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The nongauge vector field with as simple a Lagrangian as possible turned out to be an adequate tool for

the macroscopic description of the main properties of dark matter. The dependence of the velocity of a star

on the radius of the orbit VðrÞ—galaxy rotation curve—is derived analytically from the first principles

completely within Einstein’s general relativity. Milgrom’s empirical modification of Newtonian dynamics

in the nonrelativistic limit gets justified and specified in detail. In particular, the transition to a plateau is

accompanied by damping oscillations. In the scale of a galaxy, and in the scale of the whole universe, the

dark matter is described by a vector field with the same energy-momentum tensor. It is the evidence of the

common physical nature. Now, when we have the general expression for the energy-momentum tensor of

dark matter, it is possible to analyze its influence on the structure and evolution of superheavy stars and

black holes.
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I. INTRODUCTION

The ‘‘galaxy rotation curves’’ problem appeared after
Oort discovered the Galactic halo, a group of stars orbit-
ing the Milky Way outside the main disk [1]. In 1933,
Zwicky [2] postulated ‘‘missing mass’’ to account for
the orbital velocities of galaxies in clusters. Persistent
investigations by Rubin and Ford [3] in the 1970s finally
dispelled the skepticism about the existence of dark matter
on the periphery of the galaxies.

Among numerous attempts to solve the problem of
galaxy rotation curves, the most discussed one is an
empirical explanation named modified Newtonian dynam-
ics (MOND), proposed by Milgrom back in 1983 [4]. For a
relativistic justification of MOND, Bekenstein [5], Sanders
[6], Brownstein, and Moffat [7,8] introduce additional
scalar, vector, or tensor fields. Although these (and many
other) relativistic improvements of MOND are able to fit a
large number of samples for about a hundred galaxies,
the concern still remains. So far, we had neither a self-
consistent description of the dark sector as a whole nor a
direct derivation of MOND from the first principles within
Einstein’s general relativity. The survey [9] by Famaey and
McGaugh reflects the current state of the research and
contains the most comprehensive list of references.

From my point of view, the approach to the theory of the
dark sector based on the use of vector fields in general
relativity is very promising, and its abilities are not yet
exhausted. Vector fields with the simplest Lagrangian,

L ¼ aðð�K
;KÞ2 �m2�K�KÞ � V0; (1)

allowed me to describe macroscopically the main features
of the evolution of the Universe completely within the
frames of Einstein’s theory of general relativity [10].
The longitudinal nongauge massive vector field displays

the repulsive elasticity. As a result, the big bang turns into a
regular inflationlike state of maximum compression with
the further accelerated expansion at late times. The para-
metric freedom of the theory allows me to forget the
fine-tuning troubles. At the scales much larger than the
distances between the galaxies, the Universe is homoge-
neous and isotropic. Its temporal evolution depends on
time only. Currently, the characteristic rate of its expansion
is determined by the Hubble parameter, which is of the
order of the inverse time from the big bang. In the much
smaller galactic scales, the situation is just the opposite.
The space structure is essentially nonhomogeneous, while
the influence of expansion is negligible.
In what follows, I present the macroscopic theory of

dark matter, including the derivation of galaxy rotation
curves, directly from the first principles within the minimal
Einstein general relativity. In the galactic scale, the longi-
tudinal nongauge vector field with the same Lagrangian (1)
not only fits the observed rotation curves, but also opens a
promising approach to understand the origin of the sub-
stance that we name dark matter. In the nonrelativistic
limit, the expression (26), derived analytically, justifies
and specifies the empirical modification of Newtonian
dynamics by Milgrom [4].

