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This paper defines an angular velocity for time-dependent functions on the sphere and applies it to

gravitational waveforms from compact binaries. Because it is geometrically meaningful and has a clear

physical motivation, the angular velocity is uniquely useful in helping to solve an important—and largely

ignored—problem in models of compact binaries: the inverse problem of deducing the physical

parameters of a system from the gravitational waves alone. It is also used to define the corotating frame

of the waveform. When decomposed in this frame, the waveform has no rotational dynamics and is

therefore as slowly evolving as possible. The resulting simplifications lead to straightforward methods for

accurately comparing waveforms and constructing hybrids. As formulated in this paper, the methods can

be applied robustly to both precessing and nonprecessing waveforms, providing a clear, comprehensive,

and consistent framework for waveform analysis. Explicit implementations of all these methods are

provided in accompanying computer code.
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I. INTRODUCTION

Gravitational-wave astronomy stands on the brink of
delivering numerous observations of merging compact
binaries [1–6]. Though the uncertainties are large, black-
hole binaries involving large spins are expected to consti-
tute a significant fraction of observable events [7–10]. If
these spins are misaligned with the orbital angular velocity,
the system will precess, imprinting the gravitational radia-
tion with strong variations [11–14]. While it is not clear
how common such misalignment will actually be, it is
entirely clear that we will need good models of the pre-
cessing waveforms if we hope to accurately measure them.

We can describe the motion of a precessing binary on
very short timescales as a simple orbit in a plane; on longer
timescales, that plane rotates. Now, we know that the
gravitational-wave field of a nonprecessing system can be
decomposed into relatively simple modes when the orbital
plane is orthogonal to the z axis [15–17]. But precession
moves the orbital plane out of alignment, causing the
modes to mix and leading to complex behaviors which
complicate analysis of the waveforms [18–29]. In particu-
lar, none of the methods developed to analyze nonprecess-
ing systems will work correctly with precessing systems.

In the context of post-Newtonian models, Buonanno
et al. [18] proposed a convention whereby effects of pre-
cession can be isolated from orbital motion. Specifically,
the system is analyzed at each instant in a frame with its z
axis orthogonal to the orbital plane; from moment to
moment, the frame is made to rotate to follow the preces-
sion. This method was later rediscovered in the context
of numerical relativity, and techniques were developed
for finding such a frame from the waveform itself in a
geometrically meaningful way [30–32].

This paper extends previous work by developing a
frame in which all rotational behavior is eliminated, sim-
plifying the waveform as much as possible and allowing
direct generalizations of methods for analyzing nonpre-
cessing systems. In the process, the angular velocity
of a waveform is introduced, which also has important
uses, such as supplying a partial solution to an important
inverse problem.

A. The modeler’s inverse problem

We might distinguish two significant inverse problems
related to gravitational waves: the modeler’s inverse
problem and the equally important astronomer’s inverse
problem. The gravitational-wave astronomer’s task is to
deduce the parameters (masses, spins, etc.) of a system
from observations at a single point over an extended time.
In practice, it is greatly complicated by the presence of
noise in the data. Usually referred to as parameter estima-
tion, this problem has been extensively studied [33–44].
The modeler’s task, on the other hand, is to deduce the
parameters given observations of the entire sphere at
infinity over a brief (possibly infinitesimal) interval of
time. It is—in some sense—prior to the astronomer’s prob-
lem, because it addresses the meaning of the parameters
in models astronomers use.1 This paper concerns itself
exclusively with the modeler’s inverse problem.
Various methods exist for producing gravita-

tional waveforms—numerical-relativity, phenomenologi-
cal, post-Newtonian, and effective-one-body models, for
example. But no one of these is capable of producing an

1Intriguingly, understanding the modeler’s inverse problem
may help to inform the astronomer’s inverse problem more
directly [29].
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accurate and complete waveform on its own. Numerical-
relativity (NR) simulations are too expensive to simulate
more than a short portion of the waveform near merger.
Phenomenological models use NR data as inputs. Post-
Newtonian (PN) approximations break down before the
merger. Even terms generating the effective-one-body
(EOB) inspiral and the ad hoc method of attaching a ring-
down must be ‘‘calibrated’’ by comparison to numerical
results. Therefore, we need more than one model to gen-
erate a complete waveform, which means that we need to
understand precisely how the different models relate to
each other. This leads directly to the inverse problem.

The numbers we plug in to a computation of initial data
for an NR simulation bear no clear relation to the numbers
we insert into a PN or an EOB computation—or even to
other NR simulations using different formulations. For ex-
ample, the direction of a black-hole spin measured in the
arbitrary coordinates of NR initial data need not correspond
in any meaningful way to the direction measured in PN
coordinates. Even if the gauge condition used for the nu-
merical simulation were the same as the one used to derive
the PN formulas, the initial data would not be the same, so
the gauge itself would be different. For nonprecessing sys-
tems, symmetries reduce the ambiguity to oneof simple time
and phase offsets, and numerous simple methods have been
suggested to resolve those ambiguities [45]. But in the
precessing case, we need to be much more careful. Simply
using the same numbers in two different models leads to
comparing systems with inherently different physics.

Fundamentally, we need to establish a mapping between
the input parameters of different models such that they
produce the same physics (as nearly as possible) during
some span of time for which both models are valid.
Because we have no access to any invariant physical mean-
ing behind our parameters, we need to take a different
approach. For example, given some particular set of
parameters, we can run a numerical simulation. Then, we
can work backwards from the resulting waveform and try
to find the parameters needed to generate the same wave-
form with a PN system—which is the inverse problem.

The issue of ascribing meaningful physical interpreta-
tions to geometric quantities measured on Iþ has been
investigated to some extent [46–48], but it is not clear that
these methods are useful for the immediate problem of
analyzing gravitational waveforms. The angular-velocity
vector introduced by this paper and a related vector intro-
duced by O’Shaughnessy et al. [31] provide geometrically
meaningful physical quantities which can be measured
directly from the waveforms alone, and are thus prime
candidates for use in solving the inverse problem. Indeed,
we will see in Sec. III that these two vectors are very
closely related to input parameters for the precessing PN
system. This provides a partial solution to the inverse
problem, leaving three remaining degrees of freedom.
Several possibilities will also be suggested for completing

the solution of the inverse problem, though they are beyond
the scope of this paper.

B. Overview of this paper

Section II introduces the angular velocity of a waveform,
finding a straightforward formula and a more intuitive
interpretation of the mathematics. This and the related
vector suggested in Ref. [31] are then used in Sec. III to
find a partial solution to the inverse problem. A PN wave-
form is used as a test case, showing excellent agreement
between the original parameters and the parameters de-
duced from the waveform alone. In Sec. IV, the angular
velocity is used to determine a frame with that velocity.
The same PN waveform used in the previous section is
decomposed in this frame, showing that the amplitudes of
the waveform modes become very simple, and their phases
become nearly constant. Because this frame reduces the
complexity of the waveform, it is ideally suited to practical
manipulation of waveforms, as discussed in Sec. IVC. It is
also worth noting that the partial solution to the inverse
problem completely establishes all extrinsic parameters,
giving us a solid foundation for comparisons between
waveforms. Finally, the results are summarized and sug-
gestions for future work are collected in Sec. V.
The Appendixes provide deeper background infor-

mation which may be useful for implementing these
methods or comparing to other methods. Appendix A
presents a fairly comprehensive discussion of quaternions
and various related details, including several new results.
In Appendix B, formulas are derived for the rotation of
arbitrary spin-weighted functions. While equivalent for-
mulas have been derived previously [32,49,50], this deri-
vation uses a somewhat different technique, and carefully
develops conventions for consistency throughout this pa-
per. In any case, the upshot is that modes of spin-weighted
fields transform exactly as do modes of spin-weight-zero
fields. Lastly, Appendix C discusses related previous work
in the same formalism used in this paper allowing for more
direct comparisons.
Ancillary files included with this paper (available on the

paper’s arXiv page) contain computer code implementing
all of the concepts introduced here, among others. The core
functions are written in C++ [51] for speed, using several
functions from the GNU Scientific Library [52]. While
this code could be incorporated directly into other
C/C++ codes, an additional user interface is provided in

Python [53,54] code as the GWFrames module, which
simply exposes all the C++ functions through Python.
Documentation and examples can be found among the
ancillary files. Relevant functions or classes are mentioned
where appropriate throughout this paper.

C. Quaternion notation

The techniques of this paper necessarily involve rota-
tions, which are best implemented in terms of the group of
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unit quaternions because of the numerous advantages over
direct manipulation of rotation matrices or Euler-angle
coordinates. By using quaternions, we obtain robust
methods which can be blindly applied to general systems,
including nonprecessing ones—which simplifies the pro-
cessing of large numbers of waveforms. Moreover, once
the basics are understood, quaternion rotations are more
intuitive than either of those inferior descriptions. In fact,
quaternions are essentially the axis-angle description
of rotations, in a more practical guise. Therefore, quater-
nion notation will be used throughout. As mentioned
above, Appendix A provides a thorough introduction to
quaternions, while computer code included in the ancillary
files with this paper gives practical implementations
of the necessary functionality through GWFrames:
Quaternion. However, such details are not necessary
for a good understanding of this paper; the following para-
graph should provide sufficient background.

Quaternions can be thought of as generalizing the
familiar complex numbers, where the imaginary part is
generalized to a three-dimensional vector part.2 We can
write a quaternion as the sum of a scalar and a vector:
Q¼q0þq. The conjugate of the quaternion is �Q¼q0�q.
We can multiply quaternions together [see Eq. (A2)],
the product being associative but not commutative in gen-
eral. The norm of a quaternion is defined according to
jQj2 ¼ Q �Q ¼ q20 þ q � q. Unit quaternions, having norm

jRj ¼ 1, are especially important, as they describe rota-
tions. To see this, we can consider a vector to be a quater-
nion with scalar component equal to zero, in which case it
makes sense to multiply a vector by a quaternion. Then we
can define the transformation

v � v0 :¼ Rv �R: (1)

A simple exercise shows that this transformation is linear,
and preserves lengths and orientations, so it is just a rotation.
Ultimately, the best reason to use quaternions is the
existence of simple formulas [Eqs. (A8) and (A9)] for the
exponential and logarithm, which prove to be endlessly
useful. In particular, we can express an arbitrary unit

quaternion asR ¼ e�û=2 ¼ cos �2 þ û sin �
2 , where exponen-

tiation of a quaternion is defined by the usual power series.3

It turns out that thisR produces a rotation through the angle
� about the axis û. Because any rotation may be expressed
in this form, we will use unit quaternions as our only

representation of rotations, and refer to them as rotors.
Conversely, given a rotor R, we can find the corresponding
axis and angle according to �û ¼ 2 logR, where the loga-
rithm is given by Eq. (A9). A frame will be described by the
rotor that generates it by rotating some standard basis frame.

II. ANGULAR VELOCITY OFAWAVEFORM

We can define the angular velocity of a gravitational
waveform—or any field on a sphere—as the opposite of the
velocity of the counter-rotation needed to keep the field as
constant as possible. In the first part of this section, this
definition will be formulated more precisely, resulting in a
surprisingly simple formula for the angular velocity. The
formula can be interpreted as a projection of the familiar
operator equation �i! � L ¼ @t onto the ‘‘rotational
parts’’ of the waveform—a notion which can be made
surprisingly rigorous using the language of Hilbert spaces,
as discussed in the second part of this section.

A. Finding the angular velocity

The essential idea here is to remove the rotational
behavior of the waveform by imposing a rotation that
eliminates as much of the time dependence as possible.
Suppose that RjðtÞ is a time-dependent rotation operator

acting on the wave field f (usually representing �4 or h)
such thatRjðtjÞ ¼ 1. We wish to find the rotation operator

that—in some sense—minimizes the quantity

@

@t
½RjðtÞfðt;#;’Þ�jt¼tj : (2)

Clearly, this is a complex function of position on the
sphere. To reduce it to a single real number, we take its
squared magnitude and integrate over the sphere:

�ðRjÞ :¼
Z
S2

��������@

@t
½RjðtÞfðt;#;’Þ�

��������t¼tj

��������2

d�: (3)

If we expand the field f in spin-weighted spherical
harmonics (SWSHs, discussed in Appendix B), the natural
way to express the rotation operator is in its usual form
Rj ¼ exp ½�i�j �L�, where L is the standard angular-

momentum operator and �j is the time-dependent axis-

angle description of the rotation. Note that we must have
�jðtjÞ ¼ 0 because we have assumed thatRjðtjÞ ¼ 1. This

is absolutely crucial because it makes the differentiation in
Eq. (3) tractable. We also define the angular velocity4

2In fact, both complex numbers and quaternions are special
cases of geometric algebra [55], done in two and three dimen-
sions, respectively. Much of our intuition from complex arith-
metic transfers easily to quaternion arithmetic when i ¼ ffiffiffiffiffiffiffi�1

p
is

replaced by a unit vector. The notable exception to this corre-
spondence is noncommutativity of the quaternion product.

