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We consider tidal encounters between a white dwarf and an intermediate mass black hole. Both weak

encounters and those at the threshold of disruption are modeled. The numerical code combines mesh-

based hydrodynamics, a spectral method solution of the self-gravity, and a general relativistic Fermi

normal coordinate system that follows the star and debris. Fermi normal coordinates provide an expansion

of the black hole tidal field that includes quadrupole and higher multipole moments and relativistic

corrections. We compute the mass loss from the white dwarf that occurs in weak tidal encounters.

Secondly, we compute carefully the energy deposition onto the star, examining the effects of nonradial

and radial mode excitation, surface layer heating, mass loss, and relativistic orbital motion. We find

evidence of a slight relativistic suppression in tidal energy transfer. Tidal energy deposition is compared to

orbital energy loss due to gravitational bremsstrahlung, and the combined losses are used to estimate tidal

capture orbits. Heating and partial mass stripping will lead to an expansion of the white dwarf, making it

easier for the star to be tidally disrupted on the next passage. Finally, we examine angular momentum

deposition. By including the octupole tide, we are able for the first time to calculate deflection of the

center of mass of the star and debris. With this observed deflection, and taking into account orbital

relativistic effects, we compute directly the change in orbital angular momentum and show its balance

with computed spin angular momentum deposition.
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I. INTRODUCTION

The tidal disruption of a star can serve as a diagnostic for
the presence of a dormant black hole in a distant galaxy
[1,2]. The theoretically predicted rate is 10�5 to 10�4 yr�1

for galaxies like the Milky Way [3,4]. While such tidal
disruption events (TDEs) are rare, they give rise to power-
ful flares of emission at and above Eddington luminosity
[1,5–8], with spectral features and time scales that might
reveal both the type of star and the mass (and perhaps spin)
of the black hole. For main sequence stars disruption may
occur in close encounters with supermassive black holes

(SMBH) of mass M & 108ðR�=R�Þ3=2ðM�=M�Þ�1=2M�,
where M� and R� are the mass and radius of the star.
With a black hole of higher mass, the star will cross the
event horizon before disrupting. The upper mass limit is
increased if the black hole’s spin is near maximal [9,10].
Higher black hole masses are relevant for stripping red
giant envelopes. Disrupting a white dwarf in contrast
requires an intermediate mass black hole (IMBH) with

M & 1:8� 105ðR�=0:012R�Þ3=2ðM�=0:6M�Þ�1=2M�.
In excess of a dozen TDE candidates have been discov-

ered so far. A number of these have been observed in x ray

[2,11–20], with others picked up in the optical/UV [21–25]
and radio [26]. Two of the most recent TDEs were detected
by the Swift satellite, Swift J164449:3þ 573451 (hereafter
Sw J1644þ 57) [19,26–29] and Swift J2058:4þ 0516
[20]. These two events have high-energy features and
coincident radio emission that imply the presence of colli-
mated relativistic jets (i.e., blazarlike activity). Another
object, PS1-10jh, discovered [25] in the Pan-STARRS1
Medium Deep Survey, appears to have been the disruption
of a helium-rich stellar core, whose red giant envelope was
presumably stripped in some preceding tidal event.
A star is disrupted if its orbit reaches within the tidal

radius of the black hole, given by Rt ’ R�ðM=M�Þ1=3. For a
parabolic orbit that just reaches the tidal radius at peri-
center, Rt ¼ Rp, theoretical considerations indicate the

star should disrupt with approximately half the debris
bound to the hole and half ejected from the system. The
free streaming of bound debris implies a late-time mass

return rate that decays as t�5=3 [1]. Early numerical models
confirmed the expectations, showing a rapid rise in the
mass return rate well above Eddington level before
the power-law decay set in [7]. The precise form of
the early rise and plateau is sensitive to stellar structure
and effects of hydrodynamic shocks as the star undergoes
disruption [30]. The picture is altered if the star approaches
on an already bound orbit [31], which affects the late
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time-dependence of returning mass. Moreover, stars may
have orbits that result in a weak tidal encounter or that
penetrate well inside the tidal radius [5,32]. The strength of

the encounter is often parametrized by � ¼ ðR3
p=MÞ1=2 �

ðM�=R3�Þ1=2 [33], or by the penetration factor � ¼ ��2=3,
where Rp ¼ Rt=�. In the deep plunging case � � 1,

strong tidal compression leads to break out of a shock
and a prompt x-ray flare, which comes in advance of the
flare produced as captured gas streams back to the black
hole after one or more orbits. Other potential observational
signatures include supernovalike remnant structures asso-
ciated with the ejection of debris [34,35], coincident elec-
tromagnetic and gravitational wave signals [32], and
possible thermonuclear runaway from severe compression
of white dwarfs [5,36,37].

Tidal disruption has been investigated with various nu-
merical means, including smoothed particle hydrodynam-
ics [7,30,32,38–41], mesh-based finite difference or
spectral methods [42–47], and affine models [5,48–52].
Numerical modeling of radiative processes is also impor-
tant for understanding how TDEs appear in multiple wave
bands [53] and in accounting for nonadiabatic effects on
the dynamics. In TDEs that involve white dwarfs, the close
approach to the black hole requires handling general rela-
tivistic effects [44,46,54]. Moreover, new observations
continue to bring surprises, such as the unanticipated rapid
formation of relativistic jets and synchrotron radio emis-
sion [28] associated with Sw 1644þ 57. These observa-
tions point to the need to include magnetohydrodynamics
in models as well (see arguments in Ref. [55]).

The Sw 1644þ 57 event is generally thought to repre-
sent tidal disruption of a main sequence star by a 106 to
107M� SMBH [26–29]. An alternative model, however,
posits that the observed short time scales and multiple
bursts can be best explained via the disruption of a white
dwarf by an IMBH [56,57] in multiple passes. Whatever
the case may be with Sw 1644þ 57, because of the shorter
time scales and higher mass return rate, it has been argued
that white dwarf TDEs may end up being frequently ob-
served in future flux-limited surveys [55].

In this paper our focus is on encounters between white
dwarfs and IMBHs, with primary attention devoted to
events at threshold for disruption (� ’ 1) or weaker
(�> 1). We are particularly interested in (1) computing
partial mass loss in weaker encounters, (2) calculating
accurately energy and angular momentum deposition,
(3) observing relativistic effects, and (4) determining the
capture orbits of white dwarfs after their initial passage. To
this end, we have constructed a new numerical code whose
central feature is use of Fermi normal coordinates (FNCs)
[58]. In FNCs the spacetime geometry of the black hole is
expanded in the vicinity of a timelike geodesic that ap-
proximately tracks the center of mass (CM) motion of the
star (and debris). Our approach is similar to Ref. [44] but
differs in the use of a higher-order expansion of the tidal

field, which includes higher moments and relativistic
corrections.
Despite relativistic orbital motion, these coordinates

allow use of Newtonian hydrodynamics and self-gravity
within the FNC domain. By not including post-Newtonian
(PN) corrections to the stellar self-gravity and hydro, a
floor is set on the accuracy (’10�4) of the model.
Nevertheless, we show that octupole and l ¼ 4 moments
can be significant, as well as several orbital PN corrections.
Hydrodynamics is computed using a piecewise parabolic
method (PPM) Lagrangian remap code (PPMLR). The
self-gravitational field is obtained using three-dimensional
fast Fourier transforms. The code runs on cluster com-
puters and each of our three-dimensional simulations is
run at several resolutions to confirm numerical conver-
gence. Since the size of the FNC domain is necessarily
limited, there is a limit on how long a disrupted star or
stripped gas can be followed. In principle, however, our
simulations can serve as initial conditions for a second
code that would calculate the return of gas to the black
hole and formation of an accretion disk.
This paper is organized as follows. In Sec. II the formal-

ism is presented for including relativistic effects and higher
moments in tidal interactions. We give an orbital PN ex-
pansion of the tidal field and consider the order of magni-
tude significance of various terms. Tidal field moments
through l ¼ 4 might be significant. Similarly, (orbital) PN
corrections to l ¼ 2 and l ¼ 3, as well as the gravitomag-
netic potential, might be significant. The fluid equations of
motion are given with this level of approximation. We
discuss our numerical results in Secs. III through VI, rele-
gating to Appendix A description of the numerical hydro-
dynamics and self-gravity methods. Section III details our
initial stellar model and the range of inbound orbits we
consider. Section IV discusses the overall hydrodynamic
features and shows the amount of mass loss from a white
dwarf during various weak tidal encounters. For TDEs
considered here, we found the l ¼ 4 moment to have neg-
ligible impact. The situation with the gravitomagnetic po-
tential is subtle, and we intend to address it in a subsequent
paper. In Sec. Vwe consider energy deposition onto the star
and energy loss from the orbit. We discuss the combined
effects of nonradial and radial mode excitation, surface
layer heating, mass loss, relativistic orbital motion, and
gravitational bremsstrahlung. Section VI presents results
on deposition of angular momentum (spin) onto the star. By
including the octupole tide, we show in Sec. VIA the
computed tidal deflection of the CM and, with relativistic
effects accounted for, relate it to the reduction of orbital
angular momentum. In Sec. VII we summarize our conclu-
sions. Appendix B gives the form of the octupole tidal field.
Throughout this paper, where relativity is concerned, we

use the sign conventions and notation of Misner et al. [59].
We use geometrical units in which c ¼ G ¼ 1 and scale all
dimensional quantities relative to the black hole mass M,
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except where otherwise indicated in discussing astrophys-
ical consequences.

II. FORMALISM

Fermi normal coordinates provide a convenient local
moving frame for calculating relativistic tidal encounters.
The FNC formalism was first developed by Manasse and
Misner [60] (see additional work by Mashhoon [61] and
Marck [62]). In more recent work, the metric was ex-
panded through fourth order in the spatial distance from
the geodesic by Ishii et al. [58]. The result is a tidal field
rich in multipoles and relativistic terms. Here we specialize
to a Schwarzschild background and summarize the
coordinate system and the tidal field expansion. We also
consider physical scales associated with application to
white dwarf/IMBH encounters and address use of
Newtonian self-gravity and hydrodynamics in the FNC
frame. This approximation, adequate for white dwarfs,
affects which terms in the relativistic tidal field are worth
consistently retaining.

A. Fermi normal coordinates

Fermi normal coordinates rely upon using local flatness
in the vicinity of a freely falling observer over an extended
period of time. Consider an arbitrary spacetime with coor-
dinates X� and a timelike geodesic G described by X�ð�Þ,
parametrized by proper time �. The tangent vector is u ¼
@=@�. Greek indices label these arbitrary four-dimensional
coordinates and coordinate components of tensors in this
system. The second (FNC) coordinate system xa ¼ ð�; xiÞ
has its spatial origin fixed to move along the trajectory G
[60,63], with the conditions

gabjG ¼ �ab; �a
bcjG ¼ 0; (2.1)

enforced at all times. Here latin indices beginning with
a; b; c; . . . label the four new coordinates and components
in this frame. Latin indices beginning with i; j; k; . . . are
reserved for FNC spatial coordinates. Let P 0 be the single
event on the geodesic G at � ¼ 0. Construct an orthonor-
mal tetrad �a ¼ ð�0;�1;�2;�3Þ at this point. Choose
�0 ¼ u, making the tangent vector the timelike member
of the tetrad atP 0. The remaining tetrad elements atP 0 are
spacelike. Now extend the basis by parallel transporting
the tetrad �a along G. One condition is identically satis-
fied, since ru�0 ¼ ruu ¼ 0. Imposing ru�i ¼ 0 on the
spacelike elements �i defines the tetrad in the future and
past of P 0. With the moving tetrad defined on G, each
element �i of the triad is used at any constant time � to
launch spacelike geodesics from P ð�Þ. The proper distance
along each of these three curves defines the spatial coor-
dinates xi. Thus �i ¼ @=@xi. The proper time � along the
geodesic completes the coordinate system: x0 ¼ �.

The conditions (2.1) further imply that all time deriva-
tives of the connection and of the first derivative of the
metric vanish along G: �a

bc;0 ¼ �a
bc;00 ¼ 0, etc, and

gab;c0 ¼ gab;c00 ¼ 0, etc. This implies [58,60,63] that the

metric may be expanded in a power series in spatial dis-
tance of the form

gab ¼ �ab þ 1

2
gab;ijð�Þxixj þ 1

6
gab;ijkð�Þxixjxk

þ 1

24
gab;ijklð�Þxixjxkxl þOðx5Þ: (2.2)

The coefficients involve spatial derivatives of the metric
only and are functions of just the FNC time coordinate �.
The specific form of the Taylor coefficients depends on

how the tetrad is extended away fromG but will in any case
involve the Riemann tensor and its derivatives evaluated on
the geodesic as functions of �. The expansion was derived
to quadratic order by Manasse and Misner [60] and was
extended to fourth order by Ishii et al. [58]. Gathering
results in the latter paper, we find

g00 ¼ �1� Cijx
ixj � 1

3
Cijkx

ixjxk

� 1

12
ðCijkl þ 4CðijCklÞ � 4BðkljnjBijÞ

nÞxixjxkxl

þOðj ~xj5=R5Þ; (2.3)

g0m ¼ 2

3
Bijmx

ixj þ 1

4
Rmðijj0j;kÞxixjxk

þ 1

135
ð9Rmðijj0j;klÞ � 6Rmðij

0Rj0jklÞ0

� 2Rmðij
nRjnjklÞ0Þxixjxkxl þOðj ~xj5=R5Þ; (2.4)

gmn ¼ �mn þ 1

6
ðRimnj þRinmjÞxixj � 1

36
ðRinjm;k þRinkm;j

þRjnim;k þRknim;j þRknjm;i þRjnkm;iÞxixjxk

þ 1

180
ð9Rmðijjnj;klÞ � 6Rmðij

0RjnjklÞ0

� 2Rmðij
pRjnjklÞpÞxixjxkxl þOðj ~xj5=R5Þ; (2.5)

where the following tidal tensor definitions,

Cij � R0i0j; Cijk � R0ðij0jj;kÞ;

Cijkl � R0ðij0jj;klÞ; Bijk � RkðijÞ0;
(2.6)

have been used. We refer to Cij, Cijk, and Cijkl as the

quadrupole, octupole, and l ¼ 4 tides, respectively. The
quadrupole tide is the electric part Eij of the Riemann

tensor, while Bijk is related to the magnetic part Bij of

the Riemann tensor. The latter further gives rise to the
gravitomagnetic potential [64]

Ak ¼ 2

3
Bijkx

ixj; (2.7)

which will appear in the fluid equations of motion. In the
metric expansion,R is a (smallest) length scale associated
with the inhomogeneity and curvature length scales of the
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surrounding spacetime. Also, the usual notation has been
used [59] that parentheses bracketing indices indicate
symmetrization with respect to all enclosed indices, e.g.,

AðijÞ ¼ 1

2
ðAijþAjiÞ;

AðijkÞ ¼ 1

6
ðAijkþAjikþAjkiþAkjiþAkijþAikjÞ;

(2.8)

excluding, however, any that are enclosed by vertical
strokes.

