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The origin of galactic and extragalactic magnetic fields is an unsolved problem in modern cosmology.

A possible scenario comes from the idea that these fields emerged from a small field, a seed, which was

produced in the early universe (phase transitions, inflation, etc.) and it evolves in time. Cosmological

perturbation theory offers a natural way to study the evolution of primordial magnetic fields. The

dynamics for this field in the cosmological context is described by a cosmic dynamolike equation,

through the dynamo term. In this paper we get the perturbed Maxwell’s equations and compute the

energy-momentum tensor to second order in perturbation theory in terms of gauge-invariant quantities.

Two possible scenarios are discussed. First we consider a Friedmann-Lemaı̂tre-Robertson-Walker

background without magnetic field, and we study the perturbation theory introducing the magnetic field

as a perturbation. In the second scenario, we consider a magnetized Friedmann-Lemaı̂tre-Robertson-

Walker and build up the perturbation theory from this background. We compare the cosmological

dynamolike equation in both scenarios.
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I. INTRODUCTION

Magnetic fields have been observed on several scales in
the Universe. Galaxies and clusters of galaxies contain
magnetic fields with strengths of �10�6 G [1]; fields
within clusters are also likely to exist, with strengths of
comparable magnitude [2]. There is also evidence of mag-
netic fields on scales of superclusters [3]. On the other hand,
the possibility of a cosmological magnetic field has been
addressed comparing the cosmic microwave background
(CMB) quadrupole with one induced by a constant mag-
netic field (in coherence scales of �1 Mpc), constraining

the field magnitude to B< 6:8� 10�9ð�mh
2Þ1=2 Gauss

[4]. However, the origin of such large-scale magnetic fields
is still unknown. These fields are increased and maintained
by a dynamo mechanism, but it needs a seed before the
mechanism takes place [5]. Astrophysical mechanisms
such as the Biermann battery have been used to explain
how the magnetic field is maintained in objects such as
galaxies, stars, and supernova remnants [6], but they are not
likely correlated beyond galactic sizes [7]. It makes it
difficult to use astrophysical mechanisms to explain
the origin of magnetic fields on cosmological scales. In
order to overcome this problem, the primordial origin
should be found in other scenarios from which the astro-
physical mechanism starts. For example, magnetic fields
could be generated during primordial phase transitions
(such as QCD, the electroweak phase transition, or grand
unified theories), parity-violating processes that generate
magnetic helicity, or during inflation [8]. Magnetic fields

also are generated during the radiation era in regions with
nonvanishing vorticity. This seed was proposed by Harrison
[8]. Magnetic fields generation from density fluctuations in
the prerecombination era has been investigated in [8]. The
advantage of these primordial processes is that they offer a
wide range of coherence lengths (many of which are
strongly constrained by nucleosynthesis [9]), while the
astrophysical mechanisms produce fields at the same order
of the astrophysical size of the object. Recently a lower
limit of the large-scale correlated magnetic field was found.
It constrains models for the origin of cosmic magnetic
fields, giving possible evidence for their primordial
origin [10].
One way to describe the evolution of magnetic fields is

through cosmological perturbation theory. This theory [11]
is a powerful tool for understanding the present properties
of the large-scale structure of the Universe and their origin.
It has been mainly used to predict effects on the temperature
distribution in the CMB [12]. Futhermore, linear perturba-
tion theory combinedwith inflation suggests that primordial
fluctuations of the Universe are adiabatic and Gaussian
[13]. However, due to the high-precision measurements
reached in cosmology, higher order cosmological perturba-
tion theory is required to test the current cosmological
framework [14,15]. There are mainly two approaches to
studying higher order perturbative effects; one uses non-
linear theory and different manifestations of the separate
universe approximation, using the �N formalism [16,17],
and the other is the Bardeen approach where metric and
matter fields are expanded in a power series [18]. Within the
Bardeen approach, a set of variables are determined in such
a way that has no gauge dependence. These are known in
the literature as gauge-invariant variables, which have been
widely used in different cosmological scenarios [19]. One
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important result of cosmological perturbation theory is the
coupling between gravity and electromagnetic fields, which
have shown a magnetogeometrical interaction that could
change the evolution of the fields on large scales. An effect
is the amplification of cosmic fields. Indeed, large-scale
magnetic fields in perturbed spatially open Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) models decay as
a�1, a rate considerably slower than the standard a�2

[20]. The hyperbolic geometry of these open FLRWmodels
leads to the superadiabatic amplification on large scales
[21]. The main goal in this paper is to study the late
evolution of magnetic fields that were generated in early
stages of the Universe. We use the cosmological perturba-
tion theory following the gauge-invariant formalism to find
the perturbed Maxwell equations up to second order, and
also we obtain a dynamolike equation written in terms of
gauge, invariant variables to first and second order.
Furthermore, we discuss the importance that both curvature
and the gravitational potential plays in the evolution of
these fields. The paper is organized as follows. In the next
section we briefly give an introduction of cosmological
perturbation theory and we address the gauge problem in
this theory. Section III presents the matter equations in the
homogeneous and isotropic universe, which was used to
generate the first- and second-order dynamical equations. In
Sec. IV, we define the first-order gauge-invariant variables
for the perturbations not only in the matter (energy density,
pressure, magnetic, and electric field) but also in the geo-
metrical quantities (gravitational potential, curvature, shear,
etc.). The first-order perturbation of Maxwell’s equations is
reviewed in Sec. V and together with Ohm’s law allows us
to find the cosmological dynamo equation to describe the
evolution of the magnetic field. The derivation of second-
order Maxwell’s equations is given in Sec. VII, and follow-
ing the same methodology for the first-order case, we find
the cosmological dynamo equation at second order written
in terms of gauge-invariant variables. In Sec. IX, we use an
alternative approximation to the model considering a mag-
netic field in the FLRW background. It is found that am-
plification effects of magnetic field appear at first order in
the equations, besides the absence of fractional orders. Also
a discussion between both approaches is done. Finally,
Sec. X is devoted to a discussion of the main results and
the connection with future works.

II. THE GAUGE PROBLEM IN
PERTURBATION THEORY

Perturbation theory helps us to find approximate solu-
tions of the Einstein field equations through small devia-
tions from an exact solution [22]. In this theory one works
with two different space-times; one is the real space-time
ðM; g��Þ that describes the perturbed universe and the

other is the background space-time ðM0; g
ð0Þ
��Þ that is an

idealization and is taken as reference to generate the real
space-time. Then, the perturbation of any quantity �

(e.g., energy density �ðx; tÞ, 4-velocity u�ðx; tÞ, magnetic
field Biðx; tÞ, or metric tensor g��) is the difference be-

tween the value that the quantity � takes in the real space-
time and the value in the background at a given point.1 In
order to determine the perturbation in �, we must have a

way to compare � (tensor on the real space-time) with �ð0Þ

[�ð0Þ being the value onM0]. This requires the assumption
to identify points of M with those of M0. This is accom-
plished by assigning a mapping between these space-times
called gauge choice given by a function X: M0ðpÞ !
Mð �pÞ for any point p 2 M0 and �p 2 M, which generate
a pullback

X�:M ! M0

T�ð �pÞ � T�ðpÞ; (1)

and thus points on the real and background space-time can
be compared through X. Then, the perturbation for � is
defined as

��ðpÞ ¼ �ð �pÞ � �ð0ÞðpÞ: (2)

We see that the perturbation �� is completely dependent of
the gauge choice because the mapping determines the
representation on M0 of �ð �pÞ. However, one can also
choose another correspondence Y between these space-
times so that Y: M0ðqÞ ! Mð �pÞ, (p � q).2 In the litera-
ture a change of this identification map is called gauge
transformation. The freedom to choose between different
correspondences is due to the general covariance in general
relativity, which states that there is no preferred coordinate
system in Nature [23]. Hence, this freedom will generate an
arbitrariness in the value of �� at any space-time point p,
which is called gauge problem in the general relativistic
perturbation theory and has been treated by [24]. This
problem generates an unphysical degree of freedom to the
solutions in the theory and therefore one should fix the
gauge or build up nondependent quantities of the gauge.