II. VECTOR FIELD IN GENERAL RELATIVITY

In general relativity, the Lagrangian of a vector field
�I consists of the scalar bilinear combinations of its
covariant derivatives and a scalar potential Vð�K�KÞ.
A bilinear combination of the covariant derivatives is a
four-index tensor SIKLM ¼ �I;K�L;M. The most general

form of the scalar S, formed via contractions of SIKLM, is
S ¼ ðagIKgLM þ bgILgKM þ cgIMgKLÞSIKLM, where a,
b, and c are arbitrary constants. The general form of the
Lagrangian of a vector field �I is

L ¼ að�M
;MÞ2 þ b�L

;M�
;M
L þ c�L

;M�
M
;L � Vð�M�

MÞ: (2)*meierovich@mail.ru
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The classification of vector fields �I is most convenient
in terms of the symmetric GIK ¼ 1

2 ð�I;K þ�K;IÞ and anti-
symmetric FIK ¼ 1

2 ð�I;K ��K;IÞ parts of the covariant

derivatives. The Lagrangian (2) gets the form

L¼aðGM
MÞ2þðbþcÞGL

MG
M
L þðb�cÞFL

MF
M
L �Vð�M�

MÞ:
The bilinear combination of antisymmetric derivatives
FL
MF

M
L is the same as in electrodynamics. It becomes clear

in the common notations AI ¼ �I=2, FIK ¼ AI;K � AK;I.

The terms with symmetric covariant derivatives deserve
special attention. In applications of the vector fields to
elementary particles in flat space-time, the divergence
@�K

@xK
is artificially set to zero [11]:

@�K

@xK
¼ 0: (3)

This restriction allows one to avoid the difficulty of a
negative contribution to the energy. In the electromagnetic
theory, it is referred to as the Lorentz gauge. The negative
energy problem in the application to the galaxy rotation
curves in view of a precaution against the instability of
the vacuum was discussed by Bekenstein [5]. However, in
general relativity (in curved space-time), the energy is not
a scalar, and its sign is not invariant against the arbitrary
coordinate transformations. From my point of view, con-
sidering vector fields in general relativity, it is worth get-
ting rid of the restriction (3), using instead a more weak
condition of regularity.

The covariant field equations

a�K
;K;I þ b�;K

I;K þ c�K
;I;K ¼ �V 0�I (4)

and the energy-momentum tensor

TIK ¼ �gIKLþ 2V0�I�K þ 2agIKð�M
;M�

LÞ;L
þ 2ðbþ cÞ½ðGIK�

LÞ;L �GL
KFIL �GL

I FKL�
þ 2ðb� cÞð2FL

IFLK � FL
K;L�I � FL

I;L�KÞ (5)

describe the behavior of the vector fields in the back-
ground of any arbitrary given metric gIK [12]. Here,

V 0 � dVð�M�MÞ
dð�M�MÞ .

If the backreaction of the field on the curvature of
space-time is essential, then the metric obeys the Einstein
equations,

RIK � 1

2
gIKRþ�gIK ¼ ßTIK; (6)

with Eq. (5) added to TIK. Here, � and ß are the cosmo-
logical and gravitational constants, respectively. With the
account of the backreaction, the field equations (4) are not
independent. They follow from the Einstein equations (6)
with TIK (5) due to the Bianchi identities. The field equa-
tions (4) are linear with respect to � if the vector field is
small, and the terms with the second and higher derivatives
of the potential Vð�M�

MÞ can be omitted.

III. DARK MATTER DESCRIBED
BYAVECTOR FIELD

In curved space-time, there is no invariance against the
order of covariant differentiation:

�K
;K;L ��K

;L;K ¼ �MRML:

In general relativity, there is no reason why the terms�a in
Eq. (2) and/or in Eq. (4) should be ‘‘less equal than others.’’
In order to separate the dark matter from the ordinary one,
it is reasonable to set b ¼ c ¼ 0. The case a � 0 is
supposed to describe the dark matter only. The opposite
case a ¼ 0, and b � 0, c � 0, corresponds to either
the electromagnetic field (c ¼ �b) or to vector particles
(b � 0, c ¼ 0.) This way, the dark matter and the ordinary
matter are separated from one another so that the ordinary
matter is not taken into account twice. The dark matter is
described by the Lagrangian

