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It is possible to associate temperatures with the nonextremal horizons of a large class of spherically

symmetric spacetimes using periodicity in the Euclidean sector, and this procedure works for the de Sitter

spacetime as well. But unlike, e.g., the black hole spacetimes, the de Sitter spacetime also allows a

description in Friedmann coordinates. This raises the question of whether the thermality of the de Sitter

horizon can be obtained working entirely in the Friedmann coordinates, without reference to the static

coordinates or using the symmetries of de Sitter spacetime. We discuss several aspects of this issue for de

Sitter and approximately de Sitter spacetimes in the Friedmann coordinates (with a time-dependent

background and the associated ambiguities in defining the vacuum states). The different choices for the

vacuum states, the behavior of the mode functions and the detector response are studied in both (1þ 1)

and (1þ 3) dimensions. We compare and contrast the differences brought about by the different choices.

In the last part of the paper, we also describe a general procedure for studying quantum field theory in

spacetimes which are approximately de Sitter and, as an example, derive the corrections to the thermal

spectrum due to the presence of pressure-free matter.
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I. INTRODUCTION

There exists an extensive literature on quantum field
theory in de Sitter spacetimes. (For a nonexhaustive
sample, see Refs. [1,2].) From a theoretical point of view,
the high level of symmetry exhibited by the de Sitter
geometry makes it an important and tractable example.
On the other hand, observations suggest that the evolution
of our Universe is described by a (near) de Sitter geometry
both during the early inflationary phase as well as during
the current accelerated phase of expansion. While quantum
effects are not expected to play a serious role in the current
phase of the expansion (see, however, Ref. [3]), they play
an important role during the inflationary phase and possi-
bly seed the cosmic structure we see today. This was part of
the motivation to study quantum field theory in a de Sitter
background.

A key feature which arises in such a study of the de Sitter
spacetime is the thermal nature of the vacuum state and the
temperature which one can associate with the horizon. One
of the purposes of this paper is to explore aspects of this
thermality from different perspectives. Since it is a fairly
well-trodden path, we will begin by describing the moti-
vation (for yet another paper) and the specific point of view
adopted here.

The connection between spacetime horizons and ther-
modynamics is quite well known. The first example of this
kind, of course, was in the case of black hole spacetimes
[4]. This was soon followed by the discovery of horizon

temperature in much wider contexts like, for example, the
cases of Rindler spacetime [5] and de Sitter spacetimes [6].
While all three of these spacetimes (black hole, Rindler, de
Sitter) have very similar metric structures—when one uses
static coordinates which cover part of the manifold—they
also have significant differences [7]. For example, one can
provide a fairly rigorous geometrical description of the
black hole horizon. In contrast, the horizon in the Rindler
spacetime is just a null surface in flat spacetime as viewed
by uniformly accelerated observers and is clearly observer
dependent. The situation as regards de Sitter spacetime is
somewhat in between: While it has a geometric descrip-
tion, it also shares with the Rindler spacetime a certain
level of observer dependence. The location of the horizon
surface will be different even for two different observers
who are translated with respect to each other by a spatial
vector. More importantly, the de Sitter spacetime allows,
in addition to the static coordinate system, a spatially
homogeneous Friedmann coordinate description. In these
coordinates, quantum field theory reduces to the quantum
mechanics of an oscillator with a time-dependent fre-
quency, with the well-known difficulties arising from the
ambiguity of a vacuum state in a time-dependent back-
ground. The black hole spacetime, of course, does not
posses such a spatially homogeneous description. The
Rindler spacetime does, but in this case, the homogeneous
description is just the inertial coordinates in flat spacetime
with no time dependence—thereby making that descrip-
tion trivial.
Another issue which crops up in the study of de Sitter

spacetime is the following: Neither the inflationary phase
nor the currently accelerating phase of the Universe is
strictly de Sitter. While one can provide a fairly elegant
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mathematical description of quantum field theory in exact
de Sitter spacetime, many of these techniques will fail
when the spacetime is only approximately de Sitter. It is
interesting to ask how much progress one can make in
studying such (approximately de Sitter) spacetimes and
how much of the results valid in exact de Sitter will
continue to hold (in an approximate sense) in such space-
times. For example, it is fairly complicated to work with an
analogue of an approximately static coordinate system
when the universe is not strictly de Sitter. Many of the
techniques used to define the vacuum states in exactly de
Sitter spacetimes will also be inapplicable when the mani-
fold has no de Sitter symmetry.

It is thus clear that, given the special features possessed
by de Sitter spacetime, one can approach the problem of
quantum field theory in de Sitter spacetime from many
different perspectives, not all of which will be easily gen-
eralizable to an approximately de Sitter spacetime. This
motivates us to examine closely several aspects of quantum
field theory in de Sitter spacetime, delineating the proper-
ties which arise (in one way or the other) from the sym-
metry of de Sitter spacetime from those which are of a
more general nature. Such a study also reveals some sig-
nificant differences between de Sitter spacetime in (1þ 1)
dimensions and de Sitter spacetime in (1þ 3) dimensions.

We will now briefly describe some of these issues which
will be discussed in detail in the paper. As we mentioned
earlier, there is a very standard procedure for obtaining the
thermality of the horizon in the static coordinate system.
This procedure works for a very wide class of spacetimes
and can, for example, handle Rindler, black hole and de
Sitter spacetimes at one go. But when the cosmological
spacetime is not exactly de Sitter, no static coordinate
system will exist. One can still define an ‘‘approximately
static’’ coordinate system, but this proves to be difficult to
handle mathematically.

If one decides to work with a Friedmann coordinate
system, then the mathematics simplifies considerably,
because we will be dealing with a quantum mechanical
problem rather than quantum field theory. But conceptu-
ally, we now have to tackle the issue of defining the
vacuum state in a time-dependent background. This turns
out to be reasonably straightforward in (1þ 1) dimensions,
in which conformal invariance of a massless scalar field
helps the analysis. But in (1þ 3) dimensions, it is not
possible to have sensible limits for the mode functions in
the infinite past if one works with the massless scalar field
�ðt;xÞ as the primary variable. The usual trick is to work
instead with the variable �ðt;xÞ � aðtÞ�ðt;xÞ and define a
vacuum state in the asymptotic past for �ðt;xÞ. When
t ! �1, aðtÞ ! 0, and it is the scaling out of this factor
which allows us to define a sensible vacuum state in
(1þ 3) dimensions. The resulting vacuum state is the
well-known Bunch-Davies vacuum [8] for the de Sitter
spacetime. Clearly, this depends on the behavior of aðtÞ,

and there is no natural analogue of this vacuum state for
non–de Sitter spacetimes.
An alternative to the above procedure is to define a

vacuum state at some fixed time t ¼ t0, say, by choosing
the modes which behave as closely to the positive fre-
quency modes as possible at this instant. We will call this
the comoving vacuum, since it is based on the comoving
time coordinate of Friedmann spacetime. In general, this
vacuum state differs from the Bunch-Davies vacuum, but it
has the advantage that the evolution of aðtÞ for t < t0
becomes irrelevant for its definition. It is, therefore,
well suited to study spacetimes which are de Sitter at
late times with deviations from de Sitter geometry in the
early epochs.
Once the vacuum state is defined, in the asymptotic past

or at some other chosen moment, one could study the
mixing of positive and negative frequency modes due to
the time dependence of the background expansion. In
particular, one would be interested in knowing whether
the mixing leads to a thermal nature for the state at later
times. It does happen in the case of (1þ 1) dimensions, but
the spectrum is not strictly Planckian in the case of (1þ 3)
dimensions. There are some interesting peculiarities which
arise in this context when we try to obtain thermality
working entirely in the Friedmann coordinates.
Finally, one can also study the interrelationship between

the mode functions defined in the Friedmann coordinate
system and those defined with static coordinates. This is an
exercise in evaluating the Bogolioubov coefficients, and
we do find that one recovers the standard Planck spectrum
without any deviation. This allows us to establish a corre-
spondence between the vacuum states defined using the
two coordinate systems, but—since static coordinate sys-
tems do not exist for approximately de Sitter spacetimes—
the approach does not allow an easy generalization to more
realistic cases.
In the last part of the paper, we study the mode functions

in approximately de Sitter spacetimes in Friedmann coor-
dinates. We find an explicit solution to the wave equation,
correct to the necessary order of approximation, and use it
to describe the deviations from the exact de Sitter space-
time. This approach is quite general and is capable of
handling a wide variety of cases when the evolution is
approximately de Sitter.
The plan of the paper is as follows: We briefly review

thermal aspects of horizons in a static coordinate system in
Sec. II. In Sec. III, we solve for the modes of a massless
scalar field in spatially flat de Sitter spacetime in (1þ 1)
and (1þ 3) dimensions and define the Bunch-Davies and
comoving vacuum states in the Friedmann coordinate
patch. These modes evolve in time, and the physical con-
tent of the modes at later times is determined by evaluating
the mixing coefficients in Sec. IV, working entirely in the
Friedmann coordinates. In Sec. V, we study the response of
a detector coupled with the field as a way to provide an
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operational meaning to the mixing coefficients. We next
compare in Sec. VI the mode functions defined in the
Friedmann patch and those defined in the static patch of
the de Sitter spacetime to reproduce some standard results.
Finally, we study the corresponding effects in the quasi–de
Sitter geometry. We consider a small perturbation to the de
Sitter metric and develop the perturbative framework to
find the corrections to the field modes and the correspond-
ing power spectrum in the quasi–de Sitter case. This pro-
cedure is illustrated by taking the model of the universe
containing pressure-free matter and a cosmological con-
stant which behaves like quasi–de Sitter at late times.
Section VIII describes the conclusions.

