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Parameter estimation of binary black-hole merger events in gravitational-wave data relies on matched-

filtering techniques which, in turn, depend on accurate model waveforms. Here we characterize the

systematic biases introduced in measuring astrophysical parameters of binary black holes by applying the

currently most accurate effective-one-body templates to simulated data containing nonspinning numerical-

relativity waveforms. We quantify the systematic bias by using a Markov chain Monte Carlo algorithm to

sample the posterior distribution function of noise-free data, and compare the offset of the maximum

a priori waveform parameters (the bias) to the width of the distribution, which we refer to as the statistical

error. For advanced ground-based detectors, we find that the systematic biases are well within the statistical

error for realistic signal-to-noise ratios. These biases grow to be comparable to the statistical errors at

high ground-based-instrument signal-to-noise ratios (SNR� 50), but never dominate the error budget.

At the much larger signal-to-noise ratios expected for space-based detectors, these biases will become

large compared to the statistical errors, but for astrophysical black hole mass estimates the absolute biases

(of at most a few percent) are still fairly small.
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I. INTRODUCTION

Binary black-hole (BBH) coalescences are cornerstone
sources for gravitational-wave (GW) detectors be they
existing ground-based detectors like LIGO [1] and Virgo
[2], planned space-based detectors such as classic LISA [3]
or eLISA [4], or a pulsar timing array [5]. The analysis
of GW data to detect and characterize binary black-hole
merger events and to test the predictions of general rela-
tivity requires some family of efficiently computable signal
models representing all the possible waveforms consistent
with general relativity.

Modeling BBH waveforms has historically been sepa-
rated into three regimes, distinguished by the different
computational procedures suitable for each. The ‘‘inspiral’’
where the individual black holes are sufficiently separated
for post-Newtonian (PN) theory to be valid [6–9], the
‘‘merger’’ of the binary where numerical relativity (NR)
is needed [10–12], and the ‘‘ringdown’’ phase of a single,
postmerger, perturbed object relaxing to a Kerr black
hole [13,14].

During recent years, work at the interface between
analytical and numerical relativity has provided the
community with a variety of semianalytical inspiral-
merger-ringdown waveform sets [15–26] of varying scope
in parameter range and accuracy. These waveforms have
already been used to search for GWs from high-mass
[27,28] and intermediate-mass [29] binary black holes in

LIGO and Virgo data, and also to carry out preliminary
parameter-estimation studies for ground-based detectors
[30] and space-based detectors, such as classic LISA
[31,32]. In this paper we shall study a set of inspiral-
merger-ringdown waveforms based on the effective-one-
body (EOB) framework [33–37].
Template waveforms will always be an approximation

to the true signals and the difference, if large enough, can
bias inferences made from the GW data about the astro-
physical parameters of the system or the validity of general
relativity. Estimates of the systematic errors introduced by
waveform approximants in the literature [25,38–42] have
focused only on the inspiral, or used general conservative
criteria to determine when the waveform has a bias, never
using the parameter-estimation techniques employed in
actual data analysis.
In this work, we will carry out the first measurement of

systematic biases introduced when determining the physi-
cal parameters of a BBH merger by using EOB waveforms
as templates. We do so by simulating data that contain NR
waveforms as the ‘‘signal’’ to be detected. Then, using the
Markov chain Monte Carlo (MCMC) method [43,44], we
sample the posterior distribution function for the binary
parameters using EOB waveforms as the templates. The
characteristic width of the posterior as determined by the
MCMC is taken as the statistical error, while the distance
in parameter space between the dominant mode of the
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posterior and the true, or ‘‘injected’’ waveform parameters
is the systematic error, or bias, introduced by these wave-
forms. We study several different BBH systems, sampling
the total mass, mass ratio, and signal-to-noise ratio (SNR)
space for both a LIGO/Virgo network in the advanced-
detector era [45,46] and a LISA-like configuration.

Before proceeding further, we wish to make clear what
we mean by ‘‘statistical error.’’ In the following examples,
we typically do not include any noise in our data simula-
tions. The resulting posterior distribution function is, in a
strict sense, representative of the statistical error which
would be realized by repeated measurement of the same
system, averaged over all possible noise realizations. This
is not representative of the expected measurement accu-
racy achieved for a single detection, the uncertainty of
which will be significantly impacted by the particular noise
realization with which the signal competes [47]. Therefore,
we make no claims about what sort of statistical uncer-
tainty should be expected for future GW detections—what
we call ‘‘statistical error’’ is just used to normalize the bias
introduced by approximate waveforms. We make this
choice because any attempt to both characterize statistical
error as well as systematic error will be hamstrung by the
inaccuracy of our data simulations, as simulated noise
would be Gaussian distributed with a known power spec-
trum and, thus far, actual detector data is not so easily
characterized [48,49]. Ultimately, including noise in
the data simulations would only introduce uncontrolled
variables in our experiment, without providing any useful
insight.

For this first analysis we employ nonspinning wave-
forms for quasicircular orbits. In particular, for the injected
signals, we consider the NR waveforms produced by the
Caltech-Cornell-CITA Collaboration in Ref. [50]. For the
templates we use the EOB waveforms that were calibrated
in Ref. [25] to those NR waveforms [50]. Because our
emphasis is on BBHs, and the merger waveforms in par-
ticular, it is certainly the case that spin magnitude and
orientation play an important role in the waveform, and
thus in parameter estimation [51–55]. NR waveforms with
spins aligned or antialigned with the orbital angular
momentum are available, and EOB waveforms that include
spins have been developed in Refs. [22,26,37]. However,
the spinning EOB waveforms are currently restricted to
the dominant mode and additional code development is
needed before they can be employed in stochastic sampling
methods like the MCMC. Thus, we leave to the future the
extension of this study to spinning BBHs.

Within these limitations, we show that the EOB wave-
forms developed in Ref. [25] and tested here are accurate
enough to introduce little to no significant biases when the
data contain NR waveforms at SNRs consistent with ex-
pectations for likely LIGO/Virgo detections (SNR & 50).
For LISA-like detections, where the expected SNRs are
much higher than for ground-based detectors, statistically

significant biases do emerge. Nonetheless, we find that the
discrepancies between the true and measured parameters,
at a few percent for the black-hole masses, are small
enough to not impact key astrophysical conclusions that
may be drawn from the data (e.g., black-hole seed models,
etc.) [4,56,57]. However, when very high accuracies
are required, as when testing the validity of general rela-
tivity [58,59], best-fit EOB waveforms from the existing
model will leave behind significant residual power, making
them ill suited for these applications without further
development.
The remainder of the paper is organized as follows. In

Sec. II we describe the numerical and analytic waveforms
used in this work. In Sec. III we lay out how the study will
proceed, describing in particular the MCMC sampler
that we use. We then discuss in detail the results for
stellar-mass BBHs in ground-based detectors (Sec. IV)
and supermassive BBHs in space-based observatories
(Sec. V). In Sec. VI we summarize the findings from this
work, address limitations, and discuss future directions to
be pursued.