Ldm ¼ að�M
;MÞ2 � Vð�M�

MÞ: (7)

Thereafter, the field equation (4) and the energy-
momentum tensor of the vector field (5) reduce to

a
@�M

;M

@xI
¼ �V0�I; (8)

Tdm IK ¼ gIK½ð�M
;MÞ2=aþ V� þ 2V0ð�I�K � gIK�

M�MÞ:
(9)

Although the dark matter displays itself by curving the
space-time, its physical nature remains unclear so far. We
do not know the dependence Vð�M�

MÞ. If the vector �I

remains small enough to neglect the second and higher
derivatives of Vð�M�

MÞ, then the parameter

m2 ¼
��������V

0ð0Þ
a

��������
characterizes the field. As usual, it is designated as the
square of mass. In accordance with Eq. (8), the dimension
ofm is cm�1. The covariant divergence�M

;M is a scalar, and

in accordance with the Eq. (8), the massive (m � 0) field
has a potential: it is a gradient of a scalar.
So far, there is no evidence of any direct interaction

between dark and ordinary matter other than via gravita-
tion. The gravitational interaction is described by Einstein
equations (6) with

TIK ¼ Tdm IK þ Tom IK; (10)

where

Tom IK ¼ ð"þ pÞuIuK � pgIK (11)

is the well known energy-momentum tensor of macro-
scopic objects. The energy ", pressure p, and temperature
T of the ordinary matter obey the equation of state. If
T � ", the Einstein equations (6) with TIK (10) together
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with the equation of state with T ¼ 0 form a complete set.
The field equation (8) is not independent. It is a conse-
quence of the Einstein equations due to Bianci identities.

IV. GALAXY ROTATION CURVES

Applying general relativity to the galaxy rotation
problem, it is reasonable to consider a static centrally
symmetric metric

ds2 ¼ gIKdx
IdxK ¼ e�ðrÞðdx0Þ2 � e�ðrÞdr2 � r2d�2

(12)

with two functions �ðrÞ and �ðrÞ depending on only one
coordinate—circular radius r. Real distribution of the stars
and planets in a galaxy is neither static nor centrally
symmetric. However, this simplification facilitates analyz-
ing the problem and allows me to display the main results
analytically. If a galaxy is concentrated around a super-
massive black hole, the deviation from the central symme-
try caused by the peripheral stars is small.

In the background of the centrally symmetricmetric (12),
the vector �I is longitudinal. In accordance with the field
equation (8), its only nonzero component�r depends on r.
In view of

g ¼ detgIK ¼ �e�þ�r4sin 2�;

1ffiffiffiffiffiffiffi�g
p @

ffiffiffiffiffiffiffi�g
p
@r

¼ 2

r
þ �0 þ �0

2
;

the covariant divergence

�M
;M ¼ 1ffiffiffiffiffiffiffi�g

p @ð ffiffiffiffiffiffiffi�g
p

�MÞ
@xM

¼ @�r

@r
þ

�
2

r
þ �0 þ �0

2

�
�r:

(13)

In the ‘‘dust matter’’ approximation p ¼ 0, and the only
nonzero component of the energy-momentum tensor (11)
is Tom 00 ¼ "g00. Whatever the distribution of the ordinary
matter "ðrÞ is, the covariant divergence TK

om I;K is automati-

cally zero. In the dust matter approximation, the curving of
space-time by ordinary matter is taken into account, but
the backreaction of the gravitational field on the distribu-
tion of matter is ignored. If p ¼ 0, the energy "ðrÞ is
considered as a given function.

