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In this paper, we compare brane inflation models with the Planck data and the pre-Planck data (which

combines WAMP, ACT, SPT, BAO and H0 data). The Planck data prefer a spectral index less than unity at

more than 5� confidence level, and a running of the spectral index at around 2� confidence level. We find

that the KKLMMT model can survive at the level of 2� only if the parameter � (the conformal coupling

between the Hubble parameter and the inflaton) is less than Oð10�3Þ, which indicates a certain level of

fine-tuning. The IR DBI model can provide a slightly larger negative running of spectral index and red tilt,

but in order to be consistent with the non-Gaussianity constraints from Planck, its parameter also needs

fine-tuning at some level.
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I. INTRODUCTION

The ongoing astronomical observations, such as WMAP
[1], Planck [2–4], SDSS [5], ACT [6] and SPT [7], have
been measuring the cosmic microwave background (CMB)
and large scale structure to an unprecedented precision.
This provides an excellent opportunity to probe the physics
in the early Universe with the underlying fundamental
theories. One of the leading candidates of generating initial
fluctuations in the early Universe is inflation [8,9]. The
inflation paradigm offers a compelling explanation for
many puzzles in the standard hot big-bang cosmology,
such as the flatness problem, homogeneity problem and
horizon problem [8]. The accelerated expansion period in
the early Universe provides a nearly scale-invariant pri-
mordial power spectrum which has already been supported
by the measurements of CMB anisotropy [1–4,6,7,10]. In
spite of its phenomenological success, inflation remains a
paradigm rather than a fundamental theory, which in prin-
ciple can be implemented by various models from different
microscopic physical constructions [11]. The fact that it is
easy to construct a wide variety of inflation models does
not mean that any of them will turn out to be the true
mechanism. Actually, effective field theory models of
inflation should by definition be understood as valid only
up to some energy scale that is low enough, and so the
singularity problem and any ‘‘trans-Planckian’’ effects are
out of the range of validity of the models [12,13]. If one
would like a UV completion to any effective field theory
ideas, one might hope that the string theory would provide
such a way. Undoubtedly, inflation can be successfully
realized in a string context.

The string inflation model considered in this paper is the
brane inflation scenario, proposed in [14,15] originally,
which offers a class of observational signatures. In this
scenario, the inflation is driven by the potential between
the parallel dynamic brane and antibrane [16–18], and the
distance between the branes in the extra compactified di-
mensions plays the role of the inflaton field. This inflation
scenario can be realized via two viable mechanisms, namely,
the slow-roll and Dirac-Born-Infeld (DBI) inflations [11].
The original brane inflation model is the slow-roll

inflation model [14,16–18], where branes and antibranes
are slowly moving towards each other in a flat potential.
The KKLMMTmodel [19] provides such an example. In this

model, the antibrane is fixed at the bottom of awarped throat,
while the brane is mobile and experiences a small attractive
force towards the antibrane [19,20]. When the brane and

antibrane collide and annihilate, the inflation ends and the
hot big-bang epoch is initiated. The annihilation of the brane
and antibrane makes the universe settle down to the string

vacuum state that describes our Universe [19,20]. For exten-
sive studies on the KKLMMT model and other types of

slow-roll brane inflation models, see Refs. [11,20–27].
Another inflationary mechanism is the DBI inflation. In

this paradigm, the speed of the rolling brane is not deter-
mined by the shape of the potential but by the speed limit
of the warped spacetime [28–32]. The warped internal
spaces naturally arise in the extra dimensions due to the
stabilized string compactification.
In order to test the inflationary paradigm and explore the

dynamics of the internal space, we will scan the parameter
spaces of these two types of inflation models subject only
to the requirement that they provide enough e-folding
number to solve the flatness, horizon and homogeneity
problems. This is because solving the problems of standard
cosmology is the basic motivation of the inflation paradigm
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and the most attractive feature of inflation models [11].
Then we will explore the observational signatures that are
allowed by brane inflation dynamics and constrain the
model parameters with the current observational CMB
data. We will see that the current observational data are
able to tighten up the parameter space of brane inflation to
a great extent and the generic models need to be fine-tuned
to match the current observations.

Recently the Planck team just released the results from
the 2.7 full-sky surveys [2]. For the �CDM model, Planck
data combined with WMAP polarization data (hereafter
PlanckþWP) show that the index of the power spectrum
satisfies [3,4]

ns ¼ 0:9603� 0:0073 ð1�CLÞ; (1)

at the pivot scale k0 ¼ 0:05 Mpc�1, which rules out the
exact scale invariance (ns ¼ 1) at more than 5�. If the
running of spectral index �s ¼ dns=d ln k is released as a
free parameter, the spectral index becomes redder,

ns ¼ 0:9561� 0:0080 ð1�CLÞ; (2)

while the running of the spectral index is not equal to zero
at less than 2� CL,

dns=d ln k ¼ �0:0134� 0:0090 ð1�CLÞ: (3)