A. Gauge transformations and
gauge-invariant variables

To define the perturbation to a given order, it is neces-
sary to introduce the concept of Taylor expansion on a
manifold and thus the metric and matter fields are ex-
panded in a power series. Following [25], we consider a
family of four-dimensional submanifoldsM� with � 2 R,
embedded in a five-dimensional manifold N ¼ M� R.
Each submanifold in the family represents a perturbed
space-time and the background space-time is represented
by the manifold M0 (� ¼ 0). On these manifolds we
consider that the Einstein field and Maxwell’s equations
are satisfied

1This difference should be taken in the same physical point.
2This is the active approach where transformations of the

perturbed quantities are evaluated at the same coordinate point.
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E½g�; T�� ¼ 0 and M½F�; J�� ¼ 0; (3)

each tensor field �� on a given manifoldM� is extended to
all manifoldN through �ðp; �Þ � ��ðpÞ to anyp 2 M�;
likewise the above equations are extended toN .3 We used
a diffeomorphism such that the difference in the right side
of Eq. (2) can be done. We introduce a one-parameter
group of diffeomorphisms X� that identifies points in the
background with points in the real space-time labeled with
the value �. EachX� is a member of a flowX onN and it
specifies a vector field X with the property X4 ¼ 1 every-
where (transverse to theM�),

4 then points which lie on the
same integral curve of X have to be regarded as the same
point [24]. Therefore, according to the above, one gets a
definition for the tensor perturbation

��� � X�
��jM0

� �0: (4)

At higher orders the Taylor expansion is given by [25]

�X�� ¼ X1

k¼0

�k

k!
�ðkÞ
X � � �0 ¼

X1

k¼1

�k

k!
�ðkÞ
X �; (5)

where

�ðkÞ
X � ¼

�
dkX�

��

d�k

�

�¼0;M0

: (6)

Now, rewriting Eq. (4), we get

X�
��jM0

¼ �0 þ ��ð1Þ
X � þ �2

2
�ð2Þ
X � þOð�3Þ: (7)

Notice in Eqs. (6) and (7) the representation of � onM0 is
splitting in the background value �0 plus OðkÞ perturba-
tions in the gauge X�. Therefore, the kth order OðkÞ in �
depends on gauge X. With this description the perturba-
tions are fields that lie in the background. The first term in
Eq. (4) admits an expansion around � ¼ 0 given by [25]

X�
��jM0

¼ X1

k¼0

�k

k!
Lk

X�jM0
¼ exp ð�LXÞ�jM0

; (8)

where LX� is the Lie derivative of � with respect to a
vector field X that generates the flow X. If we define

X�
��jM0

� �X
� and proceeding in the same way for an-

other gauge choice Y, using Eqs. (4)–(8), the tensor fields

�X;Y
� can be written as

�X
� ¼ X1

k¼0

�k

k!
�ðkÞ
X � ¼ X1

k¼0

�k

k!
Lk

X�jM0
; (9)

�Y
� ¼ X1

k¼0

�k

k!
�ðkÞ
Y � ¼ X1

k¼0

�k

k!
Lk

Y�jM0
; (10)

if �X
� ¼ �Y

� for any arbitrary gauge X and Y. From here

it is clear that � is totally gauge invariant. It is also clear
that � is gauge invariant to order n � 1 if and only if

�ðkÞ
Y � ¼ �ðkÞ

X � is satisfied, or in another way

LX�
ðkÞ� ¼ 0; (11)

for any vector field X and 8 k < n. To first order (k ¼ 1)
any scalar that is constant in the background or any tensor
that vanished in the background are gauge invariant. This
result is known as the Stewart-Walker lemma [26], i.e.,
Eq. (11) generalizes this lemma. However, when � is not
gauge invariant and there are two gauge choices X�, Y�,
the representation of �jM0

is different depending of the

used gauge. To transform the representation from a gauge
choice X�

��jM0
to another Y�

��jM0
as with the map

��: M0 ! M0 given by

�� � X�� �Y� ) �Y
� ¼ ��

��
X
� ; (12)

as a consequence, the diffeomorphism �� induces a pull-

back ��
� that changes the representation �X

� of � in a

gauge X� to the representation �Y
� of � in a gauge Y�.

Now, following [27] and using the Baker-Campbell-
Haussdorf formula [28], one can generalize Eq. (8) to write

��
��

X
� in the following way:

��
��

X
� ¼ exp

�X1

k¼1

�k

k!
L�k

�
�X
� ; (13)

where �k is any vector field on M�. Substituting Eq. (13)
in Eq. (12), we have explicitly that

�Y
� ¼ �X

� þ �L�1�
X
� þ �2

2
ðL2

�1
þL�2

Þ�X
� þOð�3Þ:

(14)

Replacing Eqs. (9) and (10) into Eq. (14), the relations to
first- and second-order perturbations of � in two different
gauge choices are given by

�ð1Þ
Y � � �ð1Þ

X � ¼ L�1
�0; (15)

�ð2Þ
Y � � �ð2Þ

X � ¼ 2L�1
�ð1Þ
X �0 þ ðL2

�1
þL�2

Þ�0; (16)

where the generators of the gauge transformation � are

�1 ¼ Y � X and �2 ¼ ½X; Y�: (17)

This vector field can be split in their time and space part

�ðrÞ
� ! ð�ðrÞ; @i�ðrÞ þ dðrÞi Þ: (18)

Here �ðrÞ and �ðrÞ are arbitrary scalar functions, and

@idðrÞi ¼ 0. The function �ðrÞ determines the choice of

3In Eq. (3), g� and T� are the metric and the matter fields on
M�; similarly F� and J� are the electromagnetic field and the
four-current on M�.

4Here we introduce a coordinate system x� through a chart on
M� with � ¼ 0, 1, 2, 3 thus giving a vector field on N , which
has the property that X4 ¼ � in this chart, while the other
components remain arbitrary.
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constant time hypersurfaces, while @i�
ðrÞ and dðrÞi fix the

spatial coordinates within these hypersurfaces. The choice
of coordinates is arbitrary and the definitions of perturba-
tions are thus gauge dependent. The gauge transformation
given by Eqs. (15) and (16) are quite general. To first order
� is gauge invariant if L�1

�0 ¼ 0, while to second order

one must have other conditions L�1
�ð1Þ
X �0 ¼ L2

�1
�0 ¼ 0

andL�2
�0 ¼ 0, and so on at high orders. We will apply the

formalism described above to the Robertson-Walker met-
ric, where k does mention the expansion order.

III. FLRW BACKGROUND

At zero order (background), the Universe is well de-
scribed by a spatially flat Friedman-Lemaı̂tre-Robertson-
Walker metric

ds2 ¼ a2ð�Þð�d�2 þ �ijdx
idxjÞ; (19)

with að�Þ the scale factor and � the conformal time.
Hereafter the Greek indices run from 0 to 3, and the
Latin ones run from 1 to 3 and a prime denotes the
derivative with respect to �. The Einstein tensor compo-
nents in this background are given by

G0
0 ¼ � 3H2

a2
; (20a)

Gi
j ¼ � 1

a2

�
2
a00

a
�H2

�
�i
j; (20b)

with H ¼ a0
a the Hubble parameter. We consider the

background filled with a single barotropic fluid where the
energy-momentum tensor is

T�
ðflÞ	 ¼ ð�ð0Þ þ Pð0ÞÞu�ð0Þuð0Þ	 þ Pð0Þ�

�
	 ; (21)

with �ð0Þ the energy density and Pð0Þ the pressure. The

comoving observers are defined by the four-velocity u	 ¼
ða�1; 0; 0; 0Þ with u	u	 ¼ �1 and the conservation law for
the fluid is

�0
ð0Þ þ 3Hð�ð0Þ þ Pð0ÞÞ ¼ 0: (22)

To deal with the magnetic field, the space-time under
study is the fluid permeated by a weak magnetic field,5

which is a stochastic field and can be treated as a pertur-
bation on the background [29,30]. Since the magnetic field
has no background contribution, the electromagnetic
energy-momentum tensor is automatically gauge invariant
at first order [see Eq. (15)]. The spatial part of Ohm’s law
that is the proyected current is written by

ðg�i þ u�uiÞj� ¼ 
g�ig��F
��u�; (23)

where j� ¼ ð%; JiÞ is the 4-current and F�� is the electro-
magnetic tensor given by

F�� ¼ 1

a2ð�Þ

0 Ei Ej Ek

�Ei 0 Bk �Bj

�Ej �Bk 0 Bi

�Ek Bj �Bi 0

0
BBBBB@

1
CCCCCA
: (24)

At zero order in Eq. (23) the usual Ohms law is found that
gives us the relation between the 3-current and the electric
field

Ji ¼ 
Ei; (25)

where 
 is the conductivity. Under magnetohydrodynam-
ics (MHD) approximation, on large scales the plasma is
globally neutral and charge density is neglected (% ¼ 0)
[2]. If the conductivity is infinite (
 ! 1) in the early
universe [31], then Eq. (23) states that the electric field
must vanish (Ei ¼ 0) in order to keep the current density
finite [32]. However, the current also should be zero
(Ji ¼ 0) because a nonzero current involves a movement
of charge particles that breaks down the isotropy in the
background.