In the power series

Vð�M�
MÞ ¼ V0 þ V 0�M�

M þOðð�M�
MÞ2Þ;

V0 ¼ Vð0Þ, together with the cosmological constant �
determine the expansion of the Universe. In the scale of
galaxies, the role of expansion of the Universe as a whole

is negligible, and one can set ~� ¼ �� ßV0 ¼ 0 in the
Einstein equations. Omitting the second and higher deriva-
tives of the potential Vð�M�

MÞ, we have the Einstein
equations as follows (see Ref. [13], page 382 for the
derivation of the left-hand sides):

�e��

�
1

r2
� �0

r

�
þ 1

r2
¼ ßT0

0

¼ ß½ð�M
;MÞ2=aþ V 0e�ð�rÞ2 þ "�

(14)

�e��

�
�0

r
þ 1

r2

�
þ 1

r2
¼ ßTr

r

¼ ß½ð�M
;MÞ2=a� V 0e�ð�rÞ2 � p�

(15)

� 1

2
e��

�
�00 þ �02

2
þ �0 � �0

r
� �0�0

2

�
¼ ß½ð�M

;MÞ2=aþ V 0e�ð�rÞ2 � p�; I; K � 0; r:

(16)

Here, the prime stands for d
dr , except V0 ¼ @Vð�M�

MÞ
@ð�M�MÞ .

Among the four Eq. (8) and (14)–(16), for the unknowns
�r, �, and �, any three are independent.
Extracting Eq. (15) from Eq. (14), we get a relation

�0 þ �0 ¼ ßre�½2e�ð�rÞ2V0 þ "þ p�: (17)

With account of Eqs. (13) and (17), the vector field
equation (8) takes the form�

ð�rÞ0 þ
�
2

r
þ ßre2�ð�rÞ2V0 þ 1

2
re�ð"þ pÞ

�
�r

�0
¼ �m2e��r; (18)

where m2 ¼ � V0ð0Þ
a . The sign in the rhs of Eq. (18)

corresponds to the case V0ð0Þ> 0 a < 0. Negative a is
taken in accordance with the requirements of regularity
in application of the same Lagrangian (7) to the analysis of
the role of dark matter in the evolution of the Universe
[10]. It is convenient to set a ¼ �1 in what follows.
Hence, V0ð0Þ ¼ m2. Equations (17) and (18) are derived
with no assumptions concerning the strength of the gravi-
tational field.
Excluding �0 from Eqs. (14) and (15), we get the follow-

ing expression for �0:

�0 ¼ ßre�½m2e�ð�rÞ2 þ ð�M
;MÞ2 þ p� þ e� � 1

r
:

In case of the dust matter approximation (p ¼ 0),

�0 ¼ ßre�½m2e�ð�rÞ2 þ ð�M
;MÞ2� þ

e� � 1

r
: (19)

In a static centrally symmetric gravitational field,�0
determines the centripetal acceleration of a particle (see
Ref. [13], page 323). Without dark matter, �r ¼ 0 (19)
gives Newton’s attractive potential far from the center:
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’NðrÞ ¼ 1

2
c2�ðrÞ � �r�1; r ! 1:

The first term in the rhs of Eq. (19) appears due to the dark
matter. Both terms have the same sign, and the presence of
dark matter increases the attraction to the center.

The curvature of space-time caused by a galaxy is small.
In the linear approximation, the influence of dark and
ordinary matter can be separated from one another. For
� � 1, Eq. (19) reduces to

�0 ¼ ßr½m2ð�rÞ2 þ ð�M
;MÞ2� þ

�

r
; (20)

where the first term does not contain ". However, the
contribution of dark matter comes from both additives.
The vector field equation (18) and the Einstein equation
(14) at � � 1 are simplified:

ð�rÞ00 þ
��

2

r
þm2rð�rÞ2 þ 1

2
ßrð"þ pÞ

�
�r

�0 ¼ �m2�r

(21)

�0 þ �

r
¼ ßr½�ð�M

;MÞ2 þm2ð�rÞ2 þ "�: (22)

The boundary conditions for these equations,

�r ¼ 1

3
�0

0r; � ¼ 1

3
ßð"0 ��02

0 Þr2; r ! 0; (23)

are determined by the requirement of regularity in the
center. Here, "0 ¼ "ð0Þ.