We see that this coordinate system provides an expan-
sion of the metric provided the Riemann tensor Rabcd and
its derivatives in the FNC are known. Fortunately, the
Riemann tensor and derivatives are only required along
G and need only be known in some coordinate system
(e.g., R����). The two are linked by a coordinate trans-

formation and the original coordinate components of the
tetrad vectors yield the Jacobian matrix along G: �a

� ¼
@X�=@xajG. Thus we easily find

Rabcd ¼ R�����a
��b

��c
��d

�;

Rabcd;e ¼ R����;	�a
��b

��c
��d

��e
	;

Rabcd;ef ¼ R����;	
�a
��b

��c
��d

��e
	�f


:

(2.9)

B. Geodesic motion on Schwarzschild spacetime
and construction of the FNC frame

The coordinates X� can be taken to be standard
Schwarzschild coordinates ðt; r; �; �Þ. The line element is

ds2 ¼ �fdt2 þ f�1dr2 þ r2ðd�2 þ sin 2�d�2Þ; (2.10)

with fðrÞ ¼ 1� 2M=r. Test body orbits have two con-
stants of motion,

� ~E ¼ Ut; ~L ¼ U�; (2.11)

where ~E is the specific orbital energy and ~L is the specific
angular momentum. We confine the motion to the equato-
rial plane and have first-order equations of motion

dt

d�
¼ ~E

fðrÞ ;
d�

d�
¼ ~L

r2
;

�
dr

d�

�
2¼ ~E2�VðrÞ; (2.12)

where V � fð1þ ~L2=r2Þ is the effective potential for
radial motion. Marginally bound orbits have ~E ¼ 1.

To integrate an arbitrary geodesic, we use the parame-
trization of Darwin [65] (see also Ref. [66]). A semilatus
rectum p and eccentricity e are defined, along with a radial
phase angle 
, defined by

rð
Þ ¼ pM

1þ e cos

: (2.13)

Let r1 represent periastron and r2 be apastron. We find

r1 ¼ pM

1þ e
; r2 ¼ pM

1� e
: (2.14)

Either pair of parameters can be used to specify a bound
orbit. Similarly, we can make the connection

~E2 ¼ ðp� 2� 2eÞðp� 2þ 2eÞ
pðp� 3� e2Þ ; (2.15)

~L2 ¼ p2M2

p� 3� e2
: (2.16)

In terms of 
, Eqs. (2.12) take the form

dt

d

¼ p2M

ðp� 2� 2e cos
Þð1þ e cos
Þ2

�
� ðp� 2Þ2 � 4e2

p� 6� 2e cos


�
1=2

; (2.17)

d�

d

¼ p1=2ðp� 6� 2e cos
Þ�1=2; (2.18)

d�

d

¼ p3=2M

ð1þ e cos
Þ2
�

p� 3� e2

p� 6� 2e cos


�
1=2

: (2.19)

The benefit of the curve parameter 
 is in removing
singularities from the integration at radial turning points.
We are thus able to consider tidal encounters of a system
already in a bound orbit or, with suitable redefinition of
parameters, hyperbolic systems with ~E> 1. We are prin-
cipally interested in ~E ¼ 1 orbits. For these we have e ¼ 1
and define r1 � Rp. Then r2 ! 1 and

pM ¼ 2Rp; ~L2 ¼ p2M2

p� 4
: (2.20)

Once an orbit is adopted we can construct the Fermi
normal frame vectors. The vectors must satisfy the ortho-
normality condition �a

��b
�g�� ¼ �ab. After selecting

�0
� ¼ U�, a second natural choice is to take one spatial

vector pointing out of the equatorial plane: �2
� ¼

ð0; 0; 1=r; 0Þ. Following Marck [62], we can construct

two more vectors, ~�1
� and ~�3

�, that make an orthonormal
set with �0

� and �2
�,

�0
� ¼

� ~E
f
;Ur; 0;

~L

r2

�
;

~�1
� ¼

�
Urr

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ~L2

p ;
r ~Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ~L2
p ; 0; 0

�
;

�2
� ¼

�
0; 0;

1

r
; 0

�
;

~�3
� ¼

� ~E ~L

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ~L2

p ;
Ur ~Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ~L2

p ; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ~L2

p

r2

�
:

(2.21)

While orthonormal, it may be shown that ~�1
� and ~�3

�

do not satisfy the parallel transport condition

U�@��a
� þ ��

��U
��a

� ¼ 0: (2.22)
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We can, however, form two new vectors, �1
� and �3

�, via

a purely spatial rotation,

�1
� ¼ ~�1

� cos�� ~�3
� sin�;

�3
� ¼ ~�1

� sin�þ ~�3
� cos�;

(2.23)

and then attempt to enforce the parallel transport condition
on these. This proves possible as long as the frame
precesses at a rate given by

d�

d�
¼ ~E ~L

r2 þ ~L2
: (2.24)

For a chosen value of ~L and ~E ¼ 1, we have an orthonor-
mal tetrad parallel transported along a parabolic geodesic.

C. Tidal tensor components and orbital PN expansion

In Schwarzschild coordinates the components of the
Riemann tensor are

Rtrtr ¼ � 2M

r3
; Rt�t� ¼ Mf

r
;

Rt�t� ¼ Mf

r
sin 2�; Rr�r� ¼ �M

rf
;

Rr�r� ¼ �M

rf
sin 2�; R���� ¼ 2Mrsin 2�;

(2.25)

with other nonzero components following from the
symmetries R���� ¼ �R���� ¼ �R���� ¼ þR����

and with all other elements vanishing. The first and second
covariant derivatives are readily computed. We may then
use Eq. (2.9) to project the Riemann tensor and its cova-
riant derivatives (and thus the various tidal tensors). In fact,
we have a choice. We can use f�0;�1;�2;�3g to express

components in the FNC frame or use f�0; ~�1;�2; ~�3g to cast
tensor components into the noninertial frame. It is conve-
nient to consider both.

To distinguish tidal tensors in the FNC frame from those

in the noninertial frame, the latter carry a tilde: ~Cij, ~Cijk,
~Cijkl, and ~Bijk). To obtain ~Ak, we also have to rotate the

coordinates,

~x1 ¼ x1 cos�þ x3 sin�;

~x2 ¼ x2;

~x3 ¼ �x1 sin�þ x3 cos�:

(2.26)

The tilde frame, while not parallel-propagated, affords a
simpler form for the tidal tensors. The quadrupole tidal
tensor in the noninertial frame is diagonal, with

~C11 ¼ � 2M

r3

�
1þ 3 ~L2

2r2

�
; ~C22 ¼ M

r3

�
1þ 3 ~L2

r2

�
;

~C33 ¼ M

r3
: (2.27)

In contrast, the nonzero components in the FNC frame are

C11 ¼ M

r3

�
ð1� 3cos 2�Þ � 3 ~L2

r2
cos 2�

�
;

C13 ¼ C31 ¼ � 3M

r3

�
1þ ~L2

r2

�
sin� cos�;

C22 ¼ M

r3

�
1þ 3 ~L2

r2

�
;

C33 ¼ M

r3

�
ð1� 3sin 2�Þ � 3 ~L2

r2
sin 2�

�
:

(2.28)

Likewise, the nonzero components of the octupole tidal
tensor are simpler in the noninertial frame,

~C111 ¼ 6M

r4

�
1þ 3 ~L2

2r2

�
V�1
2 ;

~C131 ¼ ~C311 ¼ ~C113 ¼ 4M

r4

~L

r
Ur

�
1þ 5 ~L2

4r2

�
V�1
2 ;

~C122 ¼ ~C212 ¼ ~C221 ¼ � 3M

r4

�
1þ 7 ~L2

3r2

�
V�1
2 ;

~C133 ¼ ~C313 ¼ ~C331 ¼ � 3M

r4

�
1þ 2 ~L2

3r2

�
V�1
2 ;

~C322 ¼ ~C232 ¼ ~C223 ¼ �M

r4

~L

r
Ur

�
1þ 5 ~L2

r2

�
V�1
2 ;

~C333 ¼ � 3M

r4

~L

r
UrV�1

2 ;

(2.29)

where V2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~L2=r2

p
(notation of Ishii et al. [58]). The

octupole tidal tensor in the FNC frame is somewhat more
complicated and we list its components in Appendix B.

We have also obtained the lengthy expressions for ~Cijkl

and Cijkl using MATHEMATICA but in the interests of brevity

omit reproducing them here. We confirm the expressions

found in Ref. [58] with the exception of ~C2233 in Eq. (B22),
which should not have an overall minus sign.
The nonzero components of ~Bijk in the noninertial frame

are given by

~B131 ¼ ~B311 ¼ � ~B232 ¼ � ~B322 ¼ � 1

2
~B113 ¼ 1

2
~B223

¼ � 3M

2r3

~L

r
V2: (2.30)

In the FNC frame we have instead

B131 ¼ B311 ¼ �B232 ¼ �B322 ¼ � 1

2
B113 ¼ 1

2
B223

¼ � 3M

2r3

~L

r
V2 cos�; (2.31)

B122 ¼ �B133 ¼ B212 ¼ � 1

2
B221 ¼ �B313 ¼ 1

2
B331

¼ � 3M

2r3

~L

r
V2 sin�: (2.32)
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From these we derive the components of the gravitomag-
netic potential. In the FNC frame we find

A1 ¼ � 2M

r3

~L

r
V2fx1x3 cos�þ ½ðx3Þ2 � ðx2Þ2� sin�g;

A2 ¼ 2M

r3

~L

r
V2x

2ðx3 cos�� x1 sin�Þ;

A3 ¼ 2M

r3

~L

r
V2f½ðx1Þ2 � ðx2Þ2� cos�þ x1x3 sin�g:

(2.33)

For all but the most relativistic orbits, the spatial
components of the four-velocity will be small compared
to unity, jUrj � jrU�j & 1. We can denote the maximum
velocity scale at pericenter by � and set

� ¼
�
M

Rp

�
1=2

: (2.34)

Assuming � is sufficiently small, we can use it as the basis
for making an orbital PN expansion. The various tidal

tensors have been written in a suggestive way, since ~L=r�
jUîj & Oð�Þ. We can expand the tidal tensors in the fol-
lowing way

Cij ¼ Cð0Þ
ij þ Cð1Þ

ij ; (2.35)

Cijk ¼ Cð0Þ
ijk þ Cð1Þ

ijk þ Cð2Þ
ijk þ 	 	 	 ; (2.36)

Cijkl ¼ Cð0Þ
ijkl þ Cð1Þ

ijkl þ Cð2Þ
ijkl þ 	 	 	 ; (2.37)

where the leading terms represent the Newtonian limit

(e.g., Cð0Þ
ij ¼ @i@j�bh, Cð0Þ

ijk ¼ @i@j@k�bh, etc). Higher-

order terms (CðnÞ
ij...) are orbital PN corrections and are

Oð�2nÞ relative to the Newtonian limit. A similar story
holds for Bijk and Ak except their expansions start atOð�Þ,

Bijk ¼ Bð0:5Þ
ijk þ Bð1:5Þ

ijk þ 	 	 	 ; (2.38)

Ak ¼ Að0:5Þ
k þ Að1:5Þ

k þ 	 	 	 (2.39)

We see that we could reexpress the metric given in
Eqs. (2.3)–(2.5) as simultaneous power series in � ¼
j ~xj=R and �.