3Note the striking—and not coincidental—similarity to
Euler’s formula with û in place of the unit imaginary i. This
results from the fact that, under quaternion multiplication,
û û ¼ �1.

4Subscripts are necessary on the rotation operator Rj and the
associated vector �j because these have certain properties de-
pending on which instant of time tj we are looking at. We have
implicitly assumed that the �jðtÞ are all related by simple
constant offsets, as necessary to satisfy the conditions �jðtjÞ ¼
0. Because the offsets are constant, the angular-velocity vector!
does not have such a dependence, and so does not need the
subscript.
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! :¼ �@t�j; (4)

where the negative sign arises because �j corresponds to

the rotation needed to keep the field fixed in a moving
frame, whereas! is intended to describe the motion of the
field relative to the initial static frame. We have

�ð!Þ ¼
Z
S2
ji! � Lfþ @tfj2d�: (5)

Now, we can write the integral in terms of a sum over
standard matrix elements of the angular-momentum opera-
tor and the problem simplifies nicely. We obtain

� ¼ ! � hLLi �!þ 2! � hL@ti þ
X
‘;m

j@tf‘;mj2; (6)

where we have defined the matrix5

hLLiab :¼ X
‘;m;m0

�f‘;m
0 h‘;m0jLðaLbÞj‘;mif‘;m (7a)

and the vector

hL@tia :¼ X
‘;m;m0

=½ �f‘;m0 h‘;m0jLaj‘;mi@tf‘;m�: (7b)

Noting that the last term in Eq. (6) is independent of!, we
can find the minimum6 of � analytically:

! ¼ �hLLi�1 � hL@ti: (7c)

The effects of La are familiar, so this may be directly
computed from knowledge of f‘;mðtÞ, with no optimization
or solution of the eigensystem necessary. There is no
ambiguity in the direction of the angular velocity, and we
obtain a meaningful magnitude.

In the computer code included among this paper’s
ancillary files, a waveform object may be constructed
with GWFrames:Waveform. The angular velocity may
then be found using the AngularVelocityVector
method on such an object.

B. Interpreting the mathematics

Equation (7) gives a formula for the angular-velocity
vector of the field f. Though it takes a relatively simple
form, the reason it takes this particular form may seem
somewhat opaque. In fact, it really has quite a simple
interpretation, which may be instructive. In fact, we can
start off with a simple observation and re-derive Eq. (7) in a
very different way.
The angular-momentum operator L generates rotations,

as is well known. So, for example,�i! �Lf gives the time
rate of change of the field under a simple rotation given by
!. More generally, the three components of �iLf form a
basis generating the Hilbert subspace �, consisting of
functions describing possible rates of change for f under
(complex) rotations. On the other hand, we also have a
second operator @t, which gives the actual time rate of
change of the field, whether that change is a simple rotation
or a change in amplitude—or a more complicated behavior.
But we can extract the part of @tf caused by (real) rotation
alone by projecting onto the basis vectors of � and taking
the real part:

<
�Z

S2
�iLf@tfd�

�
: (8)

The three components of this expression completely
describe the rotational part of @tf. We take the real part
because we ordinarily take the dot product of �iL with a
real-valued vector, so if we expect to find such terms in
@tf, they must have real components [56].
Now, the crucial point: if ! correctly describes the

rotation, the same projection of �i! � Lf must give the
same result:

<
�Z

S2
�iLfð�i! �LfÞd�

�
¼ <

�Z
S2
�iLf@tfd�

�
:

(9)

If we expand f in spin-weighted spherical harmonics, it
turns out7 that this equation reduces to precisely

hLLi �! ¼ �hL@ti; (10)

which is, of course, equivalent to Eq. (7c).
Thus, we see the interpretation clearly. In the case of a

pure rotation, we have �i! � Lf ¼ @tf. In general, how-
ever, we have to project onto the rotational parts of the
waveform for equality to hold, which is just what Eqs. (7)
and (10) do. It is also worth noting that in the purely
rotational case, we can use �i! �L ¼ @t directly and

5Here, the j‘;mi represent the spin-weighted eigenfunctions,
but the angular-momentum operator acts on these just as in the
non-spin-weighted case [49], making this notation particularly
familiar. The matrix denoted here as hLLiab is precisely the
quantity hLðaLbÞit defined by O’Shaughnessy et al. [31], except
that the latter is normalized by

P
‘;mjf‘;mj2.

6We can show that it is a true minimum rather than a more
general stationary point by looking at the Hessian matrix of �,
which is just 2hLLi. We are free to rotate this matrix into a frame
in which its dominant principal axis is along ẑ. Then, we can
calculate its eigenvalues as hL2

z i and hL2 � L2
zi � jhL2þij. As

long as some mode with m � 0 is nonzero, these are always
(strictly) positive. Hence, hLLi is positive definite, and we have
a true minimum. Furthermore, we can calculate that the deter-
minant is actually the product of these eigenvalues, and thus is
also nonzero whenever the field is nonzero, allowing us to invert
the matrix in Eq. (7c). Since hLLi is a geometric object, and
eigenvalues and determinants are invariant under rotations, these
conclusions hold in all frames.

7As usual, we get integrals of the form
R
. . . j#;’i�

h#;’j . . . d�, which are just resolutions of the identity. Then,
taking the real part on the left-hand side is equivalent to
symmetrizing over the indices of the two L vectors before
contracting with !. On the right-hand side, taking the real part
of i times a quantity is the same as taking the negative imaginary
part, so this is precisely the definition of �hL@ti.
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calculate � � 0. Recalling the definition of � in Eq. (3),
this says that the time variation is completely eliminated.

Interestingly, we can see this projection working directly
by showing that hLLi and hL@ti are insensitive to changes
in the amplitudes of the modes. Clearly, hLLi does not
depend on any derivatives with respect to time. To see that
hL@ti is insensitive to changing amplitude, we first note
that it is a geometric object so we can evaluate it in
any frame we choose—we choose a frame in which it is
aligned with the z axis. Next, we decompose the field into
(logarithmic) amplitude and phase parts:

f‘;mðtÞ ¼ exp ½�‘;mðtÞ þ i�‘;mðtÞ�: (11)

A pure rotation about the z axis leads to _�‘;m ¼ 0 and
_�‘;m ¼ �mj!j, so we expect that a projection onto the
rotational part will eliminate _�‘;m but must not eliminate
_�‘;m. In fact, we can explicitly calculate

hL@ti ¼ ẑ
X
‘;m

=½ �f‘;mh‘;mjLzj‘;mi@tf‘;m� (12a)

¼ ẑ
X
‘;m

=½ð _�‘;m þ i _�‘;mÞmjf‘;mj2� (12b)

¼ ẑ
X
‘;m

m _�‘;mjf‘;mj2: (12c)

Here, taking the imaginary part has caused _�‘;m to drop out

entirely, leaving only _�‘;m, supporting the claim that we
have removed non-rotational parts of the waveform. Note
that this formula is entirely general; we have not assumed
any particular behavior of � or �, for example.

III. SOLVING THE INVERSE PROBLEM

Section I A established the need to solve the inverse
problem. Essentially, in order to create a complete gravi-
tational waveform, we need to be able to take a finite or
even infinitesimal portion of a waveform and infer the
parameters of the PN (or similar) system that result in
that waveform. Because it is the most extensively devel-
oped system, we will discuss the quasicircular PNmodel as
a concrete example. In this section, we will first describe
the parameters that need to be established. This will
involve reviewing the basic elements of the PN model.
We will then see how to solve part of the inverse problem
using the angular-velocity vector ! and the dominant

eigenvector of hLLi (denoted V̂f) [31], showing the effec-

tiveness of this method with an example.

A. The required parameters

To the extent that different formulations of the PNmodel
are correct, they predict the same physics, and so we are
free to choose between them as we wish. Certain formula-
tions may be better than others with regard to solving the
inverse problem. Here, we follow Refs. [24,57]. First, we
assume a pair of particles with masses M1 and M2,
and spins S1 and S2. The unit vector pointing from the

second to the first is n̂. The orbital angular velocity is
defined as

�orb :¼ n̂� _̂n: (13a)

The direction of this vector is frequently expressed in the

literature as L̂Nð� �̂orbÞ. There is (in general) an addi-
tional rotation of the system due to precession, denoted
�prec. Now, if this vector were to have any component

orthogonal to n̂, that would contradict the definition of
�orb, so it must simply be proportional to n̂:8

�prec :¼ �precn̂: (13b)

We also define the sum of these:

�tot :¼ �orb þ�prec: (13c)

During the evolution we must record the minimal-rotation
frame9 aligned with �orb and the accumulated orbital
phase �orb measured relative to n̂. Then, the frame of the
binary will given by rotating the minimal-rotation frame by
�orb about its z axis. These are the orbital elements of
the system. Their evolution is not of particular concern
here, as the details have no effect on our conclusions. The
waveform can be calculated in this frame using standard
formulas, and transformed to an inertial frame if needed to
complete the construction of the waveform.
The initial data we need to begin a PN calculation, then,

are the values of ðM1;M2;S1;S2;�orb; n̂Þ at some initial
time. These might be termed the intrinsic parameters of the
system [18,58,59]. They are geometrically meaningful, and
covariant under certain symmetries assumed for our
system—namely time translation and rotation of coordi-
nates. But this brings up a subtlety. We can think of two
more classes of parameters: the extrinsic and the fiducial.
Extrinsic parameters depend on the observer, and can be
thought of generally as degrees of gauge freedom like the
time offset or an overall rotation. Fiducial parameters are
selected values of intrinsic quantities that depend on ex-
trinsic parameters. By solving for the intrinsic parameters
relative to a particular time function and a particular basis
for the vectors, we will be tacitly setting the extrinsic
parameters. Then, when comparing two waveforms, we
must choose fiducial parameters and ensure that the extrin-
sic parameters are the same. We will find that it is a simple
matter to ascertain the intrinsic parameters except for three
degrees of freedom in the directions of the spin vectors. It
will also be straightforward to completely establish the
extrinsic parameters.

8Note that for other formulations of the PN model, this
equation may not be true. See Refs. [11,12,18–25] for more
details.

9See Sec. C 4 and Ref. [32].
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B. Deducing the parameters

Wemight only expect quantities to be meaningful if they
are covariant objects measured at infinity—e.g., wave-
forms or ADM-type quantities. Coordinate locations of
black holes in a simulation, for example, depend too
much on details of gauge conditions and vagaries of
initial data and junk radiation to be of any real use. On
the other hand, some quantities are also reasonably well
defined when the black holes are very widely separated.
Therefore, if we find that certain quantities change slowly
during the early part of the NR simulation, and are not
expected to have changed much previously, then we might
also be able to use those quantities in our analysis. This is
typically true of the masses and spin magnitudes when
measured appropriately [60–62], except to the extent that
they are expected to change [63,64]. Therefore, we assume
that M1, M2, jS1j, and jS2j can be measured in the simu-
lation and used directly. The rest of our intrinsic parame-
ters will come from the waveforms (or possibly other
measurements on Iþ).

To see how we can derive orbital elements from quan-
tities observable from the waveform, we need to see how
orbital elements give rise to the waveform. Familiar cal-
culations [15,16] tell us that the PN waveform is created by
motion of the binary. The complete motion is described by
�tot, so we expect that! should be the same. On the other
hand, the component along n̂ does not lead to changing
multipole moments (to our level of approximation). So
only the component of �tot orthogonal to n̂ is involved—
but that is precisely �orb. We can therefore expect that the
waveform is oriented along this vector, in some sense.
Now, the vector z happens to be the dominant eigenvector

of hLLi for an individual spin-weighted spherical har-
monic (though not necessarily for a combination of
them). It also happens to be the dominant eigenvector
when the field f is symmetric under reflection through
the x-y plane [65]—as the PN waveform is in the frame
aligned with �orb. Therefore, we should expect �orb to be

parallel to V̂f.