The term 1
2ßrð"þ pÞ in Eq. (21) reflects the interaction

of dark and ordinary matter via gravitation. If the curvature
of space-time caused by the ordinary matter is small, this
term is negligible compared to 2=r. The nonlinear term
ßm2rð�rÞ2 is small compared to 2=r at r ! 0, but at
r ! 1, despite being small, it decreases only a little bit
more quickly than 2=r This nonlinear term at r ! 1
decreases as ðr ln rÞ�1:

ßm2rð�rÞ2 ¼ 2sin 2mr

3r ln r
r�

� 1

3r ln r
r�
; r� � 1

m
:

Neglecting both nonlinear terms in square brackets, the
field equation (21) reduces to�

ð�rÞ0 þ 2

r
�r

�0 ¼ �m2�r:

Its regular solution is

�r ¼ �0
0

m3r2
ðsinmr�mr cosmrÞ; �M

;M ¼ �0
0

sinmr

mr
;

(24)

where �0
0 ¼ �M

;Mð0Þ. Substitution of Eq. (24) into Eq. (20)

results in

�0ðrÞ ¼ ßð�0
0Þ2

m2r
fðmrÞ þ �

r
; � � 1:

Function fðxÞ,

fðxÞ ¼
�
1� sin 2x

x
þ sin 2x

x2

�

¼
�
x2 � 2

9 x
4 þ . . . ; x ! 0

1; x ! 1 ; (25)

is presented in Fig. 1 (upper curve).

The balance of the centripetal c2�0
2 and centrifugal V2

r

accelerations determines the velocity V of a rotating object
as a function of the radius r of its orbit:

VðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
plfðmrÞ _þ c2

2
�ðrÞ

s
; (26)

Vpl ¼
ffiffiffi
ß

2

r
c�0

0

m
: (27)

Far from the center, �ðrÞ decreases as 1=r, while fðmrÞ!1
The dependence VðrÞ (26) turns at r * m�1 from linear to
a plateau with damping oscillations. The plateau appears
entirely due to the vector field. At the same time, the vector
field contributes to �ðrÞ as well. Regular at r ! 0, the
solution of Eq. (22) is

�ðrÞ ¼ 2

�
Vpl

c

�
2
�ðmrÞ þ ß

r

Z r

0
"ðrÞr2dr; � � 1:

(28)

The last term in Eq. (28) gives Newton’s potential. The
function

�ðxÞ ¼ 1

x

Z x

0

�
sin 2y

y2
� sin 2y

y
þ cos 2y

�
dy (29)

is shown in Fig. 1 (lower curve). The radial dependence
VðrÞ=Vpl at " ! 0

VðrÞ=Vpl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðmrÞ þ�ðmrÞ

q
; (30)

is shown in Fig. 2. In the limit � � 1, the galaxy rota-
tion curve driven by the dark matter only is a universal

5 10 15 20

0.5

1.0

1.5

FIG. 1 (color online). Function fðxÞ (25) on the upper curve
and �ðxÞ (29) on the lower curve.
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function (30). In dimensionless units, there are no
parameters; see Fig. 2.

The limiting plateau value Vpl (27) is connected with the

single parameter �0
0=m. The period of oscillations is 2�

m .

The whole curve, including the damping oscillations, is
determined by two physical parameters �0

0 and m.

The form of an observed curve allows me to restore
the value of the parameter �0

0 ¼ �M
;Mð0Þ at r ! 0 in the

boundary conditions (23) As far as there is no evidence of
any direct interaction of dark and ordinary matter, the
origin of specific values �0

0 and m of a particular galaxy

depends on what happens in the center. The values Vpl and

m can differ from one galaxy to another. It looks like for
each galaxy these values are driven by some heavy object
(maybe a black hole, maybe a neutron star) located in the
center (by the way, supporting the central symmetry of the
gravitational field).