For a comparison, in [33], we combined the WMAP
9-year data [1] with ACT data [6], SPT data [7], as well as
BAO data [5,34,35] and H0 data [36] (hereafter, we call
this combined data set the ‘‘WMAP9+’’ data set), and we
obtained a red spectral index of power spectrum at the
pivot scale k0 ¼ 0:002 Mpc�1,

ns ¼ 0:961� 0:007 ð1�CLÞ: (4)

But if we let the running of the spectral index be �s ¼
dns=d ln k as a free parameter, the spectral index becomes

ns ¼ 1:018� 0:027 ð1�CLÞ; (5)

and the running of the spectral index becomes

�s ¼ dns=d ln k ¼ �0:021� 0:009 ð1�CLÞ: (6)

In addition, the joint constraints on r (tensor-to-scalar
ratio) and ns already become a very sensitive tool to
constrain inflation models. In [1], it is found that inflation
models with power-law potential �4 cannot provide a
reasonable number of e-folds (between 50–60) in the re-
stricted space of r-ns at around 2� level. Reference [33]
pushes this limit further and shows that with the combina-
tion of WMAP9, ACT, SPT, BAO andH0 data, the inflation
potential with power law form�p can only survive if p is in
the range of 0.9–2.1.

Besides the above conventional parameters that have
been used to constrain inflation models, Planck data are
also able to constrain the non-Gaussianity of primordial
fluctuations. The Planck found that the local, equilateral
and orthogonal types of non-Gaussianity are

flocalNL ¼ 2:7� 5:8 ð1�CLÞ;
f
equil
NL ¼ �42� 75 ð1�CLÞ;
forthNL ¼ �25� 39 ð1�CLÞ:

(7)

These place very tight constraints on the inflation model
space.
Based on the WMAP 3-year and 5-year results,

Refs. [20,23] investigated brane inflation models and
showed that the KKLMMT model cannot fit WMAPþ
SDSS data at the level of one standard deviation and a fine-
tuning (at least one part in a hundred) is needed at the level
of two standard deviations. Since the CMB data have been
dramatically improved over the past several years, it is
meaningful to see how the status of brane inflation is
affected by the arrival of the new CMB data, especially
the Planck andWMAP9+ data. In this paper, wewill have a
close look at the constraints on the brane inflation models
with the results from Planck [2–4] and pre-Planck surveys
[1,5–7].
This paper is organized as follows: In Sec. II, we discuss

the relationship between the e-folding number of inflation
and the pivot scale of observation. In Sec. III, we discuss a
simple brane inflation model neglecting the problem of
dynamic stabilization. This is the simplest brane inflation
model one can achieve in the multidimensional spacetime.
In Sec. IV, we focus on the KKLMMT model and compare
the model predictions with observational data. In Sec. V,
we turn to the discussion of the infrared DBI inflation
model and confront the model predictions with observa-
tional data. The conclusion is presented in the last section.

II. NUMBER OF E-FOLDS

Before we start to constrain any inflation model, we first
address an important issue in the inflation model tests: how
do we compare model predictions with observational data?
Inflation models are actually models of different inflation
potentials, where the amplitude and shape are the features
of various models. In the community of inflation theorists,
people use the amplitude of potential to characterize the
energy scale of inflation and a set of ‘‘slow-roll’’ parame-
ters to describe the shape of the potential. Usually the
shape of the potential includes the ‘‘slope’’ and ‘‘curva-
ture’’ parameters of the potential. For a given potential, the
slow-roll parameters can be expressed in terms of the
number of e-folds (Ne) which characterizes the duration
of inflation.
On the other hand, observations from the CMB provide

constraints on the amplitude and shape of the primordial
power spectrum. But since the power spectrum itself is a
k-dependent quantity, the measured amplitude (�2

R), tilt

(ns), tensor-to-scalar ratio (r) and running of spectral index
(dns=d ln k) are referred to a particular ‘‘pivot scale.’’ This
indicates that for a given data set, if the pivot scale is
switched to a different value, the constraints on the
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(�2
Rðk0Þ, nsðk0Þ, dns=d ln k) can be slightly different.

Therefore, to really compare model predictions with
observational data, we need to associate the number of
e-folds with the pivot scale of observation. Our main
goal in this section is to obtain a relationship between the
number of e-folds Ne and its corresponding comoving
scale k.