D. Self-gravity of the star combined with the
external tidal field

Ishii et al. [58] derived the third- and fourth-order terms
in the tidal field, which are summarized above, and used
the expansion along with a Newtonian stellar model to
study tidal effects on a star in circular orbit about a Kerr
black hole. In this section and the next we provide a
justification for use of Newtonian self-gravity and hydro-
dynamics (see also Ref. [67]), estimate the resulting errors,
and determine what parts of the tidal field expansion

should be consistently retained. This approximation is
adequate for main sequence stars and white dwarfs, but
much less so for neutron stars.
Consider a star of mass M� that encounters a more

massive black hole of mass M. We are concerned with
mass ratios in the range

� � M�
M

� 10�5–10�3; (2.40)

corresponding to black holes with massesM�103–105M�.
Let the stellar radius be R�. The strength of the tidal
encounter is determined by

� ¼
�
R3
p

M

M�
R3�

�
1=2

: (2.41)

In this paper we restrict attention to stars that just reach the
tidal radius at pericenter and disrupt (� ’ 1) and to weaker,
partially disruptive encounters (�� 2–6).
The metric given in Eqs. (2.3)–(2.5) would serve to

compute near G motion of test bodies or of a fluid of
negligible mass. A star with finite mass will necessarily
alter the geometry. Even for a star with strong gravity, the
tidal field expansion is still useful provided the star is
sufficiently isolated. This requires a buffer region whose
radius is small compared to the characteristic length scale
of the tidal field but large compared to the compact object,
so that self-gravity is also weak within the buffer region
[64]. If the star is approximately Newtonian, the latter
condition is satisfied throughout the star and the self-
gravity (��) and tidal fields will linearly superpose to
lowest order and can be computed separately. We only
require then that the domain of interest have a size
L * R� small compared to the characteristic length scale
of the tidal field. The assumption (2.40) on the mass ratio
makes this possible, since

R�
rðtÞ &

R�
Rp

¼ �1=3��2=3 
 1: (2.42)

Likewise, the fluid is assumed to be well modeled by
Newtonian hydrodynamics (as seen in the FNC frame).
Prior to tidal encounter, the star has vanishing or minimal
internal fluid velocities in this frame. The internal stellar
sound speed as and stresses will be small and comparable
to the self-gravity,

a2s ’ p

	
& j��j ’ "2 ¼ M�

R�

 1; (2.43)

where 	 is the rest mass density, p is the isotropic pressure,
and " is the (stellar) PN velocity scale. Post encounter,
fluid velocities will also be small (e.g., a few multiples of
stellar escape speed jvij ’ ") and subrelativistic provided
the region of interest is restricted in size. In our models, we
take the domain size to be

L & 8� R�: (2.44)
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For a star immersed in an external tidal field, we expect
the gravitational field to take the form

gab ¼ �ab þ htidalab þ h�ab þ hICab: (2.45)

The self-gravity h�ab depends only on the Newtonian

potential �� and is weak, jh�abj 
 1. The tidal field htidalab ,

as seen in FNC, is determined by Eqs. (2.3)–(2.5) and for
j ~xj & R is also weak. The full metric must satisfy the
Einstein field equations and their nonlinearity requires
that a term hICab be present that represents the field interac-

tion and higher-order self-gravity corrections. In the ab-
sence of the tidal field we would have

h�00 ¼�2�� þOð"4Þ; h�0i ¼Oð"3Þ; h�ij ¼Oð"2Þ;
(2.46)

where the Newtonian potential satisfies

r2�� ¼ 4�	; (2.47)

and where the missing corrections are (stellar) 1PN terms.
Neglect of these corrections sets a floor on the accuracy of
our method. In white dwarf/IMBH encounters, most white
dwarfs will have M�=R� ’ 10�4, so that " ’ 0:01. Thus,
our method has intrinsic relative errors at the level of 10�4.
In what follows, in analyzing hICab and h

tidal
ab , we neglect any

term whose contribution to the fluid acceleration is at or
below this error level.

We have defined two small velocity parameters, � and ".
These two scales are not necessarily comparable. They are
related by

� ¼ "��1=3��1=3; (2.48)

and for a small mass ratio � we find � � ". As an
example, in our application with " ’ 10�2, if we take
� ¼ 10�4 and � ¼ 1, we have a much higher orbital
velocity scale: � ’ 0:22. This highlights one of the real
advantages of Fermi normal coordinates. We could never
use Newtonian hydrodynamics in a frame fixed with
respect to the black hole. In combining self-gravity and
the tidal field, the simultaneous expansions in � and "
make (orbital) and (stellar) PN contributions, respectively.

The external tidal field has a radius of curvature R, an
inhomogeneity scale L, and a time scale for changes in
curvatureT [64]. Each of these scales is time dependent as
viewed from the FNC frame center. They reach their
minima at pericenter

L ’ Rp; R ’ T ’
�
R3
p

M

�
1=2

; (2.49)

where L=T ¼ �. The tidal field is dominated by the

quadrupole moment, which reaches a maximum of jCijj ’
jCð0Þ

ij j ’ R�2 & M=R3
p. The star’s self-gravity is domi-

nated by its mass monopole. At pericenter, for encounters
near threshold for disruption (� ’ 1), there is a near

balance between the quadrupole tidal term and the star’s
gravitational potential,

jCð0Þ
ij x

ixjj ’ M

R3
p

R2� ¼ "2��2 & "2 ’ j��j: (2.50)

The size of the gravitational field correction hICab can now
be estimated without a full calculation. Substituting (2.45)
into the Einstein field equations would yield a nonlinear
contribution no larger than

jhICabj & jh�00jjhtidal00 j ’ M�
R�

M

R3
p

R2� ’ "4��2 & "4: (2.51)

Thus the interaction terms are formally at or below the size
of the (stellar) 1PN corrections, which we have already
chosen to neglect, and can be dropped as well.
At our level of approximation the metric in (2.45) is just

the sum of Newtonian self-gravity and the FNC tidal field,
but with two caveats. The first involves the assumption of a
stationary black hole background. While suitable for test-
body motion, the finite mass of the white dwarf will cause
the black hole to wobble relative to a common center. This
Oð�Þ correction is easily dealt with in Newtonian mechan-
ics. In relativity one could in principle treat this effect as a
conservative perturbation in the black hole’s gravitational
field [68] and correct the motion of the FNC frame and the
tidal terms. Alternatively, we could use a PN calculation of
the two-body orbit, and then calculate the tidal field. We
have done neither, which introduces an added small source
of relative error of magnitude ��.
The second caveat is that not all of the terms in the tidal

field in (2.3)–(2.5) are significant given our error floor. The
magnitudes attained by some of the contributions to g00 are
as follows:

jCð0Þ
ij x

ixjj & M

R3
p

R2� ¼ "2��2; (2.52)

jCð1Þ
ij x

ixjj & M

R3
p

R2��2 ¼ "4��2=3��2; (2.53)

jCð0Þ
ijkx

ixjxkj & M

R4
p

R3� ¼ "2�1=3��8=3; (2.54)

jCð1Þ
ijkx

ixjxkj & M

R4
p

R3��2 ¼ "4��1=3��10=3; (2.55)

jCð2Þ
ijkx

ixjxkj & M

R4
p

R3��4 ¼ "4ð��1"2Þ��4; (2.56)

jCð0Þ
ijklx

ixjxkxlj & M

R5
p

R4� ¼ "2�2=3��10=3: (2.57)

These are the only terms that exceed the error floor of "4

(where in all cases we use � ¼ 1 to ascertain significance).
The (orbital) 2PN part of the octupole tide deserves
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mention. It is worth retaining only if � 
 "2, which is
possible for black holes on the higher end of our mass
range. Missing from the list is the (orbital) 1PN contribu-
tion to the l ¼ 4 tide, which is at the level of the (stellar)
1PN error and therefore negligible. The same is true of the
nonlinear (squared Riemann tensor) term CðijCklÞxixjxkxl.
The squared term involving Bijk is well below "4.

The first (quadrupole) term in gmn (depending upon
Rimnj) is of the same magnitude as the Newtonian quadru-

pole tidal term in g00, i.e., &"2��2. It is therefore at the
level of the discarded (stellar) 1PN term, and it and all of
the rest of the terms in the expansion of gmn are negligible.

The leading term in g0m can attain a magnitude of

jBð0:5Þ
ijm xixjj & M

R3
p

R2�� ¼ "3��1=3��7=3: (2.58)

Because � 
 1 this term is larger than the (stellar) 1PN
contribution and provides the possibility that the gravito-
magnetic potential derived from it may be significant. The
next term has magnitude

jBð1:5Þ
ijm xixjj & M

R3
p

R2��3 ¼ "3ð��1"2Þ��3: (2.59)

Surprisingly, this (orbital) 1PN correction may also be
significant at the high end of the black hole mass range
where � 
 "2. All of the other terms in the expansion of
g0m are negligible.

We can lump all of the surviving parts of htidal00 into a tidal

potential �tidal, given by

�tidal ¼ 1

2
Cð0Þ
ij x

ixjþ1

2
Cð1Þ
ij x

ixjþ1

6
Cð0Þ
ijkx

ixjxkþ1

6
Cð1Þ
ijkx

ixjxk

þ1

6
Cð2Þ
ijkx

ixjxkþ 1

24
Cð0Þ
ijklx

ixjxkxl: (2.60)

The surviving parts of htidal0m contribute to the gravitomag-

netic potential

Am ¼ 2

3
Bð0:5Þ
ijm xixj þ 2

3
Bð1:5Þ
ijm xixj: (2.61)

These are the only tidal terms we need in assembling the
final form of the metric

g00 ¼ �1� 2�� � 2�tidal þOð"4Þ;
g0m ¼ Am þOð"3Þ; gmn ¼ �mn þOð"2Þ:

(2.62)

This is the same conclusion as Ishii et al. [58], except that
we have identified those terms in the FNC metric that
should be consistently retained.

E. Fluid equations and retained tidal terms

We assume a perfect fluid with stress-energy tensor

Tab ¼ ð	þ 	�þ pÞuaub þ pgab; (2.63)

where� is the specific energy. The four velocity ua as well
as Tab are assumed expressed in the FNC frame. The fluid
satisfies

Tab
;b ¼ 0; ð	uaÞ;a ¼ 0: (2.64)

We simplify these equations using the weak field
expansion (2.62) and a slow motion approximation with
the two velocity expansion parameters " and �. The usual
conserved mass density 	� ¼ 	

ffiffiffiffiffiffiffi�g
p

u0 satisfies an exact

conservation law, while 	 satisfies

@	

@�
þ @

@xk
ð	vkÞ ¼ 0þOð	"3=LÞ: (2.65)

Here vk ¼ uk=u0. To obtain the fluid equation of motion
(Euler equation), we note first that under our assumptions
(i.e., FNC frame, j ~xj & L, � * 1) we can still expect

T0i ¼ 	vi þOð	"3Þ; (2.66)

Tij ¼ 	vivj þ �ijpþOð	"4Þ: (2.67)

Neglect of the (stellar) 1PN corrections sets the floor on
accuracy. We then expand the connection, retaining only
terms that will exceed the error floor. We find

�i
00 ¼ �ij @

@xj
ð�� þ�tidalÞ þ �ij @

@�
Aj þOð"4=LÞ;

�i
0k ¼

1

2
�ij

�
@Aj

@xk
� @Ak

@xj

�
þOð"3=LÞ; (2.68)

and �i
jk ¼ Oð"2=LÞ, which is negligible. The fluid equa-

tion then follows,

@vi

@�
þvk@vi

@xk
þ 1

	

@p

@xi
þ@��

@xi
¼atidali þOð"4=LÞ; (2.69)

with tidal acceleration

atidali ¼ �@�tidal

@xi
� @Ai

@�
þ vk

�
@Ak

@xi
� @Ai

@xk

�
: (2.70)

The fluid equation given here is identical to that used by
Ishii et al. [58] (see also Ref. [67]) with the exception that we
differ in the form of the tidal and gravitomagnetic potentials.
The truncated forms of these potentials expressed in equa-
tions (2.60) and (2.61) contain only those terms that should
be consistently retained given our level of approximation.
Prior to tidal encounter the stellar gravitational accel-

eration can be estimated by jR�r��j ’ "2. For a white
dwarf this dimensionless measure is of order ’ 10�4. The
(stellar) 1PN errors will be at a level of Oð"4Þ, or ’ 10�8.
In Fig. 1 we show the order-of-magnitude size of the
various tidal acceleration terms (at pericenter and assum-
ing � ’ 1) as functions of mass ratio �. The mass ratio
runs from � ¼ 10�3 down to just less than 10�5, where a
white dwarf would cross the horizon before disrupting. The
two largest acceleration contributions, independent of �,
are due to the stellar self-gravity and the Newtonian part of
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the quadrupole tide, Cð0Þ
ij . These are denoted by WD(0PN)

and Tðl ¼ 2; 0PNÞ, respectively. The next two most im-

portant terms are the Newtonian octupole Cð0Þ
ijk ½Tðl ¼

3; 0PNÞ� and the (orbital) 1PN correction ½Tðl ¼ 2; 1PNÞ�
to the quadrupole tide. We plot also the Newtonian part

of the l ¼ 4 tide (Cð0Þ
ijkl) and first and second orbital PN

corrections to the octupole tide. Also plotted are upper
limits on the two (potentially) significant parts of the
gravitomagnetic potential. The upper limits are only
achieved if we assume the star reaches breakup angular
velocity. All other terms in the tidal field are ignored since
they will contribute accelerations at or below the magni-
tude of neglected (stellar) 1PN corrections. The error floor
is somewhat higher for �> 10�4, as we have not ac-
counted for nonstationarity of the black hole background.

III. INITIALWHITE DWARF MODEL AND
ORBITS APPROACHING AN IMBH

We now begin to apply the analytic approach (Sec. II) and
our numerical method (see Appendix A) to investigate tidal
interactions between a white dwarf and IMBHs in the mass
rangeM� 500 to 1:7� 104M�. Only encounters that are at
the threshold of disruption or weaker (� ’ 1–6) are consid-
ered in this paper. In this section we give the properties of
the white dwarf model and the range of inbound orbits.