IV. GAUGE-INVARIANT VARIABLES
AT FIRST ORDER

We write down the perturbations on a spatially flat
FLRW background. The perturbative expansion at kth
order of the matter quantities is given by

� ¼ �ð0Þ þ
X1

k¼1

1

k!
�ðkÞ; (26)

B2 ¼ X1

k¼1

1

k!
B2
ðkÞ; (27)

E2 ¼ X1

k¼1

1

k!
E2
ðkÞ; (28)

P ¼ Pð0Þ þ
X1

k¼1

1

k!
PðkÞ; (29)

Bi ¼ 1

a2ð�Þ
�X1

k¼1

1

k!
Bi
ðkÞ

�
; (30)

Ei ¼ 1

a2ð�Þ
�X1

k¼1

1

k!
Ei
ðkÞ

�
; (31)

u� ¼ 1

að�Þ
�
�
�
0 þ X1

k¼1

1

k!
v
�
ðkÞ

�
; (32)

5With the property B2
ð0Þ 	 �ð0Þ.
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j� ¼ 1

að�Þ
�X1

k¼1

1

k!
j�ðkÞ

�
; (33)

where the fields used in the above formulas are the average
ones (i.e., B2 ¼ hB2i).6 We also consider the perturbations
about a FLRW background, so that the metric tensor is
given by

g00 ¼ �a2ð�Þ
�
1þ 2

X1

k¼1

1

k!
c ðkÞ

�
; (34)

g0i ¼ a2ð�ÞX
1

k¼1

1

k!
!ðkÞ

i ; (35)

gij ¼ a2ð�Þ
��

1� 2
X1

k¼1

1

k!
�ðkÞ

�
�ij þ

X1

k¼1

�ðkÞ
ij

k!

�
: (36)

The perturbations are split into a scalar, transverse vector
part, and transverse trace-free tensor

!ðkÞ
i ¼ @i!

ðkÞk þ!ðkÞ?
i ; (37)

with @i!ðkÞ?
i ¼ 0. Similarly we can split �ðkÞ

ij as

�ðkÞ
ij ¼ Dij�

ðkÞk þ @i�
ðkÞ?
j þ @j�

ðkÞ?
i þ �ðkÞ>

ij ; (38)

for any tensor quantity.7 Following [34], one can find the
scalar gauge-invariant variables at first order given by

�ð1Þ � c ð1Þ þ 1

a
ðSk

ð1ÞaÞ0; (39)

�ð1Þ � �ð1Þ þ 1

6
r2�ð1Þ �HSk

ð1Þ; (40)

�ð1Þ � �ð1Þ þ ð�ð0ÞÞ0Sk
ð1Þ; (41)

�ð1Þ
P � Pð1Þ þ ðPð0ÞÞ0Sk

ð1Þ; (42)

with Sk
ð1Þ � ð!kð1Þ � ð�kð1ÞÞ0

2 Þ the scalar contribution of the

shear. The vector modes are

i
ð1Þ � vi

ð1Þ þ ð�i
?ð1ÞÞ0; (43)

#ð1Þ
i � !ð1Þ

i � ð�?ð1Þ
i Þ0; (44)

V i
ð1Þ � !i

ð1Þ þ vi
ð1Þ: (45)

Other gauge-invariant variables are the 3-current, the
charge density, and the electric and magnetic fields, be-
cause they vanish in the background. The tensor quantities

are also gauge invariant because they are null in the back-
ground [see Eq. (15)].

A. The Ohm law and the energy-momentum tensor

Using Eq. (23) the Ohm law at first order is

Jð1Þi ¼ 
Eð1Þ
i : (46)

As the conductivity of the medium finite (real MHD), the
electric field and the 3-current are nonzero. Now, the
electromagnetic energy-momentum tensor is

T0
ðemÞ0 ¼ � 1

8�
ðB2

ð1Þ þ E2
ð1ÞÞ; (47)

Ti
ðemÞ0 ¼ 0; T0

ðemÞi ¼ 0; (48)

Ti
ðemÞl ¼

1

4�

�
1

6
ðB2

ð1Þ þ E2
ð1ÞÞ�i

l þ�ið1Þ
lðemÞ

�
; (49)

where �ið1Þ
lðemÞ ¼ 1

3 ðB2 þ E2Þ�i
l � BlB

i � ElE
i is the an-

isotropic stress tensor that is gauge invariant by definition
of Eq. (15). This term is important to constrain the total
magnetic energy because it is a source of gravitational
waves [9]. We can see that the electromagnetic energy
density appears like a quadratic term in the energy-
momentum tensor, which means that the electromagnetic
field should be regarded as one-half-order perturbation.8

Using Eq. (21) and considering the fluctuations of the
matter fields, Eqs. (26) and (29), the energy-momentum
tensor for the fluid is given by

T0
ðflÞ0 ¼ ��ð1Þ þ ð�ð0ÞÞ0Sk

ð1Þ; (50)

Ti
ðflÞ0 ¼ ð�0 þ P0ÞðV i

ð1Þ � #i
ð1Þ � ð�i

?ð1ÞÞ0Þ; (51)

T0
ðflÞi ¼ �ð�0 þ P0ÞV ð1Þ

i ; (52)

Ti
ðflÞj ¼ ð�ð1Þ

P � ðPð0ÞÞ0Sk
ð1ÞÞ�i

j þ�ið1Þ
jðflÞ; (53)

where�ið1Þ
jðfÞ is the anisotropic stress tensor [35]. The above

equations are written in terms of gauge-invariant variables

plus terms as Sk
ð1Þ that depend of the gauge choice.

B. The conservation equations

The total energy-momentum conservation equation
T �

�;� ¼ 0 can be split in each component that is not

necessarily conserved independently

T �
�;� ¼ T�ðfÞ

�;� þ T�ðE:MÞ
�;� ¼ 0; (54)

where

6This happens because the average evolves exactly like B2

[33].
7With @i�ðkÞ>

ij ¼ 0, �ðkÞi
i ¼ 0, and Dij � @i@j � 1

3�ij@k@
k.

8Therefore the magnetic field should be split as Bi ¼ 1
að�Þ2ðBi

ð12Þ
þ Bi

ð1Þ þ Bi
ð32Þ
þ . . . :Þ; see [35].
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T�ðE:MÞ
�;� ¼ F��j

�: (55)

Using Eqs. (50) and (53), the continuity equationT �
0;� ¼ 0

is given by

ð�ð1ÞÞ0 þ 3Hð�ð1Þ
P þ�ð1ÞÞ � 3ð�ð1ÞÞ0ðPð0Þ þ�ð0ÞÞ

þ ðPð0Þ þ�ð0ÞÞr2ð1Þ � 3HðPð0Þ þ�ð0ÞÞ0Sk
ð1Þ

� ðð�ð0ÞÞ0Sk
ð1ÞÞ0 þ ðPð0Þ þ�ð0ÞÞ

�
�1

2
r2�ð1Þ þ 3HSk

ð1Þ

�0

� ðPð0Þ þ�ð0ÞÞr2

�
1

2
�kð1Þ

�0 ¼ 0: (56)

The Navier-Stokes equation T �
i;� ¼ 0 is

ðV ð1Þ
i Þ0 þ ð�ð0Þ þ Pð0ÞÞ0

ð�ð0Þ þ Pð0ÞÞ V
ð1Þ
i þ 4HV ð1Þ

i þ @i�
ð1Þ

þ @ið�ð1Þ
P � ðPð0ÞÞ0Sk

ð1ÞÞ þ @l�
ð1Þl
ðflÞi

ð�ð0Þ þ Pð0ÞÞ � @i
1

a
ðSk

ð1ÞaÞ0 ¼ 0:

(57)

The last equations are written is terms of gauge-invariant
variables in accordance with [35,36]. It is shown there that
contribution of electromagnetic terms to the conservation
equations does not exist. In [8,36] the energy-momentum
tensor of each component is not conserved independently
and the divergence has a source term that takes into ac-
count the energy and momentum transfer between the
components of the photon, electron, proton, and the elec-

tromagnetic field T�ðfÞ
�;� ¼ K�.

V. MAXWELL EQUATIONS AND THE
COSMOLOGICAL DYNAMO EQUATION

Maxwell’s equations are written as

r�F
�� ¼ j�; r½�F��� ¼ 0: (58)

Using Eq. (58) and the perturbation equations for the
metric and electromagnetic fields, the nonhomogeneous
Maxwell equations are

@iE
i
ð1Þ ¼ a%ð1Þ; (59)

�ilk@lB
ð1Þ
k ¼ ðEi

ð1ÞÞ0 þ 2HEi
ð1Þ þ aJið1Þ; (60)

and the homogeneous Maxwell equations

B0
kð1Þ þ 2HBð1Þ

k þ �ijk@iE
ð1Þ
j ¼ 0; (61)

@iBð1Þ
i ¼ 0; (62)

written also by [37]. Now using the last equations together
with Ohm’s law, Eq. (46), we get an equation that describes
the evolution of magnetic field at first order; this relation is
the dynamo equation:

ðBð1Þ
k Þ0 þ 2HBð1Þ

k þ �½r � ðr � Bð1Þ � ðEð1ÞÞ0 � 2HEð1ÞÞ�k
¼ 0; (63)

with � ¼ 1
4�
 the diffusion coefficient. Equation (63) is

similar to the dynamo equation in MHD but it is in the
cosmological context [2]. This equation has one term that
depends on � that takes into account the dissipation phe-
nomena of the magnetic field (the electric field in this term
in general is dropped if we neglect the displacement cur-
rent). Notice that � is a expansion parameter (due to 

being large). From Eq. (63) we see that for finite �, the
diffusion term should not be neglected. Care should be
taken with the assumption that � ¼ 0, because it could
break at small scales [31]. In the frozen condition of
magnetic field lines, where amplification of the field is
not taken into account, the last equation has the solution

B ¼ B0

a2ð�Þ where B0 is the actual magnetic field, the actual

value of the scale factor a0ð�Þ ¼ 1, and B is the magnetic
field when the scale factor was að�Þ.