Putting these considerations together, we can expect the
following approximate equalities:

�tot ’ !; (14a)

�orb ’ ðV̂f �!ÞV̂f; (14b)

�prec ’ !� ðV̂f �!ÞV̂f: (14c)

Inspection of the PN model suggests that these expressions
should become more exactly true in the asymptotic limit of
low orbital velocities. Note that Eq. (13b) shows that n̂ is
along �prec, so we effectively obtain that quantity as well,

whenever the precession is nonzero.
Figure 1 compares the orbital elements to the related

waveform expressions, for a PN system with significant
precession. The direction of�orb coincides extremely well

with V̂f—they agree to within the numerical precision

throughout the inspiral. �tot and ! agree to within a few
parts in 105 early in the inspiral, though the disagreement
grows near merger. However, it may be possible to remove
even this disagreement through more careful treatment of
the distinction between the orbital phase and the phase of a
waveform in PN theory.
Now, in each case of Eqs. (14), the quantities on

the right-hand side are measured directly from the wave-
form. Thus, if we have a numerical waveform, we can
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FIG. 1 (color online). Orbital elements compared to waveform quantities. These plots show the PN orbital elements �̂orb (left) and
�tot (right), compared to the ‘‘PN-equivalent’’ quantities derived from the waveforms alone given in Eqs. (14). The binary has a 6:1
mass ratio. Initially, the larger black hole has a spin of S1=M

2
1 ¼ 0:9 in the ð#;’Þ ¼ ð2:00; 0:25Þ direction; the smaller black hole has a

spin of S2=M
2
2 ¼ 0:3 in the ð#;’Þ ¼ ð2:4; 2:9Þ direction. These parameters were chosen because the resulting orbital velocity happens

to execute a complete flip, passing very close to �ẑ, which is a rigorous test of these methods. In both plots, tighter oscillations

correspond to earlier times; the last 3600M before merger are shown. The directions �̂orb and V̂h are identical to within the numerical
accuracy throughout the inspiral. The vectors �tot and ! are the same to within a few parts in 105 early in the inspiral, though
differences grow somewhat as the system approaches merger (roughly the end of the data shown here).
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simply measure the right-hand sides and define the
‘‘PN-equivalent’’ orbital elements according to these
equations. A PN system given those parameters as initial
conditions will necessarily be as similar to the numerical

system as possible—at least by the measures of ! and V̂f.

This gives us a partial solution to the inverse problem.
We are lacking four degrees of freedom corresponding to
the directions of the two spin vectors. One additional piece
of information is also available from the foregoing consid-
erations. The magnitude �prec is given in PN theory as a

bilinear function of S1 � n̂ and S2 � n̂, where the coef-

ficients depend on the PN-expansion parameter v :¼
ðM�orbÞ1=3, and are therefore already known. Thus, we
can solve for S1 � n̂, for example. This suggests other
possible methods to find the remaining three components
of spin. For example, PN expressions for the orbital angu-
lar momentum L are available in terms of the orbital
elements and the various projections of the spin vectors.
If it is practical to measure the total angular momentum of
the spacetime J in the numerical solution [66,67], we
could then use the PN expression for Lþ S to solve for
the PN-equivalent components of spin. This would com-
plete the solution of the inverse problem.

Alternatively, we might measure various modes of the
waveform and equate them to the PN expressions for those
modes. Again, these expressions contain various known

quantities, as well as bilinear combinations of S1 � �̂orb

and S2 � �̂orb [13,68]. Therefore, we could solve for these
combinations of the spin components. Seemingly, this
would rely on the accuracy of the PN expressions, which
is not very high for spin terms. On the other hand, the
influence of any errors that result would be similarly
diminished. One final degree of freedom would remain in
this example, and would have to be fixed by other means.
In any case, we leave these considerations to future work.

In the computer code included among this paper’s ancil-
lary files, a waveform object may be constructed with
GWFrames:Waveform, or a PN waveform may be
constructed with GWFrames:PNWaveform. The PN-
equivalent orbital and precessional angular velocities may
then be calculated using thePNEquivalentOrbitalAV
and PNEquivalentPrecessionalAV methods.

IV. THE COROTATING FRAME

So far, we have calculated only the instantaneous angular
velocity of thewaveform,! [Eq. (7c)].While this has already
proven useful in the previous section, it can also be advanta-
geous in determining a frame in which to decompose the
waveform. Specifically, we seek a frame whose angular ve-
locity is just !. When decomposed in this frame, the wave-
formwill have no rotation, and will be as constant as possible.
The frame compares favorably to other frames introduced
previously [30–32] (see Appendix C). It has practical benefits
and suggests simple techniques for measuring, comparing,
and processing waveforms from numerical simulations.

A. Finding the corotating frame

Our task here is to find the rotorRðtÞ describing a frame
whose angular velocity is !. We can relate the two by a
simple equation:

! ¼ 2 _R �R: (15)

(See Ref. [32] and Sec. A 3.) Unfortunately, the solution we
might naively write down is wrong,

RðtÞ � exp

�
1

2

Z t
!ðt0Þdt0

�
; (16)

except when the system is nonprecessing. Ultimately, the
reason for the failure of this formula in general is that ! is
not parallel to its derivative (or integral). In the language
of quaternions,10 ! fails to commute with its derivative
(or integral); to find the correct version of Eq. (16), we
need to account for that noncommutativity.
Given!, we could solve Eq. (15) for _R and integrate as

we would a vector equation. But in practice this would
quickly violate the constraint that R should be a unit
quaternion. Instead, we will need an expression in terms
of the logarithm of this rotor,

_R �R ¼ _rþ sin 2jrj
2jrj2 ½r; _r� þ jrj � sin jrj cos jrj

4jrj3 ½r; ½r; _r��;
(17)

with rðtÞ :¼ logRðtÞ. (See Sec. A 3 for the derivation.) The
second and third terms on the right-hand side of this expres-
sion account for the noncommutativity as needed. Setting the
right-hand side equal to !=2, we can solve for _r to find

_r ¼
�
!� rðr �!Þ

jrj2
� jrj cot jrj

2
þ rðr �!Þ

2jrj2 þ 1

2
!� r:

(18a)

This is just an explicit first-order ordinary differential
equation, so we can integrate numerically using standard
techniques to arrive at the appropriate rðtÞ and find the
corotating frame

RcorotðtÞ ¼ exp ½rðtÞ�: (18b)

The advantage of this method over direct integration of
Eq. (15) is that it ensures that the resulting quaternion truly
does have norm 1. When integrated directly, the quaternion
in Eq. (15) has four degrees of freedom, whereas a unit
quaternion has only three. By integrating Eq. (18a) instead,
we eliminate the extra degree of freedom, reducing this to a
truly three-dimensional problem while automatically
satisfying the constraint on the norm. In general, trans-
forming equations in such a way improves the accuracy of

10Note that the failure to commute is by no means specific to
the quaternion description of rotations; it is a feature of rotations
themselves. Quaternions do, however, provide a very effective
means of solving the problem.
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numerical results significantly—as is certainly the case
with this system when tested. Using the fact that R ¼
exp r and �R ¼ exp ½jrj��

jrj r� describe the same frame,

we can reset the value of r between steps of the numerical
integration to keep its magnitude small. This improves the
quality of the numerical integration, though it may then be
useful to go back and flip the signs of rotors as necessary to
keep RðtÞ as continuous as possible.

Naturally, imposing a condition on the angular velocity
of a frame leaves its overall orientation free. Assuming
RcorotðtÞ describes a frame whose angular velocity is !,
then the frame RcorotðtÞRc will have the same angular
velocity for any constant Rc. Alternatively, the frame
RcRcorotðtÞ would have angular velocity ! rotated by Rc.
In the interests of simplifying the waveform, it is best to
choose some particular time during the inspiral at which to

align the z axis of the frame with V̂f, as suggested by

O’Shaughnessy et al. [31]. Once this is done at one instant

of time, z and V̂f should be aligned at all other times to very

high accuracy. We are still free to rotate about the z axis, so
we can set the phase of the ð‘;mÞ ¼ ð2; 2Þmode to 0 at this
instant, for example. We will see below that the phase is
very slowly varying in the corotating frame, so this will not
be a delicate operation. Alternatively, if the waveform is
precessing, we can align the x axis with the PN-equivalent
n̂, which should be roughly equivalent to setting the (2, 2)
phase to 0. When comparing two waveforms, the only
requirement is that these instants of time be comparable,
which is assured by choosing a common fiducial quantity,
as discussed in Sec. IVC.

In the computer code included among this
paper’s ancillary files, the function GWFrames:
FrameFromAngularVelocity returns the corotat-
ing frame, given an array of quaternions representing the
angular-velocity vector as a function of time. Alter-
natively, a waveform object may be constructed with
GWFrames:Waveform and transformed to the corotating
frame with the TransformToCorotatingFrame
method.

B. Gravitational waveforms in the corotating frame

Figure 2 demonstrates the effects of decomposing the PN
waveform described in Fig. 1 in various frames. First is the
usual inertial frame, where a stationary observer at infinity
has constant coordinate position. In this frame, the moduli of
the modes oscillate wildly, as power shifts between them
(upper left panel of Fig. 2). Similarly, the phase (upper right
panel) shows strange features. The ‘ ¼ �2 and ‘ ¼ �1
modes have roughly the same frequency, as power from
the dominant modes leaks into and overwhelms the
‘ ¼ �1 modes. Those phases also change direction each
time the rotation axis passes through the x-y plane (at times
of roughly �2400 and �600). Both the modulus and phase
are very complicated functions in this frame. They would be

hard to model directly, and their rapid variations are not
conducive to accurate numerics.
The next pair of panels shows the waveform in the

waveform-aligned frame suggested by O’Shaughnessy
et al. [31] supplemented with the minimal-rotation condi-
tion (see Sec. C 4 and Ref. [32]). Here, hLLi is evaluated
using all modes up to ‘ ¼ 8, the dominant eigenvector is
found, and the fame is rotated so that its z axis coincides
with that eigenvector while obeying the minimal-rotation
condition. This drastically simplifies both the modulus and
phase, as seen in the middle panels of Fig. 2. The modulus
is very smoothly sweeping up as the binary spirals in
toward merger. The phases are now separated as usual,
with slopes more nearly equal to �m�orb.
Decomposing the waveform in the waveform-aligned

frame also requires recording the orientation of the frame.
In that case, there is no additional overhead in going to the
corotating frame, shown in the lower panels of Fig. 2. The
modulus plot is identical to the one in the previous case.
However, there is further improvement in the phase, with
each mode having nearly constant phase throughout.
Similar behavior is seen in other modes with ‘ > 2.
Naturally, such a waveform is particularly well suited to
interpolation and hybridization [26,32,69].
A minor feature to note in the phase is the non-constancy

of the (2, �1) modes. Considered on their own, these
variations could be removed by a rotation because the
curves change in opposite directions. On the other hand,
this would cause the phases of other modes to vary.
Equation (7c) automatically balances these concerns; the
amplitudes of the (2, �1) modes are so small that they do
not carry much weight. By transforming to the corotating
frame, we isolate the waveform’s intrinsic dynamics—seen
here in�2;�1—from the rotational dynamics of the system,
allowing for separate analyses. This is important because
they are separately modeled, so it is useful to be able to
inspect each effect on its own.

C. Extrapolation, comparison, alignment,
and hybridization

As a practical matter, we need to manipulate numerical
waveforms in various ways. We must eliminate physical
and gauge effects associated with extraction of data at
finite radius, usually by extrapolation [70–72].11 To com-
pare numerical waveforms to each other or to analytical
waveforms, we need to determine the extrinsic parameters
corresponding to freedom in choosing the zero of time and
the overall orientation of our axes. To construct a complete
waveform, we may occasionally need to hybridize

11Cauchy-characteristic extraction is another method of finding
the correct waveform at Iþ [73–75]. This can proceed as usual,
and the final waveform can be transformed to the corotating
frame. A recent implementation [75] has improved the efficiency
to make this an especially attractive alternative to extrapolation.
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waveforms from different systems [26,32,69,76–79].
Various approaches to these problems have been intro-
duced, but most are designed exclusively for nonprecessing
systems, or are otherwise incomplete or fragile. The angu-
lar velocity and corotating frame provide excellent tools
for addressing these issues more generally, and are espe-
cially robust when implemented by means of quaternions.