A. Stellar model

The initial white dwarf is modeled as a nonrotating
polytrope. The Lane-Emden equation with polytropic

index n ¼ 3=2 provides initial density and pressure pro-
files, which are then mapped onto a three-dimensional
Cartesian grid. The adiabatic index is taken to be � ¼
5=3, making the star neutrally stable against convection.
We choose a mass M� ¼ 0:64M� and radius R� ¼ 8:62�
108 cm, from which follows the remaining stellar proper-
ties. These properties are assembled in Table I. They
include the central density 	c, central pressure pc, and
stellar total energy Etot ¼ �ð3=7ÞGM2�=R� ¼ �Eint ¼
1
2Eg. We also calculate the moment of inertia I� ¼
1
3

R
xixi	d

3x and the estimated break-up angular momen-

tum L� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM3�R�

p
. The fundamental radial pulsation

period is given by �0 ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3�=ð�M�Þ

p
, where � ¼

2:712 results from our choice of n ¼ 3=2 and � ¼ 5=3
[69]. A cold, degenerate white dwarf equation of state is
not used, though we note the central density 	c � 3�
106 g cm�3 implies relativistic degeneracy would play a
role. The size of the dimensionless gravitational potential
(’ 10�4) determines the accuracy of our formalism
(Sec. II D).
We investigate white dwarf–black hole encounters using

three different mass ratios � � M�=M: 1:28� 10�3,
4:21� 10�4, and 3:77� 10�5, corresponding to IMBH
masses of M ¼ 500M�, M ¼ 1:52� 103M�, and M ¼
1:70� 104M�, respectively. The code uses black hole
mass M as the fundamental unit of mass, length, and

FIG. 1. Scaling of acceleration terms from an expansion of the
combined tidal and self-gravity fields. The dominant two terms
are the Newtonian self-gravity and Newtonian quadrupole tide.
Higher tidal moments (l ¼ 3 and l ¼ 4) are shown, as well as
orbital PN corrections. Also displayed is the upper limit on the
gravitomagnetic acceleration. Neglect of stellar 1PN corrections
sets a floor on accuracy, as does neglect of the motion of the
black hole.

TABLE I. Properties of polytropic white dwarf model.
Fundamental parameters are the mass M�, radius R�, polytropic
index n ¼ 3=2, and adiabatic index � ¼ 5=3.

White dwarf parameters Units

M� 0.64 M�
R� 8:62� 108 cm

L� 3:44� 1050 g cm2 s�1

I� 9:67� 1049 g cm2

�� 1:10� 10�4

	c 2:84� 106 g cm�3

pc 1:51� 1023 erg cm�3

�0 1:05� 101 s

Etot �5:40� 1049 erg

TABLE II. Stellar parameters in terms of black hole mass M
for the three mass ratios � ¼ M�=M studied.

� 1:28� 10�3 4:21� 10�4 3:77� 10�5 Units

M� 1:28� 10�3 4:21� 10�4 3:77� 10�5 M

R� 1:17� 101 3.84 3:44� 10�1 M

L� 1:56� 10�4 1:69� 10�5 1:36� 10�7 M2

I� 1:78� 10�2 6:35� 10�4 4:56� 10�7 M3

�� 1:10� 10�4 1:10� 10�4 1:10� 10�4

	c 1:15� 10�6 1:06� 10�5 1:33� 10�3 M�2

pc 6:80� 10�11 6:28� 10�10 7:85� 10�8 M�2

�0 4:25� 103 1:40� 103 1:25� 102 M

Etot �6:00� 10�8 �1:98� 10�8 �1:77� 10�9 M
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time. The stellar parameters, when written in terms of M,
therefore are functions of �. Their values are gathered in
Table II.

B. Orbits

The duration of each simulation is set equal to 10�0, with
the star reaching pericenter at � ¼ 0. At pericenter r ¼ Rp

the radial phase is 
 ¼ 0. The starting separation Ri is
chosen, which determines 
i and the azimuthal angle �i.
In the FNC frame, the black hole appears to swing about
through an angle �ð�Þ. The initial orientation of the frame
can be freely chosen. The geodesic equations and the
Eq. (2.24) for � are integrated. In the black hole frame
the FNC frame vectors precess by an angle ’ that is the
difference between � and �. These orbital parameters
and the cumulative frame precession �’ are summarized
in Table III.
Figure 2 plots trajectories (as seen in the black hole

frame in Schwarzschild coordinates) of the FNC frame
center for a pair of � ¼ 1 encounters. Relativistic apsidal
advance and frame precession are evident in passing both
the M ¼ 500M� (left) and 17; 000M� (right) black holes,
though both effects are more pronounced in the latter case.
Plotted for comparison is the Newtonian parabolic orbit
with the same pericentric distance.

C. Hydrodynamic parameters, resolution,
and runtimes

The PPMLR hydro method (see Appendix A), like most
grid-based schemes, requires that some tenuous atmosphere
surround the star. The initial density 	atm and pressure patm

are set low enough to not affect the dynamics of the star. To
ensure this, we choose the atmospheric density to be 	atm ¼
	c � 10�15. To set the pressure, we first assume a value for
the initial atmospheric sound speed, taking it to be equal to
the virial velocity at r ¼ 2R�: c2atm ¼ M�=ð2R�Þ. The at-
mospheric pressure is then set equal to patm ¼ c2atm	atm=�.
It is also useful in the hydrodynamic scheme to set

minimum values for the density and pressure (	floor; pfloor)

TABLE III. Orbital parameters for different mass ratios � and
tidal parameters �. The pericentric distance Rp and starting

distance Ri are given. Also shown is the cumulative geodetic
frame precession experienced in the simulations.

� � ~L½M� Rp½M� Ri½M� �’

1:28� 10�3 1 14.8 107.5 1167 4:48e�02

	 	 	 2 18.6 170.6 1120 2:79e�02

	 	 	 3 21.2 223.6 1086 2:12e�02

	 	 	 4 23.4 270.9 1060 1:73e�02

	 	 	 5 25.2 314.3 1041 1:48e�02

	 	 	 6 26.7 354.9 1027 1:30e�02

4:21� 10�4 1 10.3 51.2 555.4 9:64e�02

	 	 	 2 12.9 81.3 532.8 5:95e�02

	 	 	 3 14.7 106.6 516.7 4:49e�02

	 	 	 4 16.2 129.1 504.7 3:67e�02

	 	 	 5 17.4 149.8 495.6 3:13e�02

	 	 	 6 18.5 169.2 488.8 2:75e�02

3:77� 10�5 1 5.0 10.2 109.0 6:07e�01

	 	 	 2 6.1 16.3 104.9 3:40e�01

	 	 	 3 6.9 21.3 101.8 2:48e�01

	 	 	 4 7.5 25.8 99.6 1:99e�01

	 	 	 5 8.0 30.0 97.9 1:68e�01

	 	 	 6 8.5 33.8 96.6 1:46e�01

FIG. 2 (color online). Trajectories followed by the FNC domain for � ¼ 1 encounters. Positions are given in units of black hole mass
M. FNC domain motion for � ¼ 1:28� 10�3 is on the left and � ¼ 3:77� 10�5 is on the right. Relativistic precession of the frame
through an angle �’ is indicated in the upper right corner (more pronounced for the Rp ’ 10M case). For reference the Newtonian

parabolic orbit with the same pericentric distance is shown as the dashed curve.
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that cannot be breached. Such a floor sometimes proves
necessary, as a strong shock wave encountering another
large discontinuity in density might otherwise yield a zone
with negative density or pressure. The floor density and
pressure can be set quite low. We take 	floor ¼ 	c �
10�25 and pfloor ¼ c2atm	floor=�.

While an elongated domain might be used, all of our
simulations involved a box with equal side lengths and an
evenly-spaced Cartesian grid. We tested the degree of
convergence of all of our results by using meshes with
1283, 2563, or 5123 total numbers of zones. The length of
the side of the computational domain was set to L ¼ 4R�
for stellar equilibrium tests and weak (� ¼ 4–6) encoun-
ters. For stronger or disruptive encounters the domain is
taken to be larger, with L ¼ 8R�. Resolution depends
primarily on the number of zones across the radius of the
initial star. We refer to the different resolutions by �A, �B,
and �C, with �A ¼ R�=32, �B ¼ R�=64, �C ¼ R�=128.
Also, zero-gradient outflow boundary conditions are used
on the domain surface.

The domain is split into slabs for computing on a cluster.
For simplicity we took the slabs to be one-zone thick sheets
and allocated one cluster core per sheet. Thus the number
of cores is locked to the number of zones in one direction.
Our highest resolution runs used 512 processors. At this
resolution simulations lasting ten dynamical times required
between 88 and 127 hours of wall-clock time.

D. Equilibrium configurations and tests
of hydro plus gravity

An important test is how close to exact stellar
equilibrium can three-dimensional simulations be held.
Equilibrium models serve as a control, especially for
weak tidal encounters. The Lane-Emden equation is
integrated with a fine one-dimensional mesh. The resulting
hydrodynamic radial profiles are mapped onto the three-
dimensional Cartesian mesh of chosen resolution.
The Poisson solver (see Appendix A) is then called
to find the self-gravitational potential in the three-
dimensional domain.

The resulting stellar model is found to be close to but not
exactly in equilibrium. The top panel of Fig. 3 reveals a
small fractional oscillation and drift in the central density.
Three main sources of error contribute to breaking equi-
librium. First, there is discretization error in mapping the
well-resolved one-dimensional Lane-Emden radial profiles
onto a three-dimensional Cartesian grid. Second, there are
inaccuracies in the gravitational field obtained with the
Poisson solver. These two effects combine to place the
initial star slightly out of hydrostatic equilibrium and in
response the star oscillates, primarily in the fundamental
radial mode (Fig. 3). Third, there is a weak spurious
generation of entropy within the star, a byproduct of the
PPM algorithm (and many other hydro schemes [70]). In
PPM, any gradient in density and pressure, even when

balanced by gravitational acceleration in hydrostatic equi-
librium, is viewed by the method as a discontinuity, or
small shock. Small secular increases in entropy occur,
leading to slight expansion of the star and decrease in
central density. As Fig. 3 shows, at low resolution the
effect is an average decrease in density of �0:5% over
five to ten dynamical times.
Both of these effects are reduced with higher resolution.

In these tests we used domains with 1283, 2563, and 5123

zones. In each case the domain length was four times the
radius of the star, L ¼ 4R�, and so the three resolutions
considered had 32, 64, and 128 zones per R�. Based on this
test, we take the lowest resolution of interest to be�A, with
our best results requiring resolutions of �B and �C. At the
higher resolutions we hold total energy conservation to
&10�5 and the equilibrium models have effectively no
tendency to generate spurious angular momentum.

FIG. 3. Tests of hydrostatic equilibrium with a polytropic star
having n ¼ 3=2 and � ¼ 5=3. In the top panel we plot the
central density 	cð�Þ as a function of time, normalized by its
initial value. The time � on the horizontal axis (shared by all
three panels) is given in units of the fundamental radial pulsation
period �0. Low amplitude pulsations are evident at exactly the
F-mode period, which last >10 periods. Models with three
different resolutions, �A, �B, �C (see text) are compared.
Convergence to equilibrium is evident. Small secular drift in
the central density occurs, a result of weak spurious entropy
generation in the hydro code. The second panel plots fractional
change in total energy Etotð�Þ. Higher resolution models con-
serve energy to & 10�5. The bottom panel plots the change in
total spin angular momentum Ltotð�Þ scaled relative to a dimen-
sional estimate of break-up angular momentum L�.
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During a tidal encounter, however, a star will be set into
nonradial (and radial) oscillations. The amplitude and
persistence of these oscillations is an important result to
be derived from the numerical simulations. The tests in this
section show that stellar pulsations are well maintained by
our code even at modest resolution. The radial mode is
seen to damp in amplitude over time but with Q ’ 40.

IV. HYDRODYNAMIC FEATURES AND MASS
STRIPPING IN WEAK TIDAL ENCOUNTERS

In this section we consider some of the qualitative hydro-
dynamic features that are seen in tidal encounters, focusing
especially on our inclusion of a higher-order tidal moment.
In addition, we calculate and show the amount of mass loss
that occurs as a function of parameter � for weak tidal
encounters between a white dwarf and an IMBH.

A. Octupole tidal term

In general our simulations could include all of the tidal
acceleration terms identified as potentially significant in
Sec. II. However, it is useful to turn various terms on or off
and compare simulations to see the resulting effects. One
result of doing so is that we find that our mass ratios are too

small to make inclusion of the l ¼ 4 tide worthwhile.
Consequently we have not included l ¼ 4 in any of the
results in this paper. The same is not true of the octupole
tide (l ¼ 3), which generates interesting physical effects.
In Figs. 4 and 5 we consider encounters at our most

extreme mass ratio (� ¼ 3:77� 10�5) and with encounter
strengths � ¼ 3 and � ¼ 1, respectively. In these simula-
tions we have included the full tidal field. With � ¼ 3 the
star is tidally disturbed with a small fraction of mass stripped
from the star, as can be seen at a sequence of times in Fig. 4.
In contrast, the star is fully tidally disrupted when � ¼ 1, as
seen in Fig. 5. Similar but not identical results from high-
resolution mesh-based calculations can be found in
Refs. [42–44]. The primary difference is our inclusion of
the octupole tidal term, whose effect shows up in the asym-
metry of the tidal lobes in Fig. 4 and the deflection of the
CM that is also evident in both Figs. 4 and 5.
Figure 6 even more clearly shows the effects of the

octupole tide. In this case we plot an � ¼ 3 encounter
with less extreme mass ratio � ¼ 1:28� 10�3. The full
tidal field is incorporated in the simulation shown in the
right panel, while the left panel shows the same simulation
except for switching off the octupole tide. The arrow repre-
sents the direction from the black hole to the origin of the

FIG. 4 (color online). Density contour plots of an � ¼ 3 encounter with � ¼ 3:77� 10�5. Positions are in units of R�. The contour
lines are of log 10	, ranging from �8 to �2 in steps of 0.5 (as seen in the equatorial plane). Besides the Newtonian quadrupole, the
octupole tidal term and (orbital) relativistic correction to the quadrupole term have been included in the calculation.
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FNC frame. For contrast Fig. 7 shows on the right side an
� ¼ 3 encounter at the same dynamical time but from a
simulation with our most extreme mass ratio. The asymme-
try is still present but much less pronounced, as reference to
Fig. 1 and the analysis of Sec. II E would suggest.

