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The next generation of large scale surveys will not only measure cosmological parameters within the

framework of general relativity, but will also allow for precision tests of the framework itself. At the order

of linear perturbations, departures from the growth in the standard cosmological model can be quantified

in terms of two functions of time and Fourier number k. We argue that in local theories of gravity, in the

quasistatic approximation, these functions must be ratios of polynomials in k, with the numerator of one

function being equal to the denominator of the other. Moreover, the polynomials are even and of second

degree in practically all viable models considered today. This means that, without significant loss of

generality, one can use data to constrain only five functions of a single variable, instead of two functions of

two variables. Furthermore, since the five functions are expected to be slowly varying, one can fit them to

data in a nonparametric way with the aid of an explicit smoothness prior. We discuss practical application

of this parametrization to forecasts and fits.
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I. INTRODUCTION

Upcoming redshift and weak lensing surveys, such as
Dark Energy Survey [1], Euclid [2] and Large Synoptic
Survey Telescope (LSST) [3,4], combined with the cosmic
microwave background measurements from Planck [5] and
other cosmological probes, will accurately trace the growth
of cosmic structures through multiple epochs. They will
offer the opportunity to test general relativity (GR) by
examining the relations between the distribution of matter,
the gravitational potential and the lensing potential on
cosmological scales. Such tests may yield clues to the
physics causing cosmic acceleration or, at the very least,
extend the range of scales over which Einstein’s gravity has
been validated by experiment.

To test GR, one can either constrain particular alterna-
tive gravity models, such as the Dvali-Gabadadze-Porrati
braneworld model [6] or fðRÞ [7,8], or work within more
general parametrized frameworks that cover many theories
at once and minimize the risk of missing potential hints of
modified gravity in the data. Over the past several years
significant effort went into developing such frameworks
and understanding requirements for their consistency
[9–25]. Often, departures from the standard cosmological
model (LCDM) are quantified in terms of arbitrary func-
tions of time and, sometimes, scale. These functions cannot
be fit to data without further assumptions about their form.

In this paper we motivate a parametrization that contains
five unknown functions of time only and is general enough
to cover most viable models of modified gravity and dark

energy proposed so far. Importantly, these functions are
expected to be slowly varying; hence the effective number
of degrees of freedom that are fit to data can be small. One
can avoid assuming a parametric form for the five func-
tions and use instead a smoothness prior similarly to how it
was applied to reconstruction of the dark energy equation
of state w in [26–28].
Observables describing large scale structure are calcu-

lated using cosmological perturbation theory in Fourier
space. The relevant variables are the two scalar metric
degrees of freedom, e.g.,� and� in the Newtonian gauge,
along with the matter density contrast � and the matter
velocity perturbation v. One needs four equations to solve
for the evolution of these four variables, assuming that
baryons and dark matter obey the same equations at late
times. Two equations are provided by the covariant con-
servation of matter energy-momentum. The other two
equations are supposed to be provided by a theory of
gravity which prescribes how the metric responds to the
matter stress-energy. Formally, one can always complete
the system of equations by introducing two functions
�ða; kÞ and �ða; kÞ, defined via1

k2� ¼ �4��Ga2��; � ¼ ��; (1)

where a is the scale factor and� ¼ �þ 3aHv=k. They are
defined in a way that recovers the Poisson and the anisot-
ropy equations of LCDM when � ¼ � ¼ 1. There are
other choices in the literature for the pair of functions
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1These definitions assume that anisotropic stress of matter is
negligible at the epochs of interest, although it can be included, if
necessary, as it was done in [18,29].
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relating ð�;�Þ to ð�; vÞ that are equivalent to � and �. A
common alternative choice is to use �, defined as

k2ð�þ�Þ ¼ �8�Ga2�ða; kÞ��; (2)

in combination with �. As shown in [17,18,29,30], once
the two functions are given, one has a consistent set of
equations that can be incorporated [29–32] into standard
Boltzmann codes, such as CAMB [33], to calculate the
observables. In principle, everything that observations
can tell us about cosmic structure on linear scales can be
stored as a measurement of � and � and, if necessary,
projected onto constraints on specific models.