II. THERMALITY IN STATIC COORDINATES

To set the stage, we shall begin by briefly reviewing
some well-known results (see, e.g., Chap. 14 of Ref. [9] for
more details) related to the temperature of horizons in
static coordinates. Several spacetimes of interest, including
the Schwarzschild, de Sitter, and Rindler, can be described
by a line element of the form

ds2 ¼ fðrÞdt2 � dr2

fðrÞ � dL2
?; (1)

where dL2
? is the transverse metric and fðrÞ vanishes at

the horizon r ¼ r0, with f0ðr0Þ � 2� � 0. Then, using
a Taylor series expansion near the horizon, we can write
f � 2�l, where l ¼ ðr� r0Þ and the metric near the hori-
zon takes the form

ds2 ¼ 2�ldt2 � dr2

2�l
� dL2

?: (2)

In the case of Rindler spacetime, this is exact, and �
denotes the acceleration of the Rindler observer. In other
cases, the metric reduces to this form close to the horizon,
with � denoting the surface gravity.

This (Rindler) form of the metric makes it obvious
that the singular behavior of the metric near l ¼ 0 is a
coordinate artifact. It is possible to introduce several differ-
ent sets of coordinates which will cover the entire manifold
without any pathology at the horizon. One such choice,
ðT;XÞ, which we will call Kruskal-like coordinates, is
obtained by the transformations

�X¼e�r� cosh�t; �T¼e�r� sinh�t; r� �
Z dr

fðrÞ ;
(3)

which lead to the metric

ds2 ¼ f

�2ðX2 � T2Þ ðdT
2 � dX2Þ þ dL2

? (4)

that covers the full manifold. Here f should be treated as a
function of ðT; XÞ. The horizon at r ¼ r0 is now mapped to

T2 ¼ X2, but with the factor f=ðX2 � T2Þ remaining finite
at the horizon.
It is now possible to show that the vacuum state of a

quantum field defined on the T ¼ 0 hypersurface appears
as a thermal state to observers confined on the right wedge
X > jTj. This is most easily done by making an analytic
continuation to the imaginary time coordinates by TE ¼
�iT and tE ¼ �it. The time evolution of the system in
terms of TE will take the field configuration from TE ¼ 0 to
TE ! 1 and will be governed by a global HamiltonianHgl.

One can equivalently describe the same evolution in terms
of tE, which behaves like an angular coordinate from
tE ¼ 0 to tE ¼ 2�=� when we use the Hamiltonian Hst,
which determines time evolution in the static time coor-
dinates. The entire upper half-plane T > 0 can be covered
in two completely different ways: either in terms of the
evolution in TE or in terms of the evolution in tE. In ðTE; XÞ
coordinates, we vary X in the range ð�1;1Þ for each TE

and vary TE in the range ð0;1Þ. In ðtE; xÞ coordinates, x
varies in the range ð0;1Þ for each tE, which varies in the
range ð0; �=�Þ like an angular variable. This allows us to
prove, using standard path integral techniques [9,10], that

hvacj�L;�Ri / h�Lje��Hst=�j�Ri; (5)

where�L and�R are the field configurations in the left and
right parts of the plane on the T ¼ 0 hypersurface. One can
find the density matrix for observations confined to the
right wedge by tracing out the field configuration�L on the
left wedge. This computation gives

�ð�R;�
0
RÞ ¼

h�Rje�2�Hst=�j�0
Ri

Trðe�2�Hst=�Þ ; (6)

which is thermal with the temperature ��1 ¼ �=2�. Thus,
the vacuum state of the field defined on the T ¼ 0 hyper-
surface leads to a thermal density matrix with temperature
�=2� as far as static observers in the right-hand wedge are
concerned.
In the de Sitter case, the metrics in the static and

Kruskal-like coordinates

ds2 ¼ ð1�H2r2Þdt2 � dr2

ð1�H2r2Þ � dL2
?

¼ 4

½H2ðX2 � T2Þ þ 1�2 ðdT
2 � dX2Þ � dL2

? (7)

are connected by the coordinate transformations:

X ¼ 1

H

�
1þHr

1�Hr

�
1=2

coshHt;

T ¼ 1

H

�
1þHr

1�Hr

�
1=2

sinhHt:

(8)

From the form of the metric in the two coordinate systems,
it is obvious that the ðT;XÞ coordinate system is not static,
because the metric depends on T. On the other hand, the
coordinate system ðt;xÞwhich covers the right wedge has a
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static time coordinate t. It is well known that defining a
vacuum state in a time-dependent background is nontrivial
and often ambiguous. In the above analysis we have chosen
to define a vacuum state at a particular spacelike hyper-
surface T ¼ 0 and examine its properties in terms of the
static coordinates. A different definition for the vacuum
state, in general, will lead to a different description in static
coordinates. We will see that similar issues arise later on
when we study a de Sitter universe in the Friedmann
coordinates as well.

An alternative procedure to determine the thermal nature
of the horizon is based on the calculation of relevant
Bogoliubov coefficients. Since we have two coordinate
systems—Kruskal-like and static—covering part of the
manifold, one can obtain, in principle, the relation between
the field modes which are natural to these coordinate
systems and compute the Bogoliubov coefficients between
them. Let the field modes be given by some functions
�ðT; XÞ and �ðt; rÞ in the Kruskal-like and static coordi-
nates, respectively, in the region of the manifold where
both are well defined. (For simplicity, we have ignored the
dependence on the transverse coordinates which play no
role in the discussion, as we shall see.) It is often not
possible to obtain closed expressions for the field modes
due to mathematical complexity. However, it is possible to
evaluate the Bogoliubov coefficients using a simple trick:
Since the Bogoliubov coefficients that relate the two sets of
field modes are independent of the hypersurface which is
used to evaluate the Klein-Gordon inner product, we can
choose this hypersurface to be arbitrarily close to the
horizon. The field equations reduce to a two-dimensional
wave equation near the horizon, making the dependence in
the transverse coordinates (and the mass of the field)
irrelevant. Conformal invariance then allows us to deter-
mine the field modes near the future horizon, which take
the form of plane waves in the relevant coordinates. That is,

�!ðt; rÞ ¼ 1ffiffiffiffiffiffiffi
2!

p e�i!u (9)

and

�kðT; XÞ ¼ 1ffiffiffiffiffi
2k

p e�ikU; (10)

where u ¼ t� r� and U ¼ T � X, respectively. These are
related by �U ¼ �e��u, which signifies an exponential
redshift near the horizon. As is well known, the relevant
Bogoliubov coefficient (which wewill have the occasion to
evaluate explicitly later on) will now lead to a thermal
spectrum of particles.

This discussion is, of course, applicable to the de Sitter
universe described by the metric in Eq. (1) with fðrÞ ¼
1�H2r2 and will lead to a temperature H=2�. More
precisely, if we introduce Kruskal-like coordinates in the
de Sitter manifold and define a vacuum state on the T ¼ 0
hypersurface, then such a vacuum state will lead to a

density matrix with temperature H=2� for the observers
confined to the region r < H�1. Once again, it should be
stressed that the de Sitter metric in the Kruskal-like coor-
dinates is not static, and the vacuum state is defined using
the T ¼ 0 hypersurface.
This analysis is completely in tune with what could be

done in black hole spacetimes, as well as in the case of
Rindler spacetime. But in the case of de Sitter, we have an
alternative coordinate system available to us, viz., the
standard Friedmann coordinate system. This allows us to
study the dynamics of a quantum field entirely in the
Friedmann coordinate system and explore whether we
can recover the thermality of the horizons and other fea-
tures. In such a study we necessarily have to work with a
time-dependent background, but—as we have emphasized
above—this is implicit even when we use Kruskal-like
coordinates and relate them to static coordinates. We
can, therefore, adopt a similar strategy in the Friedmann
coordinate system by defining a vacuum state at some
suitable hypersurface and studying its particle content as
the evolution proceeds.
This approach has one extra advantage. The static coor-

dinate system exists only for the exact de Sitter universe.
When there are deviations from de Sitter nature, we can
still describe the universe in a very natural fashion using
the Friedmann coordinate system. But in this case, we will
not have the luxury of an alternative static coordinate
system to describe the physics. Therefore, a formalism
which addresses issues like thermality working entirely
in Friedmann coordinate system, without using any of the
symmetries of the de Sitter universe, is well suited for the
study of near de Sitter geometry. We will find that obtain-
ing the thermal nature of the horizon working entirely in
Friedmann coordinates is—surprisingly—not an easy task.
In fact, we could not find any previous work in published
literature which discusses quantum field theory in de Sitter
spacetime from such an approach and obtains the thermal
nature of the horizon. We shall now turn to this study.

