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We develop an approach for linking the power spectra, bispectrum, and trispectrum to the geometric

and kinematical features of multifield inflationary Lagrangians. Our geometric approach can also be

useful in determining when a complicated multifield model can be well approximated by a model with

one, two, or a handful of fields. To arrive at these results, we focus on the mode interactions in the

kinematical basis, starting with the case of no sourcing and showing that there is a series of mode

conservation laws analogous to the conservation law for the adiabatic mode in single-field inflation. We

then treat the special case of a quadratic potential with canonical kinetic terms, showing that it produces a

series of mode sourcing relations identical in form to that for the adiabatic mode. We build on this result to

show that the mode sourcing relations for general multifield inflation are an extension of this special case

but contain higher-order covariant derivatives of the potential and corrections from the field metric. In

parallel, we show how the mode interactions depend on the geometry of the inflationary Lagrangian and

on the kinematics of the associated field trajectory. Finally, we consider how the mode interactions and

effective number of fields active during inflation are reflected in the spectra and introduce a multifield

consistency relation, as well as a multifield observable �2 that can potentially distinguish two-field

scenarios from scenarios involving three or more effective fields.
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I. INTRODUCTION

Inflation solves cosmic conundrums such as the horizon,
flatness, and relic problems [1–5]. It also offers a mecha-
nism for producing the primordial density fluctuations.
According to the inflationary paradigm, our Universe ex-
perienced an early period of quasiexponential expansion
that stretched quantum fluctuations beyond the causal
horizon. Once beyond the horizon, the fluctuations became
locked in as classical perturbations, eventually initiating
the formation of galaxies and large-scale structure [6–11].

Generically, inflation predicts that these classical pertur-
bations should produce a small, nearly scale-invariant spec-
trum of primordial density fluctuations. Measurements of
the cosmic microwave background, large-scale structure,
supernovae, and gravitational lensing so far support
the inflationary paradigm. These measurements reveal
not only that the primordial fluctuations were nearly
scale-invariant and small, and included superhorizon
fluctuations, but also that our Universe is essentially flat,
as predicted by inflation (see Ref. [12] and references
therein).

But the ultimate goal is to use cosmic data not only to
test the inflationary paradigm but also to find the particular
inflationary model that describes our Universe. Of the
myriad inflationary models that might describe our
Universe, there is good reason to consider models where
inflation is driven by multiple scalar fields. First, many
theories beyond the Standard Model—such as grand uni-
fication, supersymmetry, and effective supergravity from
string theory—predict the existence of multiple scalar

fields, which makes the presence of multiple fields likely
during the hot, early Universe. Second, multifield models
have become increasingly popular in recent years.
But the sobering reality of searching for multifield mod-

els that could describe our early Universe is that there is a
staggeringly large number of multifield scenarios, making
it impractical to test every scenario against cosmic data.
Unlike for single-field models, both the initial conditions
and one or more Lagrangian parameters must be varied in
order to fully test the range of scenarios arising from a
given form of the Lagrangian. We illustrated this point in
Ref. [13] by examining both two-field quadratic and power
law product potentials. For each class of potentials, we
tested more than 10,000 scenarios by varying both a
parameter value in the Lagrangian and the initial condi-
tions, in order to constrain the model using WMAP data on
the power spectra. Rigorously constraining models like this
is extremely time consuming.
Rather than testing inflationary scenarios one by one like

this, a more promising approach is to determine how
constraints on the spectral observables in turn constrain
the features of the inflationary Lagrangian. Clearly, features
such as the geometry of the inflationary potential influence
the evolution of the field perturbations, so measurements of
the spectra should constrain the geometry of the potential.
But in what ways do the spectra constrain the geometry of
the inflationary potential? Is there a way to tell from cosmic
data whether a one-field or two-field model can fit all
measurements, as illustrated in Fig. 1, or whether more
fields are required? And what is the role of nonstandard
kinetic terms in determining the cosmic observables? In this
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paper, we aim to give greater insight into these and related
questions.

As background, initial work on understanding the per-
turbations and power spectra in general multifield inflation
was done in Refs. [14–30]. The specific case of two-field
inflation was treated in Refs. [13,28,31–42]. Work towards
calculating other spectra, such as the bispectrum and tris-
pectrum, in general two-field and multifield inflation was
done by Refs. [43–67], among others. While developing
formulas for the spectra from multifield inflation has
received much attention, the sourcing relations among
the modes in general multifield inflation where the
Lagrangian is unspecified has received less attention. The
powerful �N formalism introduced in Ref. [17] enables
one to calculate the spectra in terms of gradients of the
number of e-folds of inflation, N, but it has its limitations:
it can be applied analytically only to a fraction of models,
and it does not provide any insight into the sourcing
relations among modes. This situation contrasts with the
case of general two-field inflation [13,28,31–42] and
certain classes of multifield potentials (e.g., product poten-
tials, sum potentials), where the mode interactions have
been studied in depth.