But what form should one adopt for these functions to fit
them to data? In [34–36], a principal component analysis
(PCA) was performed to forecast the best constrained
eigenmodes of �ða; kÞ and �ða; kÞ for different future
surveys, finding that they will measure amplitudes of
tens (if not hundreds) of them with good accuracy. This
is encouraging, but it is not clear how many of these
constrainable eigenmodes are physically interesting. PCA
alone does not really answer the question of what parame-
ters one should be fitting to data.

Another concern, which is the main motivation for this
work, is that an arbitrary relation between two quantities in
Fourier space, such as those in Eq. (1), does not, in general,
imply a local relation between them or their derivatives in
real space. Clearly, the k dependence of�ða; kÞ and �ða; kÞ
cannot be completely arbitrary if equations of motion are
obtained from variational principle.

In this work, we investigate the physically acceptable
forms of �ða; kÞ and �ða; kÞ based on considerations of
locality and general covariance. We show that under rather
general conditions, and under the quasistatic approxima-
tion (QSA), they should always have a form of ratios of
polynomials in k. Furthermore, the numerator of� is set by
the denominator of �. The coefficients inside the polyno-
mials are functions of the background quantities and can be
expected to be slowly varying functions. Technically, the
number of these time-dependent coefficients is infinite if
one allows for a completely arbitrary modification of GR.
However, in models with purely scalar extra degrees of
freedom, the polynomials are even in k and, furthermore, in
many viable models considered so far in the literature, the
polynomials are even and of second degree; hence the
number of time-dependent coefficients is reduced to five.
While this parametrization is motivated by the QSA, it
allows for departures form LCDM on near-horizon scales.

Baker et al. [22] have recently investigated the form of
exact equations of motion for a large variety of modified
gravity models. They also noted that, under the QSA,
equations reduce to algebraic relations with even powers
of k and proposed constraining the time dependence of the
background-dependent coefficients. Instead, we consider
coefficients appearing in � and �, which reduces the
number of free functions in most interesting cases to five

and makes it easy to use them in existing modified
Boltzmann codes, such as MGCAMB [29–31]. Amendola
et al. [24] recently adopted an equivalent five-function
parametrization to investigate limits of observability of
modified gravity on linear scales. Their choice was moti-
vated by results of De Felice et al. [37], who calculated �
and � in the QSA for the Horndeski [38] class of most
general second order scalar-tensor theories. We arrive at
the same form as a particular case of a more general and
much simpler derivation.
Working with five arbitrary functions of time may seem

like a daunting task, but it is much easier than constraining
two functions of scale and time. Furthermore, the functions
are known to be slowly varying, which can be used as a
strong theoretical prior. We outline the practical applica-
tion to forecasts and fits in Sec. IV. Our parametrization is
useful if one wants to look for departures from LCDM
without assuming a particular model. Clearly, the number
of functions can be smaller if one restricts the range of
possibilities. For instance, to describe linear perturbations
in Brans-Dicke models it is sufficient to provide only two
functions of the background [39,40].
The remainder of the paper is organized as follows. In

Sec. II A, we show that, under the QSA, � and � are ratios
of polynomials in k, and the numerator of� is given by the
denominator of �. In II B we point out that for a very broad
class of viable modified gravity models, the polynomials
are even and second order in k and, therefore, one needs to
specify only five functions of time. In Sec. III, we examine
the assumptions made by the QSA and discuss the extent of
their applicability. In Sec. IV, we outline the procedure for
reconstructing� and � from data using a smoothness prior
applied to the five functions. We conclude with a discus-
sion in Sec. V.

II. � AND � IN MODIFIED GRAVITY MODELS

A. The most general case

Consider a broad class of theories in (3þ 1) dimensions
with the action defined in terms of a Lagrangian density
that contains an arbitrary function of geometric invariants
R;R��R

��; R����R
����;�R;R��r�r�R; . . . as well as

any number of scalar degrees of freedom �i, i ¼
1; . . . ; N (including the longitudinal components of vector
or tensor degrees of freedom), which can be nonminimally
coupled to the metric and each other. This embraces dark
energy models as well as modified gravity theories, includ-
ing effective (3þ 1)-dimensional descriptions of higher
dimensional theories. For the moment, let us not worry
about the existence of ghosts or other unphysical properties
that such theories may have. At this point, we only require
invariance of the action under general coordinate trans-
formations. Let us also make an important assumption that
there exists a frame in which all particles are minimally
coupled to the metric, so that the matter stress-energy is
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covariantly conserved. For simplicity, we neglect radiation
and the differences between CDM and baryons.