VI. GENERALIZATION AT SECOND ORDER

Following [25] the variable �ð2ÞT defined by

�ð2Þ
X T � �ð2Þ

X � � 2LXð�ð1Þ
X �Þ þ L2

X�0 (64)

is introduced. Inspecting the gauge transformation Eq. (16)

one can see that �ð2ÞT is transformed as

�ð2Þ
Y T� �ð2Þ

X T ¼ L
�0; (65)

with 
 ¼ �2 þ ½�1; X� and X is the gauge dependence part
in linear order perturbation. The gauge transformation rule
Eq. (65) is identical to the gauge transformation at linear
order Eq. (15). This property is general and is the key to
extend this theory to second order

L½�2T� ¼ S½�T; �T�: (66)

Notice that first- and second-order equations are similar;
however, the last have as sources the coupling between
linear perturbations variables. Using Eqs. (16) and (65) we
arrive at the gauge-invariant quantities at second order.
This coupling appearing as the quadratic terms of the linear
perturbation is due to the nonlinear effects of the Einstein
field equations; besides one can classify them again in
scalar, vector, and tensor modes where these modes couple
with each other. Now, to clarify the physical behaviors of
perturbations at this order we should obtain the gauge-
invariant quantities and express these equations of move-
ments in terms of these quantities.
The scalar gauge invariants are given by

�ð2Þ � c ð2Þ þ 1

a
ðSk

ð2ÞaÞ0 þT 1ðOð2ÞÞ; (67)
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�ð2Þ � �ð2Þ þ 1

6
r2�ð2Þ �HSk

ð2Þ þT 2ðOð2ÞÞ; (68)

�ð2Þ
� � �ð2Þ þ ð�ð0ÞÞ0Sk

ð2Þ þT 3ðOð2ÞÞ; (69)

�ð2Þ
% � %ð2Þ þT 4ðOð2ÞÞ; (70)

�ð2Þ
B � B2

ð2Þ þT 4ðOð2ÞÞ; (71)

�ð2Þ
E � E2

ð2Þ þT 6ðOð2ÞÞ; (72)

ð2Þ � vð2Þ þ
�
1

2
�kð2Þ

�0 þT 7ðOð2ÞÞ; (73)

with Sk
ð2Þ � ð!kð2Þ � ð�kð2ÞÞ0

2 Þ þT 8ðOð2ÞÞ. The expression

for T 8ðOð2ÞÞ is given in Appendix A. In this case Sk
ð2Þ

can be interpreted like shear at second order. Again it is
shown that it is similar to being found at first order but it
has a source term that is quadratic in the first-order func-
tions of the transformations. The vector modes found are as
follows:

i
ð2Þ � vi

ð2Þ þ ð�i
?ð2ÞÞ0 þT 9ðOð2ÞÞ; (74)

#ð2Þ
i � !ð2Þ

i � ð�?ð2Þ
i Þ0 þT 10ðOð2ÞÞ; (75)

V i
ð2Þ � !i

ð2Þ þ vi
ð2Þ þT 11ðOð2ÞÞ; (76)

�ð2ÞT
ij � �ð2Þfl

ij þ�ð2Þem
ij þT 13ðOð2ÞÞ: (77)

The electromagnetic fields modes (from F��) are then
given by

Eð2Þ
i ¼ Eð2Þ

i þ 2

�
1

a2
ða2Eð1Þ

i �ð1ÞÞ0 þ ð�0
ð1Þ � Bð1ÞÞi

þ �l
ð1Þ@lE

ð1Þ
i þ Eð1Þ

l @i�
l
ð1Þ

�
; (78)

Bð2Þ
i ¼ Bð2Þ

i þ 2

�
�ð1Þ

a2
ða2Bð1Þ

i Þ0 þ �l
ð1Þ@lB

ð1Þ
i

þ Bð1Þ
i @l�

l
ð1Þ þ ðEð1Þ � r�ð1ÞÞi � Bð1Þ

l @l�ð1Þ
i

�
; (79)

%ð2Þ
ðInvÞ ¼ %ð2Þ þ 2½ð%0

ð1Þ �H%ð1ÞÞ�ð1Þ þ �i
ð1Þ@i%

ð1Þ

� �0
ð1Þ%

ð1Þ � Jið1Þ@i�
ð1Þ�; (80)

J i
ð2Þ ¼ Jið2Þ þ 2½ððJið1ÞÞ0 �HJ i

ð1ÞÞ�ð1Þ þ �l
ð1Þ@lJ

i
ð1Þ

� %ð1Þð�i
ð1ÞÞ0 � Jlð1Þ@l�

i�; (81)

which are gauge-invariant quantities for electromagnetic
fields. All these variables are similar to the quantities
obtained at first order, but in the second-order case appear

as sources as TkðOð2ÞÞ that depend of the gauge choice and
the coupling with terms of first order. The explicit calcu-

lation of T kðOð2ÞÞ is shown in [25,34].

A. The Ohm law and the energy-momentum tensor

Using Eqs. (23), (30), and (31), we get the Ohm law at
second order

J ð2Þ
i ¼ 4Jð1Þi �ð1Þ þ S1

i ðOð2ÞÞ þ %ð1Þð1Þ
i

þ 2


�
ðV ð1Þ � Bð1ÞÞi þ 1

2
Eð2Þ
i

� 2Eð1Þ
i

�
�ð1Þ � 1

2
�ð1Þ

�
þ S2

i ðOð2ÞÞ
�
: (82)

In this case we see that the 3-current has a type of
Lorentz term and shows coupling between first-order terms
that affect the evolution of the current. Hereafter the func-

tions Sn
i ðOð2ÞÞwith n 2 Z and i being the component gives

us the gauge dependence. The last equation shows also a
coupling between the electric field and terms like

(�ð1Þ � 1
2�

ð1Þ) that is associated with tidal forces (this

quantity is similar to the scalar part of the electric part of
the Weyl tensor) and the first right-hand term between the
current and perturbation in the curvature. There exist mod-
els where the coupling of the charge particles and the field
is important for explaining some phenomena like collapse
or generation of magnetic field during a recombination
period. In this case the Ohm law shown in Eq. (82) should
be generalized and terms like Biermann battery and Hall
effect should appear. Doing the expansion at second order
in the fluid energy-momentum tensor, one finds the follow-
ing expressions:

T0
ð2Þ0 ¼ ��ð2Þ

�

2
� ð�ð0Þ þ Pð0ÞÞðð1Þ

l l
ð1Þ þ #ð1Þ

l l
ð1ÞÞ

þ S3ðOð2ÞÞ; (83)

Ti
ð2Þ0 ¼ �ð�ð0Þ þ Pð0ÞÞ

�V i
ð2Þ � #i

ð2Þ
2

þ�ð1Þi
ð1Þ

�

� ð�ð1Þ
� þ �ð1Þ

P Þi
ð1Þ þ Si

4ðOð2ÞÞ; (84)

T0
ð2Þi ¼ �ð�ð0Þ þ Pð0ÞÞ

�
V ð2Þ

i

2
� 2#ð2Þ

i �ð1Þ

� 2ð1Þ
i �ð1Þ þ j

ð1Þ�
ð1Þ
ij � ð1Þ

i �ð1Þ
�

� ð�ð1Þ
� þ�ð1Þ

P ÞV ð1Þ
i þ S5

i ðOð2ÞÞ; (85)

EVOLUTION OF MAGNETIC FIELDS THROUGH . . . PHYSICAL REVIEW D 87, 103531 (2013)

103531-7



Ti
ð2Þj ¼

1

2
�ð2Þ

P �i
j þ

1

2
�ið2Þ

j þ S6i
j ðOð2ÞÞ

þ ð�ð0Þ þ Pð0ÞÞðð1Þ
j i

ð1Þ þ #ð1Þ
j i

ð1ÞÞ; (86)

similar to [36]. Now consider Eq. (61) the electromagnetic
momentum tensor at second order is