Once inflation happened, different scales (different
k-modes) stretched out of the Hubble radius at different
time. After inflation, the Universe experienced a short
period of reheating, and then entered into radiation, matter
and dark energy dominated eras. The number of e-folds is
related to the processes of subsequent evolution because
both the inflation and subsequent evolutionary processes
contribute to the total expansion factor of the Universe (see
Fig. 1 in [37]). We can therefore write [37]

k

a0H0

¼ akHk

a0H0

¼
�
ak
ae

��
ae
areh

��
areh
aeq

��
Hk

Heq

��
aeqHeq

a0H0

�
; (8)

where we used the subscripts ‘‘k, e, reh, eq, 0’’ to represent
the horizon exit, end of inflation, reheating epoch, matter-
radiation equality epoch and present time. Number of
e-folds between horizon exit and the end of inflation is
NeðkÞ ¼ ln ðae=akÞ. By assuming the equation of state
during the reheating era beingw (w ¼ P=�), one can reach
the following equation (see also [37,38]),

NeðkÞ ¼ � ln

�
k

a0H0

�
þ ln

� ffiffiffiffiffiffiffiffiffiffiffi
Vk

3M2
pl

s
1

Heq

�
þ ln ð219 �mhÞ

� 1

3ð1þ wÞ ln
�
�e

�reh

�
� 1

4
ln

�
�reh

�eq

�
; (9)

where Vk is the energy scale of inflation at horizon exit, and
Mpl � 1=ð8�GÞ ’ 2:4� 1018 GeV is the reduced Planck

mass. By defining the ratio of the energy densities between
at the reheating and at the end of inflation as x � �reh=�e,
and regarding �e ¼ Vk (‘‘slow-roll’’ approximation), we
can rewrite Eq. (9) as

NeðkÞ ¼ � ln

�
k

a0H0

�
þ ln

� ffiffiffiffiffiffiffiffiffiffiffi
Vk

3M2
pl

s
1

Heq

�
þ ln ð219 �mhÞ

þ
�

1

3ð1þ wÞ �
1

4

�
ln xþ 1

4
ln

�
�eq

Vk

�
: (10)

To further simplify this equation, we use the requirement
that the primordial perturbations have to produce the ob-
served level of fluctuations (Psðk0Þ ’ 2:43� 10�9), i.e.,

Ps ¼
Vk=M

4
pl

24�2�v
; where �v ¼ M2

pl

2

�
V0

V

�
2
: (11)

Substituting known quantities, Eq. (10) can be greatly
simplified as

NeðkÞ ¼ � ln

�
k

2:33� 10�4 Mpc�1

�

þ 63:3þ 1

4
�v þ

�
1

3ð1þ wÞ �
1

4

�
ln x: (12)

For a particular mode k, its corresponding NeðkÞ relies on
the equation of state w and energy scale of reheating �reh.
Since the standard picture tells that vacuum is decayed into
standard particles, �reh is always less than or equal to
potential energy scale Vk, i.e., x � 1, thus ln x is always
a negative value. Therefore, if w ! 0 (close to a ‘‘matter-
dominated phase’’), the fourth term of Eq. (12) becomes
ð1=12Þ ln x, which gives a minimal number of e-folds. This
means that if the equation of state is close to zero, the shape
of the potential (��2) can keep inflaton oscillating for a
fairly long period of time while the Universe is expanding,
therefore we need less number of e-folds to produce an
observable scale of the Universe. On the other hand, if the
equation of state during the reheating era is w ’ 1=3, or
the reheating is instantaneous (�reh ¼ Vk, i.e., ln x ¼ 0),
the fourth term vanishes, which gives the maximum
number of e-folds (��4). Since there is a great uncertainty
of what energy scale reheating really happened, in the
following discussion we stick to the case of instantaneous
reheating, so that the number of e-folds becomes

NeðkÞ ¼ � ln

�
k

2:33� 10�4 Mpc�1

�
þ 63:3þ 1

4
�v: (13)

For joint WMAP9 þ SPT þ ACT þ BAO þ H0 data
(k0 ¼ 0:002 Mpc�1) and PlanckþWP data (k0 ¼
0:05 Mpc�1), the corresponding numbers of e-folds are

Nðk0Þ ¼ 61:2þ 1

4
ln � ðfor WMAP9þÞ;

Nðk0Þ ¼ 58:2þ 1

4
ln � ðfor PlanckþWPÞ:

(14)

Typically observational predictions of slow-roll parame-
ters (e.g., �v) depend on Ne, so both sides of Eq. (14)
contain Ne which could be solved simultaneously. In prac-
tice, the deviation ofNe from the typical value 60 is always
small, so one can solve Eq. (14) iteratively by assuming a
particularNe and use it to calculate the potential properties,
then use these to recalculate Ne, and so on. In fact, one
iteration easily suffices to give sufficient accuracy of Ne.
We will illustrate this in the following sections.

