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We study conformally invariant theories of gravity in six dimensions. In four dimensions, there is a

unique such theory that is polynomial in the curvature and its derivatives, namely, Weyl-squared, and

furthermore all solutions of Einstein gravity are also solutions of the conformal theory. By contrast, in six

dimensions there are three independent conformally invariant polynomial terms one could consider. There

is a unique linear combination (up to overall scale) for which Einstein metrics are also solutions, and this

specific theory forms the focus of our attention in this paper. We reduce the equations of motion for the

most general spherically symmetric black hole to a single fifth-order differential equation. We obtain the

general solution in the form of an infinite series, characterized by five independent parameters, and we

show how a finite three-parameter truncation reduces to the already known Schwarzschild-AdS metric and

its conformal scaling. We derive general results for the thermodynamics and the first law for the full five-

parameter solutions. We also investigate solutions in extended theories coupled to conformally invariant

matter, and in addition we derive some general results for conserved charges in cubic-curvature theories in

arbitrary dimensions.
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I. INTRODUCTION

Higher-derivative gravity theories are of interest for a
variety of reasons. They arise naturally in string theory and
M-theory, in the form of higher-order corrections to the
leading Einstein-Hilbert term in the low-energy effective
action. In this context, the corrections take the form of an
infinite series of terms that involve derivatives of arbitrarily
high order. There are also situations where it is of interest to
consider theories where there are just a finite number of
higher-derivative terms. Examples include topologically
massive gravity in three dimensions [1,2], where a gravita-
tional Chern-Simons term gives a three-derivative contri-
bution, proportional to the Cotton tensor; new massive
gravity in three dimensions [3], where there is a four-
derivative contribution arising from a curvature-squared
term in the action; and numerous higher-dimensional ex-
amples involving curvature-squared or higher modifica-
tions to Einstein gravity. Recent examples that have been
considered in four dimensions include Einstein gravity with
a cosmological constant, with an additional Weyl-squared
term whose coefficient may be tuned to give ‘‘critical
gravity’’ for which the additional normally massive spin-2
excitations around an AdS background become massless
[4]; and pure Weyl-squared conformal gravity, which has
been argued to be equivalent to Einstein gravity with a
cosmological constant [5]. In dimensions D � 6, super-
symmetric extensions of certain higher-derivative theories
are also known. These can arise because the supersymmetry
is realized off shell, with the added higher-derivative bo-
sonic terms being extended to complete and independent

superinvariants. Thus, unlike the situation in the string or
M-theory effective actions, where supersymmetry is on
shell and works order by order, requiring an infinity of
higher-order terms, in the off-shell supergravities only a
finite number of terms are required.
In four dimensions there is a unique conformally invari-

ant pure gravity theory that is polynomial in the curvature,
for which the action is given by the square of the Weyl
tensor. It has the important feature that any Einstein metric
is also a solution of the conformal theory. Furthermore,
since any conformal scaling of a solution is also a solution,
this means that any conformally Einstein metric is auto-
matically a solution of four-dimensional conformal grav-
ity. This is a useful property when one is looking for
solutions to the theory, since previously known ones from
Einstein gravity will be solutions too. Of course, since the
equations of motion of the conformal gravity are of higher
order than those in Einstein gravity, there will exist further
solutions over and above those of Einstein gravity. In a
recent paper [6], various classes of solutions in four-
dimensional conformal gravity were investigated in detail,
including spherically symmetric asymptotically AdS black
holes, and black holes obeying asymptotically Lifshitz
boundary conditions. The general spherically symmetric
asymptotically AdS black hole solution was already known
[7]. It has one additional parameter, over and above the
mass and the cosmological constant of the Schwarzschild-
AdS black hole. This parameter can be understood as
coming from the freedom to make a (spherically symmet-
ric) conformal rescaling of Schwarzschild-AdS black hole.
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It does, nevertheless, provide an interesting extension of the
usual Schwarzschild-AdS black holes, in which the addi-
tional parameter can be interpreted as a characterization of
massive spin-2 ‘‘hair.’’ In [6], the thermodynamics and the
first law for these extended solutions was studied. In four
dimensions, charged rotating black holes [8] and the gen-
eralized Plebanski solutions [9] were also obtained. The
neutral solutions are all conformal to Einstein metrics [8].

In the present paper, we carry out some analogous
investigations in six-dimensional conformal gravity. The
situation is more complicated in six dimensions because
there is no longer a unique choice of conformal theory. In
fact, there is a three-parameter family of conformal grav-
ities in six dimensions that have actions polynomial in the
curvature and its derivatives (see [10,11]), described by the
action I ¼ �1I1 þ �2I2 þ �3I3, where

1

I1 ¼C����C
����C�

��
�; I2 ¼C����C

����C��
��;

I3 ¼C����

�
�
�
�hþ 4R�

�� 6

5
R�

�
�

�
C����þr�J

�;

J� ¼ 4R�
���r�R����þ 3R����r�R����� 5R��r�R��

þ 1

2
Rr�R�R�

�r�Rþ 2R��r�R��; (1.1)

and the coefficients�1,�2, and�3 are arbitrary. In general,
Einstein metrics will not be solutions of the theory, except
in the special case where �1 ¼ 4�2 ¼ �12�3. In particu-
lar, with this choice of parameters the theory allows
Schwarzschild-AdS black holes as solutions, and this has
the advantage that at least some explicit spherically sym-
metric solutions are available for investigation.

Accordingly, we shall consider the Lagrangian

e�1Lconf ¼ �

�
4I1 þ I2 � 1

3
I3

�

¼ �

�
RR��R�� � 3

25
R3 � 2R��R��R����

� R��hR�� þ 3

10
RhR

�
þ total derivative:

(1.2)

The equations of motion of this system are given by

E���Eð1Þ
��� 3

25
Eð2Þ
���2Eð3Þ

���Eð4Þ
��þ 3

10
Eð5Þ
��¼0; (1.3)

where the individual contributions EðnÞ
�� coming from the

variation of each term in (1.2) are given in Appendix B.
In Sec. II, we study the equations of motion for spheri-

cally symmetric black hole solutions. These can be reduced
to a fifth-order ordinary differential equation for a single
undetermined metric function. As mentioned above, the
Schwarzschild-AdS metric of six-dimensional Einstein
gravity is a solution, and furthermore, any conformal

scaling is also a solution. This provides us with an explicit
three-parameter family of spherically symmetric black
hole solutions, but, unlike the situation in four-dimensional
conformal gravity, this does not exhaust the space of
solutions, which should be characterized by a total of
five parameters. We have not been able to construct the
most general such solution explicitly, but we have con-
structed it as an infinite series expansion for the metric
function, with explicit expansion coefficients.
In Sec. III, we use the Noether procedure to construct a

conserved charge which, when integrated over a compact
spatial surface at infinity, provides an expression for the
mass of the black hole. Only the first few terms in our series
expansion for the metric function contribute in this asymp-
totic formula, and so we are able to obtain an explicit
expression for the mass of the general five-parameter so-
lution. The same conserved charge, when integrated over
the horizon, yields the expression for the product TS of the
temperature and the entropy. Furthermore, the temperature
itself can be calculated via a computation of the surface
gravity. By this means, we are able to obtain explicit
expressions for the temperature and entropy of the exact
three-parameter family of black holes whose expression
can be given in closed form.
In Sec. IV, using the general methods developed byWald

[13,14], we use the conserved charge mentioned above to
derive the first law of thermodynamics for the general five-
parameter spherically symmetric black holes. We also
derive a Smarr-type formula for these solutions.
In Sec. V, we discuss extensions of the conformal gravity

theory in which conformally invariant ‘‘matter’’ is added
also. In particular, this can include a 2-form potential, and
also an electromagnetic field whose field strength couples
quadratically to the Weyl tensor. In Sec. VI we discuss
various further explicit solutions of conformal gravity and
these conformal matter extensions.
In Sec. VII, we give a general discussion of the calcu-

lation of conserved charges in curvature-cubed theories of
gravity in arbitrary dimensions, using the general confor-
mal methods developed by Ashtekar, Magnon, and Das
(AMD) [15,16]. In Sec. VIII we discuss tricritical gravity
in six dimensions, which was first constructed in [11].2

This is obtained by appending an Einstein-Hilbert term,
a cosmological term, and a Weyl-squared term to the

1We use the same conventions as in [12].