B. Mass loss in weak tidal encounters

Weak tidal encounters may result as stars diffuse into the
loss cone of a SMBH or IMBH. Successive passages may
heat the star and the induced oscillations may be resonant

with the orbit [36]. Gravitational bremsstrahlung may be

important as well for compact systems. The combination of

these effects spurs a reduction in � with each passage.

Another important effect of weak encounters is partial

mass stripping. In the absence of competing effects, any

mass loss will be reflected in the star having a lower

average central density and larger average radius during

the next encounter. This effect in turn shifts � to a lower

value and enhances the likelihood of disruption [56].
We have calculated the amount of mass loss in a set of

weak tidal encounters. In Fig. 8, the fractional amount of

mass stripped from the star and lost from the computational
domain is given for a range of encounter parameters from
� ¼ 1 through � ¼ 3. (The � ¼ 4 case was computed as
well but the measured mass loss fraction of ’10�10 may be
low enough to be affected by the ‘‘atmosphere’’ we are

FIG. 5 (color online). Density contour plots of an � ¼ 1 encounter with � ¼ 3:77� 10�5. Positions are in units of R�. The
simulation begins at � ¼ �5�0, reaches pericenter at � ¼ 0, and ends at � ¼ 5�0. The contour lines are given for log 10	 from �8 to
�2 in steps of 0.5. Note slight deflection of the CM in this and preceding figure.

FIG. 6 (color online). Contour plots of density of the star in the x-y plane at � ¼ 1:7�0 for an � ¼ 3 encounter with � ¼
1:28� 10�3. Positions are in units of R�. The contour lines are given for log 10	 from �11 to �5 in steps of 0.5. Comparison is made
between a simulation with only the quadrupole (l ¼ 2) tidal terms (left) and one with both the quadrupole and octupole (l ¼ 3) tidal
terms included (right). Resolution of these simulations is �B. The effect of the octupole tidal terms in driving a deflection of the CM is
evident in the asymmetry of the tidal lobes.
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forced to add to the hydrodynamic simulations.) The
� ¼ 1 case involved complete disruption. In each case
we held the mass ratio fixed at � ¼ 1:28� 10�3.

For � * 2 (Rp * 1:6Rt) the amount of mass loss is

small enough that multiple passages with partial stripping
should occur. If the star were not heated (but see Sec. V),
then the response of the mean radius would be determined
by �R�=R� ¼ �ð1=3Þ�M�=M� and ��=� ¼ �M�=M�.
The 1.0% mass loss at � ¼ 2:5, for example, would induce

a radius increase of only 0.3% and a drop in � of 1%.
At � ¼ 2 however, the mass loss is 10% and the mean
radius increase would be 3%, leading to a 10% drop in �.
As we will show in the next section, shock heating is
important as well and the effects of mass loss just set a
lower bound on effective reduction of �.

V. TIDAL ENERGY DEPOSITION, RELATIVISTIC
EFFECTS, AND CAPTURE

In this section we discuss the transfer of energy
into the star that occurs as a result of tidal interaction.
This topic has been addressed previously (see e.g.,
Refs. [33,42,71,72]). We consider the subject again for
several reasons. First, our FNC system is tailored to follow
small relative motions with respect to the initial timelike
geodesic. Second, the FNC expansion we use retains
higher-order moments and orbital relativistic effects.
Finally, we are able to apply relatively high resolution
(5123) and assess convergence of our numerical results.
The equation of motion (2.69) of the fluid in the FNC

frame is nearly Newtonian. As such we can carry over
much of the standard understanding of tidal heating [71]
with only minimal modification. If we contract Eqs. (2.69)
and (2.70) with vi, use the continuity equation and first law
of thermodynamics, we obtain the equation of energy
conservation of the star (as seen in the FNC frame)

@

@�

�
	�þ1

2
	v2

�
þ @

@xk

�
	vk

�
�þp

	
þ1

2
v2

��
þ	vi@��

@xi

¼�	vi@�tidal

@xi
�	vi@Ai

@�
: (5.1)

FIG. 7 (color online). An � ¼ 3 encounter with more extreme mass ratio � ¼ 3:77� 10�5. Results shown at time � ¼ 1:7�0. On
the left, position of the frame center is marked on the orbit. On the right are shown density contours in the x-y plane. The contour lines
are given for log 10	 from�8 to�2 in steps of 0.5. The quadrupole and octupole tidal terms have been included. For this more extreme
mass ratio, the effects of the octupole tide are less pronounced (compare to Fig. 6).

FIG. 8. Fraction of mass stripped from white dwarf as a
function of � for weak tidal encounters. In each simulation the
mass ratio was fixed at � ¼ 1:28� 10�3 and we plot the
fraction of mass lost from the domain at � ¼ 5�0 (the end of
the simulations). The fraction of mass lost for � ¼ 4 was also
computed and found to be ’ 10�10 (off scale).
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Integrating over a volume encompassing all of the mate-
rial, we can define the internal energy U� ¼

R
	�d3x,

self-gravitational energy �� ¼ 1
2

R
	��d3x, and kinetic

energy T� ¼ 1
2

R
	v2d3x. The equation of energy conser-

vation of the star is then

dE�
d�

¼ �
Z

	vi @�tidal

@xi
d3x�

Z
	vi @Ai

@�
d3x; (5.2)

where the total energy E� ¼ U� þ�� þ T� would be
conserved in the absence of tides. We have assumed that
the fluid remains adiabatic (no radiative cooling) and
that no mass or energy fluxes through a sufficiently large
bounding surface.

To gain a physical picture, imagine dropping the
gravitomagnetic potential Ai (2.61) and retaining only
Newtonian terms in the tidal potential �tidal (2.60). Then
the tidal energy transfer [71] would reduce to

dE�
d�

¼ � 1

2
Cð0Þ
ij

_Iij � 1

6
Cð0Þ
ijk

_Iijk þ 	 	 	 ; (5.3)

where Iij ¼
R
	xixjd

3x and Iijk ¼
R
	xixjxkd

3x are the

second and third mass moments, dot refers to the time
derivative, and of course only the trace-free parts of Iij and

Iijk contribute. While our code calculates all of the

moments and relativistic corrections we enumerated in
Sec. II, the quadrupole tide still dominates the energy
transfer.

A. Total energy deposition and comparison
with linear theory

A series of simulations were run with a fixed mass ratio
of � ¼ 1:28� 10�3 but with varying encounter parame-
ters (� ¼ 1 through � ¼ 6) and at three different resolu-
tions. In each case we measured the final total energy of the
configuration as seen in the FNC frame and compared it to
the initial energy of the inbound star. The tidal field was
seen to do work on the star and the gain in energy is
depicted in Fig. 9.

The energy gain is also tabulated in Table IV, but ex-
pressed as a ratio to the magnitude of the total energy
Etot ¼ �ð3=7ÞGM2�=R� of the initial star. We see that for
� ¼ 1 the star has come apart. Progressively less energy is
deposited for weaker encounters. By comparing simula-
tions made at three different resolutions it is apparent that
the results for � ¼ 1 through � ¼ 5 have converged. The
result for � ¼ 6 is less well known. In any event, we
appear able to determine accurately fractional energy dep-
ositions as small as 10�4.

Energy observed in the simulations to be deposited onto
the star can be compared to the predictions of linear theory.
Press and Teukolsky [33] and Lee and Ostriker [72] calcu-
lated the amount of energy that a time-dependent linear
perturbation in the gravitational potential would induce via
the excitation of nonradial modes. The interaction is

decomposed into spherical harmonics, and each tidal mul-
tipole will excite the corresponding lowest frequency non-
radial l mode. The total energy deposited is a sum over
each l mode contribution and is given by

FIG. 9 (color online). Measured energy deposition versus en-
counter parameter � and comparison with linear theory. Each
simulation was made with � ¼ 1:28� 10�3. The points indicate
measured fractional increases in the total energy of the star at the
end of each simulation. Results are given at three different reso-
lutions for each �. The measured energies are numerically well
converged for � ¼ 1 through � ¼ 4, and probably � ¼ 5 as well.
Our range of resolution is not adequate to measure the deposited
energy for � ¼ 6, which is at the level of 10�5 of the initial stellar
energy. The solid curve gives the prediction of linear theory for the
contributions of the quadrupole (l ¼ 2) and octupole tides and the
nonradial oscillations they induce. The dotted curve is the pre-
diction for the octupole (l ¼ 3) tide alone, which is two orders of
magnitude smaller than the quadrupole at this mass ratio.

TABLE IV. Energy deposited into the star or debris as a
function of tidal parameter �. The second column gives the
fractional increase in the energy of the star relative to the
magnitude of the star’s initial total energy. The third column
gives the expected fractional increase in energy based on linear
theory of excitation of nonradial modes. The fourth column gives
the difference, which is a fractional excess energy deposition.
The fifth column estimates the amount of the excess energy that
might be attributed to shock heating and the sixth column
estimates the amount of the excess that could be explained
by excitation of the fundamental radial mode. Each encounter
was simulated with a mass ratio of � ¼ 1:28� 10�3.
Tabulated numbers in column two were drawn from our highest
resolution runs.

�
�Edep

jEtotj
�Elin

jEtotj
�Eex

jEtotj
�Eshock

jEtotj
�Erad

jEtotj

1 2.41 9:39e�01 1.48

2 4:89e�01 1:30e�01 3:59e�01 3:3e�01 8:9e�02
3 2:89e�02 1:44e�02 1:45e�02 2:4e�02 1:6e�03
4 2:11e�03 1:34e�03 7:68e�03 2:0e�03 1:4e�05
5 1:50e�04 1:15e�04 3:49e�05
6 1:16e�05 9:23e�06 2:40e�06
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�Elin ¼
�
GM2�
R�

��
M

M�

�
2 X
l¼2;3;...

�
R�
Rp

�
2lþ2

Tlð�Þ; (5.4)

where the key to the theory is calculating the dimensionless
functions Tlð�Þ [33], which depend on � and also the
polytropic index n. We use the results for Tl obtained
previously [72,73] for an n ¼ 3=2 polytrope.

The mass ratio (taken to be � ¼ 1:28� 10�3 in this
section) affects the relative magnitude of the l ¼ 2 and
l ¼ 3 excitations, as reference to (5.4) makes clear. In Fig. 9
we plot the curves for both the l ¼ 2 and l ¼ 3 contribu-
tions to�Elin. The linear contribution of the octupole tide is
two orders of magnitude below that of the quadrupole.

We see a clear convergence with linear theory in the limit
of weak encounters (up to � ¼ 5). As the strength of the
encounter grows the energy actually deposited is seen to
exceed the predictions of linear theory. This excess in energy
deposition appears to be real (based on numerical conver-
gence) and confirms results discovered previously [42]. As
Table IV indicates, the excess can be as much as 50% to 75%
of the total. The result has important implications for pre-
dictions of the cross section for tidal capture of stars.

B. Shock heating and the energy excess

The time dependence of the central density of the white
dwarf provides clues on where the excess energy resides.
In Figs. 10 and 11 the top panels show 	cðtÞ normalized by
the initial central density of the star. Figure 10 shows the
behavior for weak tidal encounters (� ¼ 4, � ¼ 5, and
� ¼ 6) and Fig. 11 displays stronger encounters (� ¼ 1,
� ¼ 2, and � ¼ 3). All models were computed with
� ¼ 1:28� 10�3. Complete disruption is evident for
� ¼ 1. For weaker encounters the central density typically
decreases to a new lower average value and oscillates. The
average normalized central density, post-encounter, is
(1) 	0

c=	c ’ 0:5 for � ¼ 2, (2) 	0
c=	c ’ 0:93 for � ¼ 3,

and (3) 	0
c=	c ’ 0:995 for � ¼ 4.

For a polytropic model, a reduction in the central density
can arise either by reducing the mass of the star or by

increasing K ¼ p=	1þ1=n. As we have already seen, weak
encounters involve some loss of mass. Furthermore, as our
sequence of contour plots indicates, weakly disturbed stars
are affected by formation of shocks in the outer layers. The
heating is not uniform but we can get an approximate sense
of the effects by assuming it is. For the nonce we assume
that K ! K0 >K following the encounter. For a n ¼ 3=2
polytrope, the following scaling laws hold

K�M2=3
� 	�1=3

c ; R� �M1=3
� 	�1=3

c ; jEtotj�M5=3
� 	1=3

c :

(5.5)

We treat the mass loss and change in central density as
observables that indicate a new approximate polytropic
state. Using the scalings, we can estimate that the change
in total energy of the star would follow

�E ’ jEtotj
�
1�

�
M0�
M�

�
5=3

�
	0
c

	c

�
1=3

�
: (5.6)

Except for the case � ¼ 2 where 10% of the mass is lost,
the resulting changes in energy are mostly the result of
shock heating. Using the values obtained from Figs. 8, 10,
and 11, we estimate the effects of (assumed) uniform
heating and list the results in the fifth column of
Table IV. The correspondence with the fractional excess
energy gain in column four is suggestive that shock heating
provides the sink for most of the excess.

C. Radial mode excitation

After weak tidal encounters with the black hole,
the white dwarf is observed to oscillate not only in the
quadrupole (l ¼ 2, m ¼ �2) f modes but also in
the fundamental radial F mode. This can best be seen by
the oscillations in central density in Figs. 10 and 11 for the
� ¼ 3 and � ¼ 4 encounters. In those two cases the ob-
served oscillations match the period of the linear radial F
mode almost exactly.
The excitation of the radial mode was noted by Khoklov

et al. (1993) [42,43]. Excitation of this mode by a tidal
field is not possible at linear order. Khoklov et al. attributed
it to a nonlinearity in the post-encounter hydrodynamics.

FIG. 10. Weak tidal encounters. Top panel shows fractional
changes in central density for � ¼ 4, � ¼ 5, and � ¼ 6 encoun-
ters. Mid panel shows (normalized) energy deposited for each
encounter. Bottom panel displays (normalized) spin angular
momentum deposited for each encounter. The mass ratio is
1:28� 10�3. Each curve is drawn from the highest resolution
(�C) simulations.
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They further suggested that it might be a locus of some of
the excess energy gain.