III. A TOY MODEL

A. Model predictions

To begin with, we consider a toy model of brane infla-
tion; actually, this is a prototype of the brane inflation: a
pair of Dp and �Dp-branes (p � 3) fill the four large
dimensions and are separated from each other in the extra
six dimensions that are compactified. Note that this model
is not a realistic working model because it does not take
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into account the warped spacetime and moduli stabiliza-
tion. However, such a prototype provides us with a warm-
up exercise for comparing models with CMB observations.
In this model, the inflaton potential is given by [17,20,23]

V ¼ V0

�
1��n

�n

�
; (15)

where V0 is an effective cosmological constant on the
brane and the second term in Eq. (15) is the attractive force
between the branes. The parameter n has to satisfy n � 4
because the transverse dimension has to be less or equal to
6. The e-folding number Ne at the horizon exit before the
end of inflation is related to the field value as [20,23]

�N ¼ ½NeM
2
pl�

nnðnþ 2Þ�1=ðnþ2Þ: (16)

The slow-roll parameters have been calculated as
[17,20,23]

�v ¼ M2
pl

2

�
V0

V

�
2 ¼ n2

2ðnðnþ 2ÞÞ2ðnþ1Þ
nþ2

�
�

Mpl

� 2n
nþ2
N

�2ðnþ1Þ
nþ2

e ; (17)

	v ¼ M2
pl

V 00

V
¼ �nþ 1

nþ 2

1

Ne

; (18)


v ¼ M4
pl

V 0V 000

V2
¼ nþ 1

nþ 2

1

N2
e

: (19)

The observational quantities, ns, r, and �s (spectral index,
tensor-to-scalar ratio, and running of spectral index), can
be expressed as the combination of slow-roll parameters

ns ¼ 1þ 2	v � 6�v; r ¼ 16�v;

�s ¼ �24�2v þ 16�v	v � 2
v:
(20)

These are the observables that we will compare with
observational results.

B. Constraints from Planck and pre-Planck data

In Fig. 1, we plot the theoretical prediction of r
(in terms of log 10r) and ns. The black and blue lines are
the predictions for n ¼ 2 and n ¼ 4 models with �=Mpl

values being 0.1 and 0.01. The range between small and big
dots corresponds to the number of e-folds within [50, 60].
The red line across the diagram is the boundary line
between the convex potential (	v > 0) and concave poten-
tial (	v<0). We also plot the 1� and 2� constraints on r
and ns from WMAP9+ data and PlanckþWPþ BAO
(hereafter Planck+) data. From the plot, one can see that
WMAP9+ prefers a slightly lower ns comparing with
Planck+ data. In addition, most of the contour regions
locate within 	v < 0 region, indicating strong evidence
of concave potential. The models with n ¼ 2 and n ¼ 4
lying within the contours suggests that the model prediction
is consistent with the current constraints. We also plot the
predicted detection limits of r from Planck polarization

experiment [39] and CMBPol [40]; note that these two
limits are not from actual data, but are based on the pre-
dictions of future data. One can see that even if�=Mpl is of

order 0.1, the model prediction is still much lower than the
CMBPol detection limit. Only if �=Mpl > 0:3, could the

CMBPol be able to detect the tensor mode in this model.
In Fig. 2 we plot the predicted �s-ns relation for the

brane inflation model with the constraint results from
WMAP9+ and Planck+ data. The purple contours on the
left panel is the joint constraints on �s-ns from the
WMAP9+ data set with the pivot scale k0¼0:002Mpc�1.
Therefore we use Eq. (14) to determine the number
of e-folds: we substitute a fiducial number of e-folds
Nfid ¼ 60 into Eq. (17) and obtain an estimate of �, then
substitute it into Eq. (14) to obtain the corresponding
number of e-folds for this model. We test that one iteration
is enough for determine the specific Ne. Then with
Eqs. (17)–(20) we plot the �s-ns prediction with variation
of the parameter�. The red line is for the n ¼ 2model and
the blue line is for the n ¼ 4 model. The two lines are
pretty close to each other, and they are all outside 1�
confidence level (CL) but some range is within 2� CL.
We then figure out which values of� can match the results
inside the 2�. We give a couple of trials and find that, for
the n ¼ 2 model �=Mpl needs to be between 10�48 and

unity, and for the n ¼ 4 model this range is ½10�30; 1�. On
the right panel of Fig. 2, we use the constraints from

0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01
6
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1

0

Primordial Tilt ns

L
og
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CMBPol Limit

Ne 60
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n 4, Mpl 0.01

n 4, Mpl 0.1

n 2, Mpl 0.01

n 2, Mpl 0.1

Planck WP BAO

WMAP9

FIG. 1 (color online). The r-ns plot for theoretical models,
current observational constraints and predicted limits from
Planck polarization maps and CMBPol. For model predictions:
the red curve across the whole diagram is the divided line for
	 ¼ 0, on either side the potential has different curvatures as
marked onto the plot. The black and blue lines are the predic-
tions for the n ¼ 2 and n ¼ 4 models with �=Mpl ¼ 0:1 (solid

line) and 0.01 (dashed line). The small and big dots correspond
to Ne ¼ 50 and 60, respectively. We also mark the red tilt and
blue tilt on the top of the diagram. For the observational results:
the purple dashed contours are the joint constraints from
WMAP9þ SPTþ ACTþ BAOþH0 (‘‘WMAP9+’’) and the
green solid contours are the joint constraints from Planckþ
WPþ BAO. The two horizontal dashed lines are the predicted
observational limits of tensor-to-scalar ratio r from Planck
polarization map (r & 0:03) [39] and CMBPol (r & 0:001)
[40,45]; note that the two lines are not from actual data, but
are based on the predictions of future data.
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PlanckþWPþ BAO to compare with the theoretical
predictions. The results are similar to the left panel, except
that the range of �=Mpl is shorten to be ½10�46; 1� for the
n ¼ 2 model, and ½10�29; 1� for the n ¼ 4 model. In a
word, the prototype of brane inflation with potential form
(15) is consistent with the observational constraints on �s

and ns.
Then let us see what this implies for the energy scale

of inflation in this model. The amplitude of the scalar
perturbations is [21,23,38]