II. INSPIRAL-MERGER-RINGDOWN
WAVEFORMS USED IN THE ANALYSIS

Our study involves comparisons between two sets of
waveforms. We primarily seek to evaluate a continuously
parametrizable family of model waveforms based on the
EOB framework against a discrete set of highly accurate
NR waveforms. In analogy with observational algorithm
tests, we can think of the numerical waveforms as
‘‘injected’’ signals, which we challenge the ‘‘template’’
EOB waveforms to match.
We employ as injected signals the nonspinning NR

waveforms produced by the Caltech-Cornell-CITA
Collaboration [50], using the spectral Einstein code. The
NR polarizations have mass ratio q � m1=m2 ¼ 1, 2, 3, 4,
6 and contain -2 spin-weighted spherical harmonics
ð‘;mÞ ¼ ð2;�2Þ, ð2;�1Þ, ð2; 0Þ, ð3;�3Þ, ð3;�2Þ, ð4;�4Þ,
ð5;�5Þ, and ð6;�6Þ. These waveforms provide 30–40
(quadrupole) GW cycles before merger, depending on the
mass ratio.
The phase and amplitude errors of the NR waveforms

vary with mass ratio and gravitational mode. The numeri-
cal errors grow toward merger and ringdown, and typically
at merger, for the dominant ð2; 2Þ mode, the phase error
ranges between 0.05 and 0.25 rad, while the fractional
amplitude error is at most 1%. The subdominant modes
can have somewhat larger errors, especially the ð3; 3Þ and
ð4; 4Þ modes.
Applying the numerical waveforms to generate mock

signal observations, we will test the ability of a previously
published family of template waveforms to characterize
these signals [25]. These template waveforms are based on
the EOB framework founded on the very accurate results of
PN theory, an expansion of general-relativity dynamics in
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powers of v=c, where v is the characteristic velocity of the
binary. In the EOB approach, however, the PN expansions
are applied in a resummed form that maps the dynamics of
two compact objects into the dynamics of a reduced-mass
test particle moving in a deformed Schwarzschild geome-
try [33–37]. Waveforms in the EOB formalism are derived
from such particle dynamics up to the light-ring (unstable
photon orbit) radius. The subsequent ringdown portion of
the waveforms is a superposition of quasinormal modes
matched continuously to the inspiral. Tunable parameters,
effectively standing in for currently unknown higher-order
PN terms, are fixed by matching to numerical-relativity
simulation results.

The comparable-mass NR waveforms in Ref. [50] were
used, together with the small-mass-ratio waveforms pro-
duced by the Teukolsky code in Ref. [60], to calibrate a
nonspinning EOB model in Ref. [25]. More specifically,
the numerical waveforms available at discrete points in
the parameter space were employed to fix a handful of
EOB adjustable parameters entering the EOB conserva-
tive dynamics and gravitational modes. These adjustable
parameters were then interpolated over the entire mass-
ratio space. The EOB model in Ref. [25] contains four
subdominant gravitational modes, ð2;�1Þ, ð3;�3Þ, ð4;�4Þ,
and ð5;�5Þ, beyond the dominant mode ð2;�2Þ.

The EOB model in Ref. [25] has been coded in the
(public) LIGO Algorithm Library (LAL) [61] (under the
name EOBNRv2). We carry out our study using LAL to
generate template waveforms. Henceforth, we denote the
EOB model with only the dominant ð2;�2Þ mode as
EOB22, and the model that includes the four subdominant
modes ð2;�1Þ, ð3;�3Þ, ð4;�4Þ, and ð5;�5Þ as EOBHH.
We will also omit the � in mode labels.

The phase difference of the ð2; 2Þ mode between the
calibrated EOB model and numerical simulation remains
below �0:1 rad throughout the evolution for all mass
ratios considered; the fractional amplitude difference at
merger (i.e., at the waveform’s peak) of the ð2; 2Þ mode
is 2%, growing to 12% during the ringdown. Around
merger and ringdown, the phase and amplitude differences
of the subdominant modes between the EOB and NR
waveforms are somewhat larger than those of the ð2; 2Þ
mode. (The numerical errors, and phase and amplitude
differences between the EOB and NR waveforms can be
read off from Figs. 6–10 in Ref. [25].)

To quantify how these differences between template and
signal would affect GW searches in Advanced LIGO,
Ref. [25] studied the effectualness and measurement accu-
racy of the EOB model. When investigating the effectual-
ness for detection purposes, they found that the NR
polarizations containing the strongest seven modes1 have
a maximum mismatch of 7% for stellar-mass BBHs, and
10% for intermediate-mass BBHs, when using only EOB22

for q ¼ 1, 2, 3, 4, 6 and binary total masses 20–200M�.
However, the mismatches decrease when using the
full EOBHH model, reaching an upper bound of 0.5% for
stellar-mass BBHs, and 0.8% for intermediate-mass BBHs.
Thus, the EOB model developed in Ref. [25] is accurate
enough for detection, which generally requires a mismatch
not larger than 7%.
To understand whether this EOB model is precise

enough for measurement purposes, the authors of
Ref. [25] carried out a preliminary study, adopting as
accuracy requirement for measurement the one proposed
in Refs. [41,42]. Using a single Advanced LIGO detector,
Ref. [25] computed the SNRs below which the EOB polar-
izations are accurate enough that systematic biases are
smaller than statistical errors. Since subdominant modes
have non-negligible contribution for large mass ratios, and
those modes have the largest amplitude errors, they found
that the upperbound SNRs are lower for the most asym-
metric systems, such as q ¼ 6. However, as stressed in
Ref. [25], the accuracy requirement in Refs. [41,42] may
be too conservative, and by itself does not say which of the
binary parameters will be biased and how large the bias
will be. It could turn out that the biased parameters have
little relevance in astrophysics or tests of general relativity.
It is the main goal of this paper to measure the actual biases
of the EOB model with and without the subdominant
modes.
Our study is restricted to binary systems moving along

quasicircular orbits where the spin of each constituent
black hole is negligible, thus reducing the model parame-
ters � from a space of 17 dimensions to nine dimensions:

� ¼ flnM; lnM; lnDL; tp; sin�;�; cos �; c ; ’pg: (1)

In the above parameter list, M � ð1þ zÞðm1 þm2Þ is the
redshifted total mass of the binary, and M � �3=5M is its
chirp mass, where � � m1m2=ðm1 þm2Þ2 ¼ q=ð1þ qÞ2
is the symmetric mass ratio. We denote by DL the lumi-
nosity distance, which, along with the right ascension �
and declination �, describes the location of the binary. The
orientation of the binary’s orbital angular-momentum vec-

tor L̂with respect to the line of sight k̂ from the observer is
encoded in the model using the inclination �, polarization
angle c , and phase ’p—the Euler angles that describe the

rotation from k̂ to L̂. The parameter tp is the time of the

ð2; 2Þ mode’s maximum amplitude, a proxy for the binary
merger time, and ’p is the GW phase at tp.

Our comparisons between the EOB waveforms and the
NR data are restricted to the late inspiral, merger, and
ringdown that is roughly 30–40 GW cycles before merger,
depending on the mass ratio. The injected signals contain
only the NR waveforms available. We do not match the NR
waveforms to EOB or PN waveforms at low frequency to
increase the number of cycles, because we do not know
how well the EOB or PN waveforms would approximate
the NR waveforms outside the region of calibration and we1Note that in Ref. [25] the ð2; 0Þ mode was not included.
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do not want to introduce unknown errors when estimating
the systematic biases.