Practical extrapolation relies on smoothness of the
extrapolated functions [72]. In the corotating frame, the
modes of the waveform are essentially constant during
inspiral—except for the overall growth in modulus—
suggesting that this is the ideal frame for extrapolation.
We can implement such a procedure in the usual way,
with one minor addition. We first impose a time-retardation
offset to all the data, as usual. Then, we add the step of
finding the corotating frame of the outermost extracted data,
and transforming the data at all radii to that frame. (We
cannot rotate data at each radius into its own corotating

frame, as that would require extrapolation of rotors, which is
not well understood.) The waveforms at the other radii will
not be precisely in their own corotating frames, but should
be close enough that the data are quite smooth. The extrapo-
lation may then proceed as usual, resulting in an extrapo-
lated waveform in the corotating frame of the outermost
data. Again, the extrapolated result will not be precisely its
own corotating frame, but the transformation is routine.
In the nonprecessing case, a multitude of methods have

been suggested to compare and align waveforms (fixing the
extrinsic parameters) and to construct hybrids of NR and
PN waveforms [45]. These all require generalization to use
in the case of significant precession. By using the corotat-
ing frame, we simplify the modes of the waveform decom-
position sufficiently that ordinary methods can still be
used. (Comparing phase differences or relative differences
in modulus, for example.) But each waveform now comes
with its own frame, RAðtÞ and RBðtÞ, encoding most of

FIG. 2 (color online). Precessing waveform in various frames. These plots show the modulus (left) and phase (right) of the ‘ ¼ 2
modes of a post-Newtonian waveform in the inertial (top), waveform-aligned minimal-rotation (middle), and corotating (bottom)
frames. The phase is defined as usual [96–98] so that h‘;m ¼ jh‘;mj exp ½i�‘;m�, with branch-cut discontinuities removed. The system is
the same as the one shown in Fig. 1. Going from the inertial frame to the aligned frame drastically simplifies the waveform amplitudes
and significantly simplifies the phase. In the aligned frame, the waveform looks very much like a nonprecessing waveform [26].
Expressing the waveform in the corotating frame retains the smoothness in amplitude seen in the aligned frame, but makes the phases
of the modes nearly constant, with values of roughly 0, ��=2, and �. Similar results can also be seen for modes with ‘ > 2.

ANGULAR VELOCITY OF GRAVITATIONAL RADIATION . . . PHYSICAL REVIEW D 87, 104006 (2013)

104006-9



the phase dynamics, so we will also need to compare the
difference between the frames themselves. Fortunately,
quaternions provide us with geometrically meaningful
measures of the difference.

The difference itself is given in quaternion form as12

R�ðtÞ :¼ RAðtÞ �RBðtÞ: (19a)

This is the rotation taking frame B into frame A, and is
independent of the basis with respect to which A and B are
defined. Now, we might want to know how ‘‘big’’ this
difference rotation is. As noted in Sec. I C, we can write
any rotation, including R�, in axis-angle form:

R�ðtÞ ¼ exp ½��=2�: (19b)

We can easily solve this equation for �� by taking the
logarithm. In particular, its magnitude is the angle through
which the system must be rotated:

��ðtÞ ¼ 2j logR�ðtÞj: (19c)

This can be used as a simple but complete description of
the phase difference between two systems.13

We can understand this better and make contact with
previous work by recognizing �� as a more general
version of a common measure of the difference between
waveforms common in analysis of nonprecessing systems.
That measure is ��‘;m, the difference between the phases
of the modes as measured in the static frame. Because the
angular velocity is conventionally chosen to be along the z
axis, we can usually relate the orbital phase �orb to the
waveform phase as �‘;m � �m�orb. Here, we have the
similar expression

��‘;m � �m��: (20)

However, as we saw in the previous section,��‘;m is a less
useful measure for precessing systems. In contrast, ��

encapsulates the differences in both the orbital and the
precessional dynamics14 in one convenient function while
leaving the waveform dynamics separate, and is equally
relevant in both precessing and nonprecessing systems.

The quantity �� gives us a compact description of
the difference between two waveforms as measured in
their corotating frames. But it depends on the extrinsic
parameters discussed in Sec. III A: the overall time offset
and orientation of the static basis frame. Alignment of
waveforms consists of minimizing differences between

the waveforms at some instant or over some span of time
by adjusting the extrinsic parameters as needed. This can
be seen as a restricted version of the inverse problem,
where we simply assume that the intrinsic parameters are
identical—as when we wish to compare waveforms
evolved the same initial data with different numerical
resolution. Section III B used the implicit assumption that
the time coordinate and basis frame would be defined to be
the same in both waveforms. Here, we are simply given
two waveforms, along with their arbitrary time offsets and
overall orientations. They must be aligned more actively.
We can separate this into two steps: first align the time,

then align the frames. To align the time, we will need some
measure of the waveform that is independent of orienta-
tion. For example, we can use the magnitude of the angular
velocity j!j. We then choose some fiducial time tfid and
find the value of �t such that

j!AðtfidÞj ¼ j!Bðtfid þ �tÞj: (21)

The time coordinates of waveformBmay then be shifted as
t � tþ �t. The main limitation with this method is that
the magnitude j!j is not always strictly monotonic for
highly precessing systems. Usually it is possible to find a
time for which it is monotonic. Alternatively, we can find
�t by minimizing the squared difference between the two
sides of Eq. (21) integrated over some significant span of
time. Quantities other than j!j may also be more robust
against this nonmonotonicity—quantities such as flux or
the total power in the waveform.
Now, assuming that the time coordinates have been prop-

erly aligned, it is a simple matter to align the frames. We
simply apply the transformation RBðtÞ � R�ðtfidÞRBðtÞ.
Then, at tfid, there will be precisely no difference between
the frames. In particular,��ðtfidÞ ¼ 0. Reference [32] sug-
gested essentially this same transformation, but included an
additional rotation about the z axis because there was still
one degree of rotational freedom in that paper. Here, we
have assumed that the orientation of each waveform has
been completely fixed at tfid, as discussed in Sec. IVA,
though not necessarily fixed to the same basis frame.
In previous work, alignment has also been done by min-

imizing the squared difference in some quantity (��2;2, for
example) integrated over some span of time. This has been
used in an effort to nullify spurious effects such as junk
radiation or residual eccentricity [78,79]. A similar program
can certainly be applied to �� by minimizing

�ð�t;R�Þ :¼
Z t2

t1

4j log ½RAðtÞ �RBðtþ �tÞ �R��j2dt:

This requires simultaneously optimizing over the time offset
and all three degrees of rotational freedom. In particular, a
simplification that occurs in the nonprecessing case and al-
lows the problem to be reduced to one dimension will not
work in the precessing case due to noncommutativity of
rotations; the problem must remain truly four-dimensional.

12The inverse of an arbitrary nonzero quaternion Q
is just �Q=jQj2. Since rotors have norm 1, the inverse of a rotor
R is just �R. Therefore, this formula is analogous to subtraction,
but applied to rotation operators.
13It is crucial to note that log ðRA

�RBÞ � logRA � logRB
because rotations do not commute. In particular, the latter
depends on the basis frame and is therefore not a useful measure
of the difference between frames.
14If needed, the orbital evolution can be further isolated from
the precessional dynamics using the minimal-rotation frame.
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Once the waveforms are aligned, it is a simple matter to
hybridize them with a slight generalization of the standard
method. Typically, we use only information from wave-
form A before some time t1, and only information from
waveform B after some t2, with a transition in between.
The waveforms are assumed to have been aligned some-
where in the range between t1 and t2. The transition may be
accomplished with some (usually smooth) monotonic
function �ðtÞ that equals 1 before t1 and 0 after t2. Then,
the hybrid version of any mode f‘;m may be defined as a
simple linear interpolation between the two waveforms15:

f‘;mhybrid
:¼ f‘;mA ðtÞ�ðtÞ þ f‘;mB ðtÞ½1� �ðtÞ�: (22a)

Again, however, each waveform comes with its own frame,
and these frames have to be hybridized. As suggested in
Ref. [32], this can be accomplished with a form of linear
interpolation defined for rotors:

Rhybrid :¼ Lð�ðtÞ;RAðtÞ;RBðtÞÞ; (22b)

where the interpolant L is given by Eq. (A30). As discussed
in Appendix A 4, it is critically important to use the correct
interpolant. Finally, we must note we only have the frames
RA and RB sampled at discrete (essentially arbitrary)
points, so we will need to interpolate between those points
to the desired t. For this, smoother interpolation is required.
Appendix A 4 discusses a method using cubic splines
reinterpreted for rotors.

In the computer code included among this paper’s
ancillary files, waveform objects may be constructed
with GWFrames:Waveform. They may be aligned, com-
pared, and hybridized with methods such as AlignTime,
AlignFrame, AlignTimeAndFrame, Compare, and
Hybridize.

V. CONCLUSIONS

The angular velocity of a waveform was defined in
Sec. II by the rotation which minimizes the time depen-
dence of the waveform. This fairly nebulous criterion was
reformulated precisely, and led to a simple formula,
providing us with a geometrically meaningful description
of the motion of a waveform. We also saw that ! can be
considered to be that vector which makes the action of the
operator�i! �L as equal as possible to the action of @t, in
a sense that can also be made surprisingly precise.

The angular-velocity vector and the dominant eigenvector

V̂f of hLLi proposed by O’Shaughnessy et al. [31] provide
us with powerful tools to understand and manipulate wave-
forms, with no reference to meaningless gauge quantities.
Section III showed that these two vectors can be used very

effectively and accurately to find at least part of the solution
to the important inverse problem. Determining the three
remaining degrees of freedom is left for future work, though
some suggestions were made for how to do this.
Beyond this fundamental benefit, ! also provides

key practical advantages. We can readily calculate the
corotating frame, which also has angular velocity !.
Transformed to this frame, the waveform is literally as
constant as possible. When functions are slowly varying,
they are easily approximated by low-order functions; they
can be numerically interpolated and differentiated quite
accurately; and fewer data points are needed to record their
values than for quickly varying functions. This type of
technique has already seen great success in numerical
simulations themselves [80,81].
Putting these together, we can also perform all the stan-

dard manipulations needed for waveform analysis. Data
collected from a simulation at different radii can be extrapo-
lated nicely. Two waveforms (e.g., different resolutions of a
numerical simulation, or an NR and a PN waveform) can be
aligned, compared, and hybridized readily. The only addi-
tional steps necessary are comparison and hybridization of
the frames, but these are easily achieved using formulas
given by Eqs. (19a) and (22b). Notably, the use of quatern-
ions vastly improves numerics and allows us to access the
geometrically meaningful elements of rotations.
The code included with this paper implements all the

techniques discussed above, showing that they are ready to
use in waveform analysis. There are, however, issues that
may benefit from further investigation. As mentioned,
more work is needed to complete the solution of the inverse
problem. Also, it is certainly possible that different
techniques could further simplify the ringdown, for
example. While preliminary results show that reasonable,

smooth results for ! and V̂f are obtained throughout the

inspiral, merger, and ringdown, the waveform in any frame
still has very complicated structure during ringdown,
presumably stemming from the difference between spin-
weighted spheroidal harmonics and spherical ones [82,83].
More specific methods [29,83,84] will likely be needed to
adequately capture features of general ringdowns with
simple models.

Nonetheless, we can conclude that ! and V̂f already

deliver a complete system for waveform analysis. When
implemented with quaternion methods, the system is
robust enough to be applied blindly to both precessing
and nonprecessing systems. This consistency simplifies
the production and analysis of both types of waveform.
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APPENDIX A: QUATERNIONS AND ROTATIONS

Unit quaternions clearly constitute the representation of
choice when computing with spatial rotations. Quaternions
have become the dominant technique in fields as diverse as
computer graphics, robotics, molecular dynamics, naviga-
tion, and orbital mechanics. They are closely related to the
axis-angle formalism, which gives us clear geometric
intuition and avoids the problem of gimbal lock associated
with singularities of the Euler angles. But there is also a
clear notion of them as operators, giving us all the advan-
tages of the matrix representation of rotations. They are
trivially inverted and easily composed, and the logarithm
and exponential functions are easy to evaluate, presenting
further advantages over all other representations.

For all these reasons, this paper and the accompanying
code use the notation of quaternions. Here, the basic
elements of quaternion math are summarized, Wigner’s D
matrices and the spin-weighted spherical harmonics are
expressed directly in terms of quaternions, and formulas
for the linear interpolants and splines of rotors are given.
The computer code included among this paper’s ancillary
files contains all of the quaternion functions discussed here.
The fundamental object is the GWFrames:Quaternion,
which has numerous methods. See the documentation for
more details. Also, note that Mathematica [85] returns
incorrect results for logarithms of general quaternions,
and is thus not a reliable tool for most of the calculations
in this paper.