�2
R ¼ V

M4
pl

1

24�2�v
; (21)

which is constrained to be�2:2� 10�9 by the Planck data
[2]. We substitute �v [Eq. (17)] into Eq. (21), and thus we
obtain a relationship between the amplitude of inflation
and the parameter �,

V
1
4

Mpl

¼
�
24�2 n2

2ðnðnþ 2ÞÞ2ðnþ1Þ
nþ2

�
�

Mpl

� 2n
nþ2
N

�2ðnþ1Þ
nþ2

e

�1
4
: (22)

Then from our estimation of �, we can find that the
amplitude of inflation is in the range ½2:7� 104; 8:4�
1015� GeV for the n ¼ 2 model and ½1:3� 106; 5:9�
1015� GeV for the n ¼ 4 model. These are all reasonable
ranges for V, because it needs to be lower than 1016 GeV
so that we do not detect any tensor mode yet, and greater
than the particle physics energy scale 103 GeV since the
inflaton is not detected in LHC.

IV. KKLMMT MODEL

The prototype of the brane inflation model discussed
above is not a realistic model, because the distance
between the brane and the antibrane would be larger than
the size of the extra-dimensional space if the inflaton is

slowly rolling in this scenario [20,23]. It indicates that this
model is not really reliable from the viewpoint of theory
itself. The first more realistic brane inflation model which
considers the effect of warped spacetime on inflaton
potential is the so-called KKLMMT model [19], whose
predictions are directly calculable and can be directly
compared to observations. Note that, strictly speaking,
the KKLMMT model is only a brane-inflation-inspired
model rather than a scenario with all elements of the
potential computed precisely; for more complicated ver-
sions of brane inflation, see [26,27].

A. Model predictions

The KKLMMTmodel is derived from the type IIB string
theory. In the model, the spacetime contains highly warped
compactifications, and all moduli stabilized by the combi-
nation of fluxes and nonperturbative effects [19,20]. Once
a small number of �D3-branes are added, the vacuum can be
successfully lifted to de Sitter state. Furthermore, one can
add an extra pair of D3-brane and �D3-brane in a warped
throat with the D3-brane moving towards the �D3-brane that
is located at the bottom of the throat. When the D3 moves
towards the �D3, inflation takes place; therefore, the
scenario of brane inflation can be achieved in this model.
The warped throat successfully guarantees a flat potential,
which solves the ‘‘	 problem’’ in the brane inflation.
Let us start with the inner space of the Calabi-Yau

manifold, where the geometry is highly warped and its
spacetime can be approximate AdS5 � X5 form. The
AdS5 metric in Poincaré coordinates has the form [20–22]

ds2 ¼ h�1
2ðrÞð�dt2 þ aðtÞ2d~x2Þ þ h

1
2ðrÞds26; (23)

where hðrÞ is the warp factor,

hðrÞ ¼ R4

r4
; (24)
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FIG. 2 (color online). Comparing the prediction of the prototype of brane inflation with the observational constraints on the
dns=d ln k-ns plane. Left—Comparing with the joint constraints from combination of WMAP 9-year data, ACT, SPT, BAO andH0 data
at the pivot scale k0 ¼ 0:002 Mpc�1. Right—Comparing with the joint constraints from PlanckþWPþ BAO data at the pivot scale
k0 ¼ 0:038 Mpc�1. In both panels, the number of e-folds of model predictions matches the pivot scale of the constrained contours. See
text for more details of the theoretical predictions of the model.
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where we express the radius of curvature of theAdS5 throat
as R. The potential within the warped throat is

Vð�Þ ¼ 1

2
�H2�2 þ 2T3h

4

�
1��4

�4

�
; (25)

which basically constitutes three terms. The first term
is the Kähler potential term, which arises from interactions
of superpotentials [21] where H is the Hubble parameter
and � describes the coupling between inflaton �
(position of D3 brane) and space expansion. In general,
the value of � depends on � value because the conformal
coupling depends on the position of the D3 brane, but we
expect that� to stay more or less constant in each throat, so
approximately � ’ const here [21]. Generically �� 1, but
for KKLMMT type of slow-roll model, j�j is much less
than unity. The second term (2T3h