Let us now consider the form of equations for linear
scalar perturbations in the Newtonian gauge, where the
relevant degrees of freedom of the metric sector are the
potentials � and � defined as

ds2 ¼ �ð1þ 2�Þa2d	2 þ ð1� 2�Þa2dx2: (3)

Varying the action with respect to the metric tensor gives
four Einstein equations. The time-time and the time-space
components can be combined to form the Poisson equa-
tion, which, to linear order in the perturbations in Fourier
space, will have the following general form:

Â�þ B̂�þ Ĉi��i ¼ �4�Ga2��; (4)

where we assume summation over repeated indices and

where Â, B̂ and Ĉi are linear operators that contain func-
tions of the background, time derivatives and/or powers of
k. For instance, for any local theory of gravity, one gen-
erally has

Â ¼ X
n;m

anmk
n@m0 ; (5)

where @m0 denotes the time (	) derivative of mth order, the

highest values of n and m are determined by the order of
metric derivatives contained in the action, and the coeffi-
cients anm are functions of time. Note that in models with

only scalar extra degrees of freedom, Â will contain only
even powers of k. This is because odd powers can only
come from a contraction of spatial derivatives of perturba-
tions with spatial indices of the background-dependent
coefficients that should vanish for isotropic backgrounds

such as Friedmann-Robertson-Walker. Operators B̂ and Ĉi

have the same form with corresponding coefficients bnm
and cinm.

Similarly, the traceless space-space Einstein equation
can generally be written as

D̂�þ Ê�þ F̂i��i ¼ 0; (6)

where the zero on the right-hand side is due to vanishing of

the matter anisotropic stress, and the operators D̂, Ê and F̂i

have the same form as Â in Eq. (5). In addition, varying the
action with respect to each scalar field �i, and linearizing
in the perturbations, will provide equations for the corre-
sponding perturbation ��i, that can generally be written as

Ĥ i�þ K̂i�þ L̂i
j��j ¼ 0; (7)

where the operators Ĥi, K̂i and L̂i
j also have the form

given by Eq. (5), with correspondingly renamed
coefficients.

Our aim is to find the form of the functions �ða; kÞ and
�ða; kÞ defined in Eq. (1). Because of the time derivatives
in Eqs. (4), (6), and (7), it is impossible to write�ða; kÞ and
�ða; kÞ in a closed form without solving for the evolution

of the perturbations first. To make progress, let us take the
QSA in which we neglect all time derivatives of �, � and
��i, and delegate justifying this approximation to Sec. III.

In the QSA, the operators Â, B̂, Ĉi, D̂, Ê, F̂i, Ĥi, K̂i, L̂i
j

become functions, specifically polynomials in k; we indi-
cate them with the same letters, removing the hats; e.g., we
have

A ¼ X
n

an0k
n (8)

and similarly for the other functions. As a result, Eqs. (4),
(6), and (7) reduce to a system of linear algebraic equations
which we can use to extract � and �.
Defining Ri via

��i ¼ Ri� (9)

and substituting it, along with � ¼ ��, into Eqs. (6) and
(7), we find

Dþ E�þ FiRi ¼ 0; (10)

Hi þ Ki�þ Li
jRj ¼ 0: (11)

It is convenient to write the solution of these equations in
the matrix form,

�
R

� �
¼ � E F

K L

� ��1 D
H

� �
; (12)

where we introduced a row vector F, a column vector K
and a square matrix L. We can express the inverse of any
matrix M as the ratio of its classical adjoint to its determi-
nant, M�1 ¼ adjM= detM. After some algebra we obtain

det
E F

K L

" #
¼ ðE� FL�1KÞ detL

¼ E det ðL� KE�1FÞ; (13)

adj
E F
K L

� �
¼ detL �F adjL

�ðadjLÞK E adjðL� KE�1FÞ
� �

:

(14)

Since D, E, F, H, K, L are polynomials, the quantities in
(13) and (14) are polynomials as well, and, consequently, �
and R are fractions of polynomials. Furthermore, in their
irreducible form, the denominators of � and R are the
same,

� ¼ N�

Q
; R ¼ NR

Q
(15)

where

N� ¼ �D detLþ FðadjLÞH; (16)