1. Elements of quaternion mathematics

A quaternion is a set of four numbers, usually denoted as

Q ¼ ðq0; q1; q2; q3Þ ¼ q0 þ q: (A1)

We summarize the notation in Table I. The quaternions
form an algebra, meaning that the quaternions form a
vector space (over the real numbers), as well as a group
where the product is defined by

PQ ¼ ðp0q0 � p � qÞ þ ðp0qþ q0pþ p� qÞ: (A2)

Here, the dot product and cross product of vectors take
their usual meanings. Note that this product is neither
commutative nor anti-commutative in general. The conju-
gate of a quaternion is defined as

�Q :¼ ðq0;�q1;�q2;�q3Þ ¼ q0 � q (A3)

and the norm of a quaternion according to

jQj2 ¼ Q �Q ¼ q20 þ q21 þ q22 þ q23 ¼ q20 þ q � q: (A4)

A unit quaternion is simply a quaternion with unit norm.
Because quaternion multiplication is associative, we can
find useful inverses of a quaternion by taking the conjugate
and dividing by the squared norm,

Q�1 ¼
�Q

jQj2 : (A5)

In particular, the inverse of a unit quaternion is just its
conjugate. Note, however, that while a unit quaternion has
norm jRj ¼ 1, its square is not 1 in general. For example,
if R ¼ û is some unit vector, we have R2 ¼ �1.
Now, given any vector v, we can define the transforma-

tion law

v0 ¼ Rv �R; (A6)

where the right-hand side involves quaternion multiplica-
tion with v interpreted as a quaternion with scalar part
v0 ¼ 0. It is not hard to check that ifR has unit magnitude,
then this transformation law preserves orientation, angles,
and lengths—and is therefore a rotation. These rotations
compose in the natural way, and we will see below that we
can construct a unit quaternion representing any desired
rotation, which means that the unit quaternions form a
representation of the rotation group.16

Using the product law for quaternions, we can define the
exponential of a quaternion according to the standard
power series,

expQ :¼ X1
n¼0

Qn

n!
: (A7)

Note that, because of the noncommutativity of quaternion
multiplication, the usual rules of exponents do not apply.
In particular, exp ½PþQ� � expP expQ unless P and Q

TABLE I. Quaternion notation.

Q Quaternion

q� Component � of the quaternion
�Q Conjugate: ðq0;�q1;�q2;�q3Þ

jQj Norm:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20 þ q21 þ q22 þ q23

q
q Vector part: ðq1; q2; q3Þ
q Magnitude of vector part:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21 þ q22 þ q23

q
q̂ Normalized vector part: q=q
q Logarithm: logQ
q Magnitude of the logarithm: jqj

ang R Angle of a rotation: 2r ¼ 2j logRj

16In fact, because of the double-sided rotation law, Eq. (A6), R
and �R represent the same rotation, so the unit quaternions
provide a double cover of the rotation group SOð3Þ; the group of
unit quaternions is actually isomorphic to SUð2Þ. Unsurprisingly,
the logarithms [defined in Eq. (A9)] of unit quaternions form a
group isomorphic to suð2Þ. Hence the notation r ¼ logR.
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commute—which happens precisely when their vector
parts are parallel. Given some angle � and some unit vector
û, we can show that the unit quaternion17

R ¼ exp

�
�

2
û

�
¼ cos

�

2
þ û sin

�

2
(A8)

represents a rotation through the angle � about the axis
û (in the positive sense, using the right-hand rule). This
illustrates the connection between the axis-angle and the
unit-quaternion representations of rotation. The factor of
1=2 needed in the exponential is a result of the double-
sided rotation law, Eq. (A6).

By inspection of Eq. (A8), we see that we can also define
a reasonable logarithm of nonzero quaternions18:

logQ :¼ log jQj þ q

q
arctan

q

q0
: (A9)

Note that the logarithm of a unit quaternion will be a
pure vector—log jQj ¼ 0. For compactness, we define the
notation q :¼ logQ and q :¼ jqj. As with the usual
complex logarithm and the real arctangent function, this
function is multivalued; the magnitude of the vector part is
ambiguous up to integer multiples of 2�. We typically
choose the principal value so that the norm of the vector
part is in ½0; ��, as with the complex logarithm. Choosing
the branch must be done carefully, in order to obtain correct
geometric results and reasonably continuous functions of
time. When differentiating the logarithm (as in Sec. A 3 for
example), we will treat the function as being continuous.
On the other hand, sometimes in the very same formula, we
will assume the logarithm takes on its principal value.

The principal value of the quaternion logarithm can
actually be restricted further if our purpose is only to
cover SOð3Þ. Because of the double-sided rotation law of
Eq. (A6), the final vector is invariant underR � �R. This
is equivalent to

r �
r� �

r
r: (A10)

In particular, we can apply this formula when r>�=2,
ensuring that r 2 ½0; �=2�. The transformation gives rise
to different rotors, but the same rotation.

As with exponents of real numbers, we can define

QP :¼ exp ½P logQ�: (A11)

This formula will be usually be applied in cases where
P is a pure real number, though other formulas may be
advantageous in such cases—as illustrated in the case of
the square-root below.

The square root of a quaternion is particularly useful in
constructing rotations taking one vector into another as
directly as possible. We can find a formula for it with an
elegant geometric interpretation and important numerical
advantages over Eq. (A11) with P ¼ 1=2. The product of
two unit vectors �û ŵ is a rotation in the û-ŵ plane of
twice the angle between those vectors, in the sense from ŵ
to û. The square root of this product is the same rotation

through only half that angle—in particular,
ffiffiffiffiffiffiffiffiffiffiffiffi�û ŵ

p
is the

most direct rotation taking ŵ into û. We need to bisect the
angle between them, and a familiar geometric construction
that achieves this is the diagonal of the rhombus having ŵ
and û as sides:

v̂ ¼ ûþ ŵ

jûþ ŵj : (A12)

Then the rotation we want is

ffiffiffiffiffiffiffiffiffiffiffiffi�û ŵ
p ¼�v̂ ŵ¼� û ŵ�1

jûþ ŵj ¼� 1� û ŵffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½1�ðû ŵÞ0�

p : (A13)

Computing the square root using this expression is easier
than using Eq. (A11), in the sense that no transcendental
functions are required and fewer singularities are encoun-
tered. This expression is very robust and deals well with
finite numerical precision. This expression is ill defined
whenever ûþ ŵ ¼ 0—which is not surprising, as there are
infinitely many ‘‘shortest’’ ways to rotate a vector into its
opposite. These are two ways of expressing the fact that
there are infinitely many square roots of�1 among the unit
quaternions.

2. Formulas for rotations of SWSHs

We now express Wigner’s D matrices and the spin-
weighted spherical harmonics (SWSHs) directly in terms
of quaternions, so that no conversion to or from the more
usual Euler-angle representation is necessary. In the fol-
lowing, we will treat the general case in which the spin
weight s is arbitrary; the formulas given here do not
assume s ¼ �2.
The SWSHs form a basis for spin-weighted functions on

the sphere [86–88]. Goldberg et al. [49] showed that the
SWSHs can be expressed as special cases of Wigner’s D

matrices, so that by constructing D
ð‘Þ
m0;m, we will obtain

sY‘;m. Defining the parts of the quaternion Q as19

17More generally, the exponential of any quaternion is expQ ¼
exp jQj exp ðQ=jQjÞ, where the second factor can be evaluated
according to the given formula.
18Again, this expression generalizes the more familiar complex
relation log z ¼ log jzj þ i arctan=z=<z, where i is replaced by
a general three-vector.

19The choices of signs in these definitions are—to a great
extent—arbitrary conventions. However, care must be taken to
ensure that the resulting D matrices form a representation of the
rotation group rather than an anti-representation, and to ensure
that the handedness of space is preserved. Our purpose in
choosing these particular signs is to reproduce the standard
SWSHs as special cases. In particular, note that the presence
of q3 in the definition of Qa is what picks out the z axis as the
point of reference on the sphere, so that the polar angle is
measured with respect to it, rather than the x or y axes.
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Qa :¼ q0 þ iq3 and Qb :¼ q2 þ iq1; (A14)

we can express quaternion multiplication as

ðPQÞa ¼ PaQa � �PbQb; (A15a)

ðPQÞb ¼ PbQa þ �PaQb: (A15b)

Quaternions are isomorphic to spinors, and the two parts of the quaternion defined here are essentially the two components
of the spinor. Then, following the standard derivation [89], we obtain

Dð‘Þ
m0;mðRÞ ¼

8>>>>><
>>>>>:

�m0;�mR
2m
b ð�1Þ‘þm when Ra ¼ 0;

�m0;mR
2m
a when Rb ¼ 0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘þmÞ!ð‘�mÞ!

ð‘þm0Þ!ð‘�m0Þ!
q

jRaj2‘�2mRmþm0
a Rm�m0

b

P
�
ð�1Þ� ‘þm0

�

 !
‘�m0

‘� ��m

 !�
jRbj
jRaj

�
2�

otherwise:

(A16)

This expression is valid for all integral and half-integral
values of ‘ � 0; naturally, we only need integral values
‘ � 2 for the s ¼ �2 fields discussed in this paper. To
recover the usual expressions for D in terms of Euler
angles, we use R ¼ e�ẑ=2e	ŷ=2e
ẑ=2, from which we can
easily find

Ra ¼ cos
	

2
ei


þ�
2 Rb ¼ sin

	

2
ei


��
2 : (A17)

It must be emphasized, of course, that evaluating Eq. (A16)
directly is faster and deals with numerical-precision issues
better than using the form with sines and cosines.

Now, to express the SWSHs in terms of these D matri-
ces, we adopt conventions to agree with Ref. [90], which
attempts to establish uniform conventions for use in
numerical relativity. We have

sY‘;mð#;’Þ ¼ ð�1Þs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘þ 1

4�

s
D

ð‘Þ
m;�sðe’ẑ=2e#ŷ=2Þ: (A18)

These functions are implemented in the ancillary files as
GWFrames:WignerDMatrix and GWFrames:SWSH.

3. Integrating the angular velocity

In many contexts, quaternion-valued functions of time
turn up. These may be differentiated or integrated with
respect to time, much as vector-valued functions may be.
However, noncommutativity leads to certain problems. In
the next section, we will see how interpolation can be
handled sensibly. Here, we prove a vital formula used in
the main text of this paper to integrate the angular velocity
vector to find the rotor describing the frame with that
angular velocity.

First, we need formula for the derivative of the inverse,
which can be obtained by differentiating QQ�1 ¼ 1:

d

dt
Q�1 ¼ �Q�1 dQ

dt
Q�1: (A19)

This is the crucial relation that allows us to calculate the
angular velocity $ of a frame described by the rotor RðtÞ

[32]. Suppose that a vector v0 is stationary in the rotating
frame. Then, that vector is given in the inertial frame as
vðtÞ ¼ RðtÞv0

�RðtÞ. We also know that dv=dt ¼ $� v.
Using the definition of quaternion multiplication and the
usual commutator (Lie product), we can calculate
$� v ¼ 1

2 ½$;v�. Another way of writing this is

d

dt
ðRv0

�RÞ ¼ 1

2
½$;Rv0

�R� (A20a)

¼ ½ _R �R;Rv0
�R�; (A20b)

where the second line comes from simply evaluating the
left-hand side and using Eq. (A19). Now, if this is to be true
for all vectors v0, then we must have

$ ¼ 2 _R �R: (A21)

The factor of 2 appears here because we are using quatern-
ions; this factor does not appear in the equivalent result for
rotation operators.
As explained in Sec. IV, we need an expression for the

right-hand side in terms of logarithms. To borrow notation
from the theory of Lie groups, we define the adjoint
operator using the familiar commutator:

adPQ :¼ ½P;Q� ¼ PQ�QP: (A22)

This notation is convenient because we will need repeated
applications of the commutators. For example, ad2PQ ¼
½P; ½P;Q��. Now, if P and Q are unit quaternions, their
logarithms will be pure vectors: logP ¼ p and logQ ¼ q.
We will also use the notation p :¼ jpj, etc. Again, we can
use the definition of quaternion multiplication in Eq. (A2)
to see that ½p; q� ¼ 2p� q, which allows us to use familiar
properties of the cross product to calculate

adnpq¼

8>><
>>:
q n¼0;

ð�1Þðn�1Þ=2½p;q�ð2pÞn�1 nodd;

ð�1Þðn�2Þ=2½p;½p;q��ð2pÞn�2 n>0even:

(A23)
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The proof is a simple induction. A standard formula [91]
says

e pqe�p ¼ X1
n¼0

1

n!
adnpq; (A24)

while a somewhat less standard formula [92] gives us

_P ¼ dep

dt
¼
Z 1

0
esp

dp

dt
eð1�sÞpds (A25)

for p 	 �. We can multiply this formula on the right
by e�p, and substitute using Eq. (A24). We then separate
the resulting sum into three parts, corresponding to the
three cases in Eq. (A23). These can be readily evaluated,
yielding simple trigonometric functions, which can then be
integrated20:

_R �R ¼
Z 1

0
esr

dr

dt
e�srds (A26a)

¼
Z 1

0

�X1
n¼0

1

n!
adnsr _r

�
ds (A26b)

¼
Z 1

0

�
_rþ sin ð2srÞ

2r
½r; _r� þ sin 2ðsrÞ

2r2
½r; ½r; _r��

�
ds

(A26c)

¼ _rþ sin 2r

2r2
½r; _r� þ r� sin r cos r

4r3
½r; ½r; _r��: (A26d)

As discussed in Sec. A 1, we evaluate the derivative _r by
treating r as a continuous function, removing any branch
cuts. On the other hand, when used without differentiating,
we have assumed that r 	 �.