4) is the effective
cosmological constant in the brane [21]. This is the term
that drives the accelerated expansion of the Universe. The
last term (with minus sign) provides the Coulomb-like
attractive potential between the D3-brane and the
�D3-brane, making the two branes eventually collide.
Note that T3 is the D3-brane tension and it is related to
� through �4 ¼ 27

32�2 T3h
4. We then have

Vð�Þ ¼ 1

2
�H2�2 þ 64�2�4

27

�
1��4

�4

�
: (26)

Under the slow roll approximation, the Friedmann
equation becomes

3M2
plH

2 ’ Vð�Þ ’ V0 ¼ 64�2�4

27
; (27)

therefore, � also represents the energy scale of inflation.
Given the potential, it becomes a standard calculation to

obtain the field value at the onset of inflation and the set of
slow-roll parameters. Following [20,21,23], we have

�6
N ¼ 24M2

pl�
4mð�Þ; (28)

where

mð�Þ ¼ e2�Nð1þ 2�Þ � ð1þ 1
3�Þ

2�ð1þ 1
3�Þ

: (29)

Therefore, the slow-roll parameters in the KKLMMT
model are

�v ¼ 1

18

�
�N

Mpl

�
2
�
�þ 1

2mð�Þ
�
2
; (30)

	v ¼ �

3
� 5

6

1

mð�Þ ; (31)


v ¼ 5

3

1

mð�Þ
�
�þ 1

2mð�Þ
�
: (32)

Now we need to use the observed CMB fluctuations to
fix the amplitude of the scalar perturbations. Similar to the
calculation we did in Sec. III B, we obtain

�2
R ’ V

M4
pl

1

24�2�v
¼ 2

27mð�Þ
�
�þ 1

2mð�Þ
��2

�
�N

Mpl

�
4
;

(33)

and thus we have

�v ¼ 1

48

�
3

2

�1
2ð�2

RÞ12mð�Þ�5
2ð1þ 2�mð�ÞÞ3: (34)

The Planck data give the amplitude of the primordial
scalar power spectrum as �2

R ’ 2:2 � 10�9 for

N � 50 [3]. Therefore, all of the slow-roll parameters in
the KKLMMT model [Eqs. (30)–(32)] are related to
the parameter � and the number of e-folds Ne. Following
Eq. (20), we will use parameters ns, �s and r to figure out
the best � value given the current observational data.

B. Constraints from observational data

In Fig. 3, we plot the r-ns diagram similar to the
structure of Fig. 1. Instead, here it is the KKLMMT model.
The black solid and black dashed lines represent the tra-
jectories for Ne ¼ 50 and 60, respectively. Different colors
of empty and filled circles mark the point where the model
takes different � values. One can see how the � parameter
controls the shape of the potential. If it is greater than 0.03,
the potential turns to be convex which is not preferred by
current observational data. Actually, the problem for
�> 0:01 is that it provides a blue tilt which has already
been ruled out by PlanckþWPþ BAO at more than 5�
CL. In order for the model to pass this test, � value has to
be much smaller than 10�3. In fact, since the current
Planck data prefer the ns value around 0.96 (green con-
tours), the models with �< 10�3 are just about to survive
since they offer the spectral index to be 0.96 but not smaller
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WMAP9

FIG. 3 (color online). Similar plot as Fig. 1 but for the
KKLMMT model. The black solid and black dashed lines
represent the trajectories for Ne ¼ 50 and 60, respectively. The
empty and filled circles mark the points where the model takes
� ¼ 0:1 (black), 0.01 (brown) and � 0:001 (red), respectively.
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than 0.95 (see Fig. 4 as well). This means that as long as the
CMB data prefer ns to be around 0.96, this model
can always pass this test and survive. Nevertheless, the
parameter needs to be highly fine-tuned. Finally, similar to
Fig. 1, one can see that the tensor mode predicted by the
KKLMMT model is really undetectably small since it is
several orders of magnitude lower than the Planck polar-
ization [39] and CMBPol limits [20,40].

In Fig. 4 we show the comparison of the observational
constraints and the model predictions on the �s-ns plane.
One can see that PlanckþWPþ BAO prefers a slightly
negative running with a very red power tilt. The tilt of the
power spectrum at more than 5� deviates from unity
(the Harrison-Zel’dovich spectrum), while the running is
at less than 2� away from zero. On the other hand, if
�s is released as a free parameter, the WMAP9+ data
set cannot tighten up ns to be less than unity. The
purple contours stretch from a small negative running
(�� 0:01) with red tilt (�0:96) out to a large negative
running (�� 0:04) with blue tilt (�1:05) region.
However, constraints from these two different data sets
overlap at the small negative running and red tilt region,
indicating that this is the preferable region for both data
sets. In addition, we plot the model predictions for differ-
ent � values, and we mark the region of model predic-
tions in between Ne ¼ 50 and 60 in order to have a direct
vision of whether this ‘‘physically plausible’’ region falls
in the observational constraint contours. One can also see
that the KKLMMT model cannot produce a red tilt and
suitable level of negative running unless � � 10�3 at 2�
CL. The model with � ¼ 0:01 cannot fit the 2� joint
constraints in either case. This is actually an order of
magnitude tighter than the previous upper limit of �
from WMAP 5-year data [20] (�< 0:01 at 2� CL),

and also much tighter than the combined constraints
(�< 6� 10�3) from WMAP3þ SDSS [23].