III. MASSLESS SCALAR FIELD MODES
IN DE SITTER SPACETIME

Throughout the paper, we will confine ourselves to
massless, minimally coupled scalar fields in de Sitter
spacetime. The action for the field �ðt;xÞ is given by

S½�� ¼ 1

2

Z
dnx

ffiffiffiffiffiffiffi�g
p

@a�@a�: (11)

It turns out that the dynamics is somewhat different in
(1þ 1)-dimensional spacetime compared to (1þ 3)-
dimensional spacetime. We will first study the behavior
in (1þ 1) and then follow the same procedure for the
(1þ 3) case. This will bring out the similarities and
some curious differences between the two cases.
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A. Field modes in dS2 spacetime

We will describe the de Sitter spacetime in Friedmann
coordinates with k ¼ 0. Then, the (1þ 1)-dimensional
metric is given by

ds2 ¼ dt2 � a2ðtÞdx2; (12)

and the field equation reads

@2t�þ _a

a
@t�� 1

a2
@2x� ¼ 0: (13)

We decompose � in terms of a complete set of orthonor-
mal functions fk in the form

�ðt; xÞ ¼
Z 1

�1
dk

2�
½âkfk þ âyk f

�
k�: (14)

Spatial homogeneity allows us to separate out the x depen-
dence and write

fkðx; tÞ ¼ eikxc jkjðtÞ: (15)

Substituting in Eq. (13) and solving the resulting equation,
we find that

c kðtÞ ¼ AkskðtÞ þBks
�
kðtÞ;

skðtÞ ¼ 1ffiffiffiffiffi
2k

p exp

�
�ik

Z dt

aðtÞ
�
:

(16)

(The k’s in these expressions actually stand for jkj; we
will not explicitly show the modulus sign hereafter for
notational simplicity.) The result is obvious from the fact
that in (1þ 1) dimensions the scalar field action is con-
formally invariant, and any Friedmann spacetime is con-
formally flat, with the conformal time coordinate � defined
through d� ¼ dt=aðtÞ. For dS2 with the scale factor
aðtÞ ¼ eHt, the solution is

skðtÞ ¼ 1ffiffiffiffiffi
2k

p exp

�
� ik

H
ð1� e�HtÞ

�
; (17)

where the phase ensures that, in theH ! 0 limit, the mode
function reduces to standard flat spacetime modes. The
constants Ak and Bk in Eq. (16) are determined using
the appropriate boundary conditions and thus decide the
choice of the vacuum state for the field. For example, when
H ! 0, the choice Ak ¼ 1 and Bk ¼ 0 gives the positive
frequency mode and selects the standard inertial vacuum
for the flat spacetime.

In the presence of an expanding background, it is diffi-
cult to define a unique choice for the vacuum, and we need
to study different choices and their physical properties.
One possible choice would be to define the vacuum state
at the asymptotic past by choosing the field modes such
that they reduce to positive frequency modes in this limit. It
is, however, clear that the mode function in Eq. (17) does
not have a well-defined phase when t ! �1. (This is
related to the fact that in the asymptotic past a ! 0.) The
usual procedure adopted in the literature to circumvent this

problem is to abandon the idea of defining a vacuum state
using the t coordinate and instead use the conformal time�
which, for the de Sitter universe, can be taken to be � �
ð1� e�HtÞ=H. (The integration constant is chosen to give
the correct limit of � ! t when H ! 0.) Then our mode
function in Eq. (17),

skð�Þ ¼ 1ffiffiffiffiffi
2k

p e�ik�; (18)

is indeed a positive frequency solution with respect to �
(at all times), and therefore the choice Ak ¼ 1 and
Bk ¼ 0 gives a natural choice for the vacuum. This is the
conventional Bunch-Davies vacuum, defined with respect
to conformal time by the choice of mode functions:

c ðBDÞ
k ðtÞ ¼ 1ffiffiffiffiffi

2k
p exp

�
� ik

H
ð1� e�HtÞ

�
: (19)

While the Bunch-Davies vacuum is the preferred choice
in the literature, it is clear that it is more in tune with the
conformal time coordinate � than with the comoving time
coordinate t. In the Friedmann metric, the comoving time t
has a direct physical significance as the proper time of the
comoving geodesic clocks. This motivates us to look at the
possibility of defining a comoving vacuum with mode
functions which behave as closely as possible to the posi-
tive frequency modes with respect to the comoving time
coordinate t. We can take a cue from the discussion in the
last section where we saw that, even in the Kruskal-like
coordinates for the de Sitter spacetime, the metric is time
dependent, and the vacuum state is defined on a particular
hypersurface T ¼ 0. In a similar fashion, we can choose
the modes in Eq. (16) by demanding that at some time
t ¼ t0 they behave like positive frequency modes. Because
of the time translational invariance, we can take t0 ¼ 0,
without the loss of generality, as long as t0 is finite. That is,
we impose the conditions

c kð0Þ ¼ 1ffiffiffiffiffi
2k

p e�iktjt¼0; _c kð0Þ ¼ �ikffiffiffiffiffi
2k

p e�iktjt¼0: (20)

(The same physics is obtained if we take t0 � 0 with the
replacement of k by ke�Ht0 , which ensures that k is the
comoving wave number defined at t0 ¼ 0.) These condi-
tions imply that at t ¼ t0ð¼ 0Þ, the mode function and its
derivative behave like a positive frequency mode.
We can now determine the coefficientsAk andBk using

this condition and—somewhat curiously—we will again
find that Ak ¼ 1 and Bk ¼ 0. That is, the mode function

c ðCMÞ
k ðtÞ, evolved from the comoving vacuum defined at

t ¼ t0ð¼ 0Þ, is the same as the Bunch-Davies state c ðBDÞ
k ðtÞ

defined earlier in dS2. This result is independent of the
choice for t0, thereby showing that the Bunch-Davies
vacuum can also be interpreted as a comoving vacuum
state defined using the conditions in Eq. (20).
As we will see later, this equivalence is a special

feature of (1þ 1) dimensions and does not hold in
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(1þ 3) dimensions, where the comoving and Bunch-
Davies vacua are different.

B. Field modes in dS4 spacetime

We shall now follow the same procedure as above in
(1þ 3) dimensions. The metric is now given by

ds2 ¼ dt2 � exp ð2HtÞdx2; (21)

where H is the Hubble constant and sets the only length
scale (or time scale) in the problem to be 1=H. The field
equation for �ðt;xÞ in this metric reads

@2t�þ 3H@t�� exp ð�2HtÞ@2x� ¼ 0: (22)

As usual, we expand the field in terms of a complete set of
orthonormal functions fk and write

�ðx; tÞ ¼
Z d3k

ð2�Þ3 fâkfkðt;xÞ þ âykf
�
kðt;xÞg; (23)

where spatial homogeneity allows us to express the field
modes in the form

fkðt;xÞ ¼ eik�xc kðtÞ; (24)

where k ¼ jkj. The equation in c kðtÞ then becomes

€c k þ 3H _c k þ exp ð�2HtÞk2c k ¼ 0; (25)

with the solution

c kðtÞ ¼ AkskðtÞ þBks
�
kðtÞ; (26)

where

skðtÞ ¼ 1ffiffiffiffiffi
2k

p exp

�
� ik

H
ð1� e�HtÞ

��
iH

k
þ e�Ht

�
: (27)

(Because of the existence ofAk andBk, the normalization
of sk is not unique; we choose it in such a way that, when
Ak ¼ 1 and Bk ¼ 0, the functions sk satisfy the standard
orthonormality conditions with respect to the Klein-
Gordon inner product.) Again, the constants Ak and Bk

are to be determined using the appropriate boundary con-
ditions, which makes a choice for the vacuum state for the
field. In (1þ 3) dimensions also, we see that whenH ! 0,
the choice Ak ¼ 1 and Bk ¼ 0 leads to the standard
positive frequency mode in flat spacetime and selects the
inertial vacuum. Our interest is to explore the different
choices in the presence of an expanding background.