According to modern concepts, there is only some 5% of
ordinary matter in the Universe, while the amount of dark
matter is about 25%. If so, the main contribution comes
from the dark matter, and the deviations from the universal
curve (30) caused by the ordinary matter are small, espe-
cially if the major mass of a galaxy is provided by a black
hole (or a neutron star) located in the center. In the case of
spherical symmetry, the averaged distribution of stars "ðrÞ
outside the center could be restored from the deviations of
the observed curves from the universal one.

Dark matter, described by a vector field with the
Lagrangian (1), actually justifies the empirical Milgrom
hypothesis of MOND—the modified Newton dynamics
[4]. Newton’s dynamics really gets modified by the vector
field so that the rotation curve flattens out at the far
periphery of a galaxy. Naturally, basing only on the intui-
tive arguments, it was scarcely possible to guess that the
transition to a plateau is accompanied by damping
oscillations.

However, the question of the origin of dark matter
remains open. In other words, what makes �0

0 ¼ �K
;Kð0Þ

different from zero? Solutions of the linearized Einstein
equations do not answer this question. In the dust matter
approximation and weak gravitational field, �0

0 and m
remain free parameters. The limiting plateau value (27)

is determined by their single combination
ffiffi
ß
2

p c�0
0

m . Is it the

same as predicted by MOND, Vpl ¼ ðßMa0Þ1=4, which is

currently considered as actually observed? I admit that the

answer to this question—the relation of
�0

0

m with a heavy

mass M in the center—could be received by the self-
consistent solution of the nonlinear Einstein equations.
Interaction with dark matter via gravitation should affect
the equilibrium structure of heavy stars and can shift the
collapse boundary. If the gravitation is not weak, the
parameters �0

0 and m in boundary conditions (23) should

be determined self-consistently together with the structure
of the heavy object in the center. If p � 0, the radial
distribution of the ordinary matter and gravitational field
are interdependent. It looks convenient to consider this
problem in the approximation of cold degenerate relativ-
istic gas and use the chemical potential �0 in the boundary
conditions instead of "0. It is worth reconsidering the
equilibrium [14] and collapse [15] of supermassive bodies
taking the dark matter into account. However, it is a
different story.

V. FITTING

The field itself is zero in the center, �rð0Þ ¼ 0, and the
contributions of the dark matter and of the ordinary matter
are introduced to the boundary conditions (23) by the
values ð�0

0Þ2 and "0, respectively.
When there is a plateau, the speed of rotation on the

plateau Vpl (27), which is determined from the Doppler

shift of spectral lines, provides us with information about
the input parameter �0

0 ¼ �M
;Mð0Þ in the boundary condi-

tions. The parameter m is determined by scaling the radial
coordinate so that the period of oscillations of fðxÞ (25) fits
the observations. While the distribution of dark matter is
characterized unambiguously by the two parameters �0

0

and m, the situation with the density of the ordinary matter
"ðrÞ in galaxies is not that clear. Radiation coming from the
galaxies does not carry information about cooled nonemit-
ting stars and planets. Just the opposite, the strict fitting
could provide us with the distribution of the ordinary
matter in galaxies.
There are hundreds of graphs with rotation curves for

different galaxies in the literature. It is impossible to
present the fitting for all of them within one paper. It is
reasonable to analyze the relative role of the major
parameters of the theory and give some examples.
In the dust matter approximation and weak gravitational

field, "ðrÞ is an arbitrary given function. To demonstrate
the relative role of dark and ordinary matter, I use the
Gauss distribution for the density of dust matter,

"ðrÞ ¼ "0 exp ð�r2=r20Þ: (31)

Qualitatively, a particular form of a monotonically decreas-
ing function "ðrÞ is not essential. (The existence of a hard
core in the center is a special case.) "0 is the maximum
density in the center, and r0 is the mean radius of a galaxy.