There is no guarantee that a template that is in phase
with the NR waveform during the last 30–40 GW cycles
will remain so throughout the entire inspiral. The mass
parameters are strongly encoded in the GW phase, so any
additional dephasing at times earlier than covered by the
NR simulations can potentially increase the systematic
biases. Therefore, in order for our study to be meaningful,
we consider binary systems with a total mass M such that
the majority of the SNR is accumulated during the last
30–40 GW cycles before merger.

III. STATISTICALVERSUS SYSTEMATIC ERRORS
USING MCMC TECHNIQUES

We use the MCMC algorithm [43,44] to produce
samples from the posterior distribution function for the
waveform parameters. The MCMC sampler is built on
the foundation of Bayes’ theorem, which, in the context
of parameter inference, defines the posterior distribution
function for parameter vector � and data d as

pð�jd;IÞ � pðdj�; IÞpð�jIÞ
pðdjIÞ : (2)

Here pð�j�Þ are conditional probability densities with argu-
ments on the right-hand side of the bar assumed to be true,
pðdj�; IÞ is the likelihood, pð�jIÞ is the prior distribution,
and pðdjIÞ is the model evidence, which, in parameter-
estimation applications, serves only as a normalization
constant. The information I denotes all of the assumptions
that are built into the analysis, particularly that the NR
waveforms represent reality (see Sec. II for associated
discussion). Henceforth, to simplify notation, we shall
not include I when writing the conditional probability
density pð�j�Þ. When comparing different model combina-
tions, we adopt the notation for conditional probabilities
with arguments to the right of a vertical bar representing
the data and arguments to the left signifying which model
was used as templates. For example, results labeled
pðEOB22jNRÞ come from the posterior distribution func-
tions for models using EOB22 as the templates and a NR
waveform as the data.

With the posteriors, we compare the statistical error (the
characteristic width of the posterior) to the systematic error
(the displacement from the injected parameter values of the
posterior’s mode). We do not include a noise realization in
the simulated data, as that introduces additional biases—
each noise realization pushing the best-fit solution away
from the injected value in a different way—that are not
easily quantified [48]. As the control in this experiment, we
simulated (noise-free) data with EOB waveforms and use
EOB templates for parameter estimation, giving us one set
of results with no systematic bias, apart from the sampling
error in the Markov chains due to their finite length. We use
these controlled results as code verification, and as the

standard against which the other models’ performance is
compared. We then test the EOB waveform models by
injecting NR waveforms (summed over all available
modes) and using the two EOB models discussed in
Sec. II as templates. The EOB22 model is used as a
baseline, as it has been employed in LIGO/Virgo search
pipelines to analyze data collected in recent science runs
[29,62]. The EOBHH model is the most complete waveform
at our disposal, and is used to measure how well the EOB
model could perform on NR data.
In Eq. (2) we use the standard Gaussian logarithmic

likelihood lnpðdj�Þ��ðd�hð�Þjd�hð�ÞÞ=2þC, where
C is a normalization constant that does not depend on
model parameters and is henceforth neglected, h is the
template, and

ðajbÞ � 2
XI

i¼1

Z fNyq

fmin

~a�i ðfÞ~biðfÞ þ ~aiðfÞ~b�i ðfÞ
SinðfÞ df (3)

denotes a noise-weighted inner product with the sum on i
over I (independent) interferometer channels and SinðfÞ is
the one-sided noise power spectral density (PSD) for
detector i. The bounds of integration, fmin and fNyq, are

the minimum frequency of the NR waveform and the
Nyquist frequency of the data, respectively. The Nyquist
frequency is chosen to ensure that the highest-frequency
portion of the waveform is well below the instrument
sensitivity curve, while fmin is set by the duration of the
NR waveform and the total mass of the system, such
that we only integrate over frequencies where numerical
data exist.
For each case, the Markov chains are run for �106

iterations, taking about 103 CPU hours to complete. The
chains rely on parallel tempering [63], differential evolu-
tion [64], and jumps along eigenvectors of the Fisher
information matrix (e.g., see Ref. [65]) computed from
PN waveforms to efficiently explore the posterior distribu-
tion function. We use burn-in times of 104 samples, and run
several chains with different initial locations to check for
convergence. Prior distributions for all parameters are
chosen to be uniform. Azimuthal angular parameters
(�, c , and ’p) have support over ½0; 2�Þ with periodic

boundary conditions, while declinationlike angle parame-
ters ( sin�, cos �) range from ½�1; 1�with reflecting bound-
ary conditions. The ranges for lnM and lnDL are chosen to
be large enough so as to not influence the posteriors. The
prior range on lnM is coupled to lnM, as the maximum
value of the chirp mass occurs for the q ¼ 1 (� ¼ 1=4)
case, and depends on the total mass M of the system.
Because of this, the prior boundary on chirp mass does
affect the posteriors for the equal-mass systems considered
in this work.
The products of our analysis procedure are samples from

the posterior distribution function pð�jdÞ—an oddly
shaped, sometimes multimodal, blob living in a 9D space.
There is no perfect way of distilling this information into a
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simple, robust, statistic to assess parameter-estimation
accuracy. We will make do with the ‘‘fractional systematic
error’’ ���: For parameter �, we first define the systematic
error �� � j�MAP � �0j where �MAP is the maximum a
posteriori (MAP) value and �0 is the injected value, while
the statistical error is quantified by the standard deviation
�� of the 1D marginalized posterior distribution function.
We then define the fractional systematic error as the ratio
between �� and the statistical error:

��� � ��

��

: (4)

We consider templates that consistently yield ��� & 1 as
introducing negligible bias, assuming the NR waveforms
are exact, which, as seen in Sec. II, is not the case.2

The fractional systematic error (4) can be interpreted as
the number of standard deviations away from the injected
value at which we find the MAP waveform. This choice of
statistic is not perfect—low-SNR systems have very non-
Gaussian posteriors making the standard deviation a poor
choice for characterizing the statistical error. Furthermore,
the MAP parameters are a single point and tell us nothing
about how large a region in parameter space had similar
posterior support to the current best estimate. Additionally,
the MAP value is a feature of the full 9D posterior,
while the variances are computed from the marginalized
posterior distribution functions. This introduces complica-
tions for some special cases, as we shall discuss in detail
below.

IV. RESULTS FOR ADVANCED LIGO DETECTORS

The first test of the EOB waveforms uses simulated data
from the network of advanced ground-based detectors
expected to come on-line in the middle of this decade:
the two LIGO detectors in the USA and the Virgo detector
in Italy. We use the same noise PSD for each interferome-
ter, the ‘‘zero-detuned high-power’’ curve from Ref. [66],
which is the sensitivity curve for the fully completed
Advanced LIGO detector. The GW response in each inter-
ferometer is modeled by convolving the GW signal with
the beam-pattern function for that detector and applying
the appropriate time delays between interferometers [67].

