2 spin-2 harmonic, 2Y2m, that can be chosen arbi-
trarily, and which we write as

c2:m:1ðuÞ :¼ CðmÞ
2:1 ðuÞ: (44)

Inserting (42) into (41b) gives, after little algebra, for
n � 1
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0¼ Xnþ2

m¼�ðnþ2Þ
cnþ2:m:nþ1½4� 4�2Yðnþ2Þm

þXnþ1

l¼2

Xl
m¼�l

�
�2ðnþ 4Þ

�
d

du
cl:m:n

�

þ cl:m:nþ1½ðnþ 1Þðnþ 4Þ� ðl� 2Þðlþ 3Þ� 4�
�
2Ylm;

(45)

from which we conclude that the functions cnþ2:m:nþ1ðuÞ
(n � 1) are 2nþ 5 arbitrary functions for the m modes of

2Yðnþ2Þm and the coefficient functions cl:m:nþ1ðuÞ are for

(n � 1), (2 � l � nþ 1), jmj � l given by the recursive
relation

cl:m:nþ1ðuÞ ¼ al:n
d

du
cl:m:nðuÞ; (46)

where

al:n :¼ � 2ðnþ 4Þ
ðlþ nþ 3Þðl� n� 2Þ : (47)

Defining the arbitrary functions cnþ2:m:nþ1ðuÞ as
cnþ2:m:nþ1ðuÞ :¼ CðmÞ

nþ2:nþ1ðuÞ ðn � 1Þ (48)

and writing out the recursive series (46) for the first values
of l and n allows us to deduce for (n > 1), (2 � l � n),
jmj � l an explicit form of the recursive series (46):

cl:m:nðuÞ ¼
 Yn�1

k¼l�1

al:k

!
dn�lþ1

dun�lþ1
CðmÞ
l:l�1ðuÞ: (49)

The product term involving the al:k in (49) can be simpli-
fied further using (47) and properties of the factorial and
Gamma function

Yn�1

k¼l�1

al:k ¼ 2n�l

ðlþ 1Þ
ð2lþ 2Þ!ðnþ 3Þ!

ðlþ 2Þ!ðnþ lþ 2Þ!ðn� lþ 1Þ! :

(50)

Using (39), (42), (44), (46), and (48)–(50) allows us to find
the explicit dependence of c from the arbitrary functions

CðmÞ
n:nþ1, that is,

c ðxaÞ ¼ X1
n¼1

Xnþ1

m¼�ðnþ1Þ
½CðmÞ

nþ1:nðuÞ2Yðnþ1ÞmðxAÞ�rn þ
X1
n¼2

Xn
l¼2

Xl
m¼�1

�
2n�l ð2lþ 2Þ!ðnþ 3Þ!

ðlþ 1Þðlþ 2Þ!ðnþ lþ 2Þ!ðn� lþ 1Þ!
�

�
�
dn�lþ1

dun�lþ1
CðmÞ
l:l�1ðuÞYlmðxAÞ

�
rn: (51)

Equation (51) shows the boundary conditions of c in terms of a power series in r at the vertex and functional dependence
of c from data—the functions CðmÞ

n:nþ1ðuÞ—that are given as free functions along the central geodesic. These free functions
are the spin-2 multipoles of the complex master function, i.e., the Weyl scalar 2r�0, which are calculated with respect to a
Fermi observer following the central geodesic. Given c we find the boundary conditions for the perturbation J , U, and
�ð1Þ as

J ðxaÞ ¼ X1
l¼2

Xl
m¼�l

½IðmÞ
n:n ðuÞ2YnmðxAÞ�rn þ

X1
n¼3

Xn�1

l¼2

Xl
m¼�l

bðn; lÞ
�
dn�l

dun�l
IðmÞ
l:l ðuÞ2YlmðxAÞ

�
rn; (52a)

UðxaÞ ¼ X1
l¼2

Xl
m¼�l

"
l

ð1� lÞðlþ 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl� 2Þðlþ 3Þp

ffiffiffiffiffiffi
2q

p IðmÞ
l:l ðuÞ1YlmðxAÞ

#
rl�1

þ X1
n¼3

Xn�1

l¼2

Xl
m¼�l

nbðn; lÞ
ð1� nÞðnþ 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl� 2Þðlþ 3Þp
ffiffiffiffiffiffi
2q

p
�
dn�l

dun�l
IðmÞ
l:l ðuÞ1YlmðxAÞ

�
rn�1; (52b)

�ð1ÞðxaÞ ¼
X1
l¼2

Xl
m¼�l

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl� 1Þlðlþ 1Þðlþ 2Þp
IðmÞ
l:l ðuÞZlmðxAÞ

4qðlþ 1Þ
#
rl

þ X1
n¼3

Xn�1

l¼2

Xl
m¼�l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl� 1Þlðlþ 1Þðlþ 2Þp
bðn; lÞ

4qðnþ 1Þ
�
dn�l

dun�l
IðmÞ
l:l ðuÞZlmðxAÞ

�
rn � 1

2
; (52c)

where we defined

IðmÞ
n:n ðuÞ :¼ CðmÞ

n:n�1ðuÞ
nðnþ 1Þ ; (53)

bðn; lÞ :¼ 2n�1�l lðnþ 2Þð2lþ 2Þ!ðn� 1Þ!
ðlþ 2Þ!ðnþ lþ 1Þ!ðn� lÞ! : (54)
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It is seen in (52a) that for static spacetimes the free data
IðmÞ
l:l ðuÞ of the l multipole along the central geodesic corre-
spond with power rl, and for dynamical spacetimes the nth
time derivative of the l multipole of the free data are found
at the power rnþl. Moreover, formula (52a) agrees in axial
symmetry (i.e.,m ¼ 0) with expressions given in Ref. [24].

V. SOLUTIONS OF THE MASTER EQUATION

In this section, we present static and time-dependent
solutions for the spectral coefficients of the master function
c , where in the time-dependent case, we use two different
approaches to solve the differential equation for the spec-
tral coefficients of the complex master function c . In the
first approach (Sec. VB), we make a ‘‘standard’’ ansatz to
solve the differential equation, whereas in the second
approach (Sec. VC) we impose an ansatz based on the
characteristic nature of the partial differential equation.