In this paper, we fill this important gap in the literature
by examining the series of mode sourcing relations and
how they reflect the geometric and kinematical properties
of the inflationary Lagrangian. This paper extends and
complements some of our earlier work on two-field

inflation [13,68]. The rest of this paper is organized as
follows. In Secs. II A and II B, we cover the dynamics and
kinematics of the background fields, and we discuss under-
appreciated subtleties of the slow-roll limit as it applies to
multifield inflation in Sec. II C. In Secs. III A and III B, we
present equations of motion for the field perturbations in
both the given and kinematical bases.We then discussmode
evolution in the absence of sourcing and present mode
conservation laws in Secs. III C and III D. Section III E
treats the special case of quadratic potentials with canonical
kinetic terms in which the mode sourcing equations radi-
cally simplify, and we use this as a reference point in
Sec. III F for deciphering how the mode sourcing relations
in general multifield inflation depend on the geometric and
kinematical features of the inflationary Lagrangian. Finally,
we use these sourcing equations to examine the effective
number of fields in multifield models (Sec. IVA) and to
explore how this number is reflected in spectral observables
(Secs. IVB, IVC, IVD, IVE, and IV F).We also generalize
our two-field semianalytic formulas for the bispectrum and
trispectrum [68] to multifield inflation (Sec. IV F), identify
a spectral observable that can be used to distinguish two-
field models from models with three or more fields
(Sec. IVE), and introduce a new multifield consistency
condition (Sec. IV F). Thiswork helps pave theway towards
a better understanding of how the cosmic observables can
be used to constrain the form of the multifield inflationary
Lagrangian.

II. BACKGROUND FIELDS

This section covers the dynamics and kinematics of the
background inflationary fields. In turn, we review notation
and the equation of motion for the background fields in
Sec. II A, outline a framework for parsing the field vector
kinematics in Sec. II B, and cover the slow-roll and slow-
turn limits in Sec. II C.

A. Background field equation

We consider general multifield inflationary scenarios
with the following characteristics. Inflation is driven by an
arbitrary number of scalar fields,�i, where i ¼ 1; 2; . . . ; d,
and d is the total number of scalar fields present during
inflation, not all of which may be contributing to the infla-
tionary expansion at a given time. We use Latin indices to
represent quantities related to the fields, �i, and we repre-
sent the fields compactly as

� � ð�1; �2; . . . ; �dÞ; (1)

calling� the field vector for short, even though the fields do
not transform as vectors. During and after inflation, we
assume Einstein gravity and that the nongravitational part
of the inflationary action is described by

S ¼
Z �

� 1

2
g��Gijð�Þ @�

i

@x�
@�j

@x�
� Vð�Þ

� ffiffiffiffiffiffiffi�g
p

d4x; (2)

FIG. 1 (color online). Examples of three-field inflation trajec-
tories that can be accurately approximated by an effective model
with (a) one, (b) two, and (c) three fields, respectively. For
example, the field trajectory in (b) requiresmore than one effective
field to represent it because it curves, but since the trajectory
curves in a plane, only two effective fields are needed.
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where g�� is the spacetime metric, the fields are expressed

in units of the reduced Planck mass, �m � 1=
ffiffiffiffiffiffiffiffiffiffi
8�G

p
, and

c ¼ ℏ ¼ �m ¼ 1. The tensor Gij is a function of only the

fields, and it determines the form of the kinetic terms in the
Lagrangian; it can be viewed as inducing a field manifold
and hence is called the field metric. If the kinetic terms are
canonical, then Gij ¼ �ij. In this manuscript, we treat the

case of general multifield inflation, meaning we do not
assume a particular functional form for either the field
metric or the inflationary potential.