A. Choice of binary configurations

We study several binary configurations using different
mass ratios, total masses, and SNRs. The SNR of the

system is computed via SNR ¼ ffiffiffiffiffiffiffiffiffiffiffiðdjdÞp
, and its value is

controlled by adjusting the luminosity distance DL.
Because our simulated data d contain no simulated noise,
the SNR is simply the inner product of the injected wave-
form with itself. Also, our definition of the inner product

in Eq. (3) includes a summation over all interferometer
channels, thus we quote the network SNRs for the ground-
based studies.
The first three panels of Fig. 1 show the time-domain

EOBHH waveforms (blue, dotted) and whitened by the
noise spectral density (red, solid) for three representative
cases studied here.3 The vertical lines indicate intervals
which contribute 10% of the signal power, starting from
fmin for each system, with the rightmost line indicating
where 99.9% of the power has accumulated. We focus on
the late-inspiral, merger, and ringdown portions of the
waveform, beginning 1000M before the peak of the
ð2; 2Þ mode’s amplitude. The power intervals are included
as a guide to see which portions of the waveform contribute
most to the parameter estimation. For instance, 50% of the
q ¼ 1, M ¼ 50M� waveform’s integrated power is con-
tained in the late inspiral, merger, and ringdown, while the
q ¼ 2, M ¼ 23M� signal is much less dominated by this
interval, accounting for only 30% of the power. The q ¼ 6,
M ¼ 120M� examples are most influenced by the end of
the waveform, which makes up over 70% of the power.
The bottom-right panel of Fig. 1 shows the strain spec-

tral densities j~hðfÞj for the same three systems, now using
the NR waveforms used in this study. Also included is the
Advanced LIGO power spectral density.
We focus on moderately high-mass black-hole mergers

withM� 50M� (e.g., the equal-mass case shown in Fig. 1:
top-left panel, red solid curve in bottom-right panel).
Beyond their potential as Advanced LIGO sources,4

high-mass systems serve an important role in testing the
waveform models for two reasons. First, as explained in
Sec. II, the NR signals are short in duration and we do not
supplement the waveform by hybridizing the numerical
data with analytic inspiral models at low frequency. We
therefore require higher-mass systems merging at lower
frequency to ensure that most of the inspiral missing from
the NR data will fall outside the sensitive measurement
band of the detector. WithM� 50M�, NR waveforms start
at �30 Hz, setting fmin in the inner product defined in
Eq. (3). Comparing these data to EOB waveforms with
the same parameters but fmin ¼ 10 Hz (below which the

2Currently we have no way of incorporating the numerical
error of the NR waveforms into our estimate and so we neglect it.

3‘‘Whitened’’ waveforms are ones that have been Fourier
transformed to the frequency domain rescaled by 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p
,

and finally re-transformed to the time domain [68].
4A binary with M� 50M� is astrophysically relevant, as the

largest black-hole mass ever observed is in the range of
23–34M� [69,70]. Recent results from population-synthesis
studies suggest that massive, low-metallicity stars are capable
of producing black holes as large as M� 80M� [71], although
these findings are for single stars only, and binary evolution
could either increase or decrease the maximum black-hole mass.
Additionally, there exists at least one example of a massive
Wolf-Rayet star, R136a1 [72], with M� 250M� at a distance
of �0:1 Mpc and with sufficiently low metallicity to produce a
massive black hole. However, it cannot be excluded that the star
goes instead through a pair-instability supernova, leaving no
remnant.
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Advanced LIGO sensitivity is very poor), we find the NR
waveforms contain �85% of the total signal power, or
�90% of the total SNR.

A second reason for focusing on M� 50M� for the
binary is that these systems are ‘‘centrally located’’ in
frequency over the most sensitive band of the advanced
detectors (� 30 to �103 Hz, e.g., see the bottom-right
panel in Fig. 1), such that inspiral, merger, ringdown, and
additional modes all contribute to the overall signal power
and, accordingly, the parameter-estimation capabilities.
Generally speaking, we expect such systems to make the
greatest demands on complete inspiral-merger-ringdown
waveform model accuracy.

While the M� 50M� systems serve as the basis for our
comparisons, we include additional examples to probe
regions of signal space that are of particular interest.
These include a q ¼ 6, 120M� system (Fig. 1: bottom-
left panel, blue dotted curve in bottom-right panel) chosen
such that the subdominant modes contribute the most,
as they will be most pronounced at high mass ratios,
and signal power from the higher-frequency modes is
still in the sensitive band of the detector. At this mass,

fmin ¼ 10 Hz, so our analysis is not missing any signal
power due to the length of the NR data.
We also go to lower masses, using a q ¼ 2, M ¼ 23M�

binary (Fig. 1: top-right panel, green dashed curve
in bottom-right panel) as a more likely LIGO/Virgo
detection, to demonstrate the EOB models’ parameter-
estimation accuracy not at the extremes of a potential
binary signal, but within reasonable expectations of what
the coming data may hold (apart from including the black-
hole spins). It is worth noting that for these low-mass
systems, we are missing a large portion of the inspiral, as
fmin ¼ 60 Hz and �30% of the full SNR will be accumu-
lated below that frequency. Therefore, these results might
change in the future, when longer EOB and NR waveforms
become available.

B. Results on systematic biases
at fixed inclination angle

In Fig. 2 we plot the 1D marginalized posterior
distribution functions for each parameter for the case of a
binary with mass ratio q ¼ 2, total mass M ¼ 51M�, and
network SNR ¼ 48 produced using a MCMC sampler.
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The inclination angle is chosen to be � ¼ �=3. The
independent variables in these plots are �� ¼ � � �inj,
where �inj are the injected parameter values. The
pðEOB22jEOB22Þ histograms (green, dashed lines) are
the posteriors using the EOB22 waveforms for both the
signal and the templates. These confirm that the MCMC
sampler is working properly, as the posteriors all show
strong support for the injected waveform parameters
(peaking at or near 0), and statistical errors consistent
with results in Ref. [30] obtained using Fisher information
matrix estimates and phenomenological inspiral-merger-
ringdown waveforms.

The red (solid) lines and blue (dotted) lines are for data

containing a NR signal and the EOB22 and EOBHH wave-

forms as templates, respectively. The bottom-right panel

shows the logarithmic likelihood distributions for each

chain. We can see from these posteriors that the EOB22

waveform is significantly biased away from the NR

injected value, by �1% in both M and M. This bias is

substantially reduced when using the EOBHH template, to

the point where the systematic error is well within the
statistical error of the posterior. For the extrinsic parame-
ters such as distance and sky location, the posteriors for the
approximate templates are nearly identical to those pro-
duced by using the exact same waveform for both data
simulation and parameter estimation. We also see the role
that subdominant modes play in breaking the �=2 degen-
eracy in the polarization angle c , which can aid in distance
and sky-location determination for some systems.

The SNR of the residual d� h, given by SNRres ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2 lnpðdj�Þp
can be inferred from the bottom-right panel.

Viewed in this way, there is a distinct excess in the residual
for even the EOBHH case (blue, dotted) in comparison with
the idealized control MCMC residuals (green, dashed).
To understand the significance of this, consider applying
a detection threshold of SNR ¼ 6 [73] for the residual
waveform. This corresponds to a maximum logarithmic
likelihood of & �18, below which the residual could
potentially contain enough power to be detected after the
best-fit waveform is regressed from the data. Suppose in
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FIG. 2 (color online). Example marginalized posterior distribution functions for a binary system with mass ratio q ¼ 2, total mass
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the near future we have model waveforms at our disposal
containing all of the details of black-hole mergers (i.e.,
spins and eccentricity) that generally produce SNRres & 6
for equally detailed NR simulations, and yet coherent
residuals are consistently found in the data. Such an event
could suggest a possible departure from general relativity.