NR ¼ DðadjLÞK � E adjðL� KE�1FÞH; (17)

Q ¼ E det ðL� KE�1FÞ: (18)
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Also, since the Poisson equation in the QSA has the form

Aþ B�þ CiRi ¼ �4�Ga2��

�
¼ k2

�
; (19)

it follows that� can be written as an irreducible fraction of
polynomials with its numerator uniquely determined by the
denominator of � and R, i.e.,

� ¼ k2Q

AQþ BN� þ CNR

: (20)

As mentioned earlier, in models with pure scalar degrees
of freedom, the polynomial functions will contain only
even powers of k. Furthermore, the k0 terms in the denomi-
nator of � are negligible in the QSA because the magni-
tude of the corresponding coefficients in the Poisson
equation is dependent either on H, time derivatives of �i

or the first derivative of the scalar field potential(s), all of
which are small in the QSA. This means that the k2 factors
in the numerator and denominator of � will cancel.

Thus, starting from a general covariant action that con-
tains an arbitrary function of geometric invariants and any
number of scalar degrees of freedom (d.o.f.), we derived in
a model-independent way that, under the QSA, the func-
tions � and � are ratios of polynomials in k, with the
numerator of � equal to the denominator of �.

B. The subset of viable models

A parametrization that anticipates a completely arbitrary
modification of gravity is impractical, as one cannot fit an
infinite number of unknown functions to data. Furthermore,
there are good theoretical reasons not to allow for arbitrarily
high order derivatives or tensorial modes in the equations of
motion because of the appearance of ghost degrees of free-
dom. Let us therefore consider a more representative class
of viable modified gravities described by a Lagrangian that
contains only one scalar d.o.f. obeying second order equa-
tions ofmotion. In this case, Eqs. (4), (6), and (7) in theQSA
reduce to

Ak2�þ Bk2�þ Ck2�� ¼ �4�Ga2��; (21)

D�þ E�þ F�� ¼ 0; (22)

Hk2�þ Kk2�þ ðL0 þ L1k
2Þ�� ¼ 0; (23)

where we have made the k dependence explicit, so that
A; B; . . . ; L1 are time-dependent coefficients, and we in-
clude the L0 coefficient which represents the mass squared
of the scalar field.

Following the same steps as in Sec. II A we find in this
case that � and � are ratios of even polynomials of second
degree and, as in the general case, the denominator of � is
the same as the numerator of �, i.e.,

� ¼ �DL0 þ ðFH �DL1Þk2
EL0 þ ðEL1 � KFÞk2 ; (24)

�¼½EL0þðEL1�KFÞk2�fðAE�BDÞL0þ½FðBH�AKÞ
þCðKD�EHÞþðAE�BDÞL1�k2g�1: (25)

The above expressions have the same forms as analogous
expressions derived in [37] for general Horndeski theories
[38]. Indeed, although we arrived at (24) and (25) from
general arguments, the subset of viable models to which we
are restricting coincides with the models included in the
Horndeski class, which contains most of the viable theories
of dark energy and modified gravity. The class of theories
with a single scalar d.o.f. with a second order equation of
motion includes models with actions that contain a func-
tion fðR;GÞ of the Ricci scalar and the Gauss-Bonnet term,
provided the determinant of the Hessian is zero, i.e.,
fRRfGG � f2RG ¼ 0. Restricting to the Lovelock invariants

[41] R and G guarantees that no spurious spin-2 ghosts are
introduced [42], while having a null determinant of the
Hessian further ensures that superluminal modes for scalar
perturbations are avoided [43]. Finally, Horndeski theories
include also dark energy models such as quintessence and
k-essence, as well as the covariant Galileon and the four-
dimensional effective Dvali-Gabadadze-Porrati model in
the decoupling limit [44].
Without loss of generality, we can rewrite (24) and (25)

in a more compact way by introducing five functions of the
background fpiðaÞg:

� ¼ p1ðaÞ þ p2ðaÞk2
1þ p3ðaÞk2

; (26)

� ¼ 1þ p3ðaÞk2
p4ðaÞ þ p5ðaÞk2

: (27)

Thus, in the QSA, one can express the perturbed equations
of motion of a very large class of viable modified gravity
models in terms of only five functions of time.
Note that even though this ansatz was derived using the