V. IR DBI MODEL

A. Model predictions

In this section, we discuss another important type of
brane inflation model, namely, the infrared Dirac-Born-
Infeld model (IR DBI model). The difference between
this model and the KKLMMT model is that the rolling
velocity of the brane is not determined by the shape of the
potential but by the speed limit of the warped spacetime
[11]. Such a warped spacetime can always emerge in the
inner space of compactified Calabi-Yau manifold.
Phenomenologically, the inflaton in IR DBI model can

be driven by the kinetic term, where the inflaton is not
slowly rolling at all. Therefore, the sound speed of inflaton
in such a model could be less than unity, providing a large
tilt in the tensor power spectrum (remember nt¼�r=ð8csÞ
[20,41]). Observation on large scale temperature and po-
larization can be used to pin down the uncertainty of the
sound speed. In addition, as shown in previous analyses
[11], there are a lot of parameters that describe the struc-
ture of internal space, and we will show that some of them
may be pinned down by the CMB observations (see also [4]
for more detailed discussions on constraints from non-
Gaussianity).
In the DBI inflation, the action takes the form

Pð�;XÞ ¼ �fð�Þ�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2fð�ÞX

q
þ fð�Þ�1 � Vð�Þ;

(35)

where Vð�Þ is the potential, X is the kinetic term, and fð�Þ
is the warp factor. For the IR DBI model, the inflaton
potential is

Vð�Þ ¼ V0 � 1

2
�H2�2; (36)

where the parameter � is in principle within a wide range
0:1<�< 109 [11].
The scalar power spectrum of DBI inflation can be

parametrized as [11]

�2
RðkÞ ¼ As

N4
e

�
1� N16

c

N8
c þ ðNDBI

e Þ8
�
; (37)

where As is the amplitude of the perturbations which
depends on several parameters of the internal space, Nc

is the critical number of e-folds at scale kc (critical scale
where string phase transition happens), and NDBI

e is the
number of e-folds of inflation at relativistic rolling. The
total number of e-folds is the sum of relativistic and non-
relativistic (NR) rollings,

Ntot
e ¼ NDBI

e þ NNR
e : (38)
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FIG. 4 (color online). Comparison of the joint observational
constraints with the KKLMMT model predictions on the �s-ns
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blue lines are for models with � ¼ 0:1, 10�2, and 10�3, respec-
tively. The red line is for any model with �< 10�3. The small
and big color dots denote Ne ¼ 50 and 60, respectively.
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Now we can calculate the spectral index and its running,
which turns out to be (see also Appendix in [11])

ns � 1 ¼ d ln�2
RðkÞ

d ln k
¼ 4

NDBI
e

x2 þ 3x� 2

ðxþ 1Þðxþ 2Þ ;

�s ¼ dns
d ln k

¼ 4

ðNDBI
e Þ2

x4 þ 6x3 � 55x2 � 96x� 4

ðxþ 1Þ2ðxþ 2Þ2 ;

(39)

where x ¼ ðNDBI
e =NcÞ8.

In addition, nontrivial sound speed cs can generate large
non-Gaussianity, since the inflaton is no longer slowly
rolling down to the potential. The predicted equilateral
and orthogonal non-Gaussianities are [42,43]

feqNL ¼ �0:35
1� c2s
c2s

; forthNL ¼ 0:032
1� c2s
c2s

; (40)

where

1

cs
’ �NDBI

e

3
: (41)

B. Confront with current data

Since the IR DBI model has a lot of parameters that
describe the internal structure of the warped space, in order
to directly compare its predictions with the current obser-
vational data, we adopt the best-fit values of Nc, kc and
NNR

e to be 35.7, 10�4:15 Mpc�1 and 18.4, respectively,
according to the constraints from WMAP 5-year data [11].
In Fig. 5 we plot the predicted trajectory of the IR DBI

model in the �s-ns plane. The purple and orange contours
are the results from WMAP9+ and PlanckþWPþ BAO
as we discussed before. The red line is the trajectory
corresponding to Ntot

e between 45 and 60, which includes
a wide range of scale k. One can see that the trajectory
crosses the contours of both WMAP9+ and Planckþ
WPþ BAO, which is quite consistent with the data. In
addition, the model predictions at the two pivot scales
k0 ¼ 0:002 Mpc�1 and k0 ¼ 0:038 Mpc�1, which are the
chosen scales of the two constraints are marked on the plot.
One can see that the black dot is close to the boundary of
WMAP9+ constraints while the blue one is outside of the
2� contours from Planck. However, although it seems that
there is a discrepancy, we remind the reader that there is
some uncertainty of the subsequent evolution after infla-
tion, so it is reasonable to allow a broader range of number
of e-folds for a given pivot scale.
Non-Gaussianity becomes an important tool to constrain