2The unitarity problem and consistent truncation of ghostlike
logarithmic modes in multicritical gravity theories were studied
in [17–19]. It was shown that at the level of the free theory, in
special cases they could admit a unitary subspace. However, as
pointed out later by [20], the analysis carried out for the free
theory is invalid at the nonlinear level, and the would-be unitary
subspace suffers from a linearization instability and is absent in
the full nonlinear theory. Including the ghostlike logarithmic
modes seems to be indispensable for the consistency of the
theory. As a consequence, these multicritical gravity theories
were conjectured to be the gravity duals of multirank logarithmic
conformal field theories (CFTs).
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conformal theory that we have been studying in this paper.
The coefficients of the additional terms are tuned so that
the additional spin-2 modes around an AdS background,
which are generically massive, become massless. We in-
clude a discussion of consistent boundary conditions that
can be imposed in this theory. Following the conclusions in
Sec. IX, we then include two appendices. In Appendix A,
we review the derivation of a useful necessary condition
[21,22] that must be satisfied by any metric that is confor-
mal to an Einstein metric. This provides a valuable tool
when investigating whether a given solution in the confor-
mal gravity might be ‘‘new,’’ as opposed to merely being a
conformal scaling of a previously known Einstein metric.
Finally, in Appendix B, we give expressions for the con-
tributions to the field equations that result from the various
six-derivative terms that arise in the six-dimensional theo-
ries that we are considering.

II. STATIC BLACK HOLE SOLUTIONS

We shall consider the Ansatz for static solutions of the
form

ds2 ¼ �fdt2 þ dr2

f
þ r2d�2

4;k; (2.1)

where for k ¼ 1,�1, or 0 the metric d�2
4;k describes a unit

4-sphere, hyperbolic 4-space, or the 4-torus, respectively,
and f is a function of r. (The metric functions in gtt and grr
can be taken to be inversely related, as we have done here,
by using the conformal symmetry.) Since we shall typically
be concentrating on the k ¼ 1 case we shall commonly
refer to the metric as being ‘‘spherically symmetric,’’ even
when k is unspecified. Substituting the Ansatz into the
equations of motion (1.3), we find that all the equations
are satisfied provided that the equation Err ¼ 0 is satisfied.
This gives rise to a fifth-order differential equation for the

function fðrÞ. (Analogous solutions for an action using just
I1 and I2 were obtained in [23].)
It is in fact possible to exploit the conformal symmetry of

the problem to obtain a simpler parametrization. Passing to
the conformally related metric dŝ2, and introducing a new
radial coordinate � and metric function hð�Þ defined by
dŝ2 ¼ r�2ds2; � ¼ 1=r; hð�Þ ¼ r�2fðrÞ; (2.2)

we obtain

dŝ2 ¼ �hð�Þdt2 þ d�2

hð�Þ þ d�2
4;k: (2.3)

Now in the new metric, the equations of motion imply
simply

�216k3 þ 42kh002 þ 6h003 � 84kh0hð3Þ � 18h0h00hð3Þ

þ 5hðhð3ÞÞ2 þ 20h02hð4Þ � 10hh00hð4Þ þ 10hh0hð5Þ ¼ 0;

(2.4)

where a primemeans a derivativewith respect to �, and hðnÞ
denotes the nth derivative of h.
If Eq. (2.4) is differentiated once more, it yields a rather

simple sixth-order equation3

10hhð6Þ þ 30h0hð5Þ þ 12h00hð4Þ � 13ðhð3ÞÞ2 � 84khð4Þ ¼ 0:

(2.5)

Using on Eqs. (2.4) and (2.5), we can obtain the general
spherically symmetric solution as a series expansion of
the form

hð�Þ ¼ X
n�0

bn
n!

�n; (2.6)

where fb0; b1; b2; b3; b4g are free parameters, while b5 and
bn, (n � 6) are determined by

6b32 � 18b1b2b3 þ 5b0b
2
3 þ 42kb22 � 84kb1b4 � 216k3 þ 20b21b4 � 10b0b2b4 þ 10b0b1b5 ¼ 0;

10b0b2n þ
Xn�1

m¼1

�ð2n;mÞbmb2n�m þ �ð2n; nÞb2n � 84kb2n�2 ¼ 0; n � 3;

10b0b2nþ1 þ
Xn
m¼1

�ð2nþ 1; mÞbmb2nþ1�m � 84kb2n�1 ¼ 0; n � 3;

(2.7)

with the coefficients �ðn;mÞ and �ð2n; nÞ given by

�ðn;mÞ ¼ 2Cm�6
n�6 þ 30Cm�5

n�6 þ 12Cm�4
n�6 � 26Cm�3

n�6

þ 12Cm�2
n�6 þ 30Cm�1

n�6 þ 10Cm
n�6;

�ð2n; nÞ ¼ 10Cn
2n�6 þ 30Cn�1

2n�6 þ 12Cn�2
2n�6 � 13Cn�3

2n�6:

(2.8)

Here Ck
n ¼ n!=ðk!ðn� kÞ!Þ is the binomial coefficient, and

it is understood that the factorial of a negative integer is
infinity. The first equation in (2.7) relating b0 to b5 is

obtained by substituting Eq. (2.6) into Eq. (2.4) and setting
� to zero. Similarly, the second (and third) equation in
Eq. (2.7) are obtained by inserting Eq. (2.6) into the
(2n�6)th (or (2n�5)th) derivative of Eq. (2.5) and

3In the case of four-dimensional conformal gravity, the analo-
gous equation that results from differentiating the third-order
equation for h is simply hð4Þ ¼ 0, showing that the general
spherically symmetric static solution of four-dimensional con-
formal gravity is given by a third-order polynomial.
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choosing � ¼ 0. Contained within the five-parameter gen-
eral solution Eq. (2.6) are black hole solutions.

In terms of the previous spherically symmetric Ansatz
Eq. (2.1), the five-parameter solution takes the form

aðrÞ ¼ fðrÞ
¼ r2

�
a0þa1

r
þa2

r2
þa3

r3
þa4

r4
þa5

r5
þ X

n�6

an
rn

�
: (2.9)

Here we use parameters an ¼ bn=n! for later convenience.
We find that there exists a three-parameter subset of

solutions that corresponds to a finite truncation of the
five-parameter general solutions. In terms of the usual
parametrization Eq. (2.1), it is given by

f ¼ r2
�
a0 þ a1

r
þ a2

r2
þ a3

r3
þ a4

r4
þ a5

r5

�
; (2.10)

where

a1 ¼ a4ða34 þ 50ka25Þ
125a35

; a2 ¼ kþ 2a34
25a25

;

a3 ¼ 2a24
5a5

; an ¼ 0 for n � 6:

(2.11)

In fact this three-parameter subset of the general solu-
tions admits of a very simple interpretation. As we already
noted, any solution of the Einstein equations is also a
solution of the specific conformally invariant theory we
are considering here. Furthermore, any conformal scaling
of an Einstein metric will also be a solution. The solutions
given by (2.10) and (2.11) are in fact precisely the family of
conformal scalings of the Schwarzschild-AdS metric that
can be cast within the form of the Ansatz (2.1). To see
this, we start from the Schwarzschild-AdS metric in the
standard form

ds2SAdS ¼ �
�
kþ y2=L2 � m

y3

�
dt2

þ
�
kþ y2=L2 � m

y3

��1
dy2 þ y2d�2

4;k; (2.12)

which satisfies R�� ¼ �5L2g��. The metrics (2.1) with f

given by (2.10) and (2.11) are conformally related, with
ds2SAdS ¼ �2ds2, where

�2 ¼ 1

ðcrþ 1Þ2 ; y¼ r

1þ cr
; a0 ¼ c2kþ 1

L2
� c5m;

a1 ¼ 2ck� 5c4m; a2 ¼ k� 10c3m; a3 ¼�10c2m;

a4 ¼�5cm; a5 ¼�m: (2.13)