T0
ðemÞ0 ¼ � 1

8�
ð�ð2Þ

E þ �ð2Þ
B þ S8ðOð2ÞÞÞ; (87)

Ti
ðemÞ0 ¼

1

4�
½��ikmEð1Þ

k Bm
ð1Þ þ Si

9ðOð2ÞÞ�; (88)

T0
ðemÞi ¼

1

4�
½�kmi Eð1Þ

k Bm
ð1Þ þ S10iðOð2ÞÞ�; (89)

Ti
ðemÞl ¼

1

4�

�
1

6
ð�ð2Þ

E þ �ð2Þ
B þ Si

4lðOð1ÞÞÞ�i
l

þ�ið2Þ
lðemÞ þ Si

11lðOð2ÞÞ
�
: (90)

Using Eq. (54) the continuity equation is given by

ð�ð2Þ
� Þ0 þ 3Hð�ð2Þ

P þ �ð2Þ
� Þ � 3ð�ð2ÞÞ0ðPð0Þ þ�ð0ÞÞ

þ ðPð0Þ þ�ð0ÞÞr2ð2Þ ¼ �a4ð2Eð1Þ
i Jið1ÞÞ � S12ðOð2ÞÞ;

(91)

and the Navier-stokes equation

1

2

½�ð0Þð1þ wÞV ð2Þ
i �0

�ð0Þð1þ wÞ þ 2HV ð2Þ
i þ 1

2

@iP
ð2Þ þ 2@j�

jð2Þ
i

�ð0Þð1þ wÞ

þ 1

2
@i�

ð2Þ þ S13
i ðOð2ÞÞ ¼ a4ðEð1Þ

i %ð1Þ þ �ijkJ
j
ð1ÞB

ð1Þ
k Þ

�ð0Þð1þ wÞ ;

(92)

wherew ¼ Pð0Þ
�ð0Þ

and S13
i is shown in Appendix B. Therefore,

electromagnetic fields affect the evolution of matter energy

density �ð2Þ
� and the peculiar velocity V ð2Þ

i . Also, these
fields influence the large structure formation and can leave
imprints on the temperature anisotropy pattern of the CMB
[36,37].

VII. THE MAXWELL EQUATIONS AND THE
COSMOLOGICAL DYNAMO AT SECOND ORDER

Using Eq. (46), the nonhomogeneous Maxwell
equations are

@iEi
ð2Þ ¼ �4Ei

ð1Þ@ið�ð1Þ � 3�ð1ÞÞ þ a�ð2Þ
% � S14ðOð2ÞÞ;

(93)

ðr �Bð2ÞÞi ¼ 2Ei
ð1Þð2ð�ð1ÞÞ0 � 6ð�ð1ÞÞ0Þ

þ ðEi
ð2ÞÞ0 þ 2HEi

ð2Þ þ 2ð2�ð1Þ � 6�ð1ÞÞ
� ðr � Bð1ÞÞi þ aJ i

ð2Þ þ Si
15ðOð2ÞÞ: (94)

While the homogeneous Maxwell equations are

1

a2
ða2Bð2Þ

k Þ0 þ ðr � Ejð2ÞÞk ¼ �S17
k ðOð2ÞÞ; (95)

@iBið2Þ ¼ 0: (96)

Again the Sn
k terms carry out the gauge dependence. Using

the Maxwell equations together with the Ohm law at
second order and following the same methodology for
the first-order case, we get the cosmological dynamo equa-
tion that describes the evolution of the magnetic field at
second order:

ðBð2Þ
k Þ0 þ 2HðBð2Þ

k Þ þ �

�
r�

�
1

a
ððr �Bð2ÞÞ � 2Eð1Þð2ð�ð1ÞÞ0 � 6ð�ð1ÞÞ0Þ � ðEð2ÞÞ0

� 2HEð2Þ � 2ðr � Bð1Þð2�ð1Þ � 6�ð1ÞÞÞ � S15ðOð1ÞÞÞ � %ð1Þð1Þ þ S1ðOð2ÞÞ
��

k

þ ðr� ½�2ðV ð1Þ � Bð1ÞÞ � 2Eð1Þ�ð1Þ � 2S2ðOð1ÞÞ�Þk ¼ �S17
k ðOð2ÞÞ; (97)

where the value of %ð1Þ can be found to resolve the
differential equation given in Appendix B. Thus the
perturbations in the space-time play an important role in
the evolution of primordial magnetic fields. Equations (63)
and (97) are dependent on geometrical quantities
(perturbation in the gravitational potential, curvature, ve-
locity, etc.). These quantities evolve according to the
Einstein field equations (the Einstein field equation to
second order are given in [24]). In this way, Eq. (97) tells
us how the magnetic field evolves according to the scale of
the perturbation. In a subhorizon scale, the contrast density

and the geometrical quantities grow. Hence, the dynamo
term should amplify the magnetic field. As a final comment
we point out that in order to solve the dynamolike equation
for the magnetic field it is necessary to solve the Einstein
field equations to the second order together with the con-
servation equations.

VIII. SPECIFYING TO POISSON GAUGE

It is possible to fix the 4 degrees of freedom by imposing
gauge conditions. If we impose the gauge restrictions
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@i!ðrÞ
i ¼ @i�ðrÞ

ij ¼ 0; (98)

all equation can be written in terms in quantities independent of the coordinates [38]. This gauge is called Poisson gauge
and it is the gravitational analogue of the Coulomb gauge in electromagnetism (see Appendix A). The perturbed metric in
the Poisson gauge reads

g00 ¼ �a2ð�Þð1þ 2c ð1Þ þ c ð2ÞÞ;

gij ¼ a2ð�Þ
�
ð1� 2�ð1Þ ��ð2ÞÞ�ij þ

2�ð1Þ>
ij þ �ð2Þ>

ij

2

�
;

g0i ¼ a2ð�Þ
�
!ð1Þ?

i þ!ð2Þ?
i

2

�
;

(99)

where !k, �k, �?
i are null. In this case the dynamo equation in the Poisson gauge is given by

B0
kð2Þ þ 2HBð2Þ

k þ�

�
r� ðr�Bð2ÞÞ � ðr�E0

ð2ÞÞ � 2Hðr�Eð2ÞÞ � 4ð�0
ð1Þ � 3�0

ð1ÞÞðr�Eð1ÞÞ � 4rð�0
ð1Þ � 3�0

ð1ÞÞ �Eð1Þ

þ 4ðr� ðrð�ð1Þ � 3�ð1ÞÞ �Bð1ÞÞÞ � 4ððr� ðr�Bð1ÞÞ �r�E0
ð1Þ � 2Hðr�Eð1ÞÞÞ�ð1Þ

þr�ð1Þ � ðr�Bð1Þ �E0
ð1Þ � 2HEð1ÞÞÞ � ðr%ð1ÞÞ �vð1Þ þ 2r�

��
r�Bð1Þ � 1

a2
ða2Eð1ÞÞ0

�

�>

ð1Þ

�
�%ð1Þðr�vð1ÞÞ

�

k

� 2ðr� ððvð1Þ þ!?
ð1ÞÞ �Bð1ÞÞÞk þ 4

��
r
�
�ð1Þ ��ð1Þ

2

�
�Eð1Þ

�
þ

�
�ð1Þ ��ð1Þ

2

�
ðr�Eð1ÞÞ

�

k
� 2r� ðEð1Þ 
�>

ð1ÞÞk ¼ 0;

(100)

where Eð1Þ 
 �>
ð1Þ ¼ Eð1Þ

i �ij
>ð1Þ. The last equation is a

specific case of Eq. (97) where we fix the gauge
(coordinate fixing). It is important to notice the relevance
of the geometrical perturbation quantities in the evolution
of the magnetic fields; again we see the influence of the
tidal and Lorentz forces in the amplification of the fields.
In some sense, the above equation differs from Eq. (97)
due to the fact that we fix the adequate choice of the
perturbation functions (we choose a gauge for writing the
equation of motion without the presence of unphysical
modes) while before we just wrote the equations in terms
of gauge-invariant quantities that were built up with the
formalism explained in the fist sections, plus terms which
have taken into account the dependence of the gauge and
where we need to fix them.