We can re-express this relation as a matrix equation by
defining

A :¼
8><
>:

1 0 0

0 1 0

0 0 1

0
BB@

1
CCAþ sin 2r

r2

0 �r3 r2

r3 0 �r1

�r2 r1 0

0
BB@

1
CCA

� r� sin r cos r

r3

r22 þ r23 �r1r2 �r1r3

�r1r2 r21 þ r23 �r2r3

�r1r3 �r2r3 r21 þ r22

0
BB@

1
CCA
9>=
>;;
(A27)

in which case we have the much more compact formula,

_R �R ¼ $

2
¼ A _r: (A28)

The determinant of the matrix simplifies to sin 2r=r2, and
is thus invertible for r<�. For the rare edge case
with exactly r ¼ �, the rotation exp r ¼ �1, which

corresponds to the identity rotation, so we should have
_r ¼ $=2. For all other cases, we can invert the matrix
explicitly to find21

_r ¼
�
$� rðr �$Þ

r2

�
r cot r

2
þ rðr �$Þ

2r2
þ 1

2
$� r:

(A29)

Thus, we are left with an ordinary differential equation
to solve for r, as discussed in Sec. IV. Finally, we
obtain (up to the constant of integration) R ¼ exp r.
This is implemented in the ancillary files as GWFrames:
FrameFromAngularVelocity.

4. Interpolation

When comparing waveforms, one of the most basic
requirements is the ability to interpolate. The description
of a gravitational waveform has now expanded to include
both the SWSH modes of the waveform and the rotor
describing the frame of that decomposition. So we need a
way to interpolate rotors. But interpolation of rotors is
complicated by the fact that the interpolant needs to remain
normalized to unity at all times. While it is possible to
simply interpolate the quaternions in R4 and normalize the
result, the interpolant will generally exhibit unnatural
accelerations between the interpolated points, even in the
simplest case of uniform rotation. Interpolation of rotation
matrices is just as bad. It goes without saying, of course,
that interpolation of Euler angles leads to complete
nonsense—the result is highly sensitive to the orientation
of the coordinate basis, and depends very strongly on the
conventions for which directions the successive Euler
rotations take. A reasonable suggestion might be to inter-
polate the logarithms of the rotors and exponentiate the
interpolant. However, this also leads to unnatural behaviors
in fairly simple cases, whenever the logarithms of the
rotors are not parallel. Fortunately, there are well-
motivated solutions to the problem of quaternion interpo-
lation that can give reasonable results in very general cases.
Recognizing that the unit quaternions can also be

regarded as points on the unit sphere S3, we might further
expect an interpolant to follow the geodesic between two
points on the sphere. In fact, achieving this property is
actually quite simple, using the fact that the quaternions
operate as a (Lie) group. A simple interpolation between
unit quaternions R0 and R1 that preserves the normaliza-
tion is given by [94]

Lð�;R0;R1Þ ¼ ðR1
�R0Þ�R0 ¼ R0ð �R0R1Þ�: (A30)

Obviously, Lð0;R0;R1Þ ¼ R0 and Lð1;R0;R1Þ ¼ R1,
and the norm of Lð�;R0;R1Þ is always 1. This formula
is strongly analogous to the formula for standard linear

20Again, note the assumption that r 	 �, which is essential to
the correctness of Eq. (A26), where the actual magnitude r is
used. Nonetheless, we also assume that the derivative _r exists
and is continuous everywhere, which must be enforced by
removing branch-cut discontinuities before differentiating.

21An equivalent formula was found using a very different
derivation by Grassia [93].
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interpolation, except that multiplication by � becomes
exponentiation and addition becomes multiplication.22

This interpolation is referred to as ‘‘slerp’’ for spherical
linear interpolation. It will be useful to note that

d

d�
Lð�;R0;R1Þ ¼ log ðR1

�R0ÞLð�;R0;R1Þ; (A31a)

¼ Lð�;R0;R1Þ log ð �R0R1Þ: (A31b)

This formula shows us that the speed along the slerp path is
constant, as it must be for a geodesic.

Many problems only call for a linear interpolation like
slerp. In particular, when blending PN and NR waveforms,
each waveform possesses its own frame. To transition
between the two waveforms, we must transition between
the frames, which is just a simple linear interpolation at
each instant of time where the extent of the interpolation
(the � argument to the function above) depends on the time.
However, we also need to be able to interpolate each
individual waveform as a function of time.23 For this, we
cannot use linear interpolation for the motion of the frame

of either waveform. If we did, we would see the frame
abruptly change rotation speed as it goes through each
original data point, just as a linearly interpolated graph
changes slope abruptly as it passes through each original
data point. Instead, we would prefer some higher-order
technique.
We can approach this problem in analogy with the

construction of curves in space, which suggests various
approaches such as the de Casteljau algorithm for
constructing Bézier curves. Unfortunately, the various
methods—while being equivalent for real numbers—are
not equivalent when using quaternions because of non-
commutativity [95]. It is not clear that any particular
formulation will give better results than any other, so we
may take the pragmatic approach of simply choosing one
which is easily implemented. The result will be a spherical
interpolation based on the quadrilateral of a standard
spline, referred to as squad.
In that spirit, we will define the cubic-spline interpolant

in terms of the linear interpolant,

Cðt;Ri;Ai;Biþ1;Riþ1Þ ¼ Lð2�ið1� �iÞ;Lð�i;Ri;Riþ1Þ; Lð�i;Ai;Biþ1ÞÞ; (A32)

where Ai and Biþ1 are ‘‘control points’’ to be solved for. We have also defined �iðtÞ ¼ ðt� tiÞ=ðtiþ1 � tiÞ, where i is
assumed to be the index of the nearest time sample such that ti 	 t. We can evaluate the derivative

d

d�i
C ¼ d

d�i
fexp ½2�ið1� �iÞ log ðLð�i;Ai;Biþ1ÞLð�i;Ri;Riþ1Þ�1Þ�Lð�i;Ri;Riþ1Þg (A33a)

¼ ð2� 4�iÞ log ðLð�i;Ai;Biþ1ÞLð�i;Ri;Riþ1Þ�1ÞCþ 2�ið1� �iÞGþ C log ð �RiRiþ1Þ; (A33b)

where G is a complicated expression, which is easy to
compute, but messy to write; fortunately do not need to
evaluate it because that term drops out when we evaluate at
�i ¼ 0 or �i ¼ 1, as the factor in front of G goes to zero.
We wish to ensure that the time derivatives are equal at the
end of one segment and the beginning of the next,

d

dt
Cð�i�1;Ri�1;Ai�1;Bi;RiÞj�i�1¼1

¼ d

dt
Cð�i;Ri;Ai;Biþ1;Riþ1Þj�i¼0: (A34)

Note that we differentiate with respect to t, rather than �i,
to account for differences in the time steps of the given
data.Plugging in the result of Eq. (A33) and simplifying,

we get

1

�ti�1

f�2 log ðBi
�RiÞRi þRi log ð �Ri�1RiÞg

¼ 1

�ti
f2 log ðAi

�RiÞRi þRi log ð �RiRiþ1Þg; (A35)

or equivalently

1

�ti�1

Rif�2 log ð �RiBiÞ þ log ð �Ri�1RiÞg

¼ 1

�ti
Rif2 log ð �RiAiÞ þ log ð �RiRiþ1Þg: (A36)

We need one more condition to solve for both variables Ai

and Bi. We may choose24 to set the velocity at either side
equal to the average velocity of linear interpolations on
those two sides, giving us the following two equations:

22This analogy should not be carried too far because quaternion
multiplication is noncommutative. In particular, it is crucial to
note that the right-hand side of Eq. (A30) is not equal to
R1R

1��
0 , for example, whenever R0 and R1 do not commute;

such a formula actually gives very poor interpolation in many
cases. Equation (A30) is preferable because the path it describes
is a geodesic in the space of unit quaternions.
23For example, the PN waveform and the NR waveform will
generally be calculated at different instants of time. To compare
them, we need to be able to interpolate the values of one
waveform onto the time steps of the other.

24This choice has the nice property of agreeing with our
intuition in the case of ‘‘straight-line’’ motion. To be precise:
if the transformation fromRi�1 toRi is written as multiplication
by Ri

�Ri�1, then ‘‘straight-line’’ motion occurs when Riþ1 ¼
Ri

�Ri�1Ri (and for simplicity, we assume �ti�1 ¼ �ti). Then
this average velocity is Ri log ð �Ri�1RiÞ=�t, which is precisely
the velocity of a linear interpolation at that point.
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Ri

log ð �RiRiþ1Þ=�ti þ log ð �Ri�1RiÞ=�ti�1

2
¼ 1

�ti�1

Rif�2 log ð �RiBiÞ þ log ð �Ri�1RiÞg (A37a)

Ri

log ð �RiRiþ1Þ=�ti þ log ð �Ri�1RiÞ=�ti�1

2
¼ 1

�ti
Rif2 log ð �RiAiÞ þ log ð �RiRiþ1Þg: (A37b)

We can now solve for the control points,

Ai ¼ Ri exp

�
log ð �RiRiþ1Þ þ log ð �Ri�1RiÞ�ti=�ti�1 � 2 log ð �RiRiþ1Þ

4

�
(A38a)

Bi ¼ Ri exp

�
� log ð �RiRiþ1Þ�ti�1=�ti þ log ð �Ri�1RiÞ � 2 log ð �Ri�1RiÞ

4

�
: (A38b)

To apply these formulas to the edge cases of i ¼ 0 and
i ¼ N � 1, we also define the quantities R�1 ¼ R0

�R1R0

and RN ¼ RN�1
�RN�2RN�1, which roughly represent

straight-line motion.
In the computer code included among this paper’s

ancillary files, the functions GWFrames:Slerp and
GWFrames:Squad implement linear and cubic interpola-
tions of rotors.

APPENDIX B: ROTATING SPIN-WEIGHTED
FUNCTIONS

Gravitational radiation is a complex field of nonzero spin
weight, meaning that it picks up a position-dependent phase
under rotation [88]. The reason for this is its definition with
respect to a dyadic which is itself defined in terms of a
coordinate basis; when the coordinates rotate, the dyadic
rotates. Depending on details of the definition of the
gravitational-wave field, the spin weight may be s ¼ 2 or
s ¼ �2—the most common choice being the latter.
Throughout the rest of this paper, we have assumed s ¼
�2; in order to discuss the properties of general spin-weighted
fields, this Appendix will apply to general values of s.

Suppose we have a field f of spin weight s on the sphere.
To measure this field, we first need some standard basis for
our space, ðx̂; ŷ; ẑÞ. We can define the usual spherical
coordinates relative to this basis, and write the field as a
function of the coordinates, so that in some particular
direction n̂, we have fðn̂Þ ¼ fð#;’Þ. We define the rotor

Rð#;’Þ :¼ e’ẑ=2e#ŷ=2 (B1)

and note that

n̂ ¼ Rð#;’Þẑ �Rð#;’Þ: (B2)

Now, given a second basis ðx̂0; ŷ0; ẑ0Þ related to the first by a
rotorR, we can define another set of spherical coordinates,
and another rotor Rð#0;’0Þ, for which

n̂ ¼ Rð#0;’0Þẑ0 �Rð# 0;’0Þ ¼ Rð#0;’0ÞRẑ �R �Rð#0;’0Þ: (B3)

Because n̂ has a geometric meaning independent of any
basis, we can equate these two expressions. In general, this
implies the relationship

Rð#;’Þe
ẑ=2 ¼ Rð#0;’0ÞR; (B4)

for some angle 
 which depends on ð#;’Þ.25 The term
involving 
 represents an initial rotation through that angle
in the positive sense about the direction ẑ, which is
equivalent to a final rotation about the direction n̂. For
spin-weighted functions, this corresponds [88] to multi-
plication of the function value by e�is
. Thus, in this basis,

we measure a different field f̂, related to the field f
measured in the first basis by

f̂ð#0; ’0Þ ¼ fð#;’Þe�is
: (B5)

For s ¼ 0, we recover the familiar result that a scalar field
does not depend on the frame in which it is measured.
The spin-weighted spherical harmonics (SWSHs) form a

basis for spin-weighted functions on the sphere [86–88],
just as standard spherical harmonics form a basis for spin-
zero functions. We can write

fð#;’Þ ¼ X
‘;m

f‘;msY‘;mð#;’Þ; (B6a)

f̂ð#0; ’0Þ ¼ X
‘;m

f̂‘;msY‘;mð# 0; ’0Þ: (B6b)

The SWSHs themselves are just special cases of the
Wigner D matrices (see Eq. (A18) and Ref. [49]). We
can then use the fact that the D matrices form a represen-
tation of the rotation group to find the transformation law
for SWSHs,

Dð‘Þ
m0;mðR1R2Þ ¼

X
m00

Dð‘Þ
m0;m00 ðR1ÞDð‘Þ

m00;mðR2Þ; (B7)

which implies, using Eq. (B4), that

25This angle is required to account for the full three-
dimensional freedom in choosing R. It is always possible to
find such an angle. However, this angle need not be unique for
certain orientations; 
 may be degenerate with ’. Similarly,
because of the familiar singularities of the spherical coordinates,
there may not be a unique choice of ð#;’Þ or ð#0; ’0Þ for certain
positions. Nonetheless, the rotations Rð#;’Þe
ẑ=2 and Rð#0;’0Þ
generated by these angles will be uniquely determined, much
as the North and South Poles are uniquely determined despite the
ill-defined longitude at those points.
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sY‘;mð#;’Þe�is
 ¼ X
m0

sY‘;m0 ð#0; ’0ÞDð‘Þ
m0;mðRÞ: (B8)

The dependence of 
 on ð#;’Þ means that, strictly
speaking, the SWSHs with s � 0 do not transform among
themselves under rotations. Naturally, when coupled to the
appropriate spin-weighted tensors, the complete object
transforms as expected [16]. Similarly, the modes f‘;m

transform nicely thanks to a convenient cancellation.
Inserting Eqs. (B6) and (B8) into Eq. (B5), we can show that

f̂ ‘;m0 ¼ X
m

f‘;mDð‘Þ
m0;mðRÞ; (B9a)

or equivalently

f‘;m ¼ X
m0
f̂‘;m

0
D

ð‘Þ
m;m0 ð �RÞ: (B9b)

These are precisely the same as the transformation laws for
modes of standard (s ¼ 0) spherical harmonics, and do not
depend on 
.