The ‘‘thermalized vacuum’’ corresponds to solutions with
� ¼ 0 (see [6] for the analogous discussion in four-
dimensional conformal gravity). The thermodynamic
quantities for the Schwarzschild-AdS black hole in six-
dimensional conformal gravity are given by

E ¼ �96�
m

L4
; T ¼ 5m� 2ky3þ

4	y4þ
;

S ¼ �96	�

�
y4þ
L4

� k

�
:

(2.14)

These quantities satisfy the first law of thermodynamics

dE ¼ TdS: (2.15)

A. Spherically symmetric solutions that are not
conformally Einstein metrics

In [6], it was shown that the general spherically sym-
metric solution of four-dimensional conformal gravity is
conformal to the Schwarzschild-AdS (dS) metric. By con-
trast, we find that the general five-parameter solutions
given in Eq. (2.6) are not conformal to any Einstein metric.
To see this, let us suppose that e2
dŝ2was in fact anEinstein
metric. By using the necessary condition for a metric to
be conformally Einstein in six dimensions [22] (see
Appendix A), we find 
 must be a function of � and that


0 ¼ h000

3ð2k� h00Þ : (2.16)

Combining this equality with the requirement that e2
dŝ2

be an Einstein metric implies that h should satisfy

3h00hð4Þ � 2ðhð3ÞÞ2 � 6khð4Þ ¼ 0; (2.17)

which then implies that h is a certain fifth-order polynomial
in �. Substituting back into the equations of motion for
conformal gravity then leads us back to the closed-form
three-parameter solution given by (2.10) and (2.11). Thus,
we have proved that the general spherically symmetric
solution of six-dimensional conformal gravity is not con-
formally Einstein.

III. ENERGY OFADS BLACK HOLES IN D ¼ 6
CONFORMAL GRAVITY

To calculate the energy of the black hole solutions in
Eq. (2.6), we start from the conformally invariant
Lagrangian in Eq. (1.2) and derive the Noether charge
associated with the Killing vector ��. We consider the
variation of the Lagrangian 6-form induced by ��,

L�L ¼ E��L�g�� þ d�ðg��;L�g��Þ; (3.1)

where E�� represents the equations of motion. When
E�� ¼ 0 is satisfied, then using the identity

L� ¼ di� þ i�d; (3.2)

for the Lie derivative of a differential form, we find a
conserved current defined by

J ¼ �� i�L; dJ ¼ 0 ) J ¼ dQ½��: (3.3)

Explicitly, in six-dimensional conformal gravity, the con-
served charge is a 4-form
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Q½�� ¼ 1

2!4!

Z
�������Q

��dx� ^ dx� ^ dx� ^ dx�; (3.4)

which consists of two parts, Q��
1 þQ��

2 . Q��
1 and Q��

2 depend on r��� and ��, respectively:

Q��
1 ¼ X����r���;

X���� ¼��

�
24C½�

�
j�j

�C
����� � 6C½�

���g
��½�C����� þ 3

5
C��

��C
��

��g
�½�g���

�

��

�
6C��

��C
���� � 2C½�

���g
��½�C����� þ 1

5
C��

��C
��

��g
�½�g���

�
þ 2

3
�ð2hC���� þ 4C½�

���g
��½�C�����

þR�½�C�
���� þR�½�C�

���� �R��C�
�
�
½�g��� þR��C�

�
�
½�g���Þ � 2

5
�ð4RC���� þC��

��C
��

��g
�½�g���Þ;

Q��
2 ¼ ��r�X

���� þ 2

3
��½�J�� � 2

3
�ð2��C½�

���r��R�
��� � 2��C½�

���r�R
����� � 2��C

����r½�R��
���

� 2��R����r½�C����� þ 2��r�C
½�

���R
����� þ 2��r½�C����R

����� �C�����½�r��C����Þ: (3.5)

When evaluated at infinity, Q½�� gives the mass of black hole solutions in Eq. (2.6)

E ¼ �Vð�kÞ
�
96a20a5 �

12

25
ð17k2a1 � 14ka1a2 � 3a1a

2
2 þ 54ka0a3 þ 5a21a3 þ 46a0a2a3 � 60a0a1a4Þ

�
; (3.6)

after using the on-shell relations among the ais. It should be emphasized that this expression for the mass is valid for the
full five-parameter family of solutions.

When evaluated on the horizon,Q½�� is equal to TS. Sincer��� ¼ ���, where  is the surface gravity on the horizon,

��� is the binormal vector horizon normalized to satisfy ����
�� ¼ �2 and the Killing vector � vanishes on the horizon, it

follows that the entropy formula can be simplified to give

S ¼ 	
Z
H

X����������d�; (3.7)

where X���� is defined in the first line of Eq. (3.5). Explicit calculation for the three-parameter closed-form solutions
(2.10) and (2.11) leads to

S ¼ ��96	Vð�kÞð5a5 þ a4rþÞ3ð125a35 þ 15a24a5r
2þ þ a34r

3þ þ 75a4a
2
5rþ þ 250a25r

3þÞ
15625a45r

6þ
; (3.8)

where rþ is the largest positive root of fðrÞ ¼ 0, i.e., it is the radius of outer horizon. The temperature is given by

T ¼ �ð5a5 þ a4rþÞð125a35 þ 75a4a
2
5rþ þ 15a24a5r

2þ þ a34r
3þ þ 50a25r

3þÞ
500	a35r

4þ
: (3.9)

By using the parameter relations in Eq. (2.13), it can be
shown that the entropy and temperature of the three-
parameter black holes in six-dimensional conformal gravity
are equal to those of the conformally related Schwarzschild-
AdS black hole. In other words, the entropy and tem-
perature are conformal invariants, as is also the case in
four dimensions [6].4 This is related to the fact that
conformal factor �2 in (2.13) is regular on the horizon

and the near-horizon geometry is preserved. By contrast,
the asymptotic region of the Schwarzschild black hole is
altered by the conformal transformation and hence the
Schwarzschild black hole energy in (2.14) becomes (3.6). It
follows that the first law of thermodynamics (2.15) of the
Schwarzschild black hole no longer applies. The three-
parameter black hole is a globally distinct spacetime even
though it is locally conformal to the Schwarzschild black
hole. We shall derive the first law of thermodynamics in the
next section.
If we define the Helmholtz energy to be F ¼ �TIE,

where IE is the Euclidean action, then we find that

F ¼ E� TS: (3.10)

A simple way to see this is to calculate the Euclidean action
of the conformally related Schwarzschild-AdS metric with

4It should be emphasized that the expression for the mass of
the black holes, given by (3.6), is valid for the general five-
parameter solutions, since it is evaluated on a surface at infinity
where only the leading orders in the radial falloff contribute. By
contrast, the entropy (3.8) and temperature (3.9) are evaluated on
the horizon, and so without having closed-form expressions
for the general solutions, these can only be evaluated explicitly
for the three-parameter closed-form truncation.

BLACK HOLES IN SIX-DIMENSIONAL CONFORMAL GRAVITY PHYSICAL REVIEW D 87, 104013 (2013)

104013-5



y 2 ½yþ; 1=c] [see Eq. (2.13)]. In general, to obtain a finite
action, certain counterterms are needed. However, because
of the conformality of the action of conformal gravity, it
turns out that without the addition of counterterms, the on-
shell action for the asymptotically AdS solutions discussed
in this paper is finite. This phenomenon has been observed
previously in [5,6,11].