IX. WEAKLY MAGNETIZED FLRW
BACKGROUND

In this section we work a magnetized FLRW, i.e., we
allow the presence of a weak magnetic field into our FLRW
background with the property B2

ð0Þ 	 �ð0Þ which must to

be sufficiently random to satisfy hBii ¼ 0 and hB2
ð0Þi ¼

hBð0Þ
i Bi

ð0Þi � 0 to ensure that symmetries and the evolution

of the background remain unaffected. Again we work
under MHD approximation, and thus in large scales the
plasma is globally neutral, charge density is neglected, and
the electric field with the current should be zero. Thus
the only zero-order magnetic variable is B2

ð0Þ [30]. The

evolution of the density magnetic field can be found con-
tracting the induction equation with Bi arriving at

ðB2
ð0ÞÞ0 ¼ �4HB2

ð0Þ; (101)

showing B2 � a�4 in the background. Bianchi models are
often used to describe the presence of a magnetic field in
the Universe due to anisotropic properties of this metric.
However, as we are dealing with weak magnetic fields, it is
worth assuming the presence of a magnetic field in a
FLRW metric as background. Indeed, the authors in [39]
found that, although there is a profound distinction be-
tween the Bianchi I equations and the FLRW approxima-
tion, at the weak field limit, these differences are reduced
dramatically, and therefore the linearized Bianchi equa-
tions are the same as the FLRW ones. Under these con-
ditions, we find that to zero order the electromagnetic
energy-momentum tensor in the background is given by

T0
ðemÞ0 ¼ � 1

8�
B2
ð0Þ; (102)

T0
ðemÞi ¼ Ti

ðemÞ0 ¼ 0; (103)

Ti
ðemÞl ¼

1

24�
B2
ð0Þ�

i
l: (104)

The magnetic anisotropic stress is treated as a first-
order perturbation due to stochastic properties of the field;
therefore, it does not contribute to the above equations.
We can see in Eqs. (21) and (102)–(104) that fluid and
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electromagnetic energy-momentum tensors are diagonal
tensors, that is, are consistent with the condition of an
isotropic and homogeneous background [30]. If we con-
sider the average magnetic density of the background
different to zero, the perturbative expansion at kth order
of the magnetic density is given by

B2 ¼ B2
ð0Þ þ

X1

k¼1

1

k!
B2
ðkÞ; (105)

where at first order we get a gauge-invariant term that
describes the magnetic energy density

�ð1Þ
mag � B2

ð1Þ þ ðB2
ð0ÞÞ0Sk

ð1Þ; (106)

one can find that average density of the background field
decays as B2

ð0Þ � 1
a4ð�Þ [40]. At first order we work with

finite conductivity (real MHD). In this case the electric
field and the current becomes nonzero; therefore, using
Eq. (23) and assuming the Ohmic current is not neglected,
we find the Ohm’s law

Jð1Þi ¼ 
½Eð1Þ
i þ ðV ð1Þ � Bð0ÞÞi�: (107)

In the last equation the Lorentz force appears at first order
when a magnetic field is consider as a part of the back-
ground. Again doing the same procedure described before,
but taking a weak magnetic field as a contribution from the
background, we shall show the implication of this suppo-
sition afterword. The electromagnetic energy-momentum
tensor at first order is given by

T0
ðemÞ0 ¼ � 1

16�
F2
ð1Þ; (108)

Ti
ðemÞ0¼

1

4�
½B2

ð0Þ#
i
ð1Þ��ikmEð1Þ

k Bm
ð0ÞþB2

ð0Þð�i
?ð1ÞÞ0�; (109)

T0
ðemÞi ¼

1

4�
½�kmi Eð1Þ

k Bm
ð0Þ�; (110)

Ti
ðemÞl ¼

1

4�

�
1

12
F2
ð1Þ�

i
l þ�ið1Þ

lðemÞ

�
; (111)

where

F2
ð1Þ ¼ 2�ð1Þ

ðmagÞ � 8�ð1ÞB2
ð0Þ � 2ðB2

ð0ÞÞ0Sk
ð1Þ

þ 4

3
r2�ð1ÞB2

ð0Þ � 8HSk
ð1ÞB

2
ð0Þ; (112)

and �ið1Þ
lðemÞ ¼ 1

3 ð�ð1Þ
mag þ E2Þ�i

l � BlB
i � ElE

i is the

anisotropic stress that appears as a perturbation of the
background. This term is important to constraining
the total magnetic energy because it is a source of gravi-
tational waves [9]. The above equations are written in
terms of gauge-invariant variables plus terms as Sð1Þ that
are gauge dependent. Now, using the above Eqs. (59), (61),
(60), and (62) with the Ohm’s law Eq. (107), we arrive at
the dynamo equation that gives us the evolution of the
magnetic field to first order:

ðBð1Þ
k Þ0 þ 2HBð1Þ

k þ �½r � ðr � Bð1Þ � ðEð1ÞÞ0 � 2HEð1ÞÞ�k
þ ðr� ðBð0Þ �V ð1ÞÞÞk ¼ 0: (113)

When we suppose a weak magnetic field on the back-
ground, in the dynamo equation a new term called dynamo
term appears that could amplify the magnetic field. This
term depends of the evolution in V ð1Þ, see Eq. (57), and

also from Eq. (57), it seems likely that when matter and
velocity perturbation grow, the dynamo term amplifies the
magnetic field; this is different from the first approach
where the dynamo term just appears at second order. For
convenience it is better to use the Lagrangian coordinates
that are comoving with the local Hubble flow. Therefore,
we use the convective derivative that is evaluated accord-
ing to the operator formula (i.e., d

dt ¼ @
@t þV i

ð1Þ@i). In this

picture the magnetic field lines are frozen into the fluid.
Using the well-known identity formula

r� ða� bÞ ¼ aðr 
 bÞ � bðr 
 aÞ
þ ðb 
 rÞa� ða 
 rÞb; (114)

we obtain the following result:

dBi

dt
þ 2HBi ¼ Bj

�
@V ð1Þ

i

@xj
� 1

3
�ij

@V ð1Þ
k

@xk

�
þ 2

3
Bi

@V ð1Þ
j

@xj
;

(115)

where the diffusion term will not be considered for the
moment. The first term on the right-hand side is associated
with the shear and the last term describes the expansion of

the region where V ð1Þ is not zero. In the case of a homo-

geneous collapse, B�V�2
3 gives rise to amplification of

the magnetic field in places where gravitational collapse
takes place. Now we write Eq. (113) in the Poisson gauge
getting the following:

dBk
ð1Þ

dt
þ 2HBk

ð1Þ þ �

�
�r2Bk

ð1Þ �
�
r�

�
1

a2
dða2Eð1ÞÞ

dt
�V i

ð1Þ@iEð1Þ
��

k

� Bk
ð0Þr2ð�ð1Þ � 3�ð1ÞÞ þ ðBð0Þ 
 rÞ@kð�ð1Þ � 3�ð1ÞÞ � ðrð�ð1Þ � 3�ð1ÞÞ 
 rÞBk

ð0Þ

�

¼ Bð0Þ
l 
lk

ð1Þ �
2

3
Bk
ð0Þ@lV

l
ð1Þ; (116)
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where 
lk
ð1Þ is the shear found in Eq. (115). The last term on the left-hand side in Eq. (116) should vanish due to

the background isotropy. The evolution of the magnetic field following the last equation is highly dependent of term
�ð1Þ � 3�ð1Þ. If the perturbations are turned off, one can check that the last equation recovers to the dynamo equation
found in the literature. It should be noted that terms such as hBk

ð0Þi are zero due to statistical field properties; therefore,
contracting Eq. (116) with magnetic field Bð1Þ

k , we arrive at an equation at second order in which we can physically study
the evolution of the density magnetic field:

d�ð2Þ
ðmagÞ
dt

þ 4H�ð2Þ
ðmagÞ þ 2�

�
�Bð1Þ 
 r2Bð1Þ � Bð1Þ 


�
r�

�
1

a2
dða2Eð1ÞÞ

dt
�V i

ð1Þ@iEð1Þ
��

� 1

2
�ð1Þ

ðmagÞr2ð�ð1Þ � 3�ð1ÞÞ þ Bk
ð1ÞðBð0Þ 
 rÞ@kð�ð1Þ � 3�ð1ÞÞ

�
¼ �2�ð1Þ

ijðemÞ

ij
ð1Þ �

2

3
�ð1Þ

ðmagÞ@lV
l
ð1Þ; (117)

where using Eqs. (105) and (16) the energy density magnetic field at second order transforms as

�ð2Þ
ðmagÞ ¼ B2

ð2Þ þ B20
ð0Þ�ð2Þ þ �ð1ÞðB200

ð0Þ�ð1Þ þ B20
ð0Þ�

0
ð1Þ þ 2B20

ð1ÞÞ þ �i
ð1ÞðB20

ð0Þ@i�
ð1Þ þ 2@iB

2
ð1ÞÞ: (118)

The parameters � and � are set using the Poisson gauge
calculated in Appendix A. Equation (117) shows how the
field acts as an anisotropic radiative fluid, which is im-
portant in times where the Universe is permeated by
anisotropic components. In addition, the second term on
the right-hand side describes the perturbation at first order
in the volume expansion. Equations (113) and (117) show
the important role of a magnetized FLRW model. The set
of Eqs. (113)–(116) directly offers a first estimation of
how a perturbed four-velocity coupling to a magnetic
field gives a common dependence of B�V�2

3 under an
ideal assumption of infinity conductivity. However, for a
real MHD a complete solution should be calculated to-
gether with the case of Eq. (117). The right-hand side in
Eq. (117) provides new phenomenology about the role of
the shear and the anisotropic magnetic stress tensor to-
gether with a kinematical effect driven for the last term,
reinforcing the claim in [8]. In the paper from Matarrese
et al. [8] an estimation of the magnetic field to second
order dropping the matter anisotropic stress tensor is
given by Eq. (16), and from this equation they are to
able to compute a solution for the magnetic field,
although in our case we suppose the presence of stress
and vector modes at first order possibly generated in early
stages from the Universe.