In all three cases, we look for solutions that respect the
regularity conditions of the previous sections and that are
asymptotically finite as r ! 1.

A. Static solutions

Assuming that c does not depend on the time u yields
with (37a) the following ordinary differential equation for
the spectral coefficients c lmðrÞ:

0 ¼ 1

r2
d

dr
r4

d

dr
c lm � ðlþ 2Þðl� 1Þc lm: (55)

The general solution of (55) is for l � 2, 0 � jmj � l,

c lmðrÞ ¼ Almr
l�1 þ Blm

rlþ2
; (56)

where Alm and Blm are constants. Note that (56) is 1=r2

times the solution of radial part of the classical Laplace
equation in spherical coordinates (page 96 in Ref. [34]).
The regularity conditions (51) of c at the origin require
Blm ¼ 0, which leaves us with the following static solution:

c lmðrÞ ¼ Almr
l�1 (57)

respecting the regularity condition (51). However, as r
tends to infinity, the l multipoles of c tend to infinity as
rl; i.e., the solution is not asymptotical finite. Therefore the
coefficients Alm must vanish for all values of l and m.
Hence the only solution of the master equation in the static
case yields the trivial master function

c ðxaÞ ¼ 0: (58)

This result implies together with the regularity and asymp-
totically flat conditions on the metric perturbations J , U,
and �ð1Þ that all perturbations vanish. Hence, there are no
regular and asymptotically flat static perturbations of the
Minkowski spacetime.

B. First approach for the time-dependent problem

To solve the differential equation (37a) for the coeffi-
cients of c lm, we make a standard ansatz of separation of
variables

c lmðu; rÞ ¼ eTðuÞRlmðrÞ: (59)

Inserting (59) into (37a) yields

dT

du
¼ r2 d2Rlm

dr2
þ 4r dRlm

dr � ½lðlþ 1Þ � 2�R
8rRlm þ 2r2 dRlm

dr

: (60)

Since the right-hand side of (60) is independent of u, it can
be treated as a constant in the u integration that we set to be
dT=du ¼ B ¼ const. This implies the solution TðuÞ ¼
Bðuþ u0Þ, where the constant u0 is determined by the
initial conditions, and without loss of generality we may
set u0 ¼ 0. Since B ¼ 0 yields T ¼ 0, which corresponds
to a static solution, we assume hereafter B � 0. Inserting
dT=du ¼ B into (60) and rearranging gives

0¼ r2
d2Rlm

dr2
þð4r�2r2BÞdRlm

dr
�ð8rBþ lðlþ1Þ�2ÞRlm:

(61)

To find a solution for (61), we make the ansatz RlmðrÞ ¼
rkearAlmðrÞ and obtain

0 ¼ r2
dAlm

dr
þ ½2ða� BÞr2 þ 2ðkþ 2Þr� dAlm

dr

þ ½aða� 2BÞr2 þ ð4a� 2Bkþ 2ka� 8BÞr
þ k2 þ 3kþ 2� lðlþ 1Þ�Alm: (62)

If we choose k ¼ �1, a ¼ B, and make in (62) the variable
transformation z ¼ Br, (62) can be cast into a inhomoge-
neous Bessel-type differential equation:

z2
d2Alm

dz2
þ 2z

dAlm

dz
� ½z2 þ lðlþ 1Þ�Alm ¼ 4zAlm; (63)

where the inhomogeneity is given by the right-hand side of
(63). The homogeneous counterpart to (63) is the modified
spherical Bessel differential equation

z2
d2AlmðzÞ

dz2
þ 2z

dAlmðzÞ
dz

� ½z2 þ lðlþ 1Þ�AlmðzÞ ¼ 0;

(64)

whose solutions are the modified spherical Bessel func-
tions, ilðzÞ and klðzÞ, of first and second kind, respectively,

ilðzÞ :¼
ffiffiffiffiffi
�

2z

r
Ilþ1

2
ðzÞ; klðzÞ :¼

ffiffiffiffiffi
�

2z

r
Klþ1

2
ðzÞ; (65)
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where Ilþ1
2
ðzÞ andKlþ1

2
ðzÞ are the modified Bessel functions

of first and second kind, respectively (page 437 in
Ref. [38]). The regularity conditions (51) for c require
that RlmðrÞ ¼ Oðrl�1Þ for r � 0 and l � 2; consequently
AlmðzÞ must behave as OðzlÞ for z � 0. Since the functions
ilðzÞ and klðzÞ behave as OðzlÞ and Oðz�lÞ for z � 0,
respectively, the modified spherical Bessel functions
of the second kind must be ruled in the construction
of a regular solution to (63). To solve (63), we make
the ansatz

AlmðzÞ ¼
X2
k¼0

zkfeðlmÞ
k ilðzÞ þ fðlmÞ

k il�1ðzÞg; (66)

where the coefficients eðlmÞ
k , and fðlmÞ

k , are determined by

the boundary conditions at z ¼ 0 and by inserting (66) into
(63). Inserting (66) into (63) allows us to deduce the
solution

AlmðzÞ ¼ fðlmÞ
2 ðz2 þ zÞilðzÞ

þ fðlmÞ
2

�
z2 þ ð1� lÞzþ lðl� 1Þ

2

�
il�1ðzÞ: (67)

Thus a master function c with the following spectral
coefficients:

c lmðu; rÞ ¼ fðlmÞ
2

r
eBðuþrÞ

�
½ðBrÞ2 þ Br�il�1ðBrÞ

þ
�
ðBrÞ2 � ðl� 1ÞðBrÞ þ lðl� 1Þ

2

�
ilðBrÞ

�
(68)

respects the regularity condition (51) at the vertex.
In particular, if we choose in (51) the free initial data
to be

CðmÞ
lþ1:lðuÞ ¼ fðlmÞ

2

�
1

ð2lþ 1Þ!!þ
lðl� 1Þ

2ð2lþ 3Þ!!
�
eBuBl; (69)

where l!! is the double factorial, then the free data (69)
describe the solution (68) in a neighborhood of r ¼ 0.