IV. BLACK HOLE THERMODYNAMICS

In the previous section, we derived the conserved quan-
tities in six-dimensional conformal gravity by the Noether
method. The expressions for the entropy and temperature
of the general spherical solution are given by

T ¼ �h0ð�þÞ
4	

;

S ¼ 4	�Vð�kÞ
25

ð204� 84h00ð�þÞ � 9h00ð�þÞ2

þ 10h0ð�þÞhð3Þð�þÞÞ: (4.1)

From Eq. (3.3), one can see that

dQ ¼ �i�L: (4.2)

Evaluating this equation in the region bounded by horizon
and infinity just gives

F ¼ E� TS: (4.3)

To study the first law of thermodynamics, we follow the
construction of [13,14]. We do this by considering the
difference between J½�; g�� þ �g��� and J½�; g���,
where g�� þ �g�� also solves the equation of motion, in

other words, where �g�� satisfies the linearized equations

of motion. We have

�J ¼ L��� i��L: (4.4)

Utilizing the identity in Eq. (3.2) and the on-shell condition
d� ¼ �L, we find

dð�Q� i��ðg��; �g��ÞÞ ¼ 0; (4.5)

where the definition of � has been given in the previous
section. Evaluating this equation in the region bounded
by the horizon and infinity leads to the first law of
thermodynamics

dE ¼ TdS�
Z
1
�ðg��; �g��Þ: (4.6)

In the context of conformal gravity, the cosmological con-
stant a0 is a parameter of the solution, rather than of the
theory, andhencewemay treata0 as a further thermodynamic
variable. Treating the cosmological constant as a thermody-
namic variable has been considered previously. See, for
example, [6,24–26]. Specific to the six-dimensional confor-
mal gravity, by calculating the second term in the above
equation, we obtain for the general five-parameter solutions

dE ¼ TdSþ�0da0 þ�1da1 þ�2da2 þ�3da3; (4.7)

where

�0 ¼ 24�Vð�kÞ
25

ð50a0a5þ 20a1a4� 19a2a3� 6ka3Þ;

�1 ¼ 12�Vð�kÞ
25

ð3a22þ 14ka2� 17k2� 5a1a3� 20a0a4Þ;

�2 ¼�48�Vð�kÞ
5

a0a3;

�3 ¼�72�Vð�kÞ
5

a0ða2� kÞ: (4.8)

These quantities satisfy the Smarr-like formula

E ¼ 2�0a0 þ�1a1 ��3a3; (4.9)

which coincides with the result from dimensional analysis.
Since the solution is asymptotically AdS, a0 plays the role of
a cosmological constant, with �0 being its conjugate vari-
able. As was discussed in [6], in Einstein gravity, where the
entropy is simply one quarter of the horizon area, without
explicit dependence on the cosmological constant,�0 has the
interpretation of being the volume of the black hole. In
conformal gravity, on the other hand, the entropy has a
manifest dependence on the cosmological constant, and
hence �0 is not simply proportional to the volume. a1, a2,
and a3 are the extra integration constants of the fifth-order
equations of six-dimensional conformal gravity, as compared
with the second-order equations inEinstein gravity. The extra
canonical-conjugate pairs ð�1; a1Þ, ð�2; a2Þ, and ð�3; a3Þ
can be interpreted as ‘‘massive spin-2 hair,’’ because the
spectrum of six-dimensional conformal gravity contains in
addition to the massless graviton, two massive gravitons
(strictly speaking, one of them is partially massless).
It is straightforward to verify that the explicit three-

parameter black holes given by (2.10) and (2.11) indeed
satisfy the first law (4.7) and Smarr relation (4.9). It should
be emphasized, however, that the more general five-
parameter solutions, which we are only able to present as
infinite series expansions, will also satisfy the first law and
Smarr relation.

V. COUPLING TO CONFORMAL MATTER

In four dimensions, Maxwell theory is conformally in-
variant, and so is the enlarged system when it is coupled to
conformal gravity. Charged black hole solutions in this
theory can be used for studying some strongly coupled
fermionic systems, such as non-Fermi liquids. In particu-
lar, the charged massless Dirac equation can be solved
exactly for a generic frequency ! and wave number k.
Using this, an explicit expression for the Green function
Gð!; kÞ was obtained for general ! and k in Refs. [27,28].
By contrast, such a Green function in the Reissner-
Nordstrøm black hole geometry can only be obtained ex-
plicitly for small !, and in the extremal or near-extremal
limit [29,30].
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The analogous conformal ‘‘matter’’ in six dimensions is
described by a 2-form potential B whose field strength is
H ¼ dB. It is also possible to write down a conformally
invariant coupling of a vector potential A coupled quadrati-
cally to the Weyl tensor through its field strength F ¼ dA.
Slightly more generally, we may consider a conformally
invariant matter Lagrangian of the form

Lmat ¼ ffiffiffiffiffiffiffi�g
p �

�C����F��F�� � 1

12
H2

�
þ �B ^ F ^ F;

(5.1)

where the 3-form field strength is now given by

H ¼ dBþ �A ^ F; (5.2)

with � being a constant. The Bianchi identity and the
equation of motion for H are given by

dH ¼ �F ^ F ¼ d �H: (5.3)

It follows that it is consistent to impose the self-duality
condition H ¼ �H. Note that the Maxwell field A can be
replaced, more generally, by a Yang-Mills field without
breaking the conformal symmetry. The rich structure of
conformal matter suggests that there should be a variety of
applications of six-dimensional conformal gravity in the
AdS/CFT correspondence.

VI. FURTHER SOLUTIONS

In this section, we present various further solutions of
conformal gravity and of the conformal theories with addi-
tional fields that we discussed in the previous section.
Specifically, Sec. VIA contains solutions of the pure con-
formal gravity theory, Sec. VIB contains solutions of the
conformal theory including a Maxwell field, and Sec. VIC
contains solutions in the conformal theory with instead a
2-form potential.

A. Neutral solutions

1. Lifshitz black holes:

There are Lifshitz vacuum solutions in the theory de-
scribed by (1.2), given by

ds2 ¼ �r2z
�
1þ 1

r2

�
dt2 þ �dr2

r2

�
1þ 1

r2

��1 þ r2d�2
4;

(6.1)

with z ¼ 0 or z ¼ 8
3 :

z ¼ 0: � ¼ 4; z ¼ 8

3
: � ¼ 4

9
: (6.2)

We can find explicit black hole solutions that are asymp-
totic to these Lifshitz geometries, and that are conformally
related to the Schwarzschild-AdS solution. For z ¼ 8

3 , we

find the black hole solution

ds2 ¼ �r16=3fdt2 þ 4dr2

9r2f
þ r2d�2

4;k; (6.3)

where

f ¼ r�10=3

�
� 1

5
�c2 þ kðr2=3 þ aÞ2 �mc�3ðr2=3 þ aÞ5

�
:

(6.4)

It is conformally related to the Schwarzschild-AdS metric

dŝ2 ¼ �c2
�
k� m

�3
� 1

5
��2

�
dt2 þ d�2

ð1� m
�3 � 1

5��2Þ
þ �2d�2

4; (6.5)

by ds2 ¼ ��2dŝ2 with � ¼ �r and

� ¼ c

r5=3 þ ar
: (6.6)

For the case z ¼ 0, we find the black hole solution

ds2 ¼ �fdt2 þ 4dr2

r2f
þ r2d�2

4;k; (6.7)

where

f¼ r2
�
�1

5
�c2þ kðr�2þaÞ2�mc�3ðr�2þaÞ5

�
: (6.8)

It is conformally related to the Schwarzschild-AdS metric
(6.5) by ds2 ¼ ��2dŝ2 with � ¼ �r and

� ¼ c

r�1 þ ar
: (6.9)

2. String solution:

ds2 ¼ fðrÞð�dt2 þ dx2Þ þ fðrÞ�1ðdr2 þ r2d�2
3Þ;

f ¼
�
1� m

r2

��1
2þ

ffiffi
3
2

p �
1þ m

r2

��1
2�

ffiffi
3
2

p
: (6.10)

This solution has a power-law singularity at r ¼ ffiffiffiffi
m

p
.