X. DISCUSSION

A problem in modern cosmology is to explain the origin
of cosmic magnetic fields. The origin of these fields is still
in debate but they must affect the formation of large-scale
structure and the anisotropies in the CMB [41–43]. We can

see this effect in Eq. (91) where the evolution of �ð2Þ
�

depends on the magnetic field. In this paper we show that
the perturbed metric plays an important role in the global
evolution of magnetic fields. From our analysis, we wrote a
dynamolike equation for cosmic magnetic fields to second
order in perturbation theory in a gauge-invariant form. We

get the dynamo equation from two approaches. First, using
the FLRW as a background space-time and the magnetic
fields as a perturbation, the results are Eqs. (63) and (97) to
second order. In the second approach (see Sec. IX) a weak
magnetic field was introduced in the background space-
time and due to its statistical properties that allow us to
write down the evolution of magnetic field Eqs. (113) and
(117) and fluid variables in accordance with [30]. We
observe that essentially, the functional form is the same
in the two approaches, the coupling between geometrical
perturbations and fields variables appear as sources in the
magnetic field evolution giving a new possibility to explain
the amplification of primordial cosmic magnetic fields.
One important distinction between both approximations
is the fractional order in the fields that appears when we
consider the magnetic variables as perturbations on the
background at difference when the fields are from the
beginning of the background (Sec. IX). Although the first
alternative is often used in studies of GWs production in
the early universe [35], the physical explanation of these
fractional orders is sometimes confused, while if we con-
sider a universe permeated with a magnetic density from
the background, the perturbative analysis is more straight-
forward. Further studies as anisotropic (Bianchi I) and
inhomogeneous (Lemaitre-Tolman-Bondi) models should
be addressed to see the implications from the metric be-
havior in the evolution of the magnetic field and relax the
assumption in the weakness of the field. An important
effect of this model is in an additional mechanism of
generation of magnetic field from cosmological density
perturbation during the radiation era. Following [8], we
discussed some details about the mechanism that was
proposed by Harrison (see [8] and some reviews therein).
At high temperature T > 230 eV there is a strong interac-
tion between electrons and photons getting two fluids:
electron-photon and protons plasma (coupling between
protons and photons is weak in this stage), while for
temperatures below 230 eV, the Coulomb scattering be-
tween protons and electrons is more effective than
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electron-photon and proton-photon interaction. In any case
electric fields are induced due to velocity differences be-
tween the components (more specifically differences in the
strength of the interactions and mass of the components),
which give rise to magnetic fields through Maxwell equa-
tions. To study this phenomena we can use the energy-
momentum conservation equations, adding terms that take
into account the momentum transfer in the components of
the primordial plasma (electron, photons, protons, and
electromagnetic field). The momentum equation for pho-
tons (w ¼ 1=3) is found using Eq. (92) and adding the
momentum transfer between electron-photons given by

Kð�Þ
i ¼ 4

3n�ð0Þ��ðvðeÞ
i � vð�Þ

i Þ with �� ¼ an
, 
 being

the conductivity, n the density number, and a the scale
factor. For nonrelativistic protons and electrons (w ¼ 0)
we should care about the momentum transfer due to

Coulomb scattering given by KðepÞ
i ¼ nðvðeÞ

i � vðpÞ
i Þ=�e

where �e ¼ me

ne2

. Thus, we arrive at writing the momentum

equation for proton, electron, and photon that are shown in
Eqs. (B4)–(B6) in Appendix B. If we choose the 3-current
as Ji ¼ qnV i for each component, we recover the Eqs. (4)
and (5) from Matarrese et al. [8] considering the supposi-
tions done by the authors. Combining the momentum
equations together with the Maxwell equation found in
Sec. VII, one can find a system of equations that relate
the motion of the fluid to the magnetic field, considering
the interaction between the species. The properties of this
mechanism have been deeply studied by authors in [8],
getting a generation of the field only at second order under
the tight coupling approximation and other important re-
sults of the presence of magnetic fields in radiation era.
Further work should be done in order to solve the cosmic
dynamo equation and it is the next step that must be
addressed.
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APPENDIX A

For removing the degrees of freedom we fix the gauge
conditions as

@i!ðrÞ
i ¼ @i�ðrÞ

ij ¼ 0: (A1)

This lead to some functions being dropped

!kðrÞ ¼ �ðrÞ?
i ¼ �ðrÞk ¼ 0; (A2)

with the functions defined in Eqs. (37) and (38). The
perturbed metric in the Poisson gauge is given by (99)
thus, using the last constraints together with Eqs. (5.18)–
(5.21) in [25] and following the procedure made in [11], the
vector that determines the gauge transformation at first

order �ð1Þ
i ¼ ð�ð1Þ; @i�ð1Þ þ dð1Þi Þ is given by

�ð1Þ ! !k
ð1Þ þ �0

ð1Þ; �ð1Þ ! ��kð1Þ

2
;

dð1Þi ! ��?ð1Þ
i : (A3)

Now to second order, when we use Eq. (5.37) in [25] with
Eq. (38) we obtain the following transformations:

~�ð2Þk ¼ �ð2Þk þ 2�ð2Þ þ 3

2
r�2r�2Xð2Þk; (A4)

with

Xð2Þk ¼ 2ð@i@jDij�
0
ð1Þk þ 2H@i@jDij�

ð1ÞkÞ�ð1Þ þ 2

a2
ða2�ð1Þ

ij Þ0@i@j�ð1Þ

þ 2�k
ð1Þ@

i@j@kDij�
ð1Þk þ 2@k�

ð1Þ
ij @

i@j�k
ð1Þ þ 2ð�4@i@j�ð1Þ þ @i@j�ð1Þ@0 þ @i@j�k

ð1Þ@k

þ 4H@i@j�ð1ÞÞð@ðjdð1ÞiÞ þDij�
ð1ÞÞ þ 2ð�4�ð1Þ þ �ð1Þ@0 þ �k

ð1Þ@k þ 4H�ð1ÞÞð@i@jDij�ð1ÞÞ

þ 2

�
2!ð1Þ

i @ir2�ð1Þ þ 2@jr2!k
ð1Þ@j�

ð1Þ � @j�
ð1Þ@jr2�ð1Þ þ @jr2�0

ð1Þ@j�
ð1Þ þ �ð1Þ0

i @ir2�ð1Þ

� r2

�
ð2!k

ð1Þ � @k�ð1Þ þ �0
ð1ÞÞ@k

�ð1Þ
3

��
þ 2

�
2@i@jðDij�

k
ð1Þ þ @i�

?
kð1ÞÞ@j�k

ð1Þ þ 2�ð1Þ
ik @

ir2�k
ð1Þ

þ 2@j�
k
ð1Þ@

jr2�ð1Þ
k þ @k�

ð1Þ
i @ir2�k

ð1Þ þ @j�
k
ð1Þ@

jr2�ð1Þ � 1

3
r2½ð2�ð1Þ

kl þ 2@ðl�
ð1Þ
kÞ Þ@l�k

ð1Þ�
�
: (A5)

Now if we fix the Poisson gauge, ~�ð2Þk ¼ 0 we can fix the scalar part of the space gauge

�ð2Þ ¼ ��ð2Þk

2
� 3

4
r�2r�2Xð2Þk: (A6)

For the vector space part we should know the transformation rule for the vector part
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~�ð2Þ?
i ¼ �@iðr�2r�2Xð2ÞkÞ þ �ð2Þ?

i þ dð2Þi þr�2Xð2Þ?
i ;

(A7)

with

Xð2Þ?
i ¼ 2ð@jDij�

0k
ð1Þ þ r2�0?

ið1Þ þ 2Hð@jDij�
k
ð1Þ þ r2�?