Before proceeding, we introduce some notational short-
hand. For vectorial quantities lying in the tangent and
cotangent bundles of the field manifold, we use boldface
vector notation and standard inner product notation:

AyB � A �B � GijA
iBj; (3)

where we use the symbol y on a naturally contravariant or

covariant vector to denote its dual, e.g., _�y � ðGij
_�jÞ and

ry � ðGijrjÞ. Also, instead of working in terms of the

coordinate time, t, we work in terms ofN, which represents
the logarithmic growth of the scale factor, aðtÞ:

dN � d ln a ¼ Hdt; (4)

where H � _a
a is the Hubble parameter. N represents the

number of e-folds of the scale factor, aðtÞ.Wework in terms
of N because it is dimensionless, it relates to a more
physical measure of time, and it simplifies the equations
of motion [13,19]. Differentiation with respect to N is
denoted by

0 � d

dN
: (5)

The background equation of motion for the fields is
derived by imposing covariant conservation of energy.
We derived such an equation using N as the time variable
for general two-field inflation in Ref. [13], and the same
equation holds for the general case of multifield inflation:

�

ð3� �Þ þ�0 þ ry lnV ¼ 0; (6)

where

� � �ðlnHÞ0 ¼ 1

2
�0 ��0; (7)

and the covariant field acceleration � is defined as

� � D�0

dN
: (8)

The symbol D acting on a contravariant vector Xi means

DXi � d�jrjX
i ¼ d�jð@jXi þ �i

jkX
kÞ; (9)

where �i
jk and rj are the Levi-Civita connection and the

covariant derivative, respectively, associated with the field
metric. Therefore, the covariant acceleration � represents

deviations from perfect parallel transport of �0. By work-
ing in terms of D and the covariant derivative r, we are
able to write all the equations of motion in manifestly
covariant form.
Finally, we make the common assumption that as infla-

tion progresses, the field vector picks up speed but not
necessarily monotonically. Eventually, the field vector
picks up enough speed to end inflation, which we take to
be when � ¼ 1. The choice of exactly when inflation ends
does not impact the results presented in this manuscript.

B. Field vector kinematics

The kinematical framework presented here is based
mostly on work by Refs. [13,21,23,32], with small mod-
ifications. Here, the coordinates are the scalar fields, which
represent the coordinate position on the manifold induced
by the field metric. In analogy to Newtonian mechanics, �

represents the position, �0 is the velocity, and � � D�0
dN

represents the covariant acceleration, where D
dN is defined

through Eq. (9). Similarly, we can define higher-order
covariant derivatives of the field velocity. The jerk is
defined as

� � D2�0

dN2
: (10)

An equation of motion for the jerk can be obtained by
differentiating Eq. (6) once, which yields

�

ð3� �Þ þ � ¼ �
�
Mþ ��y

ð3� �Þ2
�
�0; (11)

where the mass matrix, M, is defined as

M � ryr lnV (12)

and is symmetric. Similarly, we represent the ðn� 1Þth
covariant derivative of the velocity by the notation1

1For comparison, Groot Nibbelink and van Tent [23] defined a
series of higher-order kinematical vectors as

~� ðnÞ � Dðn�1Þ�;

ða;aÞðn�1Þj�;j ; (13)

where ; represents the derivative with respect to the arbitrary
time variable � and D is the ‘‘slow-roll derivative.’’ The slow-
roll derivative is defined asDðbnAÞ � ðDd� � n d ln b

d� ÞðbnAÞ, where
b ¼ �g00 and A is independent of b. Our kinematical vectors
differ from Groot Nibbelink and van Tent’s in two ways: (1) the
effective order in the slow-roll expansion, which differs because
of the factor j�;j in the denominator in Eq. (13), and (2) the
expressions themselves—that is, our series differs from theirs
even when the order of Eq. (13) is adjusted by multiplying by
j�;j. Both constructs have their utility: Groot Nibbelink and van
Tent’s construct makes their vectors manifestly independent of
the choice of time coordinate, while our construct is physically
intuitive since it is based on using N as the time variable and can
be used to simplify certain expressions to a greater degree.
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�ðnÞ ¼
�
D

dN

�ðn�1Þ
�0; (14)

and an equation of motion for �ðnÞ can be obtained by
differentiating Eq. (6) a total of n� 2 times.

These kinematical vectors induce a basis in which the
perturbed equations of motion can be better understood
[21,23,32]. The construction of this basis is as follows. The
first basis vector, e1, is chosen to lie in the direction of the
field velocity, parallel to the field trajectory. The second
basis vector, e2, is constructed to lie along the part of the
field acceleration that is orthogonal to the field velocity, in
the direction that makes e2 � � � 0. Continuing the Gram-
Schmidt orthogonalization procedure produces a set of d
basis vectors:

e1 � �0

j�0j ;

e2 � ðI� e1e
y
1 Þ�

jðI� e1e
y
1 Þ�j

;

. . .