The results from our MCMC studies for different sys-
tems are displayed in Tables I and II, which show the
fractional systematic error �� [see Eq. (4)] for the mass,
sky location, and distance parameters. The injected wave-
forms again had an inclination angle of � ¼ �=3. We
include our estimate of the statistical error �� to quantify
the precision of the advanced detectors for the systems
considered here. The standard deviations should be
interpreted with caution; we do not include noise in the
simulated data, so the deviations are not representative of
the ‘‘error bars’’ on a particular detection, but instead
represent an ensemble average over idealized Gaussian
stationary noise realizations of the statistical error for these
particular systems.

Table I contains the intrinsic parameters—those that
affect the shape of the waveform. Because we consider
nonspinning black holes, the only intrinsic parameters
are the masses. The extrinsic, or observer-dependent,

parameters (i.e., distance and sky location) are given in
Table II. They are encoded in the instrument response to
the GW, instead of being imprinted in the phase and
amplitude evolution of the waveform itself. We do not
report on the orientation parameters � and c or reference
time tp and phase ’p parameters in this fashion, but note

that results for these other parameters are consistent with
the extrinsic variables in Table II.
From Table I we can see that generically, the EOB22

waveforms are not as accurate as the EOBHH waveforms,
which include the subdominant modes. This is true even
for comparable-mass systems, where the subdominant
modes only minimally contribute to the overall waveform
power. The bias introduced by neglecting additional
harmonics is not due to missing waveform power as
much as it is caused by phase differences between a
quadrupole-only template and the full NR data, as coherent
matched-filtering analyses are typically more sensitive to
phase than amplitude.
The parameter-estimation accuracy of the EOBHH

model up to SNR� 50 exceeds expectations from
Ref. [25], as can be seen by focusing on rows 2 and 7
in Table I. Here we find systems chosen specifically to
compare with Fig. 15 in Ref. [25] where, based on the

TABLE II. Same as Table I, except here we show a subset of the extrinsic parameters corresponding to the binary’s location. Because
of their similarity between each run, the statistical errors are displayed once but apply to each example. Results for the q ¼ 1,
SNR ¼ 12 example are omitted due to the failure of our �� statistic.

pðEOBjEOBÞ pðEOB22jNRÞ pðEOBHHjNRÞ
q M ðM�Þ flow (Hz) SNR �sin� �� (rad) �lnDL

��lnDL
��sin� ��� �lnDL

��lnDL
��sin� ��� �lnDL

��lnDL
��sin� ���

1 50 30 12 0.06 0.04 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
1 50 30 48 0.03 0.01 0.10 0.11 0.01 0.09 0.12 0.12 0.17 0.03 0.20 0.64 0.07 0.30

2* 23 60 12 0.06 0.03 0.24 0.02 0.04 0.02 0.27 0.28 0.02 0.06 0.25 0.30 0.05 0.08

2 51 30 12 0.06 0.04 0.28 0.03 0.08 0.06 0.29 0.21 0.28 0.07 0.27 0.60 0.15 0.33

2 51 30 48 0.03 0.02 0.12 0.10 0.10 0.08 0.14 0.11 0.19 0.11 0.11 0.07 0.04 0.05

6 56 30 12 0.07 0.05 0.29 0.07 0.04 0.21 0.29 0.28 0.14 0.09 0.25 0.40 0.41 0.39

6 56 30 48 0.03 0.02 0.14 0.29 0.10 0.07 0.19 0.28 0.14 0.09 0.09 0.78 0.27 0.21

6* 120 10 12 0.08 0.05 0.21 0.23 0.28 0.13 0.30 0.86 0.37 0.54 0.22 0.36 0.02 0.16

TABLE I. Fractional systematic biases �� [see Eq. (4)] and statistical errors � for intrinsic parameters as determined by the MCMC
sampler. An asterisk in the mass-ratio column indicates examples where EOBHH was used for the pðEOBjEOBÞ study. All other
examples used the EOB22 waveform.

pðEOBjEOBÞ pðEOB22jNRÞ pðEOBHHjNRÞ
q M ðM�Þ flow (Hz) SNR �lnM �lnM ��lnM ��lnM �lnM �lnM ��lnM ��lnM �lnM �lnM ��lnM ��lnM

1 50 30 12 0.02 0.02 0.11 0.05 0.02 0.02 0.34 0.17 0.02 0.02 0.29 0.10

1 50 30 48 4	 10�3 3	 10�3 1	 10�3 0.14 0.01 0.01 1.76 0.84 2	 10�3 2	 10�3 0.79 0.87

2* 23 60 12 0.02 0.01 0.01 0.02 0.03 0.02 0.27 0.07 0.03 0.02 0.18 0.26

2 51 30 12 0.03 0.02 3	 10�3 4	 10�3 0.03 0.02 0.47 0.28 0.03 0.02 0.01 0.01

2 51 30 48 0.01 0.01 0.01 0.01 0.01 0.01 1.92 1.39 0.01 0.01 0.93 0.32

6 56 30 12 0.03 0.03 0.03 0.08 0.03 0.03 0.94 0.66 0.02 0.02 0.58 0.39

6 56 30 48 0.01 5	 10�3 0.23 0.04 0.01 0.01 3.47 2.51 0.01 4	 10�3 1.43 0.84

6* 120 10 12 0.03 0.03 0.05 0.14 0.03 0.03 1.67 0.60 0.02 0.02 0.29 0.06
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accuracy requirement proposed in Refs. [41,42], they
predicted that systematic error could exceed statistical
error at single-detector SNR �35 (q ¼ 1, M ¼ 50M�)
and �11 (q ¼ 6, M ¼ 56M�).

5

Our analysis uses the LIGO/Virgo network of detectors,
as opposed to the single-detector studies from Ref. [25].
This difference will not heavily impact the results, as it
is the measurement of intrinsic parameters that is most
affected by differences in the waveform model due to both
the accuracy with which they are measured, and the way
they are encoded in the phase evolution of the signal.
Measurement of the intrinsic parameters is not greatly
influenced by the inclusion of additional detectors in the
network (at a fixed SNR). Our findings show that, even at
SNRs that are rather high for an expected LIGO detection,
the EOBHH model introduces systematic errors that differ
by & 1� from the injected parameters.

The extrinsic parameters, on the other hand, are inferred
mostly from the overall amplitude of the waveform,
which is not as well measured as phase, and the time of
arrival of the signal at each detector. We thus expect that
the extrinsic parameters determined with lower fidelity
than the masses will be better able to tolerate small differ-
ences between template waveform models within the sta-
tistical error. Adding additional detectors to the network
dramatically improves the statistical error for extrinsic
parameters, mostly due to the increased baseline [74], but
not to the point of becoming influenced by the waveform
systematics.