Expressions for the Wigner D matrices are given
directly in terms of the rotor in Eq. (A16), which avoids
the need for conversion to Euler angles. The SWSHs are
expressed as particular components of these matrices in
Eq. (A18). In the computer code included among this
paper’s ancillary files, the Wigner D matrices and SWSHs
are implemented as GWFrames:WignerDMatrix
and GWFrames:SWSH. Waveform objects may be
constructed with GWFrames:Waveform, and trans-
formed to different frames using the method
RotateDecompositionBasis.

APPENDIX C: OTHER METHODS
OF CHOOSING A FRAME

In the interests of completeness, and to facilitate direct
comparisons using common language, we now review
three other methods of choosing a frame to eliminate
mode-mixing in waveforms from precessing systems.
Each of these methods constructs a new frame by ensuring
that the ẑ0 direction lies along some chosen axis which is
roughly the axis of rotation of the waveform. These differ
from the corotating frame introduced in the main text of
this paper, in that the waveform is still rotating in these new
frames. The considerations of Sec. III (and in particular the
left panel of Fig. 1) suggest that among these three, the
preferred method is that of O’Shaughnessy et al. supple-
mented with the minimal-rotation condition [32]. In par-
ticular, when setting the integration constant discussed
near the end of Sec. IVA, that is the method of choice.
However, over all, the corotating frame is generally still a
preferable choice.

We first describe two methods suggested by Schmidt
et al. [30] and O’Shaughnessy et al. [31], using a common
notation which allows a common implementation by
means of explicit maximization of a quality function. We

then describe the method of O’Shaughnessy et al. in the
way in which it was introduced, which allows a second
implementation by solution of an eigensystem. A third
possible axis suggests itself given the results of this paper:
the angular-velocity vector ! given by Eq. (7). All three
need an additional step to remove sharp features in the
waveforms, given by the minimal-rotation condition. In
this section, we review each alternative in the language
of quaternions, suggesting improvements for numerical
accuracy and robustness.

1. Maximization

In general, we can describe the process of finding the
radiation axis as a maximization over R of the quantity

QðRÞ ¼ X
‘;m

w‘;mjf̂‘;mj2 (C1a)

¼ X
‘;m

w‘;m

��������X
m0
f‘;m

0
D

ð‘Þ
m;m0 ðRÞ

��������2

: (C1b)

Here, the w‘;m are simply weighting factors. Schmidt et al.

took these factors to be w2;�2 ¼ 1, and zero otherwise;

O’Shaughnessy et al. effectively chose w‘;m ¼ m2, with

some cutoff ‘ above which w‘;m ¼ 0.
This function is actually degenerate with respect to

initial rotations about the ẑ axis, because such rotations
simply affect the overall phase of the term inside the
absolute value. For numerical efficiency, we need to
restrict Q to some nondegenerate domain for efficient
numerical maximization. Whereas previous references
[30–32] used rotations of the form Rð#;’Þ, we choose

instead to use rotations of the form Rð#;’Þe�’ẑ=2. All

such rotations can be written as Rv ¼ ev for some vector
v in the x-y plane, of magnitude less than or equal to �=2.
Using rotations of this form significantly simplifies
calculation of the Wigner D matrices and eliminates
the degeneracy near the identity, which substantially im-
proves numerical accuracy and stability for mildly precess-
ing systems.
Of course, the sphere cannot be covered homeomorph-

ically by a single coordinate chart, so an additional degen-
eracy remains: all vectors on the boundary of our domain
result in rotations with equal values ofQ. However, this set
has measure zero in the domain itself, meaning that it is
almost never encountered. Moreover, the effect of this
degeneracy will be completely eliminated in Sec. C 4. In
fact, we find it convenient to extend the domain further. We
maximize QðevÞ for all vectors v in the entire x-y plane,
parameterizing the function arguments by the usual coor-
dinates ðx; yÞ 2 R2. There are now degeneracies on circles
of radius n�=2 centered on the origin for all integers
n > 0. Again, however, these degeneracies cause no prac-
tical difficulties.
Given values for the modes f‘;m and the weights w‘;m,

the right-hand side of Eq. (C1b) is known analytically,
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using Eq. (A16), as are its derivatives with respect to x and
y. These functions are ungainly, but can be written down
explicitly, plugged into a computer, and used in efficient
numerical optimization routines. Direct maximization of
Eq. (C1) is simple to implement, and can be made reason-
ably efficient and robust. It does have disadvantages, how-
ever. At each step in the minimization routine, all relevant
D matrices need to be recomputed. When the w‘;m are

nonzero for many values, this can become very expensive.
In such cases, it can be significantly more efficient to find a
radiation axis using the following method.

In the computer code included among this paper’s
ancillary files, a waveform object may be constructed
with GWFrames:Waveform. The axis suggested by
Schmidt et al. may then be found by applying the
SchmidtEtAlVector method.

2. Dominant principal axis

In general, ifw‘;m ¼ w‘m
2 wherew‘ only depends on ‘,

then this can be presented in a different form and solved as
an eigenvector problem—which is the approach
O’Shaughnessy et al. actually used when introducing their
method. Define26

hLðaLbÞi :¼
X

‘;m;m0
w‘

�f‘;m
0 h‘;m0jLðaLbÞj‘;mif‘;m; (C2)

where La is the usual angular-momentum operator. The
radiation axis is chosen to be the dominant principal axis

V̂f of this tensor—the eigenvector with the eigenvalue of

largest magnitude, which can be found with standard alge-
braic techniques. We can find some rotationRax taking the
z axis into the dominant principal axis. Reference [32]
showed that such a rotation maximizes the function Q of
Eq. (C1).

Again, however, this rotation is not unique. Moreover,
the dominant principal axis is only defined up to a sign,
and numerical implementations may choose between the
two options effectively randomly. A naive choice ofRaxðtÞ,
then, may flip back and forth discontinuously. Fortunately,
we can overcome this problem easily by taking âi � �âi

whenever âi � âi�1 < 0. Then, we can ensure that the
appropriate RaxðtiÞ is as close27 as possible to Raxðti�1Þ
by choosing

R� :¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�âiâi�1

p
; (C3a)

RaxðtiÞ ¼ R�Raxðti�1Þ: (C3b)

In Eq. (C3a), the vectors are multiplied as quaternions, and
the square root may be found with the help of Eq. (A13).

We start out with â�1 ¼ ẑ, and build up the frame by
stepping forward in time according to Eq. (C3), where
each âi is the dominant principal axis at that instant of
time. However, for reasons of numerical stability, âi�1 in
Eq. (C3a) should be expressed as Raxðti�1Þẑ �Raxðti�1Þ,
rather than as the principal axis at the previous instant.
The frame found by this method has certain advantages

over maximization of Eq. (C1). In particular, the matrix in
Eq. (C2) need only be computed once for each time step.
The dominant principal axis is then obtained from this. No
calculations of Wigner’s D matrices are necessary, which
tends to make the computation fast. Also, some minor care
is needed to make the present method robust, mostly
involving choosing the direction of the axis to be consistent
from moment to moment.
In the computer code included among this paper’s

ancillary files, a waveform object may be constructed
with GWFrames:Waveform. The dominant principal
axis of hLðaLbÞi may then be found by applying the

OShaughnessyEtAlVector method.

3. Aligned with the angular velocity

A very similar frame can be defined, using the angular-
velocity vector ! in place of the dominant principal axis
of hLðaLbÞi. The vector ! was found in Sec. II A and is

given explicitly by Eq. (7). This can be used for the âi in
Eq. (C3). Note that using the only the direction of the
vector to align the axis of the new frame throws away
some information. Specifically, the magnitude of ! is
meaningful and is used in Sec. IV to derive a fully corotat-
ing frame. Nonetheless, the waveform rotation in this
frame is about the z0 axis at each instant, making
the time dependence of the waveform in this frame
quite similar to that of a nonprecessing system in a sta-
tionary frame.
In the computer code included among this paper’s

ancillary files, a waveform object may be constructed
with GWFrames:Waveform. The angular velocity may
then be found using the AngularVelocityVector
method on such an object.

4. The minimal-rotation condition

Each of the three methods discussed above is critically
flawed when applied to a time-series of data, unless fol-
lowed by the procedure described here. The end result of
any of the three previous methods is some rotation RaxðtÞ
that takes the z axis into the chosen radiation axis: âðtÞ ¼
RaxðtÞẑ �RaxðtÞ. As mentioned, however, this is by no means
the only such rotation. Indeed, because of the invariance of
ẑ under rotations about the z axis, any rotation of the form

RðtÞ ¼ RaxðtÞ exp
�

ðtÞ
2

ẑ

�
(C4)

will do the same. Arbitrarily setting 
ðtÞ ¼ 0 leaves us
with large extraneous features in the phase of each mode of

26O’Shaughnessy et al. used w2 ¼ 1, and 0 for all other
weights, as well as an overall normalization which is ignored
here for simplicity.
27The distance between two rotationsR1 andR2 can be defined
as 2j log ð �R1R2Þj, which is the minimum angle needed to rotate
one into the other. See Appendix A 1 for more details.
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the waveform. Reference [32] showed that it is easy to
impose a condition on 
ðtÞ such that the total rotation R
satisfies a geometrically and physically meaningful
criterion referred to as the minimal-rotation condition.
This section simply reiterates the previous description in
quaternion form and suggests a more accurate way of
finding _Rax in some cases.

To motivate this condition, we first define the radiation
frame’s instantaneous angular-velocity vector$. Then, for
any vector v that is stationary in the radiation frame, its
derivative in an inertial frame is given by

_v ¼ $� v; (C5)

where a dot denotes differentiation with respect to time. A
radiation frame is—by definition—a frame in which the
radiation axis â is stationary. So, its derivative in an inertial

frame is _̂a ¼ $� â. Taking the cross product of both
sides of this equation by â, using the standard vector triple
product formula with the fact that â has unit magnitude,
then rearranging, we find

$ ¼ â� _̂aþ ðâ �$Þâ: (C6)

Now, we might hope that since âðtÞ is actually measured
from the waveform, this might be enough to specify the
frame. Unfortunately, Eq. (C6) defines the component of
$ along â circularly; it is undetermined, so we need
another condition. Of course, an obvious solution presents
itself. When the radiation axis is stationary, we can expect
that the frame should be stationary. To achieve this,
Eq. (C6) shows that we must have $ � â ¼ 0. Because â
is a geometric object, independent of the frame in which it
is measured, this relation is geometrically meaningful. We
therefore require this condition even in the nonprecessing
case. This minimizes the magnitude of$, so we refer to it
as the minimal-rotation condition [18,32]. We adopt this
condition as the criterion for selecting the radiation frame.