It can be easily seen in (68) that the spectral coefficients
in (68) diverge exponentially as r tends to infinity.
Consequently the spectral coefficients of linear perturba-
tions that are calculated from (68) will also diverge
exponentially and hence the solution which we found
for the master functions will not give rise to an asymptoti-
cally flat solution of the linearized vacuum Einstein
equations.

C. Second approach for the time-dependent problem

In this section, we present an approach yielding a solu-
tion of the master equation that is regular at the vertex and
finite, when r tends to infinity.
Defining c lm ¼ ð1=r4ÞR r4Plmdr shows that (37a) is an

integro-differential transport equation

0 ¼ Plm;u � 1

2
Plm;r þ lðlþ 1Þ � 6

2r6

Z
r4Plmdr: (70)

It can be seen that the integral part of (70) vanishes for
l ¼ 2 implying the surfaces uþ 2r ¼ const to be the
(ingoing) characteristic surfaces of this integro-differential
transport equation.
Since Eq. (37a) is another representation of the transport

equation (70) and based on the fact that uþ 2r is a
characteristic surface for the lowest (l ¼ 2) multipole of
c , we make the following ansatz to solve (37a):

c lm ¼ Clmu
irjðuþ 2rÞk; (71)

where the exponents i, j, k need to be determined by
inserting (71) in (37a) andClm 2 R are arbitrary constants.
The calculation yields the following possibilities for the
exponents for (l � 2):

½i; j; k� ¼ ½ðlþ 2Þ;�ðlþ 2Þ; ðl� 2Þ�; (72a)

½i; j; k� ¼ ½�ðl� 1Þ; ðl� 1Þ; ðlþ 3Þ�: (72b)

By inserting these values into (71) and expanding the thus
obtained function at r ¼ 0, it is seen that the first possi-
bility, (72a), for the exponents gives rise to a singular
behavior of the coefficients c lm in (71) at r ¼ 0, whereas
the second one complies with the regularity requirement
(51). Hence, c with following spectral coefficients:

c lmðu; rÞ ¼ Clm

rl�1

ul�1ðuþ 2rÞlþ3
(73)

yields for u > 0 a complex master function c that is
regular at the vertex at r ¼ 0 and also finite if r ! 1.
The initial data along the central geodesic for u > 0 are

CðmÞ
lþ1:l ¼

Clm

u2ðlþ2Þ ; l � 1; jmj � l: (74)

VI. ASYMPTOTICALLY FLATAND REGULAR
SOLUTION FOR THE VACUUM PERTURBATIONS

Given the spectral coefficients (73) for the complex
master function and the boundary conditions for the
perturbations (3b), we now integrate (37b)–(37d) for the
spectral coefficients of the perturbations. Together
with �ð1Þ ¼ 0 and (12), our solutions of the linearized

perturbations J , U, and �ð1Þ in terms of spin-weighted

harmonics are
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J ðxaÞ ¼ X1
l¼2

Xl
m¼�l

Clm

lðlþ 1Þðlþ 2Þ
rl½ðlþ 2Þuþ 4r�
ulþ2ðuþ 2rÞlþ1 2YlmðxAÞ; (75a)

UðxaÞ ¼ 1ffiffiffiffiffiffi
2q

p X1
l¼2

Xl
m¼�l

Clm

lðlþ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl� 1Þðlþ 2Þp rl�1ðluþ 2rÞ
ulþ3ðuþ 2rÞl 1YlmðxAÞ; (75b)

�ð1ÞðxaÞ ¼ � 1

2
� 1

4q

X1
l¼2

Xl
m¼�l

Clmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl� 1Þlðlþ 1Þðlþ 2Þp rl

ulþ3ðuþ 2rÞl�1
ZlmðxAÞ; (75c)

which are well defined for u > 0, and where the coeffi-
cients Clm are arbitrary constants. The solution above
describes for u > 0 spin-2 fields propagating on a
Minkowski background spacetime, and we shall therefore
refer to it hereafter as SPIN-2.

A. Asymptotic properties

1. Conformal compactification, frame at null infinity

The study of the asymptotic behavior of solutions of
the Einstein field equations [39] is most elegantly done by
using Penrose’s compactification for asymptotically flat
spacetimes [25]. The idea of this compactification is that,
aside from a ‘‘physical manifold’’ M with a ‘‘physical
metric’’ gab, there exists a positive function ‘, which
decreases along all complete null geodesics, approaching
to zero as their affine parameter goes to infinity. Thereby
a ‘‘nonphysical metric’’ ĝab ¼ ‘2gab can be extended

smoothly to a larger, compactified manifold M̂ ¼ M [
@M [40]. The boundary I :¼ @M is called null infinity
and one has ‘ ¼ 0 and ra‘ � 0 on I . Points on I in the

manifold M̂ correspond to ‘‘points at infinity’’ for radia-
tive fields in the physical manifold. It can be shown that the
boundary I is a null hypersurface and that the Weyl tensor

Ĉabcd behaves as Oð‘Þ in the neighborhood of I [25].
To find a compactifiedmetric ĝab for a given Bondi-Sachs

metric of a physical spacetime, we have to find a conformal
factor ‘ such that it has the properties at I as stated above.
Assuming gab is smooth in M, we first define coordinates
x̂a as a function of the Bondi-Sachs coordinates xa such that
‘‘points at r ¼ 1’’ in the Bondi-Sachs coordinates are
located at finite values in x̂a coordinates. Second we calcu-
late an intermediate metric, g�ab say, by transforming the

Bondi-Sachs metric to the conformal coordinates x̂a and
finally we find a conformal factor ‘ making ‘2g�ab finite at

the location of null infinity. The coordinates x̂a are called
conformal Bondi-Sachs coordinates.