As in the dS2 case, let us first study the behavior of the
modes in the asymptotic past. We see that, in the t ! �1
limit, the expression in Eq. (27) goes to

skðtÞ ! 1ffiffiffiffiffi
2k

p exp

�
ik

H
e�Ht

�
e�Ht: (28)

This does not have a well-defined limit, and hence cannot
be used to define a vacuum state for the field. In this
respect, both (1þ 1)- and (1þ 3)-dimensional results are
similar.

We found that, in the (1þ 1)-dimensional case, we
could use the conformal time coordinate � to define a
natural vacuum state in the asymptotic past. In the present
case, however, the situation is different. In terms of the
conformal time �, the mode function becomes (in the
asymptotic past)

skð�Þ ! 1

að�Þ
e�ik�ffiffiffiffiffi
2k

p ; (29)

and we see now the crucial difference from the (1þ 1)-
dimensional case. There is an extra að�Þ in this case, which
prevents us from treating it as the standard positive fre-
quency mode.
The result also suggests a possible way out, which

is usually adopted in the literature. Instead of quantizing

�, we may choose to quantize �� � aðtÞ�. This is a
(time-dependent) point transformation of the dynamical
variable, which is permissible in the classical description.
We then see that the choiceAk ¼ 1 and Bk ¼ 0 will give

the modes exp ð�ik�Þ, which has the standard form for ��
when treated as a quantum field. This is the usual proce-
dure in the literature, and this choice leads to the conven-
tional Bunch-Davies vacuum. But note that the situation
was not as straightforward as in the case of (1þ 1) dimen-
sions, and we needed to remove a factor aðtÞ to define the
vacuum state in (1þ 3) dimensions.
The difference is more acute when we try to define a

comoving vacuum. As in the case of (1þ 1) dimensions,
one can define the comoving vacuum by imposing the
conditions given in Eq. (20) and thus determining Ak

and Bk. Because of the time translation invariance, we
can again define the comoving vacuum at t ¼ 0, and the
result for any other time t0 can be obtained by a finite shift.
Hence, the conditions we impose on the modes are

c kð0Þ ¼ 1ffiffiffiffiffi
2k

p e�iktjt¼0; _c kð0Þ ¼ �ikffiffiffiffiffi
2k

p e�iktjt¼0: (30)

These allow us to determine the constants Ak and Bk as

Ak ¼ Hþ 2ik

2ik
; Bk ¼ H

2ik
; (31)

which define the mode function, c ðCMÞ
k ðtÞ, evolved from

the comoving vacuum choice defined at t ¼ 0.
When we did this in (1þ 1) dimensions, we found that

Ak ¼ 1 and Bk ¼ 0—instead of the expressions in
Eq. (31)—thereby showing the equivalence of comoving
and Bunch-Davies vacua. But in (1þ 3) dimensions we get
a different result, viz., that the comoving vacuum is differ-
ent from the Bunch-Davies vacuum. The difference can
be traced, algebraically, to the existence of the að�Þ factor
in Eq. (29).
To summarize, we can define the vacuum states by

imposing suitable boundary conditions on the mode func-
tions and thus determining the constantsAk andBk. If we
work in the asymptotic past, then one can choose the
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modes to be exp ð�ik�Þ in (1þ 1) dimensions, thereby
defining the Bunch-Davies vacuum. In (1þ 3) dimensions,
this is not possible with the original scalar field. But if we
work with aðtÞ�, instead of �, one can again define the
modes such that they behave as exp ð�ik�Þ in the asymp-
totic past. Alternatively, one can attempt to define a co-
moving vacuum by imposing the condition that the modes
must behave as closely to positive frequency solutions as
possible, with respect to the comoving time coordinate t, at
some time t ¼ t0. Because of time translation invariance,
we can choose t0 ¼ 0 without loss of generality. We then
find that, in (1þ 1) dimensions, the comoving vacuum is
equivalent to the Bunch-Davies vacuum. But in (1þ 3)
dimensions, these two mode functions (and hence the
vacua) are different. We shall now explore the properties
of these vacuum states.

IV. EVOLUTION AND MIXING COEFFICIENTS
AT LATER TIMES

The Bunch-Davies and the comoving vacua are defined
by the condition that the mode function is purely positive
frequency at a given moment of time t ¼ t0. In the case of
the Bunch-Davies vacuum, this is done in the asymptotic
past (t0 ! �1), while in the case of the comoving vacuum
we choose this to be t0 ¼ 0. Once this initial condition is
set, expansion of the universe will evolve the mode func-
tions to a mixture of positive and negative frequency
modes, with respect to the comoving time coordinate, at
any later time. This mixing can be analyzed in terms of two
mixing coefficients, �	 and �	, in the expansion

c kðtÞ ¼
Z 1

0

d	

2�
ð�	e

�i	t þ �	e
i	tÞ: (32)

It is slightly more convenient to let the frequency vary
over both positive and negative values and write

c kðtÞ ¼
Z 1

�1
d	

2�
fð	Þe�i	t; (33)

so that

�	 ¼ fð	Þ; �	 ¼ fð�	Þ; 	 > 0: (34)

The mixing coefficients defined by Eq. (32) are similar to
Bogoliubov coefficients but not the same. We stress that
in Eq. (32), c kðtÞ is expanded in terms of the complete
set of orthonormal functions exp ð�i	tÞ which are not the
solutions to scalar field wave equations in the de Sitter
background. Physically, one can think of these functions
exp ð�i	tÞ as defining the instantaneous positive and
negative frequency mode functions with respect to the
comoving time. But as we shall see, these mixing coef-
ficients have interesting properties and in fact play a
direct role in the response of detectors. We shall say
more about it later on.

The task of determining the mixing coefficients is thus
reduced to calculating the Fourier transform of c kðtÞ,

fð	Þ ¼
Z 1

�1
dtei	tc kðtÞ: (35)

Often we will be interested in j�	j2 and j�	j2, which can
be obtained from the power spectrum jfð	Þj2. We shall now
compute these for the different cases.

A. Mixing coefficients in dS2

We will begin with the (1þ 1)-dimensional case, for
which the modes are

c kðtÞ ¼ 1ffiffiffiffiffi
2k

p exp

�
� ik

H
ð1� e�HtÞ

�
: (36)

So, the Fourier transform is

fð	Þ ¼ e�ik=Hffiffiffiffiffi
2k

p
Z 1

�1
dtei	teik=He�Ht

¼ e�ik=Hffiffiffiffiffi
2k

p
�
1

H

��
k

H

�
i	=H

�

�
� i	

H

�
e�	=2H: (37)

Similarly,

fð�	Þ ¼ eik=Hffiffiffiffiffi
2k

p
�
1

H

��
k

H

�
i	=H

�

�
� i	

H

�
e��	=2H; (38)

so that the modulus square of the coefficients of mixing in
Eq. (34) are given by

j�	j2¼ 1

2k	

�e�	

e�	�1
; j�	j2¼ 1

2k	

�

e�	�1
; �¼2�

H
:

(39)

That is, the power spectrum per logarithmic band at nega-
tive frequencies (given by j�	j2) is Planckian at tempera-
ture, H=2�. At first sight, this might look like the familiar
result, well known in literature. However, there are some
peculiar features which need to be commented on.
Note that we have started with a solution to the wave

equation in the de Sitter background [given by Eq. (36)]
and expanded it using the complete set of functions
exp ð�i	tÞ. These functions have no ‘‘legality’’ in the de
Sitter spacetime, since they are not the solutions of the
wave equation. We could have, for example, used any other
complete set of orthonormal functions in place of
exp ð�i	tÞ and could have defined the mixing coefficients
through an equation like Eq. (32). The two properties
which favor our choice are that (a) they were precisely
the mode functions used to define the comoving vacuum,
and (b) they are instantaneous, monochromatic plane
waves with respect to the comoving time t. It is therefore
interesting that the overlap between positive and negative
frequencies in such an expansion gives rise to the thermal
spectrum.
If we had used the conformal time instead of comoving

time, then the result would have been very different—and
very trivial. In terms of the conformal time, the modes are
just exp ð�ik�Þ at all �, and there is no mixing of the
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positive and negative frequencies defined with respect to�.
So if we had defined another set of mixing coefficients with
an equation like Eq. (32), but with conformal time �, then
we would have gotten the trivial result �	 ¼ 0. So if we
define the vacuum state with respect to conformal time and
work entirely in terms of conformal time, we will see no
trace of the thermal spectrum in the de Sitter universe. This
is, of course, obvious from the fact that the metric is
conformally flat in ð�; xÞ coordinates, and the scalar field
theory is conformally invariant in (1þ 1) dimensions, so
we are back to the evolution of an inertial vacuum in flat
spacetime. On the other hand, the modes undergo expo-
nential redshift when frequencies are defined with respect
to comoving time and—as we had already mentioned—the
exponentially redshifted wave will lead to a thermal mix-
ing coefficient. We will next see that the situation is some-
what different in the (1þ 3)-dimensional case.