B. Charged black hole

The neutral spherically symmetric black hole solutions
(2.6) can be generalized by turning on the vector field A
that enters the Lagrangian (5.1). Wemay consider the black
hole Ansatz

ds2 ¼ �fdt2 þ dr2

f
þ r2d�2

4;k; A ¼ 
dt; (6.11)

where f and
 are functions of r only. Letting � ¼ 1=r and
hð�Þ ¼ r�2fðrÞ, we find that the function 
 satisfies


0ð�Þ ¼ q

h00ð�Þ ; (6.12)

where a derivative is with respect to �. The function h then
satisfies
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�ð10hhð6Þ þ 30h0hð5Þ þ 12h00hð4Þ � 13ðhð3ÞÞ2 � 84khð4ÞÞ
¼ 15�ð
002 þ
0
000Þ: (6.13)

The general solution that is asymptotic to AdS takes
the form

f ¼ r2
�
c0 þ c1

r
þ c2

r2
þ c3

r3
þ c4

r4
þ c5

r5
þX

i¼6

ci
ri

�
; (6.14)

and the coefficients ci with i � 6 can be expressed in terms
of the ci with i ¼ 0; 1; . . . ; 5, in a manner analogous to
the way the bi coefficients in (2.6) were solved in the
neutral case.

We have found two special solutions:

1. Solution 1

We find a truncated solution

ds2 ¼�ðc0r2þ c1rþ c2Þdt2þ dr2

c0r
2þ c1rþ c2

þ r2d�2
4;k;

A¼ q

2c2r
dt: (6.15)

This solution is analogous to the four-dimensional ‘‘BPS’’
black hole obtained in [31]. In particular, when the ci are
chosen such that (�gtt) is a perfect square, the metric has
anAdS2 factor in the near-horizon geometry, as in the four-
dimensional example.

2. Solution 2

If � ¼ 0, we find that the equations can be solved
exactly, giving

a ¼ a0

�
1þQ

r

�
3=2

; f ¼ r2
�
d0 þ d1

r
þ ~d0a

�
: (6.16)

C. Black dyonic string solutions

We consider the Lagrangian density of six-dimensional
conformal gravity coupled to a 2-form potential:

e�1L ¼ �

�
4I1 þ I2 � 1

3
I3

�
� 1

12
H���H

���: (6.17)

The associated equations of motion are

0 ¼ �

�
Eð1Þ
�� � 3

25
Eð2Þ
�� � 2E3

�� � Eð4Þ
�� þ 3

10
Eð5Þ
��

�

� 1

4

�
H�

��H��� � 1

6
g��H���H

���

�
: (6.18)

1. Type I

ds2 ¼ �fðrÞdt2 þ r2dx2 þ fðrÞ�1dr2 þ r2d�2
3;k;

Hð3Þ ¼ Qr�2dt ^ dx ^ drþ P�ð3;kÞ: (6.19)

The solution is given by

f ¼ r2
�
a0 þ a1

r
þ a2

r2
þ a3

r3
þ a4

r4
þ a5

r5

�
; (6.20)

where a0 and a1 can take arbitrary values, a3 ¼ a4 ¼
a5 ¼ 0 and

24�

25
ð2a2 � kÞða2 þ 2kÞ2 � ðP2 þQ2Þ ¼ 0;

24�

25
ða2 þ 2kÞð4a22 � a2kþ 2k2Þ þ ðP2 þQ2Þ ¼ 0:

(6.21)

The above two equations lead to

a2 þ 2k ¼ 0; ðP2 þQ2Þ ¼ 0; 3a2 þ k ¼ 0;

40�

9
k3 þ ðP2 þQ2Þ ¼ 0; a2 ¼ 0;

96�

25
k3 þ ðP2 þQ2Þ ¼ 0: (6.22)

Among these solutions, we find that the first one, with
vanishing flux, is actually conformally Einstein metric.
Explicitly,

dŝ2¼�2ds2; �2¼ r�2sech2
ffiffiffi
k

p ðx�cÞffiffiffi
2

p R̂��¼5k

2
ĝ��:

(6.23)

The conformal metric describes a static soliton located at
x ¼ c, when k > 0.

2. Type II

ds2 ¼ 1

HðrÞ ð�fðrÞdt2 þ dx2Þ þHðrÞðfðrÞ�1dr2

þ r2d�2
3;kÞ;

Hð3Þ ¼ QHðrÞ�2r�3dt ^ dx ^ drþ P�ð3;kÞ: (6.24)

One class of solution is found to be

HðrÞ ¼ 1; fðrÞ ¼ a0r
2 þ a2;

96�

25
ða2 � kÞ2ða2 þ kÞ þ ðP2 þQ2Þ ¼ 0: (6.25)

3. Other Ansätze

We may consider the following Ansatz [32]:

ds2 ¼ fðrÞð�dt2 þ dx2Þ þ fðrÞ�1ðdr2 þ r2d�2
3Þ;

Hð3Þ ¼ Qf2r�3dt ^ dx ^ drþ P�ð3Þ; (6.26)

where�ð3Þ is the volume form of the unit S3. Adopting the
above Ansatz, the equations of motion for the 2-form
potential are satisfied automatically. Before presenting
the equation following from the metric variations, it is
useful to make the field redefinitions and coordinate
transformation

H. LÜ, YI PANG, AND C.N. POPE PHYSICAL REVIEW D 87, 104013 (2013)

104013-8



r ¼ e�; fðrÞ ¼ ehð�Þþ�; _hð�Þ ¼ Wð�Þ; (6.27)

where a dot denotes a derivative with respect to �. In terms
of Wð�Þ we find
0 ¼ 8� 8W2 � 8W4 þ 8W6 � 24W2 _W � 136W4 _W

þ 6 _W2 þ 14W2 _W2 � 16 _W3 � 12W €W � 28W3 €W

þ 48W _W €Wþ5 €W2 þ 40W2W
::: � 10 _WW

:::

þ 10WW
::::þ 25

12�
ðP2 þQ2Þ: (6.28)

A class of solutions of this equation is given by

fðrÞ¼ ra;
96

25
�ða�2Þ2a2ða2�2aþ2ÞþðP2þQ2Þ¼0:

(6.29)

For this solution to be real � must be negative, coinciding
with the condition under which the energy and entropy of
the AdS black holes are positive. Especially, when a ¼ 2,
the solution is AdS3 � S3 with vanishing string charges.
By a conformal scaling, the solutions can be mapped to

dŝ2 ¼ r�2ads2

¼ ð�dt2 þ dx2Þ þ d�2 þ ða� 1Þ2�2d�2
3: (6.30)

This has a conical singularity at the origin of the transverse
space of the string.