5 10 15 20

0.2

0.4

0.6

0.8

1.0

FIG. 2. Function
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðxÞ þ�ðxÞp

in Eq. (30).
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The total mass of a galaxy M� "0r
3
0. Although the

dark and ordinary matter are input into the boundary con-
ditions (23) via �0

0 and "0 ¼ "ð0Þ, it looks more clear to

demonstrate their relative role using "0r
3
0 (proportional to

the total rest energy of a galaxy) instead of "0.
In all Figs. 3 and 4, the dashed curve is the rotation

curve (30) without ordinary matter. It is the same curve as
in Fig. 2. In each case, the radial scales are specifically
chosen to clarify the difference better. Solid lines in Fig. 3
are rotation curves withm2r20 ¼ 1, 10, and 0.1, respectively
(the three cases in which the radius r0 of a galaxy is

equal,
ffiffiffiffiffiffi
10

p
times larger, and

ffiffiffiffiffiffi
10

p
times smaller than the

period �m�1 of oscillations, respectively). The ratio
"0

ð�0
0
Þ2 ðmr0Þ3 ¼ 1. The smaller "0

ð�0
0
Þ2 ðmr0Þ3 is, the less the

difference between solid and dashed curves is.

Solid curves in Fig. 4 are rotation curves for a fixed
"0

ð�0
0
Þ2 ðmr0Þ3 ¼ 10, and m2r20 ¼ 1, 10, and 0.1, respectively.

As m2r20 grows, the oscillations are smoothed out, and

when it decreases, the difference between the curves moves
to the center.
One can find over a hundred graphs of galaxy rotation

curves in the literature, including those displaying the
transition to a plateau. One of them often referred to,
marked UMa: NGC 3726, is shown in Figs. 5(a) and 5(b).
Both graphs are taken from different places within the
same list [7].
The points with error bars are the observations. The solid

lines are the rotation curves determined from so-called
metric-skew-tensor gravity (MSTG) [7,8,16]. The solid
line in Fig. 5(a) practically coincides with MOND.
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FIG. 5 (color online). (a) Fitting by MSTG, practically coinciding with MOND; (b) another fitting by MSTG, slightly different from
MOND; and (c) points are observations, fitted by Eq. (26) together with Eqs. (28) and (31).
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In Fig. 5(b), it is slightly different from MOND. Other
dashed and dotted lines correspond to the ordinary Newton
dynamics.

The curve in Fig. 5(c) shows how Eq. (26) together with
Eqs. (28) and (31) fit the observations. The input parame-
ters are Vpl ¼ 158 Km

sec ,
ß"0
m2 ¼0:00000005, and mr0 ¼ 3:78.

Figure 6 is another example of the comparison of fitting
by MSTG MOND [Fig. 6(a)] and in accordance with
Eqs. (26), (28), and (31) [Fig. 6(b)]. The input parameters
are Vpl ¼ 120 Km

sec
ß"0
m2 ¼ 0:00000005, and mr0 ¼ 2:24.

These examples clearly demonstrate the existence of
oscillating features, which is the main observational
signature of dark matter.

Frankly speaking, it is a surprise for me. I did not expect
such a coincidence. Deviations at small radii can be related
to the presence of an additional strongly gravitating com-
pact object located at the center. As shown in Figs. 3(c) and
4(c) in case r0 � m�1, the initial growing part of the curve
VðrÞ shifts to the center. At the same time, if a heavy object
in the center exists, it supports the central symmetry, and
the gravitational field becomes only slightly distorted by
other stars and planets of the galaxy.

VI. SUMMARY

The nongauge vector field with as simple a Lagrangian
as possible (1) provides the macroscopic description of
all major observed properties of the dark sector within
Einstein’s theory of general relativity.