The coordinate x̂0 :¼ u and the coordinates x̂A :¼ xA are
defined as their counterpart in the Bondi-Sachs coordi-
nates. The coordinate x̂1 :¼ x̂ ranges over the interval
½0; a�; a > 0, and is connected to the physical radial coor-
dinate r via a strictly monotonic positive function r ¼ rðx̂Þ
having the further properties rð0Þ ¼ 0 and limx̂!arðx̂Þ¼1.
The points at null infinity I are located at x̂a ¼ ðû; a; x̂AÞ,
where û and x̂A are arbitrary. The requirement
lim x̂!arðx̂Þ ¼ 1 and the monotonicity imply that rðx̂Þ

has a singularity at x̂ ¼ a which is a pole. Hence the
most general form of rðx̂Þ may be assumed to be of the
form

rðx̂Þ ¼ Rðx̂Þ
ða� x̂Þm ; (76)

where m 2 f1; 2; . . .g is the order of the pole of rðx̂Þ
and Rðx̂Þ is a strictly monotonic positive function with
Rð0Þ ¼ 0 and RðaÞ � 0. If one now transforms the metric
components of the line element (1) to conformal coordi-
nates x̂a and assumes that metric functions hAB, �, U

A,
and � have only poles at x̂ ¼ a, it can be seen that the
thus obtained metric g�ab has poles of the order 2m and

mþ 1. Assuming a conformal factor like ‘ ¼ ða� x̂Þk=2,
k 2 f1; 2; . . .g and requiring ĝab ¼ ‘2g�ab to be finite as

x ! a implies

k ¼ 2; m ¼ 1: (77)

Thus the function ‘ðx̂Þ ¼ a� x̂ vanishes for x̂ ¼ a and its
derivative does not vanish at x̂ ¼ a. Therefore the surface
with the coordinate values x̂a ¼ ðû; a; x̂AÞ, with arbitrary
values of û, and x̂A, corresponds to null infinity.
The conformal metric ĝab has the nontrivial covariant

components

ĝû û ¼ �ða� x̂Þ2e2�þ4� þ R2ðx̂ÞhÂ B̂U
ÂUB̂; (78a)

ĝû x̂ ¼ �
�
ða� x̂Þ dR

dx̂
þ Rðx̂Þ

�
e2�; (78b)

ĝû Â ¼ �R2ðx̂ÞĥABÛB; (78c)

ĝÂ B̂ ¼ R2ðx̂ÞĥAB (78d)

and the nonzero contravariant components

ĝx̂ û ¼ �
�
ða� x̂Þ dR

dx̂
þ Rðx̂Þ

��1
e�2�; (79a)

ĝx̂ x̂ ¼ ða� x̂Þ2
�
ða� x̂Þ dR

dx̂
þ Rðx̂Þ

��2
e2�; (79b)

ĝx̂ Â ¼ ÛA

�
ða� x̂ÞdR

dx̂
þ Rðx̂Þ

��1
e�2�; (79c)

ĝÂ B̂ ¼ 1

R2ðx̂Þ ĥ
AB: (79d)

The quasispherical approximation of the conformal metric
ĝab is expanded in terms of the " parameter as
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ĝab ¼̂ ĝ
0

ab þ "ĝ
1

ab: (80)

For SPIN-2, ĝ
0

ab has the nonvanishing components

ĝ
0

û û ¼ �ða� x̂Þ2; (81a)

ĝ
0

û x̂ ¼ �
�
ða� x̂Þ dR

dx̂
þ Rðx̂Þ

�
; (81b)

ĝ
0

AB ¼ R2ðx̂ÞqAB; (81c)

and ĝ
1

ab has the nonzero components

ĝ
1

û û ¼ �2ða� x̂Þ2�̂ð1Þ; (82a)

ĝ
1

û x̂ ¼ �
�
ða� x̂Þ dR

dx̂
þ Rðx̂Þ

�
; (82b)

ĝ
1

û Â ¼ �R2ðx̂ÞqABÛB
ð1Þ; (82c)

ĝ
1

Â B̂ ¼ R2ðx̂Þ�̂ð1Þ
AB; (82d)

where ÛA
ð1Þ and �̂ð1Þ

AB are calculated from Û and Ĵ
using (29).

If we calculate ĝ
0

ab at null infinity, i.e., set x̂ ¼ a, and
define new coordinates ~xa as

~x0 :¼ ~u ¼ û; ~x1 :¼ ~x ¼ �RðaÞx̂;
~xA :¼ ~xA ¼ x̂A;

(83)

then a coordinate transformation of (81) at I from x̂a to ~xa

brings (81) to a conformal Minkowski metric ~gab with the
nonzero components

~g~u ~xjI ð~xaÞ ¼ 1; ~gABjI ð~xaÞ ¼ qAB; (84)

which corresponds to the metric of an inertial observer in

the (compactified) conformal spacetime ðM̂; ĝabÞ [3]. The
inertial conformal frame is the frame at null infinity where
one can uniquely define the asymptotic properties of an
asymptotically flat spacetime, because most generally a
frame at null infinity is not the Minkowskian one [41].
The Bondi-Sachs metric functions have in an inertial frame
at null infinity the values

~hABjI ¼ qAB; 0 ¼ ~UAjI ¼ ~�jI ¼ ��jI ; (85)

which means that the perturbations �ð1Þ, U, J , and �ð1Þ
have the values

0 ¼ ~J jI ¼ ~UjI ¼ ~�ð1ÞjI ¼ ~�ð1ÞjI : (86)

Inserting (76) into (75) and expanding the thus obtained
expression at x̂ ¼ a yields

Ĵ ðx̂aÞ ¼ X1
l¼2

Xl
m¼�l

Clm2Ylmðx̂AÞ
2l�1ûlþ2lðlþ 1Þðlþ 2Þ þO½ða� x̂Þ�; (87a)

Ûðx̂aÞ ¼ 1ffiffiffiffiffiffi
2q

p X1
l¼2

Xl
m¼�l

Clm1Ylmðx̂AÞ
2l�1ûlþ3lðlþ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl� 1Þðlþ 2Þp þO½ða� x̂Þ2�; (87b)

�̂ð1Þðx̂aÞ ¼ � 1

q

X1
l¼2

Xl
m¼�l

RðaÞClmZlmðx̂AÞ
ða� x̂Þ2lþ1ulþ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl� 1Þlðlþ 1Þðlþ 2Þp þO½ða� x̂Þ0�: (87c)

Expressions (87) show that Ĵ , Û, and �̂ð1Þ evaluated at I
exhibit nontrivial values which indicate that SPIN-2 does
not result in an inertial conformal frame at null infinity
after applying the Penrose compactification. Note although
(87c) diverges at I , the corresponding metric components
gû û and gx̂ x̂ are finite at I .