QSA, it allows for near- and superhorizon modifications of
gravity: �ða; k ! 0Þ ¼ p1ðaÞ � 1. Also note that, while �
can also deviate from unity on superhorizon scales (for
which � ! p�1

4 ðaÞ), this should not affect any of the
observables and the superhorizon perturbations will evolve
consistently with the background expansion [17].
Analogous compact forms (26) and (27) were used in

[24], based on results in [37], to discuss prospects of
constraining Horndeski theories [38]. We arrive at the
same forms starting from simpler and more general argu-
ments that do not require considering the details of the
Horndeski action. Finally, the form of � and � in (26) and
(27) resembles the parametrization introduced by
Bertschinger and Zukin (BZ) in [12]; however, there are
some important differences. In the BZ parametrization, �
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and � tend to 1 for k ! 0, effectively reducing the theory
to GR in that limit. Furthermore, BZ does not set the
numerator of � equal to the denominator of �, which we
find instead to be a general feature. Finally, they fix the
time dependence of the coefficients in the k2 expansion to a
power law, while we leave it general. From a theoretical
point of view, not all time dependencies can be described
as power laws; however, the differences might be undetect-
able depending, in part, on the range of redshifts probed by
the experiment.

III. THE QUASISTATIC APPROXIMATION

As mentioned earlier, closed form expressions for
�ða; kÞ and �ða; kÞ may not exist in a general gravity
theory unless one adopts the QSA, in which the relations
between the metric potentials and the matter perturbation
become algebraic. Without the QSA, one needs to solve the
differential equations in order to determine � and �, mak-
ing them dependent on the initial conditions.

There are two different assumptions involved in what is
commonly known as the QSA: (1) the relative smallness of
the time derivatives of metric perturbations compared to
their space derivatives, and (2) the subhorizon approxima-
tion, k=aH � 1. In LCDM, the second assumption auto-
matically implies the first—the perturbed quantities evolve
on time scales comparable to the expansion rate; thus their
time derivatives become comparable to space derivatives
only for perturbations on near-Hubble scales. In alternative
gravity models with additional degrees of freedom, the two
assumptions need not imply each other, so let us separately
consider their effects on the applicability of our
parametrization.

A. Neglecting time derivatives

In scalar-tensor models of modified gravity, there can be
rapid oscillations of the metric potentials on top of their
slow evolution which can make their time derivatives large.
A general solution typically includes a homogeneous os-
cillatory mode as well as a particular solution, that can also
oscillate, induced by the coupling to matter. The initial
amplitude of the former is a free parameter that typically
needs to be fine-tuned to a small value in order to have a
consistent cosmology at early times and avoid problems
such as particle overproduction [45]. Motivated by this, we
propose a theoretical prior in which the amplitude of the
homogeneous mode is very small initially. Subsequently, it
is controlled by functions of the background and can grow
only slowly, never becoming large enough to affect ob-
servables. The amplitude of the oscillations in the particu-
lar solution is not a free parameter, but in general the terms
that set the amplitude and the frequency of such oscilla-
tions are proportional to the strength of the coupling and
the range of the extra scalar degree of freedom. Because of
the generally tight constraints on fifth forces, one typically
finds that the oscillations are undetectable.

To illustrate the point, let us consider models in
which the Einstein-Hilbert part of the action is given by
Rþ fðRÞ, and the Poisson equation has the form [46]

k2�þ k2
�fR
2F

þ 3

2

�
ð _H �H 2Þ�fR

F
þ ð _�þH�Þ _F

F

�

¼ �4�Ga2
�

F
�; (28)

where fR � df=dR � F� 1 is the ‘‘scalaron’’ degree of
freedom, H ¼ a�1da=d	, and the nonquasistatic terms
are collected inside the square brackets. On subhorizon
scales (when k � aH), the first term inside the square
brackets is negligible compared to the k2�fR term. But
on large scales it is still smaller than other terms because
�fR ¼ fRR�R, and fRR must be small. The latter is re-
quired for the chameleon mechanism [47] to screen the
fifth force inside our solar system—the values of fR and
fRR must be small [48]. The second term inside the square

brackets is large only if _� is large. However, the evolution
of � in the heavy scalaron (small fRR) limit is practically
the same as in GR, except for additional oscillations with a
tiny amplitude set by fRR [49]. Even if the oscillations had
a larger amplitude, they would be difficult to detect be-
cause of their high frequency set by f�1

RR . Furthermore,
there are no oscillations in the lensing potential �þ�;
hence there can be no signal in the integrated Sachs-Wolfe
effect that constrains the near- and superhorizon evolution
of perturbations.
We are not aware of a theory in which oscillations in

extra d.o.f.’s are observable for the range of parameters that
has not already been ruled out. Thus, it is reasonable to
adopt a theoretical prior that ignores rapid time variations
of gravitational degrees of freedom until we find an ex-
ample of a viable theory in which they are observable.
Finding such an example may warrant an appropriate
extension of Eqs. (26) and (27).