To obtain AdS3 � S3 solutions with nontrivial flux, we
reparametrize the metric and Hð3Þ as

ds2 ¼ r2ð�dt2 þ dx2Þ þ r�2dr2 þ a2d�2
3;

Hð3Þ ¼ Qf2r�3dt ^ dx ^ drþ Pa3�ð3Þ:
(6.31)

The equations of motion are solved provided that

96

25
�ða2 � 1Þ2ða2 þ 1Þ þ a6ðP2 þQ2Þ ¼ 0: (6.32)

The theory also admits AdS3 � ~S3 as a solution,

where ~S3 is a squashed 3-sphere. The AdS3 � ~S3 metric
is given by

ds2 ¼ r2ð�dt2 þ dx2Þ þ r�2dr2 þ a2�2
3 þ ð�2

1 þ �2
2Þ:
(6.33)

If we choose the vielbeins to be

e0 ¼ rdt; e1 ¼ rdx; e2 ¼ r�1dr;

e3 ¼ a�3; e4 ¼ �2; e5 ¼ �1;
(6.34)

and Hð3Þ to be given by

Hð3Þ ¼ Qe0 ^ e1 ^ e2 þ Pe3 ^ e4 ^ e5; (6.35)

then we obtain a solution when

96

25
�ða2 � 1Þð41� 63a2Þ þ ðP2 þQ2Þ ¼ 0: (6.36)

VII. AMD CHARGE FOR GENERAL CUBIC
CURVATURE THEORIES

In this section we apply the conformal methods devel-
oped by Ashtekar, Magnon, and Das (AMD) [15,16] for
calculating conserved charges in asymptotically AdS back-
grounds to the case of cubic-curvature theories in arbitrary
dimensions. The AMD conserved quantities are extracted
from the leading falloff of the electric part of the Weyl
tensor. The falloff rate of the curvature is weighted by a
smooth function �, with the conformal boundary I being
defined at � ¼ 0. For further details about the conditions
on the choice of �, the reader is referred to Refs. [15,16];
here we only mention some necessary points. For a
d-dimensional asymptotically AdS spacetime (d � 4), on
the boundary I we require

ĝ�� ¼ �2g��; (7.1)

At � ¼ 0; n̂� ¼ @�� � 0; (7.2)

n̂�n̂
� ¼ 1

‘2
; r̂�n̂� ¼ 0: (7.3)

Since I is defined to be at � ¼ 0, it follows that n� is a

normal vector on the boundary I . Near the boundary,

R���� ! � 1

‘2
ðg��g�� � g��g��Þ; (7.4)

T�� ! �d�2���; (7.5)

C���� ! �d�5K����; (7.6)

where g�� is the physical metric, the hatted quantities are

referred to the conformal metric ĝ��, and T�� is the energy

momentum tensor. As first noticed in [33], the condition
(7.4) is required in higher-curvature theories in order to
ensure that the metric that satisfies the equations of motion
is indeed asymptotically AdS. [In Einstein gravity, by
contrast, as discussed in [15,16], Eq. (7.4) is implied by
the Einstein equations together with Eqs. (7.5) and (7.6).]
For any theory of gravity with the equations

E�� ¼ 8	GðdÞT��; (7.7)

one can show that

��ðd�3Þðr½�P���Þn̂�n̂���¼d�2

2‘2
8	GðdÞ���n̂

���þOð�Þ;
(7.8)

where

P�� � E�� � 1

d� 1
g��E��g

��: (7.9)

In general, the leading falloff of ðr½�P���Þn̂�n̂���

is of the order �d�3 and can be expressed as
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� ðd�2Þ
2ðd�3Þ�r̂�ðK����n̂

�n̂���Þ�d�3. The conserved quan-

tity associated with the Killing vector �� can be defined,
when ��� vanishes on the boundary, as

Q�½C� ¼ � ‘�

8	GðdÞðd� 3Þ
Z
C
dŜmðd�2ÞÊmn�

n;

Êmn � ‘2K�m�nn̂
�n̂�;

(7.10)

where the indices m and n label the coordinates on the
(d� 1)-dimensional boundary I , since the electric part of
the Weyl tensor, Êmn, has no components in the normal
direction. C is a (d� 2) dimensional spherical cross sec-
tion on I .
Consider the Lagrangian for the general class of cubic-

curvature theories of the form

16	GðdÞe�1L ¼ �2�þ Rþ �1LGB þ �2R
2 þ �3R��R

�� þ �1RR��R
�� þ �2R

3 þ �3R����R
��R��

þ �4R��hR�� þ �5RhRþ �6R�
�R�

�R�
� þ �7R��R

����R�
��� þ �8RR

����R����

þ �9R
��

��R
��

��R
��

�� þ �10R
�
�
�
�R

�
�
�
�R

�
�
�
�: (7.11)

The AMD formula for quadratic-curvature theories has been obtained in [34]. By repeating the procedure (the corrections
to the equations of motion from cubic curvature terms are presented in Appendix B), we can obtain the contributions from
the cubic-curvature terms to the AMD charges. In the general cubic-curvature theories Eq. (7.11), the AMD charges take
the same form as in Eq. (7.10), with the coefficient of proportionality � given by

� ¼ 1þ R0

�
2�1

ðd� 3Þðd� 4Þ
dðd� 1Þ þ 2�2 þ 2�3

d

�
þ R2

0

�
3�1

d
þ 3�2 þ 3�3

d2
þ 3�6

d2
þ �7

2ð9� 2dÞ
d2ðd� 1Þ þ �8

2ð9� 2dÞ
dðd� 1Þ

þ �9

12ð7� 2dÞ
d2ðd� 1Þ2 þ �10

3ð3d� 8Þ
d2ðd� 1Þ2

�
;

R0 ¼ �dðd� 1Þ
‘2

: (7.12)

We notice that the terms R��hR�� and RhR do not contribute to the charge, for solutions whose asymptotic behavior
obeys Eqs. (7.4) and (7.6).

As a check of the above formula, we can calculate the charge for the case of the six-dimensional Euler density

E6 ¼ 1

8
��1�1�2�2�3�3

��1�1�2�2�3�3R�1�1
�1�1

R�2�2
�2�2

R�3�3
�3�3

: (7.13)

In terms of the quantities in Eq. (7.11), the Euler density E6

corresponds to the combination of cubic-curvature terms
with coefficients

�1 ¼ �12; �2 ¼ 1; �3 ¼ 24; �4 ¼ 0;

�5 ¼ 0; �6 ¼ 16; �7 ¼ �24; �8 ¼ 3;

�9 ¼ 4; �10 ¼ �8: (7.14)

Inserting these coefficients into Eq. (7.12), we find that the
coefficient � for E6 is given by

�E6
¼ R2

0

24ðd� 3Þðd� 4Þðd� 5Þðd� 6Þ
d2ðd� 1Þ2 ; (7.15)

which indeed vanishes for d ¼ 6 as expected.
The AMD formula for general cubic-curvature theories

can also be used for finding the criticality condition and
computing the conserved quantities in quasitopological
gravity [35,36]. The d-dimensional quasitopological grav-
ity is defined by the action

I¼ 1

16	Gd

Z
ddx

�ðd� 1Þðd� 2Þ
L2

þRþ �L2

ðd� 3Þðd� 4ÞX4

� 8ð2d� 3Þ
ðd� 6Þðd� 3Þð3d2� 15dþ 16Þ�L4ZD

�
; (7.16)

where X4 is the Gauss-Bonnet combination and ZD is the
quasitopological combination consisting of cubic-
curvature terms with

�1 ¼ �3ð3d� 4Þ
2ð2d� 3Þðd� 4Þ ; �2 ¼ 3d

8ð2d� 3Þðd� 4Þ ;

�3 ¼ 3d

ð2d� 3Þðd� 4ÞÞ ; �4 ¼ 0; �5 ¼ 0;

�6 ¼ 6ðd� 2Þ
ð2d� 3Þðd� 4Þ ; �7 ¼ � 3ðd� 2Þ

ð2d� 3Þðd� 4Þ ;

�8 ¼ 3ð3d� 8Þ
8ð2d� 3Þðd� 4Þ ; �9 ¼ 0; �10 ¼ 1:

(7.17)

This theory has as a solution the asymptotically AdS
metric
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ds2 ¼ �
�
kþ r2

L2
f

�
dt2 þ dr2

kþ r2

L2 f
þ r2d�2

k; (7.18)

where fðrÞ satisfies the cubic equation
�
1�!d�1

rd�1

�
� fþ �f2 þ�f3 ¼ 0: (7.19)

To compute the mass of these black holes using the AMD
formula Eq. (7.12), we choose � ¼ 1=r. We then find that

Ct�t� !�1

2
ðd�2Þðd�3Þ�d�5 !d�1

L2ð1�2�f1�3�f21Þ
;

�¼ 1�2�f1�3�f21; (7.20)

where f1 denotes the asymptotic value of fðrÞ as r tends to
infinity. Therefore, Eq. (7.10) gives the mass of the black
holes in quasitopological gravity as

M ¼ ðd� 2Þ!d�1Vð�kÞ
16	GðdÞL2

: (7.21)

The temperature and entropy (using Wald’s formula)
are [36]

T¼ðd�1Þ
4	

�
!d�1r6�dþ

L2ðr4þþ2�kL2r2þ�3�k2L4Þ�
2k

ðd�1Þrþ
�
;

S¼Vð�kÞ
4GðdÞ

�
rd�2þ þ2ðd�2Þ

d�4
�kL2rd�4þ

�3ðd�2Þ
d�6

�k2L4rd�6þ
�
: (7.22)

It is straightforward to check that the first law of thermo-
dynamics holds in this case.