2. On the determination of �4 in a conformal frame

To extract unambiguously physical information of
SPIN-2 at null infinity, we have to find, in principle, a
coordinate transformation that casts the metrics (81) and
(82) into a conformal Bondi frame at null infinity. Here, we
determine theWeyl scalar�4 [19,25] in a Bondi frame at I
by following Ref. [26]. We begin with a summary and
motivation of the basic ideas of Ref. [26] and give the
expression of �4 at I for the solution SPIN-2 in the end.

From the conformal metric ĝab ¼ ‘2gab in M̂ and the
vanishing Ricci tensor Rab in the physical manifold

M ¼ M̂=I the following equation can be derived:

0 ¼ ‘2R̂ab þ 2‘r̂ar̂b‘þ ĝab½‘r̂cr̂c‘� 3ðr̂c‘Þðr̂c‘Þ�:
(88)

Taking the trace of (88) and subsequently the limit (‘ ! 0)
of this trace shows that the surface I with the normal

vector r̂c‘ is a null hypersurface and that ðr̂c‘Þðr̂c‘Þ ¼
Oð‘Þ. From (88) we can derive two equations:

0 ¼ ‘R̂þ 6r̂ar̂a‘� 12

‘
ðr̂a‘Þðr̂a‘Þ; (89a)

0 ¼ ‘

�
R̂ab � 1

4
ĝabR̂

�
þ 2

�
r̂ar̂a‘� 1

4
ĝabðr̂cr̂c‘Þ

�
;

(89b)

where R̂ is the Ricci scalar with respect to ĝab and we used

(89a) to eliminate the term ðr̂c‘Þðr̂c‘Þ in (88) to obtain
(89b). Evaluating (89) at I allows us to define two fields
that are intrinsic to I :
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�̂ :¼ r̂ar̂a‘; (90a)

�̂ab :¼ ‘�̂ab; (90b)

where

�̂ab :¼ r̂ar̂a‘� 1

4
ĝabðr̂cr̂c‘Þ; (91)

and which have been first found in Ref. [3] and are crucial

in the calculation of �4 in Ref. [26]. Using ‘̂ ¼ ða� x̂Þ,
we find �̂ as

�̂ ¼ � 1ffiffiffiffiffiffiffi�ĝ
p

� ffiffiffiffiffiffiffi�ĝ
p

ĝcx̂
	
;c
; (92)

and from (78) and (91), and r̂ar̂b‘ ¼ �̂x̂
ab follows

�̂û û ¼ ĝx̂aĝûa;û � 1

2
ĝx̂aĝû û;a � 1

4
gû û�; (93a)

�̂û x̂ ¼ ĝx̂aĝû½x̂;a� þ 1

2
ĝx̂ ûĝû x̂;û � 1

4
ĝû x̂�; (93b)

�̂ûA ¼ ĝx̂bĝû½b;A� þ 1

2
ðĝx̂ ûĝûA;û þ ĝx̂BĝAB;ûÞ � 1

4
ĝûA�;

(93c)

�̂x̂ x̂ ¼ ĝû x̂ĝû x̂;x̂; (93d)

�̂x̂A ¼ ĝx̂ ûĝûðx̂;AÞ þ 1

2
ĝx̂BĝAB;x̂; (93e)

�̂AB ¼ ĝx̂ ûĝûðA;BÞ þ ĝx̂CĝCðA;BÞ � 1

2
ĝx̂aĝAB;a � 1

4
ĝAB�:

(93f)

The calculation of �4 in Ref. [26] involves three different
metrics:

(1) the Bondi-Sachs metric gab of the physical
spacetime,

(2) the conformal metric ĝab that maps null infinity to a
finite value in the conformal spacetime, and

(3) the conformal inertial metric ~gab.
As the conformal metric ĝab is related to the Bondi-Sachs
metric with the conformal factor ‘, the conformal inertial
metric ~gab is related to the Bondi-Sachs metric with
another conformal factor 	 like ~gab ¼ 	2gab. As in
Refs. [26,42], we set

	ðu; x; xAÞ :¼ ‘ðxÞ!ðu; xAÞ: (94)

This choice for the conformal factor 	 [together with the
particular choice of the function rðxÞ and ‘ðxÞ] has the
advantage that the explicit coordinate singularity at I due
to the introduction of rðx̂Þ is removed in ~gab. The definition
(94) relates the conformal metric ĝab and the conformal
inertial metric ~gab like ~gab ¼ !2ĝab.

Suppose ~xa are inertial coordinates as in the previous
section such that the metric ~gab at I has the form as in (84).

In this coordinate system we choose two real null vectors

~na :¼ ~gab ~rb	jI and ~la :¼ ~gab ~rb~ujI and a complex null

vector ~Qa at I that obey ~la~na ¼ �1, ~Qa �~Qa ¼ q, whereas
all other scalar product vanish between them. These null

vectors define a null tetrad ~zaðbÞ :¼ ð~la; ~na; ~Qa; ~QaÞ allowing
us to write the inertial conformal metric at I as

~gab ¼ �~la~nb � ~na~lb þ 1

q
ð ~Qa

�~Qb þ �~Qa
~QbÞ: (95)

With this null tetrad, the Weyl scalar �4 is given by a
contraction of the Weyl tensor [26,43]

�4 ¼ � 1

q
lim
	!0

�
~na ~Qb~nc ~Qd~Cabcd

	

�
; (96)

which corresponds to �ð1=qÞ ��ðPÞ
4 in the standard

Newman-Penrose notation [19], where �ðPÞ
4 is the Weyl

scalar as defined in Ref. [25].
The above defined null tetrad is not completely fixed

[44,45] as one still has still the following three freedoms
in the tetrad representation of the metric (95): (i) Lorentz
transformations with a boost factor 	 and spatial
rotations around an angle # (where 	 and # are real
functions), i.e.,

la
0 ¼ 	~la; na

0 ¼ 1

	
~na; Qa0 ¼ ei# ~Qa; (97a)

(ii) null rotations around na with a complex function 
:

la
0 ¼ ~la þ �
 ~Qa þ 
 �~Q

a þ 
 �
~na; na
0 ¼ ~na; (98a)