Indeed, we find that the relative systematic biases for
extrinsic parameters are generally smaller that those of the

intrinsic parameters. For systems with q 
 2, regardless of
the SNR or the EOB model, the systematic errors are
consistently smaller than the statistical errors, even when
the ð2; 2Þ-only waveform is used as the template. This is
evident in Fig. 2, where the DL, sin�, and � posteriors are
nearly indistinguishable, despite the significant difference
in the residual left behind by the waveform model, as
shown in the bottom-right panel containing the logarithmic
likelihood distributions. The same cannot be said for the
equal-mass cases (top two rows in Table II), where we
encounter a subtle effect from our choice of statistic, ��.
For the SNR ¼ 12, equal-mass case, the �� statistic

breaks down and results are omitted from the table. At
such a low signal strength, the orientation parameters are
very poorly measured, with the polarization angle c
effectively unconstrained. These large measurement un-
certainties cascade through the 1D posteriors via strong
c � � and ��DL covariances. We are left with an uncon-
strained DL distribution that is poorly characterized by the
variance, and large stochastic variation from one Markov
chain run to the next as to where the MAP parameters lie.
This degeneracy is evident in Fig. 3, where we show the
2D marginalized posterior distribution function of the
c � cos � plane (left panel) from a pðEOBHHjNRÞ run,
and the maximum logarithmic likelihood found in the
Markov chain for different bins in DL space (right panel)
from both pðEOB22jEOB22Þ and pðEOBHHjNRÞ. We see a
virtually flat distribution of the maximum logarithmic-
likelihood values between �0:5 and �2:25 Gpc, with
well over half of the allowed parameter space in the c �
cos � plane receiving significant posterior support. The
injected value of DL was near 1 Gpc.
The overdensity at fc ; cos �g ’ f�=3; 0:5g in the left

panel corresponds to the injected parameter values, with
the �=2� shift degenerate mode still appearing despite
the inclusion of subdominant modes. Recall that this is an
equal-mass system, where the subdominant modes are the
least noticeable. The overdensity at cos �� 1 is due to the

FIG. 3 (color online). Selected results from the q ¼ 1, SNR ¼ 12 run to exhibit the breakdown of �� as a useful statistic. The left-
hand panel shows the 2D marginalized posterior for the orientation angles c and cos �, with darker colors corresponding to higher
probability density. The right-hand panel displays the maximum logarithmic likelihood as a function of DL, which is effectively
uniform between �0:5 and �2:25 Gpc.

5The accuracy criterion used in Refs. [25,41,42] is a
‘‘sufficient’’ but ‘‘not a necessary’’ requirement for parameter
estimation, and it does not say which of the binary parameters
will be biased and how large the bias will be. Thus, the authors of
Ref. [25] were making conservative judgments about the wave-
form accuracy.
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Markov chain preferring template waveforms with mini-
mal contribution from subdominant modes (to match the
strictly equal-mass injection) as the sampler explores
higher mass ratios, up to q� 3 in this case. Systems with

cos � � k̂ � L̂ ¼ 1 are face on and it is this configuration
where the subdominant modes are least prominent.

C. Dependence of the results on the inclination angle

Due to the high computational cost of each MCMC run,
we are not able to Monte Carlo over a large population of
binary systems. We instead have chosen extrinsic parame-
ters away from the extremes of parameter space. Thismeans
sky locations that are away from nulls in any detector’s
response, and inclinations (� ¼ �=3) that were not edge on
or face on with respect to the observer’s line of sight.

One of the more interesting results from this study is the
impact of the subdominant modes on the parameter-
estimation capabilities of ground-based detectors. The
role that the additional modes play in the waveform
depends heavily on both the mass ratio and the orientation
of the binary—edge-on systems have the largest contribu-
tion from the additional modes, while face-on systems are
most dominated by the ð2; 2Þ mode. It is therefore possible
that, for some more extreme orientations, systematic biases
could become large because of the increased importance of
the additional modes.

To allay this concern we performed a series of MCMC
runs on a system where the subdominant modes would play
an important role, exploring the edges of orientation space
for each run. We chose the M ¼ 120M�, q ¼ 6 system
(row 8 in Tables I and II) and analyzed three different
orientations: edge on (� ¼ �=2), face on (� ¼ 0), and
moderate tilt (� ¼ �=3). We compare the � lnM and
� lnM posteriors for each of these systems using the
EOBHH model as a template to study data containing a
NR waveform injected at SNR ¼ 12. The results in
Table III show the fractional systematic error well below
unity for each orientation regardless of the inclination
angle. We also include the percentage of the total SNR
that comes from the subdominant harmonics (HH). This
result confirms that the parameter-estimation accuracy of
the EOB model is robust to different orientations, and thus
different strengths of the additional modes.

D. Simulating a detection

All of the above results have been performed on simu-
lated data that do not contain any noise, but do include the
noise PSD in the inner product defined in Eq. (3). Thus the
posteriors that we generate are not representative of a
probability density function for an actual GW measure-
ment, but instead are the hypothetical averaged measure-
ments of the same system in an ensemble of noise
realizations [47,75,76]. To more realistically demonstrate
the parameter-estimation capabilities of advanced ground-
based interferometers, we want now to simulate a single
LIGO/Virgo detection.
To that end, we use again the binary configuration with

q ¼ 2, M ¼ 51M�, and network SNR of 12, but now add
stationary, Gaussian noise to the NR waveform using the
same PSD as in the noise-free study. The resultant
posteriors are then representative parameter-estimation
products, subject to the following important caveats:
(i) We use the same PSD for each detector when, in

practice, each interferometer will have different
sensitivity at any given time. Furthermore, the
Virgo design sensitivity is not identical to LIGO
(although it is qualitatively similar). We also effec-
tively introduce a noise ‘‘wall’’ at 30 Hz to account
for the limited duration of the NR data.

(ii) We do not include any calibration errors in the
waveform injections, which could prove to be a
significant contribution to the overall parameter-
estimation error budget [49]. Furthermore, we do
not account for intrinsic error in the NR waveforms.

(iii) We recognize that simulated additive Gaussian
noise is different from injecting waveforms into
real LIGO/Virgo noise [48].

For this study we find the 2D marginalized posterior
distribution functions to be of the most interest. We show
results for the sky location in Fig. 4 and mass parameters in
Figs. 5 and 6.
In Fig. 4, the sky-location posterior is shown in a

Mollweide projection with the detector locations projected
onto the celestial sphere. The white, dotted lines show the
circles of constant time delay between each pair of detec-
tors. The posterior should sit at intersections of these lines,
and the principal axis should lie along a line. A small white
square is included, centered on the injected position. The
injected values for the sky location are contained within the
�63% confidence interval of the posterior (the red region
of the error ellipse). The injected sky location was chosen
to be a region where the SNR in each detector was roughly
equivalent.
Of more pertinence to this study are the mass posteriors.

While lnM and lnM are the most convenient parameters
for the MCMC sampler, being the most orthogonal, they
are not of the most interest to the wider astrophysical
community. A better data product would be posteriors on
either the individual massesm1 andm2, or the total massM

TABLE III. Fractional systematic errors and statistical errors
for lnM and lnM whenM ¼ 120M�, q ¼ 6, SNR ¼ 12 and for
three different inclinations: edge on (� ¼ �=2), face on (� ¼ 0),
and an intermediate orientation (� ¼ �=3). We also include the
percentage that the additional modes (HH) contribute to the total
SNR.