VIII. TRICRITICAL GRAVITY IN SIX
DIMENSIONS

‘‘Critical gravity’’ is the name given to higher-derivative
theories of gravity that admit AdS backgrounds, and which
generically describe massive as well as massless spin-2
modes, in the special case where the parameters of the
theory are tuned such that the massive spin-2 modes be-
come massless. One example is the chiral point in three-
dimensional topologically massive gravity, discussed in
[2], and another is the four-dimensional critical theory
discussed in [4], where a Weyl-squared term with an
appropriately tuned coefficient is added to cosmological
Einstein gravity. In that case, with a fourth-order
Lagrangian, there is one massive spin-2 excitation in addi-
tion to the usual massless spin-2. In theories of the kind we
are considering in this paper, with sixth-order Lagrangians,
there are in general two massive spin-2 excitations in
addition to the massless spin-2, and so the possibility of
tuning the parameters so that all three are massless arises.
This is known as tricritical gravity.

A. The theory

In six dimensions, one tricritical gravity model has been
constructed in which the scalar modes do not propagate
[11]. The Lagrangian for this theory is given by

16	Gð6Þ��1e�1L6 ¼�2�þRþ1

2
�C����C�����Lconf ;

(8.1)

whereLconf is defined in Eq. (1.2) and� is the overall sign.
In the AdS6 background, the spin-2 modes satisfy

�ðhþ2Þ
�
1þ3

2
�ðhþ6Þþ�ðhþ6Þðhþ8Þ

�
h�� ¼ 0:

(8.2)

The tricriticality condition is achieved when

� ¼ � 5

12
; � ¼ 1

16
; (8.3)

where the AdS ‘‘radius’’ has been set to 1.
Another tricritical model has the Lagrangian

16	Gð6Þ��1e�1L6 ¼ �2�þ Rþ 1

4
�

�
R��R�� � 3

10
R2

�

�Lconf : (8.4)

This also admits all Einstein metrics as solutions. The spin-
2 modes in this case satisfy

�ðhþ2Þ
�
1þ1

4
�ðhþ10Þþ�ðhþ6Þðhþ8Þ

�
h�� ¼ 0;

(8.5)

and the tricriticality condition is achieved when

� ¼ � 5

7
; � ¼ 1

56
: (8.6)

In both models, at the tricritical point the spin-2 modes
satisfy

�ðhþ 2Þ3h�� ¼ 0: (8.7)

Massless, massive, and log modes of the spin-2 field h�� in

AdS6 were obtained in [37].

B. Consistent boundary conditions in tricritical gravity

Our starting point is the AdS6 metric coordinatized as

ds2 ¼ ‘2ð�cosh2�dt2þd�2þ sinh2�ðd�21
þ sin2�1ðd�22þ sin2�2d


2
1þ cos2�2d


2
2ÞÞÞ: (8.8)

Near the AdS6 boundary, the solutions to Eq. (8.7) [37]
have the falloff behavior

h55 ¼ Oð�2e�7�Þ; h5i ¼ Oð�2e�5�Þ;
hij ¼ Oð�2e�3�Þ; (8.9)
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where xi ¼ ft; �1; �2; 
1; 
2g for 0 � i � 4 and x5 ¼ �.
This implies that near the AdS6 boundary, the Weyl tensor
has the asymptotic behavior

C����!�ðlog2�J����þ log�L����þK����Þ; (8.10)

where � approaches e�2� near the boundary. In this case,
we find that for the two tricritical models,
ðr½�P���Þn̂�n̂��� remains of order �, and therefore one

can obtain finite AMD charges for these two models.
Explicitly, for the first tricritical model, the AMD charge

at the tricritical point is given by

Q�½C�1 ¼ � 25‘�

192	Gð6Þ

Z
C
dŜm4 Êmn�

n;

Êmn � ‘2J�m�nn̂
�n̂�:

(8.11)

Similarly, for the second tricritical model, the AMD
charge at the tricritical point is given by

Q�½C�2 ¼ � 25‘�

672	Gð6Þ

Z
C
dŜm4 Êmn�

n;

Êmn � ‘2J�m�nn̂
�n̂�:

(8.12)

Asymptotic Killing vectors should be compatible
with the boundary conditions (8.9), implying that they
should obey

L�g55 ¼ Oð�2e�7�Þ; L�g5i ¼ Oð�2e�5�Þ;
L�gij ¼ Oð�2e�3�Þ: (8.13)

Vector fields � satisfying these equations (modulo ‘‘triv-
ial’’ diffeomorphisms) generate the asymptotic symmetry
group. We denote the Killing vector fields by U�

ab (a, b ¼
1; . . . ; 7). Since in the coordinate system used in Eq. (8.8),
these obey U�

ab ¼ Oð1Þ, we find that the asymptotic

Killing vector fields can only differ from the Killing vec-
tors at the order

�� ¼ 1

2
�ab1 Uab þOð�2e�7�Þ; (8.14)

where �ab1 is constant. The boundary conditions Eq. (8.9)
can be verified to be consistent, yielding well-defined
charges that are finite, integrable, and conserved. It can
be shown that the associated asymptotic symmetry group is
still SOð2; 5Þ.

IX. CONCLUSIONS

In this paper, we have studied some aspects of confor-
mally invariant gravities in six dimensions. Unlike in four
dimensions where there is a unique theory that is polyno-
mial in the curvature or its derivatives (described by a
Weyl-squared Lagrangian), in six dimensions there are
three such independent conformally invariant terms that
could be considered. However, if we impose the additional
requirement that, like in four dimensions, Einstein metrics

should also be solutions of the theory, then this implies that
a unique linear combination of the three terms is singled
out. It is this specific theory that has formed the focus of
most of our attention in this paper, since it has the advan-
tage that at least some solutions, namely, Einstein metrics
and their conformal scalings, can be obtained explicitly.
Using the freedom to perform coordinate transforma-

tions and conformal scalings, the general Ansatz for spheri-
cally symmetric black holes can be expressed in terms of a
single function of the radius. This function obeys a fifth-
order differential equation which, unfortunately, we have
not been able to solve in closed form in general. We were,
however, able to construct the general solution as an infi-
nite series expansion, characterized by the expected num-
ber of five independent parameters. Within this class of
solutions is a three-parameter subset for which the series
expansion terminates. This closed-form class of solutions
corresponds precisely to the standard Schwarzschild-AdS
metrics, and their spherically symmetric conformal scal-
ings. We studied the thermodynamics of the black holes,
obtaining a first law for the five-parameter family of solu-
tions, and verifying that this was indeed satisfied by the
explicit closed-form subset of solutions.
We considered also some more general conformal theo-

ries in six dimensions, in which conformally invariant
‘‘matter’’ is coupled to conformal gravity. Specifically,
we looked at a bilinear coupling of a Maxwell field
strength to the Weyl tensor, and also kinetic and Chern-
Simons terms involving a 2-form potential. We obtained a
variety of further solutions for these theories, and also for
the pure conformal gravity.
In our work, we concentrated on the particular choice of

six-dimensional conformal gravity for which conformally
Einstein metrics are also solutions. It would be of interest
also to study the broader class of conformal gravities in six
dimensions for which this is no longer the case. It may not
be easy, within the broader class of theories, to obtain
explicit closed-form solutions, but nevertheless it could
be of interest to investigate black hole solutions, and their
thermodynamics.
A further interesting question is whether any of the six-

dimensional conformal gravities could be supersymme-
trized. As far as we are aware, there are no known obstacles
to doing this, other than the complexity of the problem. If it
could be achieved, then it would presumably be an off-
shell theory, since experience suggests that this is the only
way in which one is likely to be able to construct a higher-
derivative supergravity that does not require an infinity of
higher-order terms (such as in string theory).