Qa0 ¼ ~Qa þ �~na; (98b)

and (iii) null rotations around la with a complex function �:

la
0 ¼ ~la; na

0 ¼ ~na þ �� ~Oa þ � �~O
a þ � ��~la; (99a)

Qa0 ¼ ~Qa þ �~la: (99b)

Since the Weyl scalar (96) is invariant under null rotation
around ~na on I , null rotations around ~na can be used to
calculate �4 in another frame at I .
Babiuc et al. [26] use four ingredients to find the relation

between�4 in an inertial conformal frame and an arbitrary
conformal frame on I . The first ingredient is that the
inertial conformal metric ~gab and the conformal metric
ĝab are related via ~gab ¼ !̂2ĝab. This implies that the
Weyl tensor transforms between the both frames as [46]

~Cabcd ¼ !̂2Ĉabcd: (100)

At I , the conformal 2-metric ĝAB is subject to the
constraint ĝAB ¼ ð1=!̂2ÞqAB, which yields the following
elliptic equation [42]:

R̂jI ðĝABÞ ¼ 2ð!̂2 þ ĝABr̂Ar̂B log !̂ÞjI ; (101)

allowing one to calculate the conformal factor ! from

the curvature scalar R̂ of the surfaces û ¼ const on I .
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The second ingredient concerns the expression of the null
vector ~na in the conformal frame at I , i.e.,

~najI ¼ 1

!̂
n̂ajI ; (102)

where n̂a is given by

n̂ajI ¼ ĝabr̂b‘jI ¼ �ĝax̂jI ¼ ð�ĝû x̂jI ; 0;�ĝû ÂjI Þ:
(103)

Equation (102) shows that the transformation between the
inertial conformal frame and an arbitrary conformal frame
corresponds to a Lorentz transformation (boost) from one
frame to the other. The third ingredient is to use (99b) to

transform ~Qa to an arbitrary conformal frame [47], i.e.,

~QajI ¼ 1

!̂
M̂ajI þ �

!
n̂ajI ; (104)

where M̂ajI :¼ ½0; 0; F̂A=RðaÞ� with F̂A chosen such that

M̂a �̂Ma ¼ q and M̂aM̂a ¼ 0 at I . Combining (96), (100),
(102), and (104) gives the Weyl scalar �4 in an arbitrary
conformal frame at I :

�4jI ¼ � 1

q

1

!̂3
lim
x̂!a

�
n̂aM̂bn̂dM̂dĈabcd

a� x̂

�
; (105)

where the relation Ĉabcdn̂aM̂
bn̂vn̂d ¼ 0 was used. The

main result of Ref. [26] and the fourth ingredient for
the determination of �4 is that (105) can be expressed by

the vector field �̂ab like

�4jI ¼ 1

q

1

!̂3
n̂aM̂BM̂Cðr̂a�̂BC � r̂B�̂aCÞjJ : (106)

This equation has an advantage to (105); it is easier to
determine from the metric at I than the (rather tedious)
calculation of the contractions of the Weyl tensor.

3. Calculation of �4 for SPIN-2

We find the Weyl scalar �4 for SPIN-2 by deriving first
the corresponding expression to (106) in a quasispherical
expansion while assuming the following limiting nontrivial

values of ĝ
0

ab and ĝ
1

ab:

ĝ
0

û x̂jI ¼ �RðaÞ; ĝ
0

Â B̂jI ¼ R2ðaÞqAB; (107a)

ĝ
1

û x̂jI ¼ �RðaÞ; ĝ
1

û ÂjI ¼ �R2ðaÞqABÛB
ð1ÞjI ; (107b)

ĝ
1

Â B̂jI ¼ R2ðaÞ�̂ð1Þ
ABjI : (107c)

To determine the conformal factor ! at I , we consider the
quasispherical expansion

!̂ð"Þ ¼̂ !̂
0 þ!̂

1

": (108)

Calculating zero-order terms in " of ĝABð"Þ ¼ qAB=!̂
2ð"Þ

at I yields !̂
0 ¼ 1=RðaÞ. To determine !̂

1

, we calculate the

Oð"Þ contribution of (101), while using !̂
0 ¼ 1=RðaÞ,

which gives us the equation

1

2RðaÞD
ADB�̂ð1Þ

ABjI ¼ DADA!̂
1 þ 2!̂

1

; (109)

or at I in terms of the ð operator

1

4qRðaÞ ðð
2 �̂J jI þ �ð2Ĵ jI Þ ¼ �ðð!̂

1 þ 2!̂
1

: (110)

Since !̂1 is a real scalar field it has spin weight zero;

therefore we assume for !̂
1

an expansion in terms of
Zlm like

!̂
1 jI ðx̂aÞ ¼

X1
l¼0

Xm
m¼�l

!̂lmðûÞZlmðx̂AÞ: (111)

Inserting (111) and (87a) into (110), while using (33) and
(35), implies the spectral coefficients !̂lm:

!̂00 ¼ !̂1ð�1Þ ¼ !̂10 ¼ !̂11 ¼ 0; (112)

!̂lmðûÞ ¼ Clm

2lûlþ2qRðaÞ
ffiffiffiffiffiffiffiffiffiffi
l�1

p

½2� lðlþ1Þ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þðlþ2Þp ðl>1Þ

and jmj � l: (113)

The quasispherical approximation of null vector n̂a can be
found using (103), i.e.,

n̂ajI ¼̂ � 1

RðaÞ ð�
a
û þ "ÛA

ð1ÞjI�a
AÞ: (114)

To find M̂A at J , we use its quasispherical expansion

M̂ AjJ ¼̂ 1

RðaÞ ðF
0
A þ "F

1
AÞ; (115)

its normalization M̂a �̂Ma � q ¼ M̂aM̂a ¼ 0, the compo-
nents of the metric (107), and the relations (22) and
(29b), which allow us to deduce

F
0
A ¼ qA; F

1
A ¼ � Ĵ

2q
�qA: (116)

An inspection of (93) at I shows that �ab is Oð"Þ at I .
Therefore, �4 is of Oð"Þ at I and only the Oð"0Þ parts of
!, n̂a, and M̂A must be taken into account in its calculation.
Since we have nx̂jI ¼ 0 and because �ab is of Oð"Þ at I ,
only the following covariant derivatives of �ab must be
considered at I :

r̂û�̂ABjI ¼̂
�
qCðADBÞUC

ð1Þ;û þ
1

2
�ð1Þ
AB;û û

�
RðaÞ"; (117)

r̂C�̂ûBjI ¼̂ 0: (118)