B. The subhorizon approximation

By ignoring the time derivatives in the modified equa-
tions we are neglecting not just the rapid oscillations in
metric perturbations but also the slowly varying signatures
of modified gravity. This, in the absence of additional
information about the model, can only be justified in the
k=aH � 1 limit.
Before addressing the significance of near-horizon mod-

ifications of gravity, let us make an important point: the
implementation of our parametrization in the equations of
motion does not assume the QSA. In the LCDM limit, when
� ¼ � ¼ 1, we recover the exact equations of GR, while
the parametrization allows for departures from� ¼ � ¼ 1
on all scales. Also, we do not suggest that one should ignore
the relativistic effects when calculating the observables
[50–56]. The implementation of near-horizon and other
relativistic effects [52] in Boltzmann codes like CAMB is
unaffected by the use of the ð�;�Þ parametrization—only
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the Einstein equations aremodified, while Boltzmann equa-
tions and the expressions for the observable quantities
remain the same as before.

The two relevant questions about the validity of taking
the QSA limit in deriving the form of our parametrization
are (1) How observable departures from the LCDM pre-
diction can be on near-horizon scales in viable modified
gravity models? and (2) Towhat extent our parametrization
would bias such a potentially observable signature?

As far as we know, there is no example of a theoretically
motivated model that is not ruled out and in which depar-
tures from LCDM on near-horizon scales have been shown
to be detectable [57], although there is clearly more room
for investigation. Part of the reason is that cosmic variance
limits the statistical significance of any inference on large
scales. The multitracer technique proposed in [58–60] can
remove this limitation to some extent. However, in order
for the modified gravity signal on large scales to be detect-
able, it has to be sufficiently pronounced while still keep-
ing the model in agreement with other constraints. While
one can design specific models providing such an example
[57], they cannot be considered representative.

The second question—the extent to which our parame-
trization would bias a potentially important signature on
near-horizon scales—can only be answered by considering
particular solutions of specific models. But first one has to
find a viable model in which such signatures are observable
at all.

A conservative way to use the parametrization in
Eqs. (26) and (27) would be to separately fit to a subset of
data corresponding to clustering on subhorizon scales. Then,
if a departure from LCDM is seen, one would have a clear
idea about which scales contribute themost to the signal, and
whether it is appropriate to interpret it under the QSA.

IV. PRACTICAL APPLICATION TO FORECASTS,
CONSTRAINTS AND RECONSTRUCTIONS

It is impossible to constrain a function without assuming
something about its form. One possibility is to pick a
particular functional form, such as a power law depen-
dence, similar to how it is done in the BZ parametrization
[12]. Since the five functions in Eqs. (26) and (27) are
expected to be slowly varying, this need not be a bad
approximation if the data only probe a limited range of
redshifts. But it is unlikely that a single power law will
capture the evolution over a wide range of epochs, which is
what we can expect from surveys like Euclid, SKA or
LSST in combination with CMB and other data. Let us
instead explore a way to constrain � and � in a nonpara-
metric way that still takes into account their smoothness.

Recent Refs. [27,28] proposed a transparent Bayesian
framework for constraining the dark energy equation of state
wðaÞ based on adopting an explicit smoothness prior. The
prior is defined via a correlation function that correlates
values of w at neighboring points in a. This framework

can be applied to any unknown function (or functions)
expected to be smooth from theoretical considerations. Let
us outline how it can be applied to fpiðaÞg in Eqs. (26) and
(27) for the purpose of forecasting future constraints on �
and �, as well as for fitting to real data.