To examine this idea, we simulated a set of dynamical
stellar models that were deliberately set into radial oscil-
lation. In these tests no tidal field was included. By varying
the amplitude of the radial oscillation we sought to corre-
late the increase in energy in the star with the amplitude of
oscillation in the central density. The observed oscillations
in the central density that occur in our tidal encounters
could then be used to estimate the amount of energy in the
radial mode.

We generate radially pulsating models by introducing a
homologous scaling of the Lane-Emden density profile as
an initial condition. Consider a homologous mapping of
the star that takes the original radius R� to R0� ¼ R�=�
via scaling parameter �. Assume that the equilibrium
stellar profile is 	ðrÞ. Map the original density profile to
a new one using

�	ðrÞ ¼ �3	ð�rÞ: (5.7)

With this scaling the mass is unaffected by the transforma-
tion. Then we assume that K does not scale and calculate
the altered pressure profile from the new density taking the
polytropic index fixed also. The scaled density is used to

calculate a new gravitational potential, which no longer
provides hydrostatic equilibrium. Technically, the initial
radial displacement is linear, which would not match
the shape of the fundamental radial mode amplitude.
Accordingly, we might expect a set of radial overtones to
be excited. Practically, though, most of the excitation is
observed to be in the F mode.
We compute models with parameter range �¼

½0:9;0:95;0:98;0:995;1:005;1:02�. We compare the change
in total energy between the radially pulsating models and
the equilibrium model, �E�

tot � �E�¼0
tot , with the observed

amplitude of oscillation in the central density. The resulting
points form an approximately quadratic power-law rela-
tionship, as can be seen in Fig. 12.
To compare these radially pulsating models to the tidal

encounters, we read off the amplitude of central density
oscillations from Figs. 10 and 11 for different �. These
oscillation amplitudes and the observed tidal excess energy
for the same � are used to plot points in Fig. 12 also. They
are marked in the figure to indicate their associated value
of �. In all tidal encounter cases the excess energy is
greater than can be explained by energy in the excitation
of the radial mode, though for � ¼ 2 and � ¼ 3 the radial
mode may be a non-negligible contributor at the level of
25% to 11%, respectively. For weaker encounters the radialFIG. 11. Partial and complete disruptions. Same as previous

figure except displaying results for � ¼ 1, � ¼ 2, and � ¼ 3
encounters. The star disrupts completely when � ¼ 1 as seen by
behavior of central density. Energy deposition continues to rise
with the strength of the encounter, while angular momentum
deposition saturates. The mass ratio is 1:28� 10�3. Results are
drawn from highest resolution simulations.

FIG. 12 (color online). Excitation of the fundamental radial
mode. We compare radial pulsation models with those of tidal
encounters for � ¼ 2–6 and for mass ratio � ¼ 1:28� 10�3.
Squares and crosses indicate results for radial oscillation simu-
lations, measuring the added energy of the star versus amplitude
of the oscillation in the central density. The line indicates a
quadratic dependence. Individual triangles are points constructed
from tidal encounter simulations, plotting the excess deposited
energy versus observed amplitude of the central density oscil-
lation. For weak encounters the observed energy excess is an
order of magnitude or two higher than can be explained by
excitation of the fundamental radial mode. Energy in the radial
mode can be 11% to 25% of the excess in encounters with � ¼ 3
and � ¼ 2.
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mode is as much as two orders of magnitude smaller. Some
numerical values are compared in Table IV.

D. Relativistic effects on energy deposition

Another way to see the excess in energy deposited on the
star is to plot its value normalized to the value expected
from linear theory. Figure 13 shows the data for weak
encounters in this fashion, but does so for all three mass
ratios. The plot shows clearly how the excess energy grows
with increasing tidal encounter strength and yet approaches
the linear result nicely for the weakest encounters.

More importantly, this plot shows the presence of
relativistic effects on the energy transfer. All of these
simulations were done at our highest resolution, 5123.
The only variables were � and �. As we discussed pre-
viously, the � ¼ 6 results are not numerically converged
but the results for � ¼ 3 through � ¼ 5 are. For the most
extreme mass ratio (triangles in the plot), the star passes
much closer to the black hole and the effects of relativistic
motion and relativistic corrections in the tidal field will be
more pronounced. We observe a slight suppression in the
energy transfer for � ¼ 3 through � ¼ 5. Simulations run
at several resolutions indicate the effect is real. Notice the
level of consistency in the energy transfer that occurs for
the other two, less extreme mass ratios.

An explanation for the suppression likely can be found
in a modification of the linear theory. As Press and
Teukolsky [33] show, the overlap integral for the tidal
interaction at each mode nlm involves a product between

two terms, Qnl (which depends upon the normal mode
amplitudes) and Knlm (which depends upon the time
dependence of the amplitude and phase of the lm part of
the tidal field). In the FNC frame (with approximately
Newtonian self-gravity and a weak tidal field), the integrals
for Qnl are indifferent to whether the orbital motion
is relativistic or not. The same is not true of Knlm

[Press and Teukolsky’s Eq. (39)]. For example with
l ¼ 2, the tidal amplitude will not only vary as rðtÞ�3 but
will be corrected by an (orbital) 1PN term that behaves as
rðtÞ�5 (2.28). Furthermore, the relativistic shape of the
orbit will be important and the motion of the black hole
in the FNC frame requires that the azimuthal angle �ðtÞ in
their equation be replaced by �ðtÞ. In effect, Tlð�Þ has to
be replaced by a function Tlð�;�pÞ of � and a measure of

the depth of the relativistic potential, �p ¼ M=Rp.

E. Capture orbits: effects of tides and
gravitational bremsstrahlung

The energy transferred into the star by the tides comes at
the expense of orbital energy. If we assume the inbound
white dwarf has zero total orbital energy ( ~E ¼ 1 in the
relativistic sense), the orbital energy after the encounter
becomes Eorb ¼ ��E and can be used to estimate the
semi-major axis a ¼ �M�M=2Eorb of the initial capture
orbit. For compact systems, and especially for higher mass
black holes, the effect of gravitational wave bremsstrah-
lung should be included. The orbital energy is then Eorb ¼
��Etidal � �EGW.
To calculate the gravitational bremsstrahlung, we ap-

proximate the orbital motion as Newtonian and first use
the classic result [74] for the rate of energy loss averaged
over one period of a bound orbit

�
dE

dt

�
¼ 32

5

G4ðMþM�ÞM2M2�
c5a5

fðeÞ; (5.8)

where the eccentricity e determines

fðeÞ ¼ ð1� e2Þ�7=2

�
1þ 73

24
e2 þ 37

96
e4
�
: (5.9)

Multiplying this luminosity by the orbital period

T ¼ 2�a3=2=½GðMþM�Þ�1=2 yields the amount of energy
radiated in one period

�EGW ¼ 64�

5

G7=2ðMþM�Þ1=2M2M2�
c5

fðeÞa�7=2: (5.10)

To get the burst associated with a parabolic orbit, we
replace a in the above formula with pericentric distance
Rp ¼ að1� eÞ and then take the limit as e ! 1

�EGW ¼ 85�
ffiffiffi
2

p
24

G7=2

c5
ðMþM�Þ1=2M2M2�

R7=2
p

: (5.11)

FIG. 13 (color online). Energy deposition normalized to
expected values from linear theory. Three mass ratios were
examined. All of the simulations were made at highest resolu-
tion, �C. Growth in energy transfer with increasing tidal strength
is evident. Also evident is the effect of relativistic motion
and relativistic tidal corrections in the most extreme mass
ratio case (triangles). A slight suppression in energy transfer
appears at � ¼ 3, � ¼ 4, and � ¼ 5 for � ¼ 3:77� 10�5 that
differs from the mutually consistent values seen at less extreme
mass ratios.
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We list results for tidal capture of white dwarfs in
Table V. There we tally the amount of tidal energy transfer
observed in the simulations for different mass ratios � and
encounter strengths � (for those cases in which the star
survives). Also given is the amount of gravitational wave
energy loss during the encounter. (There is also gravita-
tional wave emission from the internal hydrodynamic mo-
tions of the star, but these can be shown to be orders of
magnitude smaller.) Energies are given relative to the scale
of kinetic energy of the star at pericenter, which is easily
obtained from Table III. The effect of the tides dominates
but gravitational bremsstrahlung increases in importance
for more massive black holes. Given the total energy loss
from the orbit, the capture orbit can be described by the
ratio Rmax =Rp ¼ ð1þ eÞ=ð1� eÞ between the apocentric

and pericentric distances.

VI. ANGULAR MOMENTUM

A tidal encounter transfers not only energy but also
angular momentum. Since the fluid equations are nearly
Newtonian in the FNC frame, the standard analysis of self-
gravitating fluids [71] provides an approximate physical
picture. Let the spin tensor be

Jik ¼ 1

2

Z
	ðxivk � vixkÞd3x; (6.1)

and the first moment of the tidal force tensor be

Fik ¼ �
Z

	xi@k�tidald
3x ’ �IijC

ð0Þ
jk : (6.2)

The antisymmetric part of the tensor virial theorem
expresses conservation of angular momentum and we
find that the tidal field exerts a torque given by

_J ik ¼ � 1

2
ðIijCð0Þ

jk � IkjC
ð0Þ
ji Þ þ 	 	 	 (6.3)

A torque results whenever the bulge drawn up dynamically
in Iij lags (or leads) the principal axis of the tidal field.

Numerically we compute the action of the full tidal field,
including higher order moments and (orbital) relativistic
corrections. But the most important contributor to the
torque remains the Newtonian part of the quadrupole tide.
In our models, the black hole appears to move (in the

FNC frame) in the x-y plane, which induces changes in the
z component of the white dwarf’s spin angular momentum,
Lz. The bottom panels of Figs. 10 and 11 show the growth
in Lz (normalized to an estimate of breakup angular
momentum) during tidal encounters of varying strength.
The total amount of angular momentum deposited in the
star varies over four orders of magnitude in models that
range from � ¼ 6 to � ¼ 1. In several cases the spin
overshoots before settling back [38], an effect of the black
hole racing out more than 90 degrees ahead of the principal
axis of the star.

A. Center of mass deflection

The deposition of angular momentum has been seen in
many past numerical studies. What is new in this paper is
calculating the effects of the octupole tide, Cijk. We can

again get a physical picture by considering Newtonian
behavior. Let the first moment of the mass distribution be
Dk ¼

R
	xkd

3x. Then take the momentum equation (2.69),

restrict it to Newtonian terms, and construct an equation of
motion for Dk,

€D k ¼ �Cð0Þ
ki Di � 1

2
Cð0Þ
kijIij �

1

6
Cð0Þ
kijlIijl þ 	 	 	 (6.4)

If the octupole and other higher-order moments vanish, and
if the star is initially centered on the frame Dk ¼ 0, then
the CM has no tendency to move. If however the octupole
tide is present, it couples to the second mass moment and
drives an acceleration of the CM. Once the CM shifts the
quadrupole tide plays a role also.
Since our models include the octupole tide, we see its

effect on CMmotion. Some of these effects are apparent in
the contour plots shown earlier in Figs. 4–6, primarily in
the asymmetry of the tidal lobes. More quantitatively, we
compared simulations that included only the quadrupole
(l ¼ 2) tide with ones that included both the quadrupole
(l ¼ 2) and octupole (l ¼ 3) terms. In Fig. 14, the octupole
tide can be seen to cause a deflection of the CM of the star
away from the FNC origin (here we show actual shifts in
position, not components of Dk). No deflection is seen in
the quadrupole-only model. The size of the deflection can
also be seen to depend upon the strength of the encounter.

TABLE V. Capture orbits from the combined effects of tidal
energy transfer and gravitational bremsstrahlung. A range of �
for weak encounters in which the white dwarf survives is
considered. Three mass ratios � are examined. Tidal energy
transfer and gravitational wave loss are separately listed.
Energies are compared to the scale of kinetic energy Tp ¼
MM�=Rp at pericenter. The importance of gravitational brems-

strahlung rises with increasing black hole mass. The resulting
capture orbits are given in terms of the ratio Rmax =Rp between

apocentric and pericentric distances.

� � �EGW

Tp

�Etidal

Tp

Rmax

Rp

1:28� 10�3 2 5:30e�08 3:92e�03 2:54eþ02
	 	 	 3 2:70e�08 3:04e�04 3:29eþ03
	 	 	 4 1:67e�08 2:69e�05 3:72eþ04
	 	 	 5 1:15e�08 2:21e�06 4:50eþ05
4:21� 10�4 2 1:11e�07 1:90e�03 5:25eþ02
	 	 	 3 5:65e�08 1:43e�04 6:99eþ03
	 	 	 4 3:50e�08 1:26e�05 7:94eþ04
	 	 	 5 2:41e�08 1:03e�06 9:48eþ05
3:77� 10�5 2 5:53e�07 4:59e�04 2:18eþ03
	 	 	 3 2:83e�07 2:75e�05 3:60eþ04
	 	 	 4 1:75e�07 2:12e�06 4:35eþ05
	 	 	 5 1:20e�07 1:58e�07 3:60eþ06
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These small positional changes and velocities are well
determined at our highest resolution.

B. Orbital angular momentum change

Surprisingly (from a numerical standpoint) the CM
position and velocity are determined well enough that we
can compute from them the change in orbital angular
momentum. To our knowledge this has not been tried or
seen in previous simulations of tidal encounters.