such a non-slow-roll inflation model. The local, equilateral
and orthogonal fNL parameters are given by Eq. (7), which
still do not show strong signal for non-Gaussianity.
However, the error-bars of local, equilateral (and orthogonal)
fNL become a factor of two and four smaller than WMAP
9-year data [44]. Since the IR DBI model predicts vanishing
local fNL, it is already consistent with the value given by
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FIG. 5 (color online). Comparison of the constraints on �s-ns
with the IR DBI model predictions. The red line is the trajectory
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pivot scales k0 ¼ 0:038 Mpc�1 and k0 ¼ 0:002 Mpc�1.
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Planck. Nowwe investigate the predictions of equilateral and
orthogonal types of non-Gaussianity.

In Fig. 6, we plot the model predictions of f
eq
NL and forthNL

and the current lower and upper bounds. The yellow bands
in both panels are the allowed region for Ntot

e in between 45
and 60. Note that in Planck paper XXII [4], Ne is just
allowed to be 60–90 when considering the constraints on
the IR DBI model, while here we consider a more reason-
able range of the number of e-folds. Given the yellow bands
and the 2� lower bound for equilateral type of non-
Gaussianity, we find that the value of � needs to be smaller
than 1.5 in order to prevent very negative equilateral non-
Gaussianity. Similarly, on the right panel, we show that �
needs to be less than 2.5 in order to prevent large positive
non-Gaussianity. These limits are consistent with the range
of �< 0:7 as found by Planck paper XXIV [10], which
uses global likelihood analysis to obtain the limit. We
should notice that this is already a fine-tuning for IR DBI
model, because in this model � has the lower limit 0.1
(�< 0:01 is KKLMMT model as discussed in Sec. IV) but
no real upper limit. Therefore, the current data is able to
shrink the parameter space to be ½0:1;Oð1Þ� is already a tight
limit. Our comparison gives a intuitive understanding of why
the parameter � needs to be smaller than a certain value.

VI. CONCLUSION

In this paper, we studied brane inflation with the Planck
data and the joint data set from WMAP 9-year data, SPT,
ACT, BAO andH0 data. We first discussed the relationship
between the number of e-folds and the corresponding pivot
scale. We clarified the case where adopting different pivot
scales of the constraints, the corresponding number of
e-folds could be slightly different.

We then considered a toy model (prototype) of
brane inflation where the problem of dynamic stabilization
is neglected. Furthermore, we considered a more realistic
‘‘slow-roll’’ brane inflation model (namely, the KKLMMT
model) and the DBI inflation model, and examined them
with the Planck and WMAP9+ results.

For the toy model, we showed that the model is
consistent with the observational data at 2� CL, given
the fact that it prefers a red tilt close to 0.96 and a slightly
negative running. For a comparison, in our previous work
[20], we found that this type of brane inflation model is
consistent with the WMAP 5-year data at the level of 1�.
The situation does not change very much when we confront
the model with WMAP9+ data and Planck data.

For the KKLMMT model, we first discussed how the
model parameter � affects its predictions of scalar power
spectrum. Then we compared the model to the WMAP9+

data and Planck data. We found that in order for the model
to provide the �s and ns allowed by the tight constraints
from Planck and WMAP9+, the � parameter needs to be
fine-tuned to be less than 10�3. For comparison, by using
the WMAP 3-year data in [23], we found that the
KKLMMT model cannot fit WMAP3þ SDSS data at the
level of 1� and a fine-tuning, at least eight parts in a
thousand, is needed at the level of 2�. When the WMAP
5-year data becomes available, we found that the value of
the parameter � is constrained to be less than Oð10�2Þ at
the level of 2� [20]. Thus, we can see that the problem of
fine-tuning of � becomes more severe when confronting
with the recent observational data. Undoubtedly, this is not
good news for the KKLMMT model.
Finally, we briefly discussed the current constraints on

the infrared Dirac-Born-Infeld inflation model given the
current observational data. The model can predict a larger
negative running (�� 0:02) than the previous KKLMMT
model. By figuring out the trajectory of the model on the
�s-ns plane by varying the number of e-folds, we found
that the model can predict the running of the spectral index
and the tilt that are consistent with WMAP9+ and Planck
data. However, when we confronted it with the current
bounds on equilateral and orthogonal non-Gaussianities,
we found that in order to avoid a large non-Gaussianity the
value of � which controls the shape of the potential needs
to be less than 1.5. This limit to the IR DBI model is
already a fine-tuning.
To summarize, although the prototype of brane inflation

can fit the data well, it is not a realistic model of the brane
inflation. For the KKLMMT and IR DBI inflation models,
the parameters need to be fine-tuned to satisfy the current
observational requirement. The current observation of
CMB from Planck is competent to place stringent limits
on internal parameters of warped space.
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