ed � ðI�P
d�1
i¼1 eie

y
i Þ�ðdÞ

jðI�P
d�1
i¼1 eie

y
i Þ�ðdÞj ;

(15)

where I is the identity matrix of the appropriate dimen-
sionality. This process is illustrated in Fig. 2. If, however,

one of the kinematical vectors �ðnÞ already lies in the

subspace defined by the basis vectors e1; e2; . . . ; en�1,

then it is not possible to find a projection of �ðnÞ that
represents a new direction in field space. In this case, en
can simply be constructed at will so that it represents a new
direction that is orthogonal to the subspace spanned by the
basis vectors e1 through en�1, and then the orthogonaliza-
tion process can naturally proceed again. While our kine-
matical vectors differ from those of Groot Nibbelink and
van Tent [21,23], our kinematical basis vectors are equiva-
lent to theirs.
With these basis vectors, we can take projections of

vectors and matrices. For example,

	ðmÞ
n � en � �ðmÞ (16)

represents the projection of the mth kinematical vector
onto the nth basis vector. Note that because of the defini-
tion of the kinematical basis vectors in Eq. (15), if n > m,

then 	ðmÞ
n ¼ 0. That is, in the kinematical basis, �0 has the

sole nonzero component

v � j�0j; (17)

� has nonzero components 
1 and 
2; � has nonzero
components �1, �2, and �3; and so on. The projection of
any vector along e1 is particularly noteworthy, as it repre-
sents the vector component parallel to the field trajectory
and hence single-fieldlike behavior. By contrast, vector
components orthogonal to the field trajectory relate to
effects unique to multifield inflation. For this reason, it is
useful to use the shorthand notation

Amn � eymAen (18)

for the matrix coefficients of any matrix A and

A?? � ðI� e1e
y
1 ÞAðI� e1e

y
1 Þ (19)

for the above special matrix projection.
Lastly, we consider the time derivatives of the kinemati-

cal basis vectors, which represent how quickly the basis
vectors are covariantly changing direction with respect to
the field manifold. In particular, the derivative of the basis
vector parallel to the field velocity, e1, represents how
quickly the field trajectory itself is covariantly changing
direction and is given by

De1
dN

¼ 
2

v
e2: (20)

Similarly, differentiating the second basis vector in
Eq. (15) gives

De2
dN

¼ �3


2

e3 � 
2

v
e1: (21)

The derivative of the nth basis vector is

Den
dN

¼ 	ðnþ1Þ
nþ1

	ðnÞ
n

enþ1 � 	ðnÞ
n

	ðn�1Þ
n�1

en�1: (22)

e1

e2

e3

1

2

3

FIG. 2 (color online). An example showing how the kinemati-
cal basis is constructed from the kinematics of the background
fields. The green curved path represents the trajectory of the field
vector in a three-field inflation scenario. At each point on the
trajectory, the e1 basis vector is chosen to point in the direction
of the field velocity, e2 points in the direction of the perpen-
dicular component of the acceleration, and e3 is constructed to
be orthogonal to the first two basis vectors.
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In analogy to our work in Ref. [13], we call j Den
dN j the turn

rate for the nth basis vector. Note that Eq. (22) means that
when the en basis vector changes direction, it can pick up
components along only the en�1 and enþ1 directions. We
emphasize that this fact will greatly simplify the equations
of motion for the field perturbations. Furthermore, because
D
dN ðenþ1 � enÞ ¼ 0, the matrix

Zmn � em �Den
dN

(23)

is skew symmetric with the only nonzero components being

Znþ1;n ¼ �Zn;nþ1 ¼ 	ðnþ1Þ
nþ1

	ðnÞ
n

: (24)

The kinematical quantity Znþ1;n represents how quickly the

en basis vector is turning into the direction of enþ1. Because
Z summarizes the turn rates for all d basis vectors, we callZ
the turn rate matrix. The turn rate matrix is therefore the
multifield generalization of the idea of a single covariant
turn rate for two-field inflation. The turn rate matrix, along
with the kinematical basis vectors, plays a key role in
determining the evolution of the field perturbations.

C. Slow-roll and slow-turn limits

The final element of the background solution is the
slow-roll limit, the standard approximation invoked when
the fields are slowly rolling and the inflationary expansion
is quasiexponential. In this section, we uncover some
important nuances and make some distinctions regarding
different formulations of the slow-roll approximation that
have been assumed to be equivalent.