To provide a simple physical picture again, consider a
Newtonian isolated fluid body of mass M� moving about a
heavy (stationary) mass. Let coordinates for the fixed
frame be Xk and t and let the motion of a second frame

following the object be described by Xð0Þ
k ðtÞ and Vð0Þ

k ðtÞ.
The (total) angular momentum tensor seen in the fixed
frame is

J0ij ¼
1

2

Z
	ðXiVj � ViXjÞd3X; (6.5)

and for motion about a stationary mass M � M�
(conservative central force), dJ0ij=dt ¼ 0. Consider coor-

dinates more suited to following internal positions and
velocities

xk ¼ Xk � Xð0Þ
k ðtÞ; vk ¼ Vk � Vð0Þ

k ðtÞ: (6.6)

We can then use the moving frame to decompose the
angular momentum into orbital and spin (internal) parts

J0ij ¼ Lð0Þ
ij þ�Lij þ Jij; (6.7)

where

Lð0Þ
ij ¼ 1

2
M�ðXð0Þ

i Vð0Þ
j � Vð0Þ

i Xð0Þ
j Þ; (6.8)

and

�Lij ¼ 1

2
ðXð0Þ

i
_Dj� _DiX

ð0Þ
j Þþ 1

2
ðDiV

ð0Þ
j �Vð0Þ

i DjÞ: (6.9)

If the moving frame follows the CM, then Dk ¼ _Dk ¼ 0
and �Lij ¼ 0. In that case, changes in the spin angular

momentum will be compensated by changes in the orbital

angular momentum, dJij=dt ¼ �dLð0Þ
ij =dt. If instead the

moving frame is set to follow the orbit of a test mass

(similar to FNCs), then Lð0Þ
ij is conserved and the changes

in (internal) Jij are compensated by �Lij,

dJij
dt

¼ � d�Lij

dt
: (6.10)

To test our ability to track these complementary effects in
our numerical models, we set up a strictly Newtonian ver-
sion of our code (Newtonian tidal field and orbit)
and simulated a tidal encounter with mass ratio� ¼ 1:28�
10�3. The upper curve in the top panel of Fig. 15 shows the

gain in the z component of angular momentum Lspin
z of the

star in an � ¼ 4 encounter. The lower curve shows the
independently determined history of �Lorbital

z and its re-
markable (numerical) balance with the increase in spin.
The balance is only possible because we have included
both the quadrupole and octupole tides. Three different
resolutions are shown to provide a sense of the convergence.

C. Relativistic angular momentum transfer

There are several obstacles to duplicating the above
result in our full simulations (i.e., in general relativity).
These include (1) defining angular momentum rigorously
(i.e., in an asymptotically flat spacetime), (2) the difficulty
in defining a split between spin and orbital angular mo-
menta, and (3) the difficulties in transferring angular mo-
mentum between coordinate systems [59,64].
The encounter between a white dwarf and IMBH

can be regarded as isolated in an asymptotically flat
spacetime. So total angular momentum can be defined
(asymptotically) and is conserved. Furthermore, consistent

FIG. 14 (color online). Deflection of the center of mass.
Positions (top two panels) and velocities (bottom two panels)
of the CM in simulations with � ¼ 4, 5, 6 and mass ratio
� ¼ 1:28� 10�3. A simulation with no octupole tidal term is
shown (dotted red line) for comparison. The resolution in each
case was 5123.
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with the approximations we have used, the IMBH is
sufficiently massive to be regarded as stationary
(Schwarzschild). The spacetime thus has Killing vectors
and in particular has a rotational Killing vector �

�
ð�Þ ¼

ð@=@�Þ� about the axis normal to the orbital plane. We
may then form the conserved four-current J � ¼ T���ð�Þ�
and from it derive a conserved total angular momentum of
the star (and debris)

Jz ¼
Z

J 0 ffiffiffiffiffiffiffi�g
p

d3X ¼
Z

d3X
ffiffiffiffiffiffiffi�g

p
	hr2sin 2�U�U0;

(6.11)

where h ¼ 1þ�þ p=	 is the specific enthalpy and
the integral is over a volume that encompasses all of
the material.

To approximately split orbital and spin angular mo-
menta, we view the fluid as confined to a small volume
(FNC domain). The center of the frame moves on X� ¼
X�
ð0Þð�Þ, which has constants of motion ~E and ~L. To the

extent that the gravitational mass of the star does not
change and can be approximated by M� (order "2 errors),
the initial orbital angular momentum will be Lð0Þ

z ¼
M�rð0ÞðtÞ2U�

ð0ÞðtÞ ¼ M� ~L, which coincides with Jz. Thus

Lð0Þ
z is the analogue of (6.8).

As the star passes through pericenter internal motions
develop and spin is deposited in the fluid (which we
compute in the FNC frame). The CM is also deflected,
which affects the orbital angular momentum. If the veloc-
ity and position of the CM are transferred from the FNC
frame to Schwarzschild coordinates, they can be used to
form corrections �X� and �U� relative to the geodesic
X
�
ð0Þð�Þ. We can then compute the change in the orbital

angular momentum using

�Lorbital
z ¼ M�ðr2ð0Þ�U� þ 2rð0ÞU

�
ð0Þ�rÞ: (6.12)

An event ð�; xiÞ in FNCs will have a Schwarzschild
coordinate location X�. By assumption, X� is close to
X�
ð0Þ and we can form an expansion

�X� ¼ X� � X
�
ð0Þð�Þ ¼ xi

�
@X�

@xi

�
ð0Þ

þ 	 	 	 (6.13)

Then, recognizing the tetrad frame components,

�X� ¼ xi��
i þ 	 	 	 (6.14)

In like fashion, the velocity ua at ð�; xiÞ can be transformed
to components U� at the event X� by

U�ðX�Þ ¼ @X�

@�
ð�; xkÞu0 þ @X�

@xi
ð�; xkÞui: (6.15)

The transformation matrix is then expanded about FNC
frame center, yielding

U�ðX�Þ ¼ @X�

@�
ð�; 0Þu0 þ @X�

@�@xi
ð�; 0Þu0xi

þ @X�

@xi
ð�; 0Þui þ 	 	 	 (6.16)

We reduce this expression by recognizing first that
U�

ð0Þ ¼ @X�=@�ð�; 0Þ. Secondly, in the FNC frame u0 ’
1þOð"2Þ and ui ¼ vi þOð"3Þ. Finally, ��

i ¼ @X�=@xi,
which allows us to write

�U� ¼ U� �U�
ð0Þ ¼ xi

d�
�
i

d�
þ vi��

i þ 	 	 	 (6.17)

Then, we set xi ¼ Di=M� and use (6.14) to calculate �r.
Next we set vi ¼ _Di=M� and use (6.17) to find �U�. These
are then both employed in (6.12) to obtain the shift in the
relativistic orbital angular momentum.
The bottom panel in Fig. 15 shows results from an

� ¼ 4 encounter with our most relativistic orbit (3:77�
10�5). The top curve is the angular momentum deposited
into the star. The bottom curve is from our calculation of
(6.12) for the change in the orbital angular momentum.
Three resolutions are shown and the result is well con-
verged numerically. It is worth noting that the remarkable
balance between the two in this relativistic case depends
heavily on the transformations shown above. A straightfor-
ward application of the Newtonian expression (6.9) fails to
provide an accurate measure of the compensating change.

FIG. 15. Total angular momentum conservation in Newtonian
and relativistic simulations. The top panel shows a strictly
Newtonian model while the bottom panel shows a full FNC
model with our most relativistic orbit. We use an encounter
strength � ¼ 4 and a mass ratio for the Newtonian case of � ¼
1:28� 10�3 and � ¼ 3:77� 10�5 for the relativistic case.
Three resolutions ð�A;�B;�CÞ are shown.
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D. Energy versus angular momentum and
comparison with the affine model

Having obtained both the energy and the angular mo-
mentum that are transferred in a tidal encounter, we com-
pare the two in Fig. 16. We confirm the previously known
linear relationship [38,50], which holds over a broad range
of encounter strengths. Kochanek has analyzed [50] the
relationship within the context of ellipsoidal models and
tested it through use of an affine code [49,71]. His analysis
found the proportionality to be

�Etot ¼
jEgjffiffiffiffiffiffi
15

p �Lzffiffiffiffiffiffiffiffiffiffiffiffiffi
I�jEgj

q ; (6.18)

where Eg ¼ 2Etot is the gravitational potential energy of

the star. In Fig. 16 we plot this ellipsoidal model relation-
ship (solid line) for comparison. It fails to fit full simulation
results at the upper end (especially for full disruption at
� ¼ 1) where linear analysis ceases to be a good approxi-
mation. Each of our simulations used mass ratio � ¼
1:28� 10�3 and results are shown for higher resolutions
�C and �B.

VII. CONCLUSIONS

In this paper we investigated the tidal interactions be-
tween a white dwarf and an intermediate mass black hole.
We used a Fermi normal coordinate system that provides a
local moving frame roughly centered on the star. The FNC
approach yields an expansion of the black hole tidal field
that contains quadrupole and higher multipole moments
and orbital relativistic effects. It also allows a simpler,
nearly-Newtonian treatment of the star’s hydrodynamic

motions and self-gravity, at least in a sufficiently confined
FNC domain. We detailed which terms in the tidal field
expansion are consistent with this approximation to the
hydrodynamics and self-gravity. A new numerical code
was constructed based around this formalism. It utilizes
the well-developed PPMLR hydrodynamics method and a
three-dimensional spectral method approach to solve for
the self-gravitational potential.
We simulated a set of tidal models, both weak encoun-

ters and those at the threshold of disruption. At the outset,
simulations were computed of our stellar equilibrium mod-
els, without a superposed tidal field, to demonstrate how
‘‘quiet’’ the initial models are and to establish their value as
a control. We then examined the overall hydrodynamic
features in tidal encounters and computed the mass loss
from a white dwarf as a result of different weak encounters.
For the range of black hole masses we considered in this
paper, we found the l ¼ 4 part of the tidal field to have
negligible impact. The same would not be true had we
modeled white dwarf encounters with 10M� to 50M�
black holes. The tidal field expansion also includes the
gravitomagnetic term. Its effects are subtle and we intend
to address those in a subsequent paper.
Besides computing the mass loss, one of the principal

focuses of this paper was on transfer of energy from the
orbit into the white dwarf and total energy losses from the
orbit. We computed accurately the deposition of tidal
energy onto the star. We then investigated where that
energy resides. After comparing to the results of linear
theory, we found that a combination of excitation of non-
radial and radial modes and surface layer heating accounts
for the energy transfer to the star. Stars that survive a tidal
encounter (1) are oscillating violently in the fundamental
(rotating) quadrupole mode, (2) suffer some mass loss,
(3) are shock heated in their outer layers, (4) see an average
reduction in their central density and an increase in their
radius, and (5) develop nonlinearly an oscillation in their
fundamental radial mode. We also identified a slight rela-
tivistic suppression of tidal energy transfer in the encoun-
ters with the most massive black hole we considered. All of
these effects seen in our numerical models were shown to
be accurately determined by considering several different
finite difference resolutions. Several of these effects would
make disruption more likely upon a second passage. With
energy transfer to the star computed, we separately calcu-
lated the amount of energy loss from the orbit due to
gravitational bremsstrahlung. We combined these losses
to estimate the range of tidal capture orbits that result
following weak encounters.
Lastly, we turned attention to transfer of angular mo-

mentum from the orbit into spin of the white dwarf. We
computed the tidal torquing of the star and debris, and
confirmed with our full numerical models the previously
predicted linear relationship between transferred energy
and deposited angular momentum. Then we demonstrated

FIG. 16 (color online). Tidally transferred angular momentum
�Lz versus energy �E. Angular momentum and energy normal-

ized by L� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM3�R�

p
and E� ¼ GM2�=R�, respectively. Solid

line is from analysis of ellipsoidal models [50]. Simulations used
mass ratio � ¼ 1:28� 10�3.
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the result of including the octupole part of the tide in
driving a deflection of the center of mass of the star
(and debris), which to our knowledge is the first instance
of this effect being computed in finite difference numerical
models. Furthermore, we were able to take the observed
CM deflection and compute directly from it the change in
orbital angular momentum. The increase in spin angular
momentum in the star is seen to balance nicely with
decrease in orbital angular momentum. While expected
physically, this result is only possible to see once enough
terms are included in the tidal field. Furthermore, it is
necessary to include an approximate relativistic calculation
to transform effects seen in the FNC frame into changes in
orbital angular momentum seen in the black hole frame.
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APPENDIX A: NUMERICAL METHOD

Our numerical method for calculating tidal interactions
between a massive black hole and a star consists of three
parts: a module that computes the motion of the FNC frame
and the tidal acceleration terms, a hydrodynamics solver,
and a self-gravity module. Overall, the method combines
a three-dimensional finite difference approach for the hy-
drodynamics and a spectral co-location technique for the
self-gravity.

1. Motion of the FNC frame and tidal accelerations

The FNC frame center follows a timelike geodesic of the
Schwarzschild background spacetime. We integrate the
Darwin form of the geodesic Eqs. (2.13)–(2.18), using a
Runge-Kutta routine for some set of orbital parameters
(i.e., e and p) and some initial azimuthal position � or
radial distance Ri. The position of the frame center in
Schwarzschild coordinates is obtained as functions of the
radial phase 
. We can invert � ¼ �ð
Þ and take the proper
time � instead as the curve parameter. Proper time along
the geodesic becomes the time coordinate within the entire
FNC frame.

Most of the effort in computing the tidal accelerations is
accomplished via the derivations in Sec. II. We must
integrate Eq. (2.24) for the frame precession angle� given
some initially chosen orientation. The components of the
Riemann tensor in the black hole frame are computed at the
instantaneous position of the frame center and projected
into the FNC frame using the time-dependent components
of the FNC frame vectors. From this the various tidal

tensors are computed and finally the tidal potential (2.60)
and gravitomagnetic potential (2.61) are computed.