B. Mixing coefficients in dS4

In this case, which we want to study in detail, it is
convenient to work with a general mode function, having
arbitrary coefficients Ak and Bk. From Eq. (26), we have

c kðtÞ ¼ AkskðtÞ þBks
�
kðtÞ ¼ c ð1Þ

k ðtÞ þ c ð2Þ
k ðtÞ; (40)

where

skðtÞ ¼ 1ffiffiffiffiffi
2k

p exp

�
� ik

H
ð1� e�HtÞ

��
iH

k
þ e�Ht

�
: (41)

Recall that taking Ak ¼ 1 and Bk ¼ 0 gives the Bunch-
Davies state, and for the comoving state, the corresponding
values are provided by Eq. (31). We again choose the
normalization such that fk � sk exp ðik � xÞ satisfies the
standard orthonormality conditions ðfk; fk0 Þ ¼ 
3ðk� k0Þ
with respect to the Klein-Gordon inner product:

ð�1;�2Þ � �i
Z
t
d3xa3ðtÞ½�1@t�

�
2 ���

2@t�1�; (42)

where the integral is evaluated over a hypersurface of
constant t.

Some amount of algebra yields the following results for

the Fourier transform of the respective parts, c ð1Þ
k ðtÞ and

c ð2Þ
k ðtÞ:

fð1Þð	Þ ¼ Ak

2e�ik=He�	=2H

ð2kÞ3=2
�
k

H

�i	
H
�

�
� i	

H

��
iþ 	

H

�
;

fð2Þð	Þ ¼ Bk

2eik=He��	=2H

ð2kÞ3=2
�
k

H

�i	
H
�

�
� i	

H

��
�i� 	

H

�
:

(43)

Taking the square of the modulus of the above expressions,
we get

	jfð1Þð	Þj2 ¼ H2

2k3
jAkj2 �e�	

e�	 � 1

�
1þ 	2

H2

�
;

	jfð2Þð	Þj2 ¼ H2

2k3
jBkj2 �

e�	 � 1

�
1þ 	2

H2

�
;

(44)

where � ¼ 2�=H. For negative frequencies, the forms of
power spectrum are

	jfð1Þð�	Þj2 ¼ H2

2k3
jAkj2 �

e�	 � 1

�
1þ 	2

H2

�
;

	jfð2Þð�	Þj2 ¼ H2

2k3
jBkj2 �e�	

e�	 � 1

�
1þ 	2

H2

�
:

(45)

Let us first consider the Bunch-Davies state, withAk ¼ 1

and Bk ¼ 0. This gives �	 ¼ fð1Þð	Þ and �	 ¼ fð1Þð�	Þ,
so that we find

j�	j2 ¼ H2

2k3	

�e�	

e�	 � 1

�
1þ 	2

H2

�
; (46)

j�	j2 ¼ H2

2k3	

�

e�	 � 1

�
1þ 	2

H2

�
: (47)

In contrast to the (1þ 1)-dimensional case, these are not
thermal, due to the extra factor ð1þ 	2=H2Þ. So the ex-
pansion of the universe leads to a mixing of positive and
negative frequencies, but the resulting mixing coefficients
do not have a thermal form. It should be noted, however,
that the ratio of the mixing coefficients is

j�	j2
j�	j2

¼ jfð1Þð�	Þj2
jfð1Þð	Þj2 ¼ e��	: (48)

When the field c kðtÞ couples linearly to a detector, the rate
of upward and downward transitions between any two
levels of the detector will be determined by the mixing
coefficients. Therefore, when the condition in Eq. (48)
holds, one is led to a level population in the detector at
thermal equilibrium with the temperature ��1 ¼ H=2�.
Any multiplicative function hð	2Þwith�	 and�	 drops off
in the ratio. [Usually, one works with Bogoliubov coeffi-
cients which satisfy the constraint j�j2 � j�j2 ¼ 1; in that
case, if Eq. (48) holds, then j�j2 must be thermal. In the
case of mixing coefficients we have defined, the condition
j�j2 � j�j2 ¼ 1 does not hold, which allows extra factors
like ð1þ 	2=H2Þ].
Let us next consider the comoving vacuum, which holds

more surprises. We now require the square of the modulus
of complete fð�	Þ, which is the combination of individual

quantities, jfð1Þð�	Þj2, jfð2Þð�	Þj2, evaluated above and a
cross-term given by

2	jfð1Þð�	Þjjfð2Þð�	Þj cos �

¼ H2

k3
jAkjjBkj

�
1þ 	2

H2

�
�

e�	=2

e�	 � 1
cos �; (49)

where
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� ¼ arg ðfð1Þ; fð2ÞÞ: (50)

The complete expression becomes

	jfð�	Þj2¼H2�

2k3

�
1þ 	2

H2

�
½ðjAkj2þjBkj2e�	ÞN

þ2jAkjjBkj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðNþ1Þ

p
cos��; (51)

where

N ¼ 1

e�	 � 1
(52)

is the Planckian factor andAk,Bk given by Eq. (31). This
result shows that for a massless scalar field prepared in the
comoving vacuum state, we obtain an expression having
the Planckian factor with the temperature H=2�. In addi-

tion, we obtain an interference term involving
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN þ 1Þp

,
which can be thought of as the fluctuation in the occupation
number in thermal equilibrium. This factor has been no-
ticed earlier [11] in the case of horizon thermodynamics,
though no clear physical explanation is available. As far as
we know, this has not been noticed earlier in the case of de
Sitter spacetime in any context.

V. DETECTOR RESPONSE IN
DE SITTER SPACETIME

The mixing coefficients defined through Eq. (32) are
directly related to the response of a comoving geodesic
detector in a Friedmann universe. Since the clock carried
by such a detector will measure the comoving time t, the
rate of transition between the levels of the detector will
involve the factors exp ð�it�EÞ, where �E is the energy
difference between the two levels. This gives an opera-
tional meaning to the mixing coefficients, and we will
show that the response of a comoving geodesic detector
shows features very similar to what we obtained in the
last section.

Consider a stationary detector, located at the spatial
origin in a de Sitter spacetime and coupled to the massless
scalar field by monopole interaction. The amplitude for
excitation of this detector during the time interval
ð�T;þTÞ due to its interaction with the scalar field can
be computed, in first-order perturbation theory, as

Ak ¼ M
Z T

�T
d�ei	�h1kj�ðx½��Þj0i; (53)

where M ¼ i
hEjm̂ð0ÞjE0i is the amplitude of transition
in the internal levels of the detector with 
 as the coupling
constant and m̂ð0Þ as the detector’s monopole operator.
(In the above expression, we are confining our attention
to a final field state containing a particle with a specified
momentum k. The total excitation probability for the
detector is obtained by integrating jAkj2 over all k).
The detector interacts with the field only during the period
�T to T, and xað�Þ ¼ xaðtÞ ¼ ðt; 0; 0; 0Þ is the trajectory of

the detector. Expanding�ðx½��Þ as in Eq. (14), we find that
the only term that survives in the T ! 1 limit is the
negative frequency term. The amplitude arising from this
term is given by

Ak ¼ M
Z T

�T
dtei	t

�
A�

kffiffiffiffiffi
2k

p eik=H
�
� iH

k
þ e�Ht

�
e�ik=He�Ht

þ B�
kffiffiffiffiffi
2k

p e�ik=H

�
iH

k
þ e�Ht

�
eik=He�Ht

�
: (54)

This can be recast as

Ak ¼ MA�
kffiffiffiffiffi

2k
p eik=H

�
� iH

k

�
lim
�!1

ð1� @�ÞI�ð	Þ

þMB�
kffiffiffiffiffi

2k
p e�ik=H

�
iH

k

�
lim
�!1

ð1� @�ÞI��ð�	Þ; (55)

where

I�ð	Þ¼
Z T

�T
dtei	te�ik�=He�Ht

¼
�Z 1

�1
dt�

Z �T

�1
dt�

Z 1

T
dt

�
ei	te�ik�=He�Ht

: (56)