In multifield inflation, the slow-roll limit is typically
defined (e.g., Refs. [31,34,35,37,38]) by the two conditions

� � 1; (25)

jMijj � 1; (26)

which forces the field vector to be slow rolling and the
masses of the fields and their couplings to be small. In other
approaches (e.g., Refs. [19,21,23]), the second condition
above is effectively replaced by

� � �0; (27)

which more narrowly forces the dimensionless field
acceleration to be much smaller than the dimensionless
field velocity.

In Ref. [13], we examined the above conditions in the
context of two-field inflation and argued for a more
nuanced approach that splits the slow-roll condition
in Eq. (27) into two separate limits—the slow-roll limit
and the slow-turn limit.2 We defined the two-field slow-roll
limit as

� � 1; (28)

��������
1

v

��������� 1; (29)

which is identical to the single-field definition; that is,
Eqs. (28) and (29) correspond to limits on single-fieldlike
behavior. We elevated the second component of Eq. (27)
into a separate limit dubbed the slow-turn limit:��������De1

dN

��������¼ 
2

v
¼ Z21 � 1: (30)

It corresponds to limits on how quickly the field trajectory
is covariantly changing direction—a distinctly multifield
behavior. The power of our distinction is that the rolling
(single-field behavior) and turning (multifield behavior) of
the field vector have very different effects on the power
spectra. For example, two-field models that strongly
violate the slow-turn limit around horizon crossing but
not the slow-roll limit are ruled out by WMAP constraints
on the density power spectrum [13] and can potentially
produce large isocurvature modes [68].
To extend this more nuanced approach to general

multifield inflation, now multiple turn rates must be taken
into consideration. We say that a basis vector en is slowly
turning if ��������Den

dN

��������� 1: (31)

When all d basis vectors are slowly turning, we say that the
inflationary scenario is in the slow-turn limit, and the
magnitude of every component of the turn rate matrix, Z,
is significantly less than one:

jZijj � 1: (32)

We claim that the conditions in Eqs. (25), (26), and (32)
are needed to correctly analogize the slow-roll limit from
single-field inflation to general multifield inflation. One
might wonder why Eq. (32) is needed in addition to
Eq. (26), since in two-field inflation, Eq. (26) implies
Eq. (32). The answer is that while Z21 � �M21, in general
it is not true that jMijj � jZijj. For this reason, a total of

three limits (or four if the field metric is nontrivial) are
needed to simplify the perturbed equation of motion in a
manner similar to that in single-field inflation. These three
conditions are the slow-roll limit in Eq. (25), the small
coupling limit in Eq. (26), and the slow-turn limit in
Eq. (32); an additional limit on the curvature of the field
manifold for nontrivial field metrics will be introduced in
the next section. These subtle but important points have not
been fully recognized before, to our knowledge. (After our
manuscript was posted on the arXiv, another manuscript
later appeared [69] that discusses and extends many of these
points.) Nonetheless, in this paper, wewill refer to these four
limits when combined together as the multifield slow-roll

2In two-field inflation, the conditions in Eq. (26) differ from
those in Eq. (27) by the extra constraint jM22j � 1.
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approximation to avoid introducing new nomenclature that
might create confusion.

Having clarified the correct analogous slow-roll condi-
tions for multifield inflation, we now apply these limits to
the background equations of motion and to the perturbed
equations of motion in Sec. III. Equation (6) for the evo-
lution of the fields reduces to

�0 � �ry lnV; (33)

and the field speed is given by

v � jr lnVj; (34)

or equivalently by

� � 1

2
jr lnVj2: (35)

By virtue of Eq. (33), the operator D
dN ¼ �0 � r becomes

D

dN
� �r lnV � r; (36)

and the kinematical vectors can be approximated by

�ðnÞ � ð�r lnV � rÞðn�1Þð�ry lnVÞ: (37)

For example,

� � �M�0 � Mry lnV: (38)

Note the special result that follows from Eq. (38):


2

v
¼ Z21 � �M12: (39)

The approximations for the basis vectors follow directly

from the above results, with Eq. (37) substituted for �ðnÞ in
Eq. (15), in particular,

e1 � �ry lnV
jr lnVj : (40)

In later sections, we use ¼ instead of � and simply
indicate when the slow-roll limit applies. These results
will help simplify the equations of motion and the inter-
actions among the field perturbations.

III. FIELD PERTURBATIONS

In this section, we show how the evolution of the field
perturbations is determined by the kinematics of the back-
ground fields and the geometries of the potential and field
manifold. While this has been done in detail for general
two-field inflation and for subcases of multifield inflation
such as product potentials, our goal here is to provide the
first more thorough treatment in the general multifield
case. In Secs. III A and III B, we present an equation of
motion for the field vector perturbation in terms of the time