In the galaxy scale, the field with the energy-momentum
tensor (9) allows me to describe analytically the galaxy
rotation curves in detail. The formulas (26)–(29) are
derived completely within Einstein’s theory. Thus, there
is no need for any modifications of the general relativity to
explain the observable plateau in rotation curves.

As I have shown previously [10], the vector fields with
the same Lagrangian (1) are adequate tools for the macro-
scopic description of the main features of evolution of the
Universe. In the scale of the whole Universe, the zero-mass
field corresponds to the dark energy, and the massive one
corresponds to dark matter. Price issue is the rejection
of the prejudice (widely spread, unfortunately) that the

energy should not be negative. Instead, I used a weaker
condition of regularity. In general relativity, the energy is
not a scalar, and its sign is not invariant against the arbi-
trary coordinate transformations. Described by the vector
field with the same Lagrangian (1), the dark matter is of the
same physical nature in both applications: to cosmology
[10] and to galaxy rotation curves.
As a matter of fact, I agree with the Sanders’s statement

that ‘‘. . .the correct theory may well be one in which
MOND reflects the influence of cosmology on local parti-
cle dynamics and arises only in a cosmological setting’’
[6]. However, it is evident that I do not share the Sanders’s
conclusion: ‘‘It goes without saying that this theory is not
General Relativity, because in the context of General
Relativity local particle dynamics is immune to the influ-
ence of cosmology’’ [6]. I have presented here the com-
plete derivation from the Einstein equations (14)–(16) to
the galaxy rotation curve (26).
There are attempts of applying the scalar, vector, and

tensor fields in order ‘‘to explain the flat rotation curves of
galaxies and cluster lensing without postulating exotic dark
matter’’ [8]. In quantum physics, each elementary particle
is a quantum of some field, and, vice versa, each field
corresponds to its own quantum particle [17]. From my
point of view, the various fields are just convenient mathe-
matical instruments that we use for the description of
physical phenomena, no matter how we name them.
According to the observations, the period of oscillations

2�
m [see Figs. 5(c) and 6(b)] is some 15 kpc. If in quantum

mechanics it is the de Broglie wavelength � ¼ "
mc , then the

rest energy of a quantum particle, corresponding to the
vector field, should be mc2 � 2:5� 10�27 eV.
The theory predicts the oscillating features with no

baryonic counterparts in the rotation curves of the outer
regions of galaxies. As this would be the main observatio-
nal signature of the existence of dark matter, I persistently
recommend this observational test.
A few words about fine-tuning. I have come across this

situation three times. The first one was the widely used in
the 1950s ‘‘Bennet pinch’’ [18]—a fine-tuned solution of
equilibrium of a high current channel in which the mag-
netic attraction is balanced by the gas pressure of electric
charges. In reality, it came out to be a boundary between
the expansion and compression when the balance is broken
[19]. For the second time, it was the conclusion of the
existence of the limiting mass of an ultrarelativistic star
by Chandrasekhar [20] and Landau [21]. The fine-tuned
solution of equilibrium with an ultrarelativistic equation of
state turned out to be the boundary of the gravitational
collapse [15]. The third time it was the fine-tuned singular
cosmological solution by Friedman [22], Robertson [23],
and Walker [24]. In the 1930s, dark matter had not
been taken seriously. With the account of dark matter,
the Friedman-Robertson-Walker singular solution turned
out to be a lower boundary of the regular oscillating

FIG. 6 (color online). (a) The solid line is fitting via MSTG
and MOND. The dashed line is the Newton dynamics; (b) points
are observations, and the solid curve is fitting by Eq. (26)
together with Eqs. (28) and (31).
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cosmological solutions [10]. In all the cases, the require-
ment of regularity rules out the problem of fine-tuning.

From my point of view, it is time to reconsider the
equilibrium [14] and collapse [15] of supermassive bodies,
taking into account the dark matter.
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