Of course, the frame is not given by its instantaneous
rotation vector, but by its orientation at each instant of
time. So we need to express $ in terms of RðtÞ to impose
our condition. This is conveniently calculated in Sec. A 3,

which shows that$ ¼ 2 _R �R. Because the radiation axis is
given by â ¼ Rẑ �R , the minimal-rotation condition be-
comes $ � â ¼ 2 _R �R �Rẑ �R ¼ 0. Invariance of the dot
product under rotation shows that we can also write this
as �R _R �ẑ ¼ 0. Expanding R as given in Eq. (C4), we see
that the minimal-rotation condition is satisfied if 
ðtÞ
satisfies

_
ðtÞ ¼ �2 �RaxðtÞ _RaxðtÞ � ẑ ¼ 2ð �RaxðtÞ _RaxðtÞẑÞ0; (C7)

where the subscript 0 here denotes the scalar part. Now,
since Rax is assumed to be known—perhaps by one of the
three foregoing methods—we can evaluate the right-hand
side, then integrate in time, and insert the result into
Eq. (C4). Note that the integration constant 
ð0Þ is unde-
termined. This corresponds to the usual freedom in choos-
ing a phase, familiar from nonprecessing systems, and will
have to be fixed in a similar way.
As a practical matter, the rotorRax is typically computed

using Eq. (A13) with ŵ ¼ ẑ and û ¼ â. We can easily
differentiate this, assuming ŵ is constant, and arrive at an

analytical formula for _Rax in terms of _̂a. In the construc-
tion of PN waveforms, the latter is known analytically, and
may be inserted into this formula for higher accuracy:

_Rax ¼ �@t
1� â ẑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2½1� ðâ ẑÞ0�
p (C8a)

¼ �
 �@tâ ẑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2½1þ â3�
p � @tâ3

2½1þ â3�Rax

!
: (C8b)

Here, we have used �ðâ ẑÞ0 ¼ â3 for simplicity.
In the computer code included among this paper’s

ancillary files, an array of quaternions can be put
into minimal-rotation form using the GWFrames:
MinimalRotation function. A waveform object con-
structed with GWFrames:Waveform can be transformed
into the frames discussed in this section using methods
beginning with TransformTo.

[1] The LIGO Scientific Collaboration, Rep. Prog. Phys. 72,
076901 (2009).

[2] D.Shoemaker,LIGO,ReportNo.LIGO-T0900288-v3, 2010.
[3] The LIGO Scientific Collaboration and the Virgo

Collaboration, arXiv:1103.2728.
[4] The Virgo Collaboration, JINST 7, P03012 (2012).
[5] K. Somiya (the KAGRA Collaboration), Classical

Quantum Gravity 29, 124007 (2012).
[6] The LIGOScientific Collaboration, theVirgoCollaboration,

Classical Quantum Gravity 29, 124012 (2012).
[7] V. Kalogera, Astrophys. J. 541, 319 (2000).

[8] R. O’Shaughnessy, J. Kaplan, V. Kalogera, and K.
Belczynski, Astrophys. J. 632, 1035 (2005).

[9] P. Grandclément, M. Ihm, V. Kalogera, and K. Belczynski,

Phys. Rev. D 69, 102002 (2004).
[10] LIGO Scientific Collaboration and Virgo Collaboration,

Classical Quantum Gravity 27, 173001 (2010).
[11] L. E. Kidder, Phys. Rev. D 52, 821 (1995).
[12] T.A. Apostolatos, C. Cutler, G. J. Sussman, and K. S.

Thorne, Phys. Rev. D 49, 6274 (1994).
[13] C.M.Will andA.G.Wiseman,Phys.Rev.D54, 4813 (1996).
[14] T.A. Apostolatos, Phys. Rev. D 54, 2438 (1996).

MICHAEL BOYLE PHYSICAL REVIEW D 87, 104006 (2013)

104006-20

http://dx.doi.org/10.1088/0034-4885/72/7/076901
http://dx.doi.org/10.1088/0034-4885/72/7/076901
http://arXiv.org/abs/1103.2728
http://dx.doi.org/10.1088/1748-0221/7/03/P03012
http://dx.doi.org/10.1088/0264-9381/29/12/124007
http://dx.doi.org/10.1088/0264-9381/29/12/124007
http://dx.doi.org/10.1088/0264-9381/29/12/124012
http://dx.doi.org/10.1086/309400
http://dx.doi.org/10.1086/444346
http://dx.doi.org/10.1103/PhysRevD.69.102002
http://dx.doi.org/10.1088/0264-9381/27/17/173001
http://dx.doi.org/10.1103/PhysRevD.52.821
http://dx.doi.org/10.1103/PhysRevD.49.6274
http://dx.doi.org/10.1103/PhysRevD.54.4813
http://dx.doi.org/10.1103/PhysRevD.54.2438


[15] A. Einstein, in Albert Einstein: Akademie-Vorträge, edited
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C. Röver, and N. Christensen, Classical Quantum Gravity
26, 114007 (2009).

[37] S. Nissanke, D. E. Holz, S. A. Hughes, N. Dalal, and J. L.
Sievers, Astrophys. J. 725, 496 (2010).

[38] L. Wen and Y. Chen, Phys. Rev. D 81, 082001 (2010).
[39] S. Fairhurst, Classical Quantum Gravity 28, 105021

(2011).
[40] S. Klimenko, G. Vedovato, M. Drago, G. Mazzolo, G.

Mitselmakher, C. Pankow, G. Prodi, V. Re, F. Salemi, and
I. Yakushin, Phys. Rev. D 83, 102001 (2011).

[41] S. Nissanke, J. Sievers, N. Dalal, and D. Holz, Astrophys.
J. 739, 99 (2011).

[42] M. Vallisneri, Phys. Rev. Lett. 107, 191104 (2011).
[43] S. Vitale and M. Zanolin, Phys. Rev. D 84, 104020 (2011).

[44] J. Veitch, I. Mandel, B. Aylott, B. Farr, V. Raymond, C.
Rodriguez, M. van der Sluys, V. Kalogera, and A. Vecchio,
Phys. Rev. D 85, 104045 (2012).

[45] P. Ajith et al., Classical Quantum Gravity 29, 124001
(2012).

[46] C. Kozameh, E. T. Newman, and G. Silva-Ortigoza,
Classical Quantum Gravity 25, 145001 (2008) and refer-
ences therein.

[47] O.M.Moreschi, Classical QuantumGravity 21, 5409 (2004).
[48] A. D. Helfer, Phys. Rev. D 81, 084001 (2010).
[49] J. N. Goldberg, A. J. Macfarlane, E. T. Newman, F.

Rohrlich, and E. C. G. Sudarshan, J. Math. Phys. (N.Y.)
8, 2155 (1967).

[50] L. Gualtieri, E. Berti, V. Cardoso, and U. Sperhake, Phys.
Rev. D 78, 044024 (2008).

[51] The C++ programming language (2012).
[52] M. Galassi, GNU Scientific Library Reference Manual

(Network Theory Ltd., United Kingdom, 2009), 3rd ed.
[53] Python programming language (2012).
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(2009).

[73] N. T. Bishop, R. Gomez, P. R. Holvorcem, R. A. Matzner,
P. Papadopoulos, and J. Winicour, Phys. Rev. Lett. 76,
4303 (1996).

ANGULAR VELOCITY OF GRAVITATIONAL RADIATION . . . PHYSICAL REVIEW D 87, 104006 (2013)

104006-21

http://dx.doi.org/10.1103/RevModPhys.52.299
http://dx.doi.org/10.1088/0264-9381/25/16/165003
http://dx.doi.org/10.1088/0264-9381/25/16/165003
http://dx.doi.org/10.1103/PhysRevD.67.104025
http://dx.doi.org/10.1103/PhysRevD.67.104025
http://dx.doi.org/10.1103/PhysRevD.74.104034
http://dx.doi.org/10.1103/PhysRevD.74.104034
http://arXiv.org/abs/gr-qc/0605140v4
http://dx.doi.org/10.1103/PhysRevD.75.049903
http://dx.doi.org/10.1103/PhysRevD.75.049903
http://dx.doi.org/10.1103/PhysRevD.79.104023
http://dx.doi.org/10.1103/PhysRevD.79.104023
http://dx.doi.org/10.1103/PhysRevD.81.089901
http://dx.doi.org/10.1103/PhysRevD.81.089901
http://dx.doi.org/10.1088/0264-9381/30/5/055007
http://dx.doi.org/10.1088/0264-9381/30/5/055007
http://dx.doi.org/10.1088/0264-9381/30/7/075017
http://dx.doi.org/10.1088/0264-9381/30/7/075017
http://dx.doi.org/10.1103/PhysRevD.84.084037
http://dx.doi.org/10.1103/PhysRevD.86.104063
http://dx.doi.org/10.1103/PhysRevD.86.104063
http://dx.doi.org/10.1103/PhysRevD.86.064020
http://dx.doi.org/10.1103/PhysRevD.86.064020
http://dx.doi.org/10.1103/PhysRevD.86.084017
http://dx.doi.org/10.1103/PhysRevD.86.084017
http://dx.doi.org/10.1103/PhysRevD.87.044038
http://dx.doi.org/10.1103/PhysRevD.84.024046
http://dx.doi.org/10.1103/PhysRevD.84.024046
http://dx.doi.org/10.1103/PhysRevD.84.124002
http://dx.doi.org/10.1103/PhysRevD.84.124011
http://dx.doi.org/10.1103/PhysRevD.84.124011
http://dx.doi.org/10.1088/0264-9381/13/6/004
http://dx.doi.org/10.1086/595279
http://dx.doi.org/10.1088/0264-9381/25/18/184011
http://dx.doi.org/10.1088/0264-9381/26/11/114007
http://dx.doi.org/10.1088/0264-9381/26/11/114007
http://dx.doi.org/10.1088/0004-637X/725/1/496
http://dx.doi.org/10.1103/PhysRevD.81.082001
http://dx.doi.org/10.1088/0264-9381/28/10/105021
http://dx.doi.org/10.1088/0264-9381/28/10/105021
http://dx.doi.org/10.1103/PhysRevD.83.102001
http://dx.doi.org/10.1088/0004-637X/739/2/99
http://dx.doi.org/10.1088/0004-637X/739/2/99
http://dx.doi.org/10.1103/PhysRevLett.107.191104
http://dx.doi.org/10.1103/PhysRevD.84.104020
http://dx.doi.org/10.1103/PhysRevD.85.104045
http://dx.doi.org/10.1088/0264-9381/29/12/124001
http://dx.doi.org/10.1088/0264-9381/29/12/124001
http://dx.doi.org/10.1088/0264-9381/25/14/145001
http://dx.doi.org/10.1088/0264-9381/21/23/008
http://dx.doi.org/10.1103/PhysRevD.81.084001
http://dx.doi.org/10.1063/1.1705135
http://dx.doi.org/10.1063/1.1705135
http://dx.doi.org/10.1103/PhysRevD.78.044024
http://dx.doi.org/10.1103/PhysRevD.78.044024
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1103/PhysRevD.74.104033
http://dx.doi.org/10.1103/PhysRevD.74.104033
http://dx.doi.org/10.1103/PhysRevD.53.6749
http://dx.doi.org/10.1103/PhysRevD.69.104017
http://dx.doi.org/10.1103/PhysRevD.69.104017
http://dx.doi.org/10.1103/PhysRevD.76.041501
http://dx.doi.org/10.1103/PhysRevD.76.041501
http://dx.doi.org/10.1103/PhysRevD.78.084017
http://dx.doi.org/10.1103/PhysRevD.78.084017
http://dx.doi.org/10.1103/PhysRevD.64.104020
http://dx.doi.org/10.1088/0264-9381/29/4/045003
http://dx.doi.org/10.1103/PhysRevD.86.104037
http://dx.doi.org/10.1103/PhysRevD.86.104037
http://dx.doi.org/10.1088/0264-9381/3/4/006
http://dx.doi.org/10.1088/0264-9381/3/4/006
http://dx.doi.org/10.12942/lrr-2009-6
http://dx.doi.org/10.12942/lrr-2009-6
http://dx.doi.org/10.1103/PhysRevD.87.044009
http://dx.doi.org/10.1103/PhysRevD.87.044009
http://dx.doi.org/10.1103/PhysRevD.79.084010
http://dx.doi.org/10.1103/PhysRevD.76.124038
http://dx.doi.org/10.1103/PhysRevD.80.124045
http://dx.doi.org/10.1103/PhysRevD.80.124045
http://dx.doi.org/10.1103/PhysRevLett.76.4303
http://dx.doi.org/10.1103/PhysRevLett.76.4303


[74] J. Winicour, Living Rev. Relativity 15, 2 (2012).
[75] C. Reisswig, N. T. Bishop, and D. Pollney, arXiv:1208.3891.
[76] M. Boyle, D. A. Brown, and L. Pekowsky, Classical

Quantum Gravity 26, 114006 (2009).
[77] M. Boyle, Phys. Rev. D 84, 064013 (2011).
[78] I. MacDonald, S. Nissanke, and H. P. Pfeiffer, Classical

Quantum Gravity 28, 134002 (2011).
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