A. Application to forecasting

As a starting point, one can discretize the functions into
finite numbers of bins. The binning can be implemented using
a smooth function, such as a hyperbolic tangent, to avoid
infinite derivatives at the edges, and the number of bins
can always be taken to be sufficiently large to achieve
convergence.2 The binnedvalues of fpiðaÞg canbe substituted
intoEqs. (26) and (27) to find� and�which are used as input
in a modified Boltzmann code such as MGCAMB [31]. Along
with providing other cosmological parameters, this is suffi-
cient for calculating all types of cosmological observables.
In the simplest approach to forecasting, one assumes a

Gaussian shape of the parameter likelihood surface with a
peak corresponding to a fiducial model, and proceeds to
calculate the Fisher matrix from derivatives of observables
with respect to model parameters. One then inverts it to
obtain an estimate of the total covariance matrix. Because
of the large number of highly correlated parameters, con-
sidering a constraint on any single bin is meaningless. One
can instead use the PCA [61] to see which independent
linear combinations of bins will be best constrained by a
given experiment. This is accomplished by diagonalizing
the corner of the covariance matrix corresponding to the
bins of the five functions.
What can one do with the information obtained from the

PCA forecast for fpiðaÞg? There will be a strong degener-
acy between the five functions, which means one should
look at independent linear combinations of bins of all five
functions. The number of such well-constrained combined
eigenmodes should give us a measure of how many physi-
cally relevant independent degrees of freedom one can
measure about � and �.
In the absence of a theoretical prior, all eigenmodes of

fpiðaÞg carry some information. How should one decide
which modes are informative and which are not? This is
where one can use the knowledge about the slowly varying
nature of the functions and introduce a smoothness prior
[26–28]. The prior comes in a form of a nondiagonal
matrix Cprior, the inverse of which one adds to the inverse
of the original covariance matrix, and which introduces
additional correlations between bins of the five functions.
One then considers an eigenmode to be informative if it is
unaffected by the prior, i.e., if it is the same before and after
addition of the prior covariance.
To be more explicit, let us assume that each function

piðaÞ is binned into N bins in the scale factor, a1; . . . ; aN,

2One of the advantages of the smoothness prior approach of
[26–28] is that it eliminates the dependence on binning.
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and label the bins so that they form a single vector ~p� with
� ¼ 1; . . . ; 5N. For example, one can define

~p1 ¼ p1ða1Þ; ~p2 ¼ p1ða2Þ; . . . ; ~pN ¼ p1ðaNÞ;
~pNþ1 ¼ p2ða1Þ; . . . ; ~p5N ¼ p5ðaNÞ:

(29)

Let Cdata
�� be the corner of the covariance matrix corre-

sponding to f~p�g that we have obtained earlier by inverting
the total Fisher matrix. According to Bayes’ theorem, the
posterior probability distribution for the parameters f~p�g is
a product of the likelihood and the prior probability. For
Gaussian probabilities, this implies that the net covariance
matrix (i.e., corresponding to the posterior probability) is
the inverse of the sum of ½Cdata��1 and ½Cprior��1. To
construct the latter, one can follow the prescription in
[26,27] and start with specifying a correlation function

hðpiðaÞ � plcdm
i Þðpiða0Þ � plcdm

i Þi � 
ðiÞðja� a0jÞ; (30)

where plcdm
i are the constant values of piðaÞ in LCDM

(p1 ¼ p4 ¼ 1 and p2 ¼ p3 ¼ p5 ¼ 0), and where the

form of the functions 
ðiÞðja� a0jÞ is chosen so that


ðiÞð�aÞ ! 
ðiÞð0Þ when �a � ja� a0j � ac


ðiÞð�aÞ ! 0 when �a � ac;

where ac is the correlation length and 
ðiÞð0Þ is a positive
constant.3 One has to specify the functional form of


ðiÞð�aÞ and we refer the reader to [27] for an extended
discussion of different choices. The choice does not make a

big difference in practice. Using 
ðiÞð�aÞ, one can calculate
the prior covariance matrix for the binned piðajÞ via

CðiÞ
jk ¼

1

ð�aÞ2
Z ajþ�a

aj

da
Z akþ�a

ak

da0
ðiÞðja�a0jÞ; (31)

where �a is the width of a bin in a. One can define such an
N � N matrix for each of the five functions and combine
them to form a block diagonal 5N � 5N matrix Cprior for
the parameters ~p� such that

Cprior ¼ diag½Cð1Þ; . . . ; Cð5Þ�: (32)

This prior assumes that the five functions are independent
of each other, which is true in the most general case but
not in many specific models. For example, in fðRÞ only
one function is independent, while in more general
Brans-Dicke models there are two. Such additional restric-
tions can be implemented, if desired, by adjusting the form
of Cprior.