ACKNOWLEDGMENTS

We are grateful to Ergin Sezgin for useful conversations.
The research of H. L. is supported in part by NSFC Grants
No. 11175269 and No. 11235003. Y. P. and C.N. P. are
supported in part byDOEGrantNo.DE-FG03-95ER40917.
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APPENDIX A: NECESSARY CONDITION FOR CONFORMALLY EINSTEIN

In this appendix, we present a detailed derivation of a necessary condition for a d-dimensional metric to be conformally
Einstein metric. This condition was derived first in four dimensions in [21], and subsequently, in arbitrary dimensions,
in [22].

A d-dimensional spacetime with metric gab is conformally Einstein if there exists a conformal transformation to a new
metric ĝab ¼ �2gab such that

R̂ab � 1

d
ĝabR̂ ¼ 0; (A1)

or, equivalently,

P̂ab � 1

d
ĝabP̂ ¼ 0; (A2)

where

Pab � � 1

ðd� 2ÞRab þ 1

2ðd� 1Þðd� 2ÞRgab: (A3)

Defining �a � ra ln�, then from the conformal transformation of the Ricci scalar and Ricci tensor we have

��2ðRþ 2ðd� 1Þrc�c þ ðd� 1Þðd� 2Þ�c�
cÞ ¼ constant; (A4)

Rab � 1

d
gabRþ ðd� 2Þra�b � d� 2

d
gabrc�

c � ðd� 2Þ�a�b þ d� 2

d
gab�

c�c ¼ 0; (A5)

and (A2) becomes

Pab � 1

d
gabP�ra�b þ 1

d
gabrc�

c þ�a�b � 1

d
gab�

c�c ¼ 0: (A6)

Taking a derivative of (A4) gives

0 ¼ raR� 2R�a � 4ðd� 1Þ�arc�c � 2ðd� 1Þðd� 2Þ�a�
c�c þ 2ðd� 1Þrarc�

c þ 2ðd� 1Þðd� 2�cra�c

¼ raP� 2P�a þ 2�arc�c þ ðd� 2Þ�a�
c�c �rarc�

c � ðd� 2Þ�cra�c: (A7)

Using this, we obtain

r½aPb�c þ 1

2
Cabcd�

d ¼ 0: (A8)

Using

rdCabcd ¼ 2ðd� 3Þr½aPb�c; (A9)

we finally obtain

rdCabcdþðd� 3Þ�dCabcd ¼ 0: (A10)

This necessary condition must be satisfied by any conformally Einstein metric.

APPENDIX B: EQUATION OF GENERAL CUBIC CURVATURE

In this appendix, we present the detailed results for the variations of each of the terms in the Lagrangian (7.11). In
particular, this includes the results needed for obtaining the equations of motion (1.3) for the conformally invariant theory
that forms the focus of most of our attention in this paper.

ð1Þ: RR��R�� ) Eð1Þ
�� ¼ ðhðR��R

��Þ þ r�r�ðRR��Þ � 1

2
RR��R

��Þg�� þ R��R
��R�� þ 2RR��R

�
� þ ðhRR��Þ

� r�r�ðR��R
��Þ � r�r�ðRR�

�Þ � r�r�ðRR�
�Þ;
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ð2Þ: R3 ) Eð2Þ
�� ¼

�
3hR2 � 1

2
R3

�
g�� þ 3R2R�� � 3r�r�R

2;

ð3Þ: R��R��R���� ) Eð3Þ
�� ¼ � 1

2
R��R��R����g�� þ 3

2
R��R����R

�
� þ 3

2
R��R����R

�
� þhðR��R����Þ

þ r�r�ðR��R����Þg�� �r�r�ðR��R����Þ � r�r�ðR��R����Þ � rð�r�ÞðR�
�R�

�Þ
þ r�r�ðR��R

��Þ;
ð4Þ: R��hR�� ¼ �g��r�R

��r�R�� ) Eð4Þ
��

¼ 1

2
g��ðg��r�R

��r�R��Þ � ð2r�R��r�R�
� þr�R��r�R

��Þ þ 2r�ðR�ð�r�ÞR��Þ
þ 2r�ðr�R�

ð�R�Þ�Þ � 2r�ðrð�R�Þ�R��Þ þh2R�� þr�r�R
��g�� �r�r�ðR�

�Þ � r�r�ðR�
�Þ;

ð5Þ: RhR ¼ �g��r�Rr�R ) Eð5Þ
�� ¼ 1

2
g��ðg��r�Rr�RÞ � r�Rr�Rþ 2ðhRÞR��

þ 2ðh2RÞg�� � 2r�r�hR;

ð6Þ: R�
�R�

�R�
� ) Eð6Þ

�� ¼ � 1

2
g��R�

�R�
�R�

� þ 3R��R��R
�� þ 3

2
hðR�

�R��Þ þ 3

2
r�r�ðR�

�R��Þg��

� 3

2
r�r�ðR�

�R
��Þ � 3

2
r�r�ðR�

�R
��Þ;

ð7Þ: R��R
����R�

��� ) Eð7Þ
�� ¼ � 1

2
g��R��R

����R�
��� þ 1

2
g��r�r�ðR����R�

���Þ

þ 1

2
hðR�

���R����Þ � 1

2
r�r�ðR����R����Þ � 1

2
r�r�ðR����R����Þ

þ R��R
���

�R
�
��� þ 2R��R

���
�R

�
��� � 2r�r�ðR�ð�R�Þ

���Þ � 2r�r�ðR�ð�R���
�ÞÞ

þ 2r�r�ðR�
�R

�
ð�

�
�ÞÞ;

ð8Þ: RR����R���� ) Eð8Þ
�� ¼ � 1

2
g��RR

����R���� þ R��R
����R���� þ 2RR����R�

���

þ g��hðR����R����Þ � r�r�ðR����R����Þ � 4r�r�ðRR�
ð��Þ

�Þ;

ð9Þ: R��
��R

��
��R

��
�� ) Eð9Þ

�� ¼ � 1

2
g��R

��
��R

��
��R

��
�� þ 3

2
R�

���R
��

��R
��

��

þ 3

2
R�

���R
��

��R
��

�� þ 3

2
r�r�ðR��

��R����Þ þ 3

2
r�r�ðR��

��R����Þ;

ð10Þ: R�
�
�
�R

�
�
�
�R

�
�
�
� ) Eð10Þ

�� ¼ � 1

2
g��R

�
�
�
�R

�
�
�
�R

�
�
�
� þ 3

2
R�

�
�
�R

�
�
�
�R

�
��� þ 3

2
R�

�
�
�R

�
�
�
�R

�
���

� 3

2
r�r�ðR�

���R�
���Þ �

3

2
r�r�ðR���

� R�
���Þ þ 3r�r�ðRð�

�
�Þ
�R�

�
�
�Þ: (B1)

[1] S. Deser, R. Jackiw, and S. Templeton, Ann. Phys. (N.Y.)
140, 372 (1982); 185, 406(E) (1988); 281, 409(E) (2000).

[2] W. Li, W. Song, and A. Strominger, J. High Energy Phys.
04 (2008) 082.

[3] E. A. Bergshoeff, O. Hohm, and P. K. Townsend, Phys.
Rev. Lett. 102, 201301 (2009).
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