With these covariant derivatives we find �4 in the quasi-
spherical expansion as
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�̂4jI ¼̂
� ffiffiffi

q

2

r
ðU;û þ 1

2
J ;û û

�
jx̂¼aRðaÞ"; (119)

which corrects Eq. (3.54) in Ref. [26]. Using (87a), (87b),

and (119) for SPIN-2 yields a simple expression for �̂4 at
null infinity:

�̂4jI ¼̂ "RðaÞX1
l¼2

Xl
m¼�l

� ðlþ 3ÞClm

2lûlþ4lðlþ 1Þ
�
2Ylmðx̂AÞ: (120)

VII. SUMMARY

We discussed linearized vacuum solutions of the
Einstein equations in the Bondi-Sachs formulation of gen-
eral relativity. Assuming that the metric obeys regularity
conditions along the central geodesic tracing the vertices of
the null cones, we found that the spherically symmetric
background spacetime is Minkowskian. We then derived a
differential equation for a 2-tensor, c AB, whose solution
allows one to determine in a hierarchal manner the linear

perturbations �ð1Þ
AB, U

A
ð1Þ, and �ð1Þ. Utilizing a representa-

tion of the unit sphere with a complex dyad, it was shown
that the differential equation for c AB is a wave equation for
a spin-2 field c . The field c is corresponds to 2r�0, where
�0 is the Newman-Penrose Weyl scalar [19]. We reformu-

lated the hierarchal equations for �ð1Þ
AB, U

A
ð1Þ, and �ð1Þ as

differential equations for spin-weighted variables J , U
and ��, respectively. Since the function c determines all
linearized perturbations in vacuo, we refer to it as a master
function. Under the assumption of the existence of a power
series of c in terms of the areal distance r at r ¼ 0, we
solved the equation for c locally, and subsequently, those
for J , U and �ð1Þ, at the vertices. This provided us

with the linearized boundary conditions for the Bondi-
Sachs metric functions in a spin representation at the vertex
in vacuum spacetimes [Eq. (52)]. It also generalizes pre-
viously presented axially symmetric boundary conditions
[24] to the three-dimensional case with no symmetries.
These boundary conditions may be used in numerical
simulations to calculate vacuum space times in the
Bondi-Sachs framework when the vertex of the null cones
is part of the numerical grid.

We employed the boundary conditions for c to find
solutions of the master equation for the static and the
time-dependent case. In addition, we required the solution
for c to be finite at large distances to assure an asymptoti-
cally flat solution for the perturbationsJ ,U, and�ð1Þ. The
function c was represented as spectral series in terms of
spin-2 spherical harmonics with coefficients depending
on the radius r in the static case, and on the retarded
time u and the radius r in the time-dependent one. In the
static case, we obtained a second-order ordinary differen-
tial equation with respect to r for the multipole coeffi-
cients. In the time-dependent case, a partial differential

equation in terms of u and r for the coefficients of this
series was deduced.
No nontrivial static solution of the master equation

was found, when we imposed the regularity condition
at the origin and required asymptotical flatness for the
master function.
The time-dependent differential equation for the coef-

ficients was solved with two different approaches.
In the first approach, we imposed a standard ansatz of

separation of variables. In the procedure we determined an
ordinary inhomogeneous differential equation [Eq. (63)]
that is most generally solved by a finite spectral series
using polynomial coefficients with modified spherical
Bessel functions of the first and second kind as base
functions. As the modified spherical Bessel functions of
second kind are singular at the origin, they must be dis-
carded by the regularity conditions at the origin, whereas a
solution purely depending on the modified spherical Bessel
functions of first kind obeys this regularity condition.
Although this solution [Eq. (68)] for the coefficients of
the spectral series of c is regular at the origin, we dis-
carded it, because it diverges in the most general case,
when the integration constants are nonzero, exponentially
as r tends to infinity, and it would have generated a solution
for the perturbations that is not asymptotically flat. Hence,
regularity of the Bondi-Sachs metric at the vertex is not
a sufficient requirement to obtain an asymptotically flat
solution of the Einstein equation in the Bondi-Sachs frame-
work. Our calculation also demonstrated that using a
standard separation of variables, where the function is
decomposed into a product of four factors of which each
depends on one of the coordinate xa only, is unsuited to
solve the wave equation in Bondi-Sachs coordinates, if
one requires the solution to be regular at the vertex and
asymptotically finite.
In the second approach, we transformed the second-

order wave equation for c into an inhomogeneous first-
order transport equation [Eq. (70)]. The inhomogeneity of
this equation vanishes for the lowest (l ¼ 2) spin-2
harmonic. The corresponding homogeneous transport
equation has the characteristic surface uþ 2r ¼ const.
Since the wave equation for c and the transport equation
are related by a linear integral transformation, the solution
of the wave equation for c and the corresponding transport
equation have the same characteristic for the lowest multi-
pole. Using a polynomial ansatz [Eq. (71)] that incorpo-
rates the characteristic information of the wave equation
allowed us to find a solution for all multipoles for the
master function and linearized perturbations [Eq. (75)]
that are regular at the origin and asymptotically flat. This
solution is referred to as SPIN-2, because it represents
spin-2 waves propagating on a Minkowski background
spacetime. SPIN-2 has some advantages in regard to other
linearized solutions in the Bondi-Sachs framework found
in the literature. First, SPIN-2 is given by simple rational
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expressions in terms of the spin-weighted quantities of the
Bondi-Sachs metric. Second, it describes all multipole of
the perturbations, while other solutions give only their
lowest multipoles [20,21] or require an elaborated proce-
dure to generate those multipoles [13,15].