The above integral can be evaluated to give

I� ¼ 1

H

�
k

H

�
i	=H

e��	=2He
i	
H ln�

�
�
�

�
� i	

H
; i
k�

H
e�HT

�
� �

�
� i	

H
; i
k�

H
eHT

��
;

(57)

where �ða; bÞ is an incomplete gamma function. With this,
the amplitude becomes

Ak ¼ Meik=Hffiffiffiffiffi
2k

p
��iH

k

�
A�

k

�
1� i	

H

�
I1ð	Þ

þMe�ik=Hffiffiffiffiffi
2k

p
�
iH

k

�
B�

k

�
1� i	

H

�
I�1ð�	Þ; (58)

where we have ignored terms coming from differentiating
the gamma functions, since those are purely oscillatory and
can be made to vanish in the large 	 limit by using the
standard i� prescription. The probability Pk for the tran-
sition is now given by

Pk¼jAkj2

¼M2H2

2k3

�
1þ 	2

H2

�
ðjAkj2jI1ð	Þj2

þjBkj2jI1ð�	Þj2þ2jAkjjBkjjI1ð	ÞjjI�1ð�	Þjcos�Þ:
(59)

To avoid the transients arising due to finite T, we will take
the limit of HT 	 1. In this case, an elementary compu-
tation gives
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I1 � e��	=2H

H

�
k

H

�
i	=H

�

�
� i	

H

�
� i

k
e�HTe�i kHe

HT
e�i	T;

(60)

so that

jI1ð	Þj2¼�N

	
�2e�HT

k

ffiffiffiffiffiffiffiffi
�N

	

s
cos�0 þOðe�2HTÞ;

jI�1ð�	Þj2¼�e�	N

	
þ2e�HTe�	=2

k

ffiffiffiffiffiffiffiffi
�N

	

s
cos�00þOðe�2HTÞ;

(61)

where N ¼ ðe�	 � 1Þ�1 and � ¼ 2�=H. Therefore, when
HT 	 1, we get the transition probability to be

Pk ¼ M2H2

2k3

�
1þ 	2

H2

�
�

	
½ðjAkj2 þ jBkj2e�	ÞN

þ 2jAkjjBkj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN þ 1Þp

cos ��: (62)

A comparison with Eq. (51) shows that the detector re-
sponse is triggered by essentially jfð�	Þj2, which should
be obvious from the fact that the amplitude in Eq. (53)
picks out the negative frequency component of the field
when the time integration is extended over the range
ð�1;1Þ. This result shows that our mixing coefficients
have a direct connection with the operational definition of
particle content, as determined by the detector response.

The above result is general and is valid for arbitraryAk,
Bk. By taking specific values, we can determine the detec-
tor response in Bunch-Davies and comoving vacua. In the
Bunch-Davies case, we have Ak ¼ 1 and Bk ¼ 0, giving

Pk ¼ M2H2

2k3

�
1þ 	2

H2

�
�

	
N: (63)

This result shows that the detector response does pick up
the extra factor ð1þ 	2=H2Þ just as the mixing coefficients
do. (The same factor has been noticed earlier in Ref. [12].)
The corresponding result for a comoving vacuum can be
obtained by substituting Eq. (31) into Eq. (62), but the
result has no special features worth mentioning. The above
results arise because, by definition, the geodesic detector
measures the comoving time t.

VI. RELATION TO THE RESULTS IN THE
STATIC COORDINATE SYSTEM

In Sec. II, we briefly described how the thermal nature of
the de Sitter horizon arises in the static coordinate system,
and in the last few sections, we studied the field theory in
the Friedmann coordinate system. Since both coordinate
systems coexist in part of the de Sitter manifold, one can
make an explicit comparison of the quantum states defined
in these two coordinate systems. (This is similar to com-
paring the states in the inertial coordinate system and the
Rindler coordinate system in flat spacetime.) For this, we

need to compute the relevant Bogoulibov coefficients on a
spacelike hypersurface between the relevant mode func-
tions by using the Klein-Gordon inner product. As we shall
see, this is fairly straightforward in (1þ 1) dimensions but
somewhat complicated in (1þ 3).

A. Comparison in dS2

We begin by noting that the metric

ds2 ¼ dt2 � e2Htdx2 (64)

in ðt; xÞ coordinates can be written in the static coordinates
ð~t; ~xÞ as

ds2 ¼ ð1�H2~x2Þd~t 2 � ð1�H2~x2Þ�1d~x2

¼ ð1�H2~x2ðx�ÞÞðd~t 2 � d~x2�Þ; (65)

where

~x ¼ eHtx; ~t ¼ t� 1=2H ln ð1�H2~x2Þ; (66)

and

~x� ¼
Z d~x

ð1�H2~x2Þ (67)

is the tortoise coordinate. Using these transformations, we
can express the field modes in the time-dependent dS2
coordinates in terms of the static coordinates. We will
focus on a fixed (k > 0) mode, so that the mode function

fkðt; xÞ ¼ 1ffiffiffiffiffi
2k

p e�ik=Heikxeik=He�Ht
(68)

becomes

fkð~t; ~xÞ ¼ 1ffiffiffiffiffi
2k

p exp

�
ike�H~t

ð1�H2~x2Þ1=2 þ
ike�H~t~x

Hð1�H2~x2Þ1=2
�

¼ 1ffiffiffiffiffi
2k

p eiðk=HÞe�Hu
(69)

in static coordinates where u � ~t� ~x�. In the static de
Sitter patch, conformal flatness of the metric in Eq. (65)
allows us to write down the solution to the field equation as
exp ð�i!uÞ. This allows the expansion

�R
! ¼ 1ffiffiffiffiffiffiffi

2!
p ðb̂!e�i!u þ b̂y!ei!uÞ; (70)

etc., which is valid on the complete manifold.We now need
to determine the Bogoliubov coefficients that relate the
above two sets of field modes. These are given by the
standard Klein-Gordon inner product,

�!k ¼ �i
Z
~t
d~x�ð�R

!@~tfk � fk@~t�
R
!Þ; (71)

where the integral is over any spacelike hypersurface.
Choosing the ~t ¼ 0 surface, the above integral over ~x�
can be recast as
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�!k ¼ �iffiffiffiffiffiffiffi
2!

p
Z 1

�1
duðe�i!u@ufk � fk@ue

�i!uÞ: (72)

Integrating the first term by parts gives

�!k ¼
ffiffiffiffiffiffiffi
2!

p Z 1

�1
due�i!ufkðuÞ þ fke

�i!uj1�1

¼ ffiffiffiffiffiffiffi
2!

p Z 1

�1
due�i!ufkðuÞ; (73)

since the second term vanishes. Thus,

�!k ¼
ffiffiffiffi
!

k

r Z 1

�1
due�i!ueik=He�Hu

¼
ffiffiffiffi
!

k

r �
1

H

��
k

H

�
i!=H

�

�
� i!

H

�
e��!=2H: (74)

We find that modulus j�!kj2 is again Planckian at
temperature H=2�:

j�!kj2 ¼ �

kðe�! � 1Þ ; � ¼ 2�

H
: (75)

This shows that the Bunch-Davies vacuum [which is the
same as the comoving vacuum in (1þ 1) dimensions] has a
thermal character in the static patch bounded by the
horizon.

B. Comparison in dS4

The transformation from the Friedmann coordinates to
static coordinates goes through dS4 in exactly the same
way as dS2. The metric

ds2 ¼ dt2 � e2Htðdr2 þ r2d�2Þ (76)

in a ðt; r;�Þ system can be written in the static coordinates
ð~t; ~r;�Þ as
ds2 ¼ ð1�H2~r2Þd~t2 � ð1�H2~r2Þ�1d~r2 � ~r2d�2

¼ ð1�H2~r2ðr�ÞÞðd~t2 � dr2�Þ � ~r2ðr�Þd�2 (77)

with the same transformations as before:

~r ¼ eHtr; ~t ¼ t� 1=2H ln ð1�H2~r2Þ; (78)

and defining the tortoise coordinate

r� ¼
Z d~r

ð1�H2~r2Þ : (79)

In the static coordinates, the field equation reads�
@2

@~t2
� fð~rÞ

~r2
@

@~r

�
~r2fð~rÞ @

@~r

�
� fð~rÞL̂2

r2

�
�ð~t; ~r;�Þ ¼ 0;

(80)

where fð~rÞ ¼ ð1�H2~r2Þ and L̂ is the standard angular

Laplacian operator. Taking � ¼ �lð~rÞYlmð�Þe�i!~t=~r, we
find that �lð~rÞ satisfies the equation

�!2�l � f

~r

d

d~r

�
~r2f

d

d~r

�
�l

~r

��
� lðlþ 1Þf

~r2
�l ¼ 0: (81)