Having constructed the prior matrix, one then compares
the eigenmodes of Cdata to the eigenmodes of the inverse of

½Cdata��1 þ ½Cprior��1. The eigenmodes that are common to
both, i.e., those that survive, can be considered to be
informative with respect to that prior. Due to the nature
of the prior, one expects that slowly varying eigenmodes
that are best constrained by data will have a higher chance
to survive, while the high frequency modes will be sup-
pressed. Naturally, the outcome of this comparison de-

pends on the parameters of the prior, ac and 
ðiÞð0Þ. Their
choice should, in principle, come from our theoretical
prejudice. In practice, they can be tuned so that eigen-
modes with variations on time scales comparable to
Hubble time (or another time scale that is theoretically
motivated) survive. Thus, a PCA forecast is a key step for
tuning the prior that can later be used in fitting to data, as
we discuss next.

B. Fitting to real data

In a Fisher forecast, there is no limitation on making the
number of bins N as large as needed to achieve a conver-
gence of well-constrained eigenmodes to the continuous
limit. But this is not the casewhen fitting to real data, which
involves searching for the maximum of a multiparameter
likelihood surface. The search stalls if the parameter space
contains flat directions corresponding to nearly degenerate
combinations of parameters, which is guaranteed to be the
case when the number of bins is large. Fitting only the few
best constrained eigenmodes amounts to a rather strong
assumption that the amplitudes of the poorly constrained
modes are known to be exactly zero, which amounts to
adopting a strong, yet somewhat obscure, prior. Instead, in
[27,28] it was suggested to use the explicit smoothness prior
described in the preceding subsection to aid the conver-
gence of Monte Carlo Markov chains (MCMC). This is
achieved in practice by adding a term

�2
prior ¼ ð~p� ~plcdmÞT½Cprior��1ð~p� ~plcdmÞ (33)

to the �2
data in MCMC. The number of bins that one fits to

data need not be very large. One typically needs a couple of
bins per effective correlation length set by the prior. It
remains to be shown for specific experiments how strong
the prior needs to be in order for MCMC to converge. Once
MCMC has converged, one can quantify the statistical
significance of the detection of a departure from LCDM
from the improvement in the �2

data. One can also compute

the evidence for the best fit model and the Bayes’ factors,
since the prior probability is explicitly known. An explicit
illustration of such a calculation for the case ofwðaÞ can be
found in [28].
We do not expect the reconstructed shapes of the indi-

vidual functions piðaÞ to be highly informative because
observables will only constrain their combinations and
degeneracies between parameters f~p�g will make margi-
nalized errors on them large. One could instead use
Eqs. (26) and (27) to visualize reconstructions of � and
�, or � and �, as surfaces in the ða; kÞ space.

3In certain cases, it may be more appropriate to specify the
correlation between points in log a rather than in a.
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V. SUMMARY

In this paper we have motivated a parametric form for
the modified growth functions� and � that fixes their scale
dependence to a ratio of polynomials in k and have shown
that generally the denominator of � is equal to the numera-
tor of �. We arrive at this form by taking the quasistatic
approximation (QSA) in the equations for scalar perturba-
tions derived from a covariant action that allows for mod-
ifications of gravity and any number of scalar degrees of
freedom. We examine the impact of assuming the QSA in
our derivation and conclude that, until a viable counter-
example is found, the nonquasistatic effects of modified
gravity can be assumed to be negligible. We nevertheless
note that the final form of our parametrization allows for a
detection of some nonquasistatic signatures, but not nec-
essarily for the most general ones in that regime.

We further argue that for most of the viable modifica-
tions of gravity discussed in the literature, the polynomials
in k are even and of second degree, effectively reducing the

number of time-dependent coefficients to five. Since these
coefficients are functions of the background variables
only, they can be safely assumed to be slowly varying.
This justifies using an explicit smoothness prior on their
shape when fitting them to data, similarly to the Bayesian
framework developed for the reconstruction of wðaÞ
in [27,28].
A forecast of future reconstructions of� and � based on

this approach is currently in progress [62].
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