� �lnM ��lnM �lnM ��lnM %HH

0 0.03 0.10 0.04 0.12 �0
�=3 0.02 0.29 0.03 0.06 7.5

�=2 0.02 0.18 0.03 0.01 10
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and mass ratio q. In postprocessing we take the MCMC
chains and compute the relevant mass parameters at
each step in the chain. The injected component black holes
have masses m1 ¼ 34M� and m2 ¼ 17M�. We show the
2D marginalized posterior distribution functions for the
m1–m2 (Fig. 5), and M–q plane (Fig. 6), where the color
corresponds to the posterior density.
These figures give a good depiction of just how corre-

lated the mass parameters are with one another, and how
much of the parameter space is supported by the chain in
part due to that strong correlation. For example, the M–q
plane has significant support for mass ratios between 1 and
3, compatible with previous LIGO MCMC studies using
PN waveforms (e.g., see Ref. [54]). These are the types
of parameter-estimation products that the astrophysics
community can anticipate as the advanced detectors
come on-line in the coming years.

V. RESULTS FOR SPACE-BASED DETECTORS

For EOB waveforms that include subdominant modes,
we have found relatively small systematic errors in
parameter-estimation results for ground-based observa-
tions with SNR< 50. Because ground-based GW instru-
ment rates are limited by sensitivity, higher-SNR events are
exceedingly unlikely in the first generation of detections.
Proposed space-based instruments will be sensitive to
supermassive black-hole (SMBH) mergers out to cosmo-
logical scales, such that a significant fraction of detected
events may have SNR> 100. Space-based instruments
are typically sensitive to these events over a broad band-
width covering a large number of cycles leading up to
merger [4,77]. Such observations will make much greater
demands on the accuracy and efficiency of inspiral-merger-
ringdown waveform templates. Though considerable effort
has gone into estimating the ability of space-based instru-
ments to measure astrophysical parameters assuming
accurate waveforms, very little has been done to assess
the template requirements for these future observations.
Here we make a limited exploration of this capability with
current numerical relativity and EOB waveforms.
Of several proposed space-based GW interferometer

instruments [3,4,78,79], the best-studied concept is the
classic LISA mission [3]. While acknowledging that there
is currently considerable uncertainty about when and how
the first space-based GW instrument will be developed, we
choose to study the classic LISA configuration to make
contact with the large body of work that has already been
dedicated to black-hole merger parameter estimation (e.g.,
see Refs. [31,32,80–82]). To compare with other concepts,
the most relevant alteration from the classic LISA design
is the arm length (e.g., from 5 Gm for classic LISA down
to 1 Gm for eLISA), which sets the overall scale for
parameter-estimation capabilities; our results for a more
modest detector configuration would be very similar to

FIG. 4 (color online). Two-dimensional marginalized posterior
distribution function for the sky location of a q ¼ 2,M ¼ 50M�,
binary with SNR ¼ 12 injected into simulated stationary
Gaussian noise colored by the Advanced LIGO noise power
spectral density. The colored (grey scaled) ellipsoidal shape
roughly corresponds to the 99% credible interval of the margi-
nalized sky-location posterior. The white box represents the
injected sky location of this source. The position of each interfer-
ometer in the network is projected onto the sky, labeled with H
(LIGOHanford), L (LIGO Livingston), and V (Virgo). Thewhite,
dashed lines show the locations that yield the same time delay
between each pair of detectors for the injected sky position.

FIG. 6 (color online). Same as Fig. 5, but now depicting total
mass M and mass ratio q.

FIG. 5 (color online). Two-dimensional marginalized posterior
distribution function for the individual masses m1 and m2 of a
q ¼ 2, M ¼ 51M� binary with SNR ¼ 12, injected into simu-
lated stationary Gaussian noise colored by the Advanced LIGO
noise power spectral density. The injected values for fm1; m2g
were f34; 17gM�.
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those for classic LISA, after appropriately rescaling the
total mass of the black-hole system.

We follow here the same procedure outlined for the
LIGO/Virgo studies in Sec. IV, where NR waveforms are
injected into simulated noise-free data, and the signals are
analyzed using the EOB model as a template. Because we
saw significant bias in the EOB22 model at SNR� 50 it is
safe to assume that those errors will only grow with SNR,
and so we focus these runs only on the EOBHH model.

The duration of the available NR data restricts us to brief
LISA observations, for which we can apply the static limit
for the detector; thus we neglect LISA’s orbital motion
during the observation time. Consistent with this, we focus
on systems of mass 3	 107M� at the high end of LISA’s
sensitive range. For such observations the maximum fre-
quency attained by the merger signal is well below the
transfer frequency of the detector (when the wavelength
of the GW signal is comparable to the size of the
detector). In this low-frequency, static regime, the instru-
ment response is equivalent to two 60� Michelson inter-
ferometers, colocated, and misaligned by�=3 radians. The
antenna patterns for this configuration, and the discussion
of the two limits applied here, can be found in Ref. [83].

We consider mass ratios in the range 2 � q � 6,
observed at SNR ¼ 100, which would make these unusu-
ally distant for LISA observations. As shown in Fig. 7, the
power-spectral density is similar over this mass-ratio range
with more structure at q ¼ 6. The noise-weighted wave-
forms for these cases are most comparable to the largest
mass 120M� LIGO case that we studied. Space-based
instruments are not expected to have a strong power-law
slope like the seismic noise wall in the LIGO sensitivity
curve, meaning that even for large masses there is a softer
degradation of sensitivity going back to the early portions
of the signal, making our fmin cut somewhat more artificial
here.

Generally the higher SNRs of our nominal LISA obser-
vations would predict larger bias from systematic errors
in the template waveforms. Because of the differences

between the sensitivity curves and response for LISA and
LIGO, however, it is not straightforward to scale up such
expectations. Table IV shows our results for the parameter
biases for mass M and chirp mass M. Unlike the LIGO
results, the biases here are already statistically significant
in most cases for LISA observations at SNR ¼ 100, reach-
ing a few times the statistical error level. In Table IV
we also provide the SNR of the residuals after the MAP
waveforms are removed from the data. These residuals
with SNR> 6 would be detectable and could therefore
lead to biases in estimates of overlapping signals.
Residuals at this level would also limit the utility of the
current waveform templates for studies aimed at testing
general relativity [58,59].
For LISA, however, such a system would have to be

exceedingly distant, at redshift z > 20 or more, in order to
expect a SNR as small as 100 [82]. Actual SNRs could
be as much as 100 times larger, and we would expect
correspondingly larger relative biases and residuals. Full
interpretation of LISA data would thus require higher
levels of template accuracy. Even the level of errors in
the numerical simulations used here in place of the exact
predictions of general relativity are far too large to avoid
biasing such high-SNR measurements.
That said, while the statistical error should decrease

linearly with increasing SNR (causing �� to grow), the
systematic error should remain approximately the same,
and the absolute biases in the mass parameters are small.
Reading from Table IV, we see that the systematic errors in
M and M are & 1%. Converting these into the individual
masses, the biases on m1 and m2 are at most a few percent.
While theMAPmass parameters may end up many� away
from the true values and would thus fall short of an optimal
analysis of LISA data, such �1% errors in the masses are
still small in astrophysical terms and may have little impact
on key inferences made about the supermassive black-hole
population. For example, when trying to constrain black-
hole formation scenarios using simulated eLISA BBH
catalogs, Amaro-Seoane et al. [4] (based on the procedure

-1000 -800 -600 -400 -200  0
t - tp  (M)

h(t)
w(t)

10-22

10-21

10-20

10-19

10-18

10-17

10-5 10-4 10-3

|h~
(f

)|
  (

1/
√H

z)

f  (Hz)

√Sn(f)
q = 2
q = 6

FIG. 7 (color online). Same as Fig. 1 now showing the LISA examples using M ¼ 3	 107M� at SNR ¼ 100. The time-domain
waveform in the left-hand panel is for the q ¼ 6 case.
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in Ref. [57]) endured statistical errors as high as �1% and
were still able to easily discriminate between black hole
seed models.