ið1ÞÞÞ�ð1Þ þ 2

a2
ða2�ð1Þ

ij Þ0@j�ð1Þ þ 2�k
ð1Þ@kð@jDij�

k
ð1Þ þ r2�?ð1Þ

i Þ
þ 2@k�

ð1Þ
ij @

j�k
ð1Þ þ 2ð�4@j�ð1Þ þ @j�ð1Þ@0 þ @j�k

ð1Þ@k þ 4H@j�ð1ÞÞ 
 ð@ðjdð1ÞiÞ þDij�
ð1ÞÞ

þ ð�ð1Þ@0 � 4�ð1Þ þ �k
ð1Þ@k þ 4H�ð1ÞÞ 
 ðr2dð1Þi þ 2@jDij�

ð1ÞÞ

þ 2

�
@j!ð1Þ

i @j�
ð1Þ þ!ð1Þ

i r2�ð1Þ þ r2!k
ð1Þ@i�

ð1Þ þ!ð1Þ
j @j@i�

ð1Þ � @j@i�
ð1Þ@j�ð1Þ

� r2�ð1Þ@i�ð1Þ þ @j�0
ið1Þ@j

�ð1Þ

2
þ �0

ið1Þr2 �
ð1Þ

2
þ 1

2
�0
jð1Þ@i@

j�ð1Þ � 1

3
@i½ð2!k

ð1Þ � @k�ð1Þ þ �0
ð1ÞÞ@k�ð1Þ�

�

þ 2

�
�ð1Þ
ik r2�k

ð1Þ þ @i�
k
ð1Þð@jDjk�

k
ð1Þ þ r2�ð1Þ?

k Þ þ �ð1Þ
jk @

j@i�
k
ð1Þ þ @j�

k
ð1Þ@

j@i�
ð1Þ
k þr2�k

ð1Þ@i�
ð1Þ
k

þ 1

2
@j@k�

ð1Þ
i @j�

k
ð1Þ þ

1

2
@kr2�ð1Þ@i�k

ð1Þ þ
1

2
@k�

ð1Þ
j @j@i�

k
ð1Þ þ r2�0

ð1Þ@i
�ð1Þ

2
þ 1

2
@k�

ð1Þ
i r2�k

ð1Þ

þ @j�ð1Þ
ik @j�

k
ð1Þ �

1

3
@i½ð2�ð1Þ

kl þ 2@ðl�
ð1Þ
kÞ Þ@l�k

ð1Þ�
�
: (A8)

Now we use the condition ~�ð2Þ?
i ¼ 0, for instance,

dð2Þi ¼ @iðr�2r�2Xð2ÞkÞ � �ð2Þ?
i �r�2Xð2Þ?

i : (A9)

To find the temporal part of the gauge transformation, we use Eq. (5.35) in [25] and Eq. (37). With some algebra, the scalar
part transforms like

~! ð2Þk ¼ !ð2Þk � �ð2Þ þ �0
ð2Þ þ r�2Wð2Þk; (A10)

with

Wð2Þk ¼ �4ð@ic ð1Þ@i�ð1Þ þ c ð1Þr2�ð1ÞÞ þ @i�ð1Þ½2!ð1Þ0
i þ 4H!ð1Þ

i � @i�
0
ð1Þ þ �00

ð1Þi � 4Hð@i�ð1Þ � �0
ið1ÞÞ�

þ �ð1Þ½2r2!0
ð1Þk þ 4Hr2!ð1Þ

k � r2�0
ð1Þ þ r2�00 � 4Hðr2�ð1Þ � r2�0

ð1ÞÞ�
þ @i�j

ð1Þð2@j!ð1Þ
i � @i@j�

ð1Þ þ @j�
0
ið1ÞÞ þ �j

ð1Þð2@jr2!k
ð1Þ � @jr2�ð1Þ þ @jr2�0

ð1ÞÞ
þ �0

ð1Þð2r2!k
ð1Þ � 3r2�ð1Þ þ r2�0

ð1ÞÞ þ @i�0
ð1Þð2!ð1Þ

i � 3@i�
ð1Þ þ �0

ð1ÞiÞ þ r2�j
ð1Þð2!ð1Þ

j � @j�
ð1ÞÞ

þ @i�
j
ð1Þð2@i!ð1Þ

j � @i@j�
ð1ÞÞ þ @i�j0

ð1Þ½@j�ð1Þ
i þ 2�ð1Þ

ij þ 2@i�
ð1Þ
j � 4�ð1Þ�ij�

þ �j0
ð1Þ½�4@j�

ð1Þ þ 2ð@iDij�
k
ð1Þ þ r2�ð1Þ?

j þ 2r2�ð1Þ
j þ @i@j�

ð1Þ
i Þ�; (A11)

in this way we fix the temporal part of the gauge using
~!ð2Þk ¼ 0 in the last equation finding the following:

�ð2Þ ¼ !k
ð2Þ þ @0�ð2Þ þ r�2Wð2Þk: (A12)

Therefore, we found explicitly the set of functions that fix
the gauge dependence given by Eqs. (A3), (A6), (A9), and
(A12). Thus, using the above equations we can calculate
the gauge dependence in the scalar perturbations at second
order that were shown in Eq. (67)

Sk
ð2Þ ¼!k

ð2Þ �
�kð2Þ0

2
�3

4
r�2r�2Xð2Þ0

k þr�2Wð2Þk; (A13)

which can be interpreted like shear to second order; again
we see the last equation is a generalization for the first-
order scalar shear plus quadratic terms in the perturbed
functions.

APPENDIX B

To find the charge evolution, we use the fact that
j�;� ¼ 0; therefore, the temporal part of this equation drive

us to the charge conservation

%ð1Þ0 þ 3H%ð1Þ þ @iJ
i
ð1Þ ¼ 0; (B1)

at first order in the approximation and
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%ð2Þ0 þ 3H%ð2Þ þ @iJ
i
ð2Þ þ ð�ð1Þ0 � 3�ð1Þ0Þ%ð1Þ þ @ið�ð1Þ0 � 3�ð1Þ0ÞJið1Þ ¼ 0; (B2)

to second order. These equations are important for resolving the dynamo equation. In the Sec. VI was found the momentum
equation at second order, where S13

i is given by

S13
i ¼ ½�ð1Þð1þ c2sÞV ð1Þ

i �0
�ð0Þð1þ wÞ þ 4H

�ð1Þð1þ c2sÞV ð1Þ
i

�ð0Þð1þ wÞ þ 2
½�ð0Þð1þ wÞ�ð1Þ

ij 
j
ð1Þ�0

�ð0Þð1þ wÞ

þ 8H�ð1Þ
ij 

j
ð1Þ � 8H�ð1Þð1Þ

i � ½�ð0Þð1þ wÞð!ð1Þ
i þV ð1Þ

i Þ�0�ð1Þ

�ð0Þð1þ wÞ þ�ð1Þð1þ c2sÞ@i�ð1Þ

�ð0Þð1þ wÞ
�!ð1Þ

i �0
ð1Þ � 4H�ð1ÞðV ð2Þ

i þ!ð1Þ
i Þ þ jð@jð1Þ

i Þ � 3�0
ð1ÞðV ð1Þ

i þ ð1Þ
i Þ � j

ð1Þ@½i!
ð1Þ
j� � 2�ð1Þ@i�ð1Þ

� 2�ð1Þ½�ð0Þð1þ wÞð1Þ
i �0 þ ð@j�ð1Þ þH!ð1Þ

j Þ�jð1Þ
i

�ð0Þð1þ wÞ þV ð1Þ
i @�@

�ð1Þ �
6@j�

ð1Þ�jð1Þ
i � 1

2@j�
kð1Þ
i �jð1Þ

k

�ð0Þð1þ wÞ ; (B3)

wherew ¼ Pð0Þ
�ð0Þ

is the state equation (w ¼ 0 for dust andw ¼ 1=3 for radiation era) and c2s ¼ Pð1Þ
�ð1Þ

the adiabatic sound speed.
Using the expression for the momentum exchange among particles and the momentum conservation, we obtain the
following equations for protons, electrons, and photons during radiation era

�ðpÞ
ð0Þ ½V ð2ÞðpÞ0

i þHV ð2ÞðpÞ
i þ @i�

ð2Þ þ 2S13ðpÞ
i � þ @i�

ð2ÞðpÞ
P þ 4

3
@ir2�ð2Þ

ðpÞ ¼ a4ðEð1Þ
i %ðpÞ

ð1Þ þ �kijJ
jðpÞ
ð1Þ B

ð1Þ
k Þ þ KðepÞ

i ; (B4)

�ðeÞ
ð0Þ½V ð2ÞðeÞ0

i þHV ð2ÞðeÞ
i þ @i�

ð2Þ þ 2S13ðeÞ
i � þ @i�

ð2ÞðeÞ
P þ 4

3
@ir2�ð2Þ

ðeÞ ¼ a4ðEð1Þ
i %ðeÞ

ð1Þ þ �kijJ
jðeÞ
ð1Þ B

ð1Þ
k Þ � KðepÞ

i þ Kð�Þ
i ; (B5)

4

3
�ð�Þ

ð0Þ ½V ð2Þð�Þ0
i þ @i�

ð2Þ þ 2S13ð�Þ
i � þ @i�

ð2Þð�Þ
P þ 4

3
@ir2�ð2Þ

ð�Þ ¼ �Kð�Þ
i : (B6)
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