For the SPIN-2 solution, we calculated the Weyl scalar
�4 at null infinity using the formalism of Ref. [26]. For
pedagogical reasons, we also summarized the formalism of
Ref. [26] by pointing out the four most important steps in
obtaining a simpler formula for �4 at null infinity in
linearized gravity. This simple analytical expression
[Eq. (120)] for �4 at null infinity and the explicit form
of the perturbations J , U, and �ð1Þ [Eq. (75)] make

SPIN-2 an ideally suited test bed solution for simulations
in the Bondi-Sachs framework and to test numerical wave
extraction methods at null infinity; e.g., Ref. [22] describes
the most recent progress of such simulations (for others
see Ref. [4]).

In the future, we plan to test the stability of the SPIN-2
solution against small perturbations, to investigate its
physical reliability. It also would be interesting to utilize
SPIN-2 to study quadratic perturbations with respect to a
Minkowskian background spacetime.
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APPENDIX A: RICCI TENSOR CONTRIBUTIONS
FOR THE MAIN EQUATIONS

1. Contributions at Oð"0Þ
The nonvanishing Ricci tensor contributions of the

hypersurface and evolution equations are at Oð"0Þ

R
0

rr
¼ 4

r
�0;r; (A1)

R
0

ð2DÞ ¼ �2e2�0ð1þ 2r�0;r þ 2r�0;rÞ þRðqABÞ;
(A2)

whereRðqABÞ ¼ 2 is the Ricci curvature scalar of the unit
sphere.

2. Contributions at Oð"1Þ
The relevant Ricci tensor contributions for the hypersur-

face equations at Oð"Þ are

R
1

rr ¼ 4

r
½�ð1Þ�;r; (A3)

R
1

rA ¼ 1

2r2
½r4e�2�0qAEU

E
ð1Þ;r�;r � r2

�
1

r2
DA�ð1Þ

�
;r

þ 1

2
qEFDE�

ð1Þ
AF;r; (A4)

R
1

ð2DÞ ¼ 4e�2�0½re2�0þ2�0�ð1Þ�;r �DADB�ð1Þ
AB

þ 2qABDADB�ð1Þ � 1

r2
e�2�0DA½r4UA

ð1Þ�;r; (A5)

and those for the evolution equations

R
1 ðTTÞ
AB ¼ e�2�0

�
rðr�ð1Þ

AB;uÞ;r �
1

2
ðr2e2�0þ2�0�ð1Þ

AB;rÞ;r
� 2e2�0DADB�ð1Þ þ qEðADBÞðr2UE

ð1ÞÞ;r
� 1

2
qABDEðr2UE

ð1ÞÞ;r
�
: (A6)

APPENDIX B: THEMASTER EQUATION AND THE
FLAT-SPACE SCALAR WAVE EQUATION

In this Appendix, it is shown how the master equation
relates to a flat space wave equation of scalar field with
spin weight zero. This offers a comparison to the approach
of Ref. [15], where the perturbations are generated by
spin-0 fields.
The homogeneous flat space wave equation for a spin-0

field h is

0 ¼ hh; (B1)

where hh :¼ �abrarbh is the d’Alembert operator,
which reads in outgoing polar null coordinates

r2hf ¼ 2rðrhÞ;ur � ðr2h;rÞ;r � �ððh: (B2)

If we commute the ð and ð operator in the master
equation (30a), we obtain

0 ¼ 1

r2
½r4ð2c ;u � c ;rÞ�;r � ð�ðc : (B3)

Setting c :¼ ð2F, where F has the spin weight zero, and
inserting this new definition into (B3) yields

0 ¼ ð2
�
1

r2
½r4ð2F;u � F;rÞ�;r � ð�ððþ 2ÞF

�
; (B4)

where we again commuted the ð and ð operators to factor
out ð2. Equation (B4) implies for F the following differ-
ential equation:

0 ¼ 1

r2
½r4ð2F;u � F;rÞ�;r � ð�ððþ 2ÞF: (B5)
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To find how (B5) relates to (B1) we introduce a further
spin-0 field f via F ¼ rnf and insert this definition into
(B5) which yields after dividing out rn

0 ¼ 2rðrf;rÞ;u � ðr2f;rÞ;r � �ððfþ 2rðnþ 3Þf;u
� 2rðnþ 1Þf;r � ðnþ 2Þðnþ 1Þf: (B6)

It can be seen that the first three terms in (B6) correspond
to r2hf which is the principle part of the flat space scalar
wave equation in outgoing Bondi-Sachs coordinates.
The other additional terms indicate that (B6) is a quasi-
spherical wave equation. In fact, it is not possible to set
all these terms to zero for any number of n. Terms con-
taining first derivatives of f in (B6) vanish if n ¼ �1 or
n ¼ �2; i.e., in this case there are no restoring forces. In
particular, if n ¼ �1 and if f is time-independent, then
(B6) is the classical Laplace equation in spherical coordi-
nates. Whereas if f is time-dependent, we have the wave
equation

r2hf ¼ �4rf;u; (B7)

with an additional damping term �4rf;u. Equation (B7)

has also been obtained by Winicour [48] in a different
approach. For n ¼ �2, Eq. (B6) becomes

r2hf ¼ �2rðf;u þ f;rÞ; (B8)

which is a wave equation with a damping and a force term.
This equation has the disadvantage to (B7) that it does not
reduce to the Laplace equation for time-independent fields.

Therefore (B7) is preferable to (B8), and we conclude that
the master function c is related to the spin-0 field f via
(B7) and

c ¼ 1

r
ð2f: (B9)

Based on (B7) and (B9), we now sketch an alternative
spin-0 approach to the one given in Ref. [15]. Let 	 and Z
be spin-0 fields that are related to the perturbations J
and Z via

J :¼ ð2	; (B10a)

U :¼ 1ffiffiffiffiffiffi
2q

p ðZ: (B10b)

Inserting (B10) into (30b)–(30d), while using (B9), allows
us to deduce three equations:

0 ¼ ðr	Þ;rr � f

r
; (B11a)

0 ¼ ðr4Z;rÞ;rr þ ð�ððþ 2Þf; (B11b)

0 ¼ ��;r � 1

q
�ðð

�
ð�ððþ 2Þ	þ 2

r2
ðr4ZÞ;r

�
; (B11c)

which can be used to the determine the perturbations J ,

U, and �� in the following procedure: (i) solve the damped
wave equation (B7); (ii) integrate Eqs. (B11) according to

the given hierarchy to find ��; and (iii) use (B10) to obtain
J and U.
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