The limitations of our current analysis prevent us from
providing any detailed indication of how far template
accuracy must be improved for space-based observations.
For the detector configuration used here, the extrinsic
parameter estimation at SNR ¼ 100 is actually worse
than that for the ground-based detectors. Space-based
detectors rely on the long duration of the signals, the
amplitude and Doppler modulations caused by the orbital
motion, and finite-arm-length effects, to break degenera-
cies among the system parameters. We are limited here to
working in a regime where all of those features are missing
from our instrument model, so our classic LISA response is
more like a two-detector colocated LIGO network operat-
ing at significantly lower frequencies than the existing
ground-based detectors.

More complete analysis will require either dramatically
longer-duration numerical simulations or a suitably well
controlled way of matching analytical and NR waveforms
at low frequency that does not add as much systematic
error as the template models being tested. We would also
require more computationally efficient signal generation
to successfully study template biases with long-duration
waveforms.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we have produced the first measurement
of systematic errors introduced by using EOB templates
to analyze NR waveforms. Our study’s main focus was
on stellar-mass BBHs observed by Advanced LIGO and
Virgo. We also considered supermassive black-hole merg-
ers detectable by space-based interferometers like LISA.
We have injected NR waveforms into simulated data and
have used a MCMC sampler to characterize the posterior
distribution function for the astrophysical parameters. Our
metric for assessing the size of the systematic error was
to compare the offset between the injected and best-fit
parameters to the statistical error characterized by the
standard deviation of the 1D marginalized posteriors.

For the stellar-mass systems we have investigated, when
including the subdominant modes, we found systematic
biases consistently comparable to, or smaller than, the

statistical errors for mass ratios up to q ¼ 6 and SNRs &
50. We have tested these waveforms in the most stringent
way possible, simulating high-SNR events where the
merger (the least reliable part of the waveform calcula-
tions) was peaking in the most sensitive band of the
detector, and the higher-frequency modes contributed
significantly to the overall signal power. For the q ¼ 6
waveforms weighted by the detector PSD, the fraction of
power contained in the subdominant modes was 11% and
16% for theM ¼ 56M� andM ¼ 120M� systems, respec-
tively. We also tested low-mass systems (M� 20M�) to
better represent likely Advanced LIGO/Virgo detections.
In all of these examples, the bias introduced by the EOB

waveform in Ref. [25] was at worst comparable to the
statistical errors. For several of our examples chosen
specifically to compare with that paper, we found that the
EOB waveforms accurately recovered binary parameters
at SNRs higher than were predicted there using the
(deliberately) conservative accuracy requirements of
Refs. [41,42].
Matched-filtering analyses aremost sensitive to the phase

of the signal, and it is the phase of thewaveform that is most
influenced by different choices of the model. It is therefore
predictable that the largest biases appear in the mass
parameters. On the other hand, the extrinsic parameters
have comparatively less impact on the shape of the
signal—the distance comes in as an overall amplitude
scaling, and the sky location is (for ground-based interfer-
ometers) predominantly determined through triangulation
based on time delays between detectors. Therefore a model
waveform used for parameter estimation has much more
room for error if, for instance, the location of the binary is
the primary interest (say, for optical counterpart searches)
and the requirements on the phase matching are not as
severe.
While the results here were undoubtedly positive, there

is still work to be done in waveform modeling. We only
tested the EOB waveforms over the last 30–40 GW cycles
before merger and there was no guarantee that longer
waveforms would not accumulate larger phase errors dur-
ing the early portion of the inspiral. Furthermore, this study
neglected significant aspects of the waveform structure
related to black-hole spins and orbital eccentricity. A simi-
lar study will need to be performed with long-duration,
spinning systems once both the NR and EOB waveforms

TABLE IV. Same as Table I but for SMBH mergers as seen by LISA. Here we also include the residual SNR after the MAP
waveform is regressed from the data.

pðEOBHHjEOBHHÞ pðEOBHHjNRÞ
q MðM�Þ flowðHzÞ SNR �lnM �lnM ��lnM ��lnM SNRres �lnM �lnM ��lnM ��lnM SNRres

2 3	 107 5	 10�5 100 2	 10�3 2	 10�3 0.09 0.08 0.5 2	 10�3 2	 10�3 1.19 1.27 6.5

3 3	 107 5	 10�5 100 2	 10�3 3	 10�3 0.02 0.04 0.7 3	 10�3 2	 10�3 0.59 2.82 7.7

4 3	 107 5	 10�5 100 3	 10�3 2	 10�3 0.10 0.09 0.5 3	 10�3 3	 10�3 1.31 3.02 9.6

6 3	 107 5	 10�5 100 2	 10�3 2	 10�3 0.16 0.27 0.5 3	 10�3 2	 10�3 0.62 0.92 11.5
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are prepared for that test. It will also be valuable to test the
EOB waveforms over a broader class of NR simulations,
including those that were not used to calibrate the template
model. Moreover, we have assumed in this paper that the
NR waveforms were exact but, as discussed in Sec. II, this
was not the case. One possibility for taking the numerical
error into account is to inject NR waveforms computed
at different resolutions and/or extracted at different radii
and measure the EOB systematic biases in each case. The
difference between these biases can provide us with an
estimate of the intrinsic error caused by the NR waveforms
deviating from the exact solution in general relativity.
Finally, we did not consider the effects of real detector
noise or calibration errors in the data, both of which could
prove to be a significant contribution to the overall error
budget [48,49].

While EOB waveforms that include subdominant
modes were found to have relatively small systematic
errors in parameter-estimation results for ground-based
observations with SNR< 50, proposed space-based in-
struments were sensitive to SMBH mergers with SNR>
100. For these scenarios, we found statistically significant
biases in the mass parameters for mass ratios in the range
2 � q � 6 observed at SNR ¼ 100, on the order of �1%
for the component masses of the system. However, as
discussed in Sec. V, systematic errors introduced by the
EOB templates were small enough to still place strong
constraints on the population of supermassive black holes
in the Universe.

In the LISA examples, the residual power SNR is >6,
sufficient to compromise both parameter estimation of
overlapping signals and studies aimed at testing general
relativity. Space-based GW data analysis will require
more accurate templates grounded in even more accurate
numerical simulations.
A more complete analysis is needed, but will require

either dramatically longer-duration numerical simulations
or a suitably well-controlled way of matching analytical
and NR waveforms at low frequency. We would also
require more computationally efficient signal generation
to successfully study template biases with long-duration
waveforms.
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