Since fð~rÞ vanishes at the horizon ~r ¼ 1=H, only the s
mode makes a dominant contribution near the horizon, and
hence we will focus on the l ¼ 0 mode. For this mode, the
wave equation becomes

d2�

dr2�
þ

�
!2 � ff0

~r

�
� ¼ 0; (82)

where the prime denotes a derivative with respect to ~r.
Clearly, in the near-horizon limit (f ! 0), the solutions
behave as exp ð�i!r�Þ. Thus, near the past horizon, ~r !
1=H and ~t ! �1, the modes in the static coordinate
system behave as exp ð�i!vÞ.
On the other hand, the modes describing the Bunch-

Davies vacuum can be expressed in spherical coordinates
by the standard plane wave expansion:

�BD
k ¼ e�ik=Hffiffiffiffiffi

2k
p X1

l¼0

ilð2lþ 1ÞjlðkrÞPlðcos�Þ

� eik=He�Ht

�
iH

k
þ e�Ht

�
: (83)

Using the transformations in Eq. (78), we can express this
in ð~t; ~rÞ coordinates. Concentrating on the s-wave contri-
bution, we obtain

�ðBDÞ
k ¼ e�ik=Hffiffiffiffiffi

2k
p ðeik=He�Hu � eik=He�HvÞ

�
�
iH

k
eH~tð1�H2~r2Þ þ 1

�
; (84)

which, near the past horizon, ~r ! 1=H and ~t ! �1,
behaves as

�ðBDÞ
k ! 1ffiffiffiffiffi

2k
p eiðk=HÞe�Hv

: (85)

We now use the fact that the Klein-Gordon inner product
between the field modes is independent of the surface
over which it is evaluated. It is, therefore, convenient to
evaluate the Bogoliubov coefficients on a spacelike surface
very close to the horizon. Since the Bunch-Davies mode

behaves as eiðk=HÞe�Hv
while the static modes behave as

exp ð�i!vÞ, it is obvious that the Bogoliubov coefficients
defined in Eq. (73) will give

�!k ¼
ffiffiffiffiffiffiffi
2!

p Z 1

�1
dve�i!v�ðBDÞ

k ðvÞ; (86)

which has a thermal character:

j�!kj2 ¼ �

kðe�! � 1Þ ; � ¼ 2�

H
: (87)

We again see that the Bunch-Davies vacuum has a thermal
property when viewed in the static patch in (1þ 3) dimen-
sions as well. In this sense, (1þ 1) and (1þ 3) dimensions
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behave identically. It is also straightforward to show that a
detector at rest in the static coordinates will perceive a
thermal radiation in the Bunch-Davies vacuum state. On
the other hand, we saw earlier that a freely falling detector
will also see the modified thermal spectrum [see Eq. (63)]
in the same vacuum state. It should be noted that this is
somewhat contrary to the results in black hole spacetime.

Finally, we quote the result for the comoving vacuum
transformed to static coordinates. The analysis is again
straightforward when we use the fact that the comoving
modes can be expressed in terms of the Bunch-Davies
modes by the relation

c ðCMÞ
k ðtÞ ¼ Akc

ðBDÞðtÞ þBkc
ðBDÞ�ðtÞ: (88)

Therefore,

�ðCMÞ
k ! 1ffiffiffiffiffi

2k
p ðAke

ik=He�Hv þBke
�ik=He�HvÞ (89)

on the past horizon. It follows that the spectrum is now
given by

kj�!kj2 ¼ ðjAkj2 þ jBkj2e�	Þ�N
þ jAkjjBkj�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN þ 1Þp

cos �; (90)

where

N ¼ 1

e�	 � 1
:

We once again see that the comoving vacuum introduces

an interference term in the form of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN þ 1Þp

even when
we compare the modes between the Friedmann description
and the static description, suggesting that there must be
some physical explanation for the origin of this factor. We
hope to address this question in a future publication.

VII. QUANTUM FIELDS IN QUASI–DE SITTER
SPACETIME

So far, we have been concentrating on the features which
are special to de Sitter spacetime. However, in the evolu-
tion of the real Universe, it is impossible to obtain a pure de
Sitter evolution due to the presence of external matter. Both
during the inflationary phase as well as during the late-time
acceleration phase, we only have a quasi–de Sitter phase
rather than a pure de Sitter universe. In this section we will
extend the formalism described earlier to a quasi–de Sitter
spacetime by determining an approximate solution to the
wave equation. This approach is quite general and can take
into account any first-order deviation from the pure de
Sitter universe. After developing the formalism, we will
apply it to a specific example to illustrate its utility.

A. The perturbative framework

Consider a Friedmann spacetime with the scale factor
given by

aðtÞ ¼ eðHtþ�
ðtÞÞ � eHtð1þ �
ðtÞÞ ¼ a0 þ �
a0; (91)

which can be treated as quasi–de Sitter if the condition
€
 
 _
H is satisfied. In the above expansion, we have
retained the perturbation to first order, as indicated by the
bookkeeping parameter � (which will be set to unity at the
end of the computation). Correspondingly, the mode func-
tions, which are the solutions to the wave equation in the
perturbed metric, will differ from those in the de Sitter
spacetime by a small amount:

c ðtÞ ¼ c 0ðtÞ þ �
c ðtÞ; (92)

where c 0ðtÞ is the unperturbed mode function and we
have omitted the subscript k for notational simplicity.
Substituting the above expressions for aðtÞ and c ðtÞ into
the time-dependent part of the wave equation written in the
form

d2c

dt2
þ 3

�
_a

a

�
dc

dt
þ k2

a2
c ¼ 0; (93)

we get

d2ð
c Þ
dt2

þ 3H
dð
c Þ
dt

þ 3 _

dc 0

dt
� 2

k2

a20

c 0 þ k2

a20

c

¼ 0: (94)

This equation can be solved by writing 
c ¼ c 0s. The
function sðtÞ then satisfies the equation

d2s

dt2
þ

�
2

_c 0

c 0

þ 3H

�
ds

dt
¼ �ðtÞ; (95)

where

�ðtÞ � 2
k2

a20

� 3 _


_c 0

c 0

(96)

acts like a source term. Equation (95) is first order in ds=dt,
and hence can be immediately integrated. (This result
holds for a generic class of second-order homogeneous
linear differential equations; see Appendix B for details).
The solution for sðtÞ is

sðtÞ ¼ C
Z t

dt0c�2
0 e�3Ht0

þ
Z t

dt0c�2
0 ðt0Þe�3Ht0

Z t0
dt00c 2

0ðt00Þe3Ht00�ðt00Þ;
(97)

where C is a constant of integration. Thus, given a model
for 
ðtÞ and appropriate boundary conditions we can, in
principle, solve for the perturbation 
c by this method.

B. An example: Late-time accelerated phase
of the universe

As an illustration of the above method, let us consider
the late-time accelerated phase of the universe containing
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dustlike matter and a cosmological constant. The expan-
sion factor of such a universe is given by

aðtÞ ¼ 22=3
�
sinh

3

2
Ht

�
2=3

: (98)

In the spirit of the above discussion, we will treat this as a
perturbation to an exact de Sitter universe and write

aðtÞ � eHt

�
1� 2

3
e�3Ht

�
; (99)

where 
ðtÞ ¼ �ð2=3Þ exp ð�3HtÞ, which vanishes as t
goes to infinity. This behavior suggests that we use the
boundary conditions sð1Þ ¼ 0 and _sð1Þ ¼ 0 in our gen-
eral solution given by Eq. (97). In the pure de Sitter case,
the mode functions can be taken to be

c 0ðtÞ ¼ 1ffiffiffiffiffi
2k

p exp

�
� ik

H
ð1� e�HtÞ

��
iH

k
þ e�Ht

�
; (100)

which amounts to takingAk ¼ 1 andBk ¼ 0 in Eq. (26);
i.e., we have chosen to work with the Bunch-Davies state.
Calculating the integrals in Eq. (97) is straightforward (see
Appendix C for details), and we obtain

sðtÞ ¼ 7k2

15H2
e�5Ht: (101)

Therefore, the first-order change in the mode function is
given by


c ðtÞ ¼ c 0ðtÞsðtÞ ¼ 7ike�ik=H

15H
ffiffiffiffiffi
2k

p
�
1� ik

H
e�Ht

�
e�5Hte

ik
He

�Ht
:

(102)

We can now compute the Fourier transform of this
expression to determine the first-order correction in
Fourier space:


fð	Þ ¼
Z 1

�1
dt
c ðtÞei	t ¼ 7ik

15H
ffiffiffiffiffi
2k

p e�ik=H
Z 1

�1
dt

�
1� ik

H
e�Ht

�
e�5Hte

ik
He

�Ht
ei	t

¼ 7ik

15H
ffiffiffiffiffi
2k

p e�ik=H lim
�!1

ð1� @�Þ
Z 1

�1
dte�5Htþi	te

ik�
H e�Ht ¼ �7H3e�ik=H

15k4
ffiffiffiffiffi
2k

p
�
k

H

�
i	=H

e�	=2H
�
6� i	

H

�
�

�
5� i	

H

�
: (103)

The resulting power spectrum, to the lowest order, is
given by

	jFð	Þj2 � 	jfð	Þj2 þ �	Re½2f�ð	Þ
fð	Þ�; (104)

where we have reintroduced � for bookkeeping, and

	Re½2f�ð	Þ
fð	Þ�

¼ 7H5

15k6
�e�	

e�	 � 1

�
144

	

H
þ 64

	3

H3
� 79

	5

H5
þ 	7

H7

�
(105)

is the correction to the power spectrum in the case of
quasi–de Sitter phase arising from the matter contribution
in the late-time acceleration.