2. PPMLR hydrodynamics algorithm

We use a version of the explicit, time-dependent hydro-
dynamics code VH-1 [75] to solve the equations for invis-
cid flow of an ideal compressible gas with fixed adiabatic
index � and with gravitational acceleration terms. The
code is based on the PPM of Colella and Woodward [76]
and uses the Lagrangian-remap formulation of the method.
It is an extension of Godunov’s method that offers high-
order accuracy in smooth regions of the flow (third order in
space and second order in time) while sharply capturing
discontinuities. Our version of VH-1 was recast in C and
ported to parallel machines running under MPI. The coor-
dinate topology in the hydrodynamics code is taken to be
Cartesian. We use a zero-gradient outflow boundary con-
dition. Mass, energy, and momentum are allowed to flux
out of the domain provided the local, instantaneous normal
component of velocity is outward directed. Otherwise, the
fluxes are set to zero.
This particular hydrodynamics technique is very stan-

dard and verification of the code follows a well-known
procedure. We ran the code against a battery of standard
test problems, including but not limited to (1) the Sod
shock tube [77], (2) twin, colliding blast waves, (3) Mach
3 wind tunnel with step, and (4) double Mach reflection
of a strong shock (see Woodward and Colella [78]).
The results [79] were indistinguishable from those pub-
lished previously.
The hydrodynamics code, as well as the other major

elements, use domain decomposition to facilitate parallel
computing. To make the algorithm simple, we have in fact
chosen to divide the three-dimensional domain into slabs
that are one zone deep, and farm each thin slab to an
individual processor. Each processor executes the direc-
tionally split part of the algorithm along the two directions
of available data, and then partially updated data is gath-
ered to transpose the domain decomposition along another
direction. A run with N3 total spatial grid points will make
use of N processors. We have run a few computations on a
10243 grid with 1024 processors. Most of our highest
resolution runs have N ¼ 512.
Several other tests of the hydrodynamics, when com-

bined with the self-gravity routine, were made and these
are discussed in Sec. III C.

3. Pseudo-spectral self-gravity solver

Our computation of the self-gravitational field follows
closely a method developed by Broderick and Rathore
[80]. At our level of approximation, the gravitational field
as a whole is determined by a gravitomagnetic potential Ak,
a scalar tidal potential �tidal, and the self-gravitational
potential �. The field � satisfies Poisson’s equation
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r2�ð ~xÞ ¼ 4�	ð ~xÞ; (A1)

where 	 is the Newtonian mass density. In principle,
�þ�tidal satisfies (A1) subject to imposition of appropri-
ate boundary conditions. However, we separately compute
the tidal potential and solve the Poisson equation only for
the self-gravitational field � subject to the condition
� ! 0 as r ! 1.

We solve (A1) with a discrete sine transform (DST) in
three dimensions. This spectral approach serves to rapidly
invert the matrix resulting from finite differencing the
elliptic equation. Unfortunately, the way our boundary
conditions are handled (see below) does not allow expo-
nential convergence, one of the other primary benefits of
spectral methods. Instead our solutions of (A1) are second-
order (algebraically) convergent, consistent with the other
parts of the code.

While a Fourier transform is natural on a Cartesian
mesh, matching to an asymptotically vanishing boundary
condition on � requires some effort. Use of the DST
implies that the field vanishes everywhere on the boundary
of our rectangular domain. To circumvent this, the method
described by Broderick and Rathore [80] (see also
Ref. [81]) crafts a one-zone-thick distribution of mass 	B

(image mass) in the outermost zone along each boundary
face of the domain. With the right distribution of image
mass the solution for � will approach the boundary with a
fall-off that is consistent with (extrapolated) vanishing at
infinity and with correct multipole content. The problem to
be solved with the DST is then

r2� ¼ 4�ð	þ 	BÞ ¼ 4�	total; (A2)

once 	Bð ~xÞ is specified. We provide details in what follows,
especially how our cell-centering makes for slight differ-
ences with Broderick and Rathore.

The grid consists of cell-centered data, so that the
outermost points in any direction are a half zone away
from the physical faces (boundaries) of the domain. For
example, let I be the number of zones in the x direction. Let
�x be the zone increment and Lx ¼ I�x be the width of
the domain. Then xi ¼ ðiþ 1=2Þ�x denote the locations of
the field values in the x direction, with equivalent discrete
locations yj and zk in the other directions. Note that while

the FNC system will have its origin at the center of the
domain, in order to apply the DST we make a shift tem-
porarily so that the origin in the DST calculation is placed
at a corner of the domain. The field and the source are
assumed to be odd symmetric across any face. Then, given
the half zone cell-centering, the forward transform is a
DST of type II [82],

f̂ l ¼
XI�1

i¼0

fðxiÞ sin
�
�

I
ðiþ 1=2Þðlþ 1Þ

�
; (A3)

and the inverse transform is a DST of type III,

fðxiÞ ¼ 2

I

XI�2

l¼0

f̂l sin

�
�

I
ðiþ 1=2Þðlþ 1Þ

�
þ ð�1Þi

I
f̂I�1:

(A4)

We can easily generalize from one dimension to three,
but do so in a way that enables parallel computing. Let I, J,
K be the number of zones in the x, y, and z directions. Let i,
j, k distinguish the spatial locations like before but now
with yj ¼ ðjþ 1=2Þ�y and zk ¼ ðkþ 1=2Þ�z. The corre-
sponding discrete points in the transform space are indexed
by l, m, n. The discrete three-dimensional sine transform
of, say, 	 can be accomplished in three steps, each of which
is a DST-II and can be computed in parallel given a slab
decomposition of the domain,

uljk ¼
XI�1

i¼0

	ijk sin

�
�

I
ðiþ 1=2Þðlþ 1Þ

�
;

vlmk ¼
XJ�1

j¼0

uljk sin

�
�

J
ðjþ 1=2Þðmþ 1Þ

�
;

	̂lmn ¼
XK�1

k¼0

vlmk sin

�
�

K
ðkþ 1=2Þðnþ 1Þ

�
:

(A5)

Then, if from 	̂lmn we have determined �̂lmn, we can
reverse the process in parallel with a DST-III transform
to find �ijk,

wlmk ¼ 2

K

XK�2

n¼0

�̂lmn sin

�
�

K
ðkþ 1=2Þðnþ 1Þ

�

þ ð�1Þk
K

�̂lm;K�1

yljk ¼ 2

J

XJ�2

m¼0

wlmk sin

�
�

J
ðjþ 1=2Þðmþ 1Þ

�

þ ð�1Þj
J

wl;J�1;k

�ijk ¼ 2

I

XI�2

l¼0

yljk sin

�
�

I
ðiþ 1=2Þðlþ 1Þ

�

þ ð�1Þi
I

yI�1;j;k: (A6)

We derive the algebraic connection between 	̂lmn and �̂lmn

using a centered, second-order finite difference expression

ðr2�Þijk ¼ ð�iþ1;jk � 2�ijk þ�i�1;jkÞ=ð�xÞ2
þ ð�i;jþ1;k � 2�ijk þ�i;j�1;kÞ=ð�yÞ2
þ ð�ij;kþ1 � 2�ijk þ�ij;k�1Þ=ð�zÞ2

¼ 4�	ijk: (A7)

Upon substituting the Fourier transform we obtain
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�̂ lmn ¼ �4�
	̂lmn

�2
lmn

; (A8)

where

�2
lmn ¼

2

ð�xÞ2
�
1� cos

�
�ðlþ 1Þ

I

��

þ 2

ð�yÞ2
�
1� cos

�
�ðmþ 1Þ

J

��

þ 2

ð�zÞ2
�
1� cos

�
�ðnþ 1Þ

K

��
; (A9)

which is unchanged from Broderick and Rathore. Note
that determining �lmn using (A7) immediately makes the
method algebraically convergent, but as we will see this is
consistent with our handling of the boundary conditions.

We next consider how to trick the DST into providing a
solution with an appropriate, asymptotically-falling Oð1=rÞ
field at the boundary of the domain. This starts with deciding
what the field at the boundary should be. We rely on most of
the mass being confined to the inner region of the domain
and use a multipole expansion up to some order lmax

�Bð ~xÞ ¼ �Xlmax

l¼0

Xl
m¼�l

4�

2lþ 1
r�ðlþ1ÞQlmYlmð�;�Þ; (A10)

to give an approximation for the asymptotic field once we
have obtained a set of source moments

Qlm ¼
Z

d3x0r0lY�
lmð�0; �0Þ	ð ~x0Þ: (A11)

We find lmax ¼ 5 is typically sufficient.
Given the assumptions implicit in use of the DST

(odd symmetry across each face of the domain), with little
mass density near the boundary the field will approach the
boundary linearly and vanish. In our discrete representa-
tion the field at the ultimate physical zone (say �0;jk) will

be odd-symmetric with respect to the field in the neighbor-
ing ghost zone (in this case ��1;jk). The trick is to intro-

duce a boundary mass distribution 	B in the outermost
physical zones that generates just the right kink in the
discrete field so that� ’ �B in the ultimate physical zones
while still being consistent with the odd symmetry at each
domain face.

We can illustrate this in one dimension. Let i ¼ 0 be the
first physical cell at x ¼ þ�x=2. The DST requires that the
field vanish at x ¼ 0, which is not at a field sample but
corresponds to fractional location i ¼ �1=2. Instead, if we
carry a neighboring ghost zone at x ¼ ��x=2 (i ¼ �1),
the field there satisfies ��1 ¼ ��0. The average between
these two, the implied value on the domain boundary, is of
course zero. Now imagine instead that the first few field
samples (�2, �1, and �0) trend smoothly toward some
(nonzero) �B ¼ �B

�1=2 assumed to exist at x ¼ 0. If we

smoothly extrapolate to the first ghost zone, we would have
an implied value there of

��
�1 ¼ 2�B

�1=2 ��0: (A12)

If we evaluated (A7) in the ultimate (i ¼ 0) location, we
would write

��
�1;jk � 2�0;jk þ�1;jk ¼ �x2ð4�	� @2y�� @2z�Þ0jk:

(A13)

In a solution to the elliptic system the last two equations
could be combined to ‘‘close the mesh’’ and encode the
desired boundary condition. In using the DST though,
(A12) violates the required antisymmetry. To get around
this, substitute (A12) into (A13) and insert the DST-
required condition ��1 ¼ ��0 to obtain

��1;jk � 2�0;jk þ�1;jk

¼ ð�xÞ2ð4�	� @2y�� @2z�Þ0;jk � 2�B
�1=2;jk: (A14)

We can interpret this last piece on the right-hand side as a
source 	B

0;jk, where

	B
0;jk ¼ � 2��1=2;jk

4�ð�xÞ2 ; (A15)

that adds to the real mass density 	. This image mass
density is one zone thick. The implied loss of differenti-
ability in � is the primary reason why the spectral method
will not converge exponentially, and is in this case alge-
braic and second order.
The discussion above was confined to one face of the

domain. We generalize by placing image mass density in
the outermost zones on all six faces of the computational
domain,

FIG. 17. Convergence of L2 error between numerical�num and
analytic �analytic solutions of a self-gravity test problem. The L2

error is plotted against number of zones, N, in one direction. The
total number of zones in a model is N3. The method exhibits
second-order convergence.
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4�	B
ijk ¼� 2

ð�xÞ2 ð�i;0�
B
�1=2;jkþ�i;I�1�

B
I�1=2;jkÞ

� 2

ð�yÞ2 ð�j;0�
B
i;�1=2;kþ�j;J�1�

B
i;J�1=2;kÞ

� 2

ð�zÞ2 ð�k;0�
B
ij;�1=2þ�k;K�1�

B
ij;K�1=2Þ: (A16)

Given our cell centering, this image distribution differs
from Broderick and Rathore by a factor of 2. Once � has
been determined within the domain, extrapolated values
can be placed in the surrounding ghost zones [e.g., (A12)]
as needed.

To test the Poisson solver, a set of compact density
distributions are constructed that have associated known
analytic solutions for �. The mass is confined within a
sphere of unit radius near the center of the domain. The
density is tapered to zero sufficiently smoothly so as to not
affect the order of convergence of the method [83]. Each
test distribution has a different angular multipole and since
the equation is linear we use a superposition

	 ¼ X
l¼0

clr
lð1� r2Þ3Plðcos�Þ; for r < 1; (A17)

where 	 ¼ 0 for r > 1. Different orientations (�) can be
tested, as well as different relative multipole strengths cl.
We tested configurations where l ¼ 0 dominated and ones
where it did not contribute significantly. In our highest
resolution test with domain length L ¼ 4 in three dimen-
sions with 5123 zones, the local error is less than 0.1% over
most of the domain.
The solution should converge at second-order rate as the

number of grid points or basis functions increases. The
behavior is illustrated in Fig. 17. Consider a domain with
equal length sides L. Take I ¼ J ¼ K ¼ N. The total
number of grid locations is N3. The L2 error is

" ¼
�
1

N3

X
ijk

ð�num
ijk ��analytic

ijk Þ2
�
1=2

: (A18)

Figure 17 shows strict second-order convergence in the L2

error over a range of five doublings of N.

APPENDIX B: OCTUPOLE TIDAL TENSOR
IN THE FNC FRAME

The nonzero components of the octupole tidal tensor in
the FNC frame for parabolic ~E ¼ 1 orbits are given by

C111 ¼ 3M

4r4

�
3

�
1þ 7 ~L2

3r2

�
cos�þ 5

�
1þ ~L2

r2

�
cos 3�� 6

~L

r
Ur

�
1þ 5 ~L2

3r2

�
sin�� 10

~L

r
Ur

�
1þ ~L2

r2

�
cos 2� sin�

�
V�1
2

C131 ¼ C311 ¼ C113 ¼ M

4r4

� ~L
r
Ur

�
1þ 5 ~L2
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�
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r
Ur

�
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�
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�
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þ 30
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�
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�
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r
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