VIII. CONCLUSIONS

The periodicity in the Euclidean time allows us to at-
tribute a temperature H=2� using the static coordinates on
the de Sitter manifold. In this sense, de Sitter spacetime
behaves just like other static spacetimes with a horizon.
However, in such an analysis, one has to define a vacuum
state on a T ¼ 0 hypersurface in the Kruskal-like coordi-
nate system which is not static. In this particular case, the
thermal nature of the de Sitter horizon arises because the
vacuum state in a Kruskal-type coordinate system leads to
a thermal density matrix for the observers bounded by the
de Sitter horizons.

The de Sitter spacetime is unique in the sense that it also
allows the introduction of Friedmann coordinates in which

the metric is homogeneous. This, in turn, reduces the field
theoretic problem to that of a quantum oscillator with a
time-dependent frequency. In such a time-dependent back-
ground there is no unique definition for the vacuum state,
and the best one could do is to introduce well-motivated
vacuum states and study their physical properties. Quite
generically, such states can be introduced by giving a
suitable boundary condition for the mode functions at
some time t ¼ t0. The question arises as to whether one
can understand the thermality of a de Sitter universe work-
ing entirely within the Friedmann coordinates, i.e., without
comparing the results between Friedmann and static coor-
dinates. (We have not seen such a derivation in the litera-
ture for a massless scalar field.) We investigated several
aspects of this question, both in (1þ 1) dimensions and in
(1þ 3) dimensions, in this paper.
Two natural vacuum states one can introduce are the

Bunch-Davies and co-moving vacuum states in this space-
time. In (1þ 1) dimensions, the Bunch-Davies vacuum
state corresponds to choosing the modes to be positive in
frequency with respect to the conformal time � in the
asymptotic past, while the comoving vacuum state corre-
sponds to imposing the positive frequency condition at
some arbitrary instant of time t ¼ t0. It turns out that
both these states are identical in (1þ 1) dimensions. To
study the time evolution of this state, we expand the mode
function in terms of positive and negative frequency modes
defined with respect to the comoving time. The mixing of
positive and negative frequency modes then reveals a
thermal character with temperature H=2�. This, of course,
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does not happen during the time evolution in the conformal
time; the positive frequency mode remains a positive fre-
quency mode at all times.

The situation in (1þ 3) dimensions is quite different.
To begin with, the comoving vacuum state and the
Bunch-Davies vacuum state do not coincide in (1þ 3)
dimensions. Further, the mixing coefficient between posi-
tive and negative frequency modes does not have a pure
thermal character (and is modified by an extra frequency-
dependent factor) in the case of a Bunch-Davies vacuum.
The result for the case of a comoving vacuum is more
complicated and involves an interference term containing affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN þ 1Þp

factor which is reminiscent of the fluctuations
in the occupation numbers of massless thermal radiation.

The physical meaning of the mixing coefficients intro-
duced to analyze the above phenomena can be understood
by studying the response of particle detectors in the de
Sitter spacetime. We computed the rate of excitation of a
geodesic detector evolving in comoving time. This rate
exactly matches with the particle content of the state as
determined by the mixing coefficients in both the Bunch-
Davies vacuum and the comoving vacuum.

We also compared the states defined using the Friedmann
coordinate system with those defined using the static coor-
dinate system. This requires evaluating the necessary
Bogoliubov coefficient between the mode functions defined
in the static patch and Friedmann patch in the region of the
manifold where they coexist. We found that the Bunch-
Davies vacuum appears to be a thermal state for static
observers bounded by the horizon, in both (1þ 1) and
(1þ 3) dimensions. This is in contrast with the results
obtained within the Friedmann coordinate system, where
the results for (1þ 3) dimensions differ from the results for
(1þ 1). On the other hand, the co-moving vacuum in
(1þ 3) dimensions, defined in Friedmann coordinates,
does not have a simple thermal interpretation in the static
coordinates.

In the last part of the paper, we studied the effects of
small deviations from de Sitter evolution and the resulting
corrections to the mode functions. This formalism is suffi-
ciently general to handle any functional form of the devia-
tion in the lowest order of perturbation theory. As an
illustration of this formalism, we studied the deviations
in the power spectrum arising due to the existence of
pressure-free matter during the late-time accelerated phase
of the universe. This formalismmight have applications for
studying the spectral deviations in the case of an infla-
tionary universe as well.
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APPENDIX A: CALCULATION OF THE FOURIER
TRANSFORM IN EQUATION (33)

To evaluate

I ¼
Z 1

�1
dtei	te

ik�
H e�Ht

;

we define u ¼ e�Ht and b ¼ k�=H. This gives

I ¼ 1

H

Z 1

0
duu�1�i	

Heibu

¼ 1

H
exp

�
i	

H
ln

��������k�H
��������þ�	

2H
sign

�
k�

H

��
�

�
� i	

H

�

¼ 1

H

�
k

H

�
i	=H

e�	=2H�

�
� i	

H

�
e
i	
H ln�: (A1)

APPENDIX B: A RESULT IN
PERTURBATION THEORY

Consider a generic second-order homogeneous linear
differential equation

aðtÞ €xðtÞ þ bðtÞ _xðtÞ þ cðtÞxðtÞ ¼ 0:

Let x0 be the solution of the above equation for some
functions a0ðtÞ, b0ðtÞ and c0ðtÞ. We are now interested in
the corresponding solution of the equation when the parame-
ter functions a, b and c are perturbed about their original
forms. Then, to the first order in perturbation, we have

a0
 €xþ €x0
aþ b0
 _xþ _x0
bþ c0
xþ x0
c ¼ 0: (B1)

Scaling the perturbation 
x with the unperturbed solution as

x � x0s gives for sðtÞ the equation

€sþ AðtÞ _s ¼ BðtÞ; (B2)

with

AðtÞ¼2
_x0
x0
þb0
a0

BðtÞ¼� €x0
x0


a

a0
� _x0
x0


b

a0
�
c

a0
; (B3)

which is a first-order differential equation in _s and can be
solved immediately.

APPENDIX C: SOLUTION OF EQUATION (97) FOR
THE LATE-TIME ACCELERATED PHASE

The basic ingredients that go in are

c 0 ¼ 1ffiffiffiffiffi
2k

p exp

�
� ik

H
ð1� e�HtÞ

��
iH

k
þ e�Ht

�
;

which gives

_c 0

c 0

¼ �ik2e�2Ht

Hðiþ k
H e�HtÞ

and
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�ðtÞ ¼ 2k2e�2Ht
� 3 _

_c 0

c 0

¼ � 4

3
k2e�5Ht þ 6ik2e�5Ht

ðiþ k=He�HtÞ ;

so that under the conditions sð1Þ ¼ _sð1Þ ¼ 0, we can setC, the constant of integration in the homogeneous part, to be zero
and obtain

sðtÞ ¼
�
H2

6k

�
e�2ik

H

Z 1

t
dt0

e�3Ht0

c 2
0ðt0Þ

Z 1

t0
dt00e2ik

H e�Ht00
e�2Ht00

�
�14� 4

k2

H2
e�2Ht00 þ 10

ik

H
e�Ht00

�

¼
�
H

12

�Z 1

t
dt0e�2ik

H e�Ht0
e�3Ht0

�
�14�

�
2;�2i

k

H
e�Ht0

�
þ �

�
4;�2i

k

H
e�Ht0

�
� 5�

�
3;�2i

k

H
e�Ht0

��
:

Noting that

�14�ð2; xÞ þ �ð4; xÞ � 5�ð3; xÞ ¼ �18þ exð18� 18xþ 2x2 þ x3Þ;
we can evaluate sðtÞ in the late-time approximation to give

sðtÞ ¼ 7k2

15H2
e�5Ht (C1)

as the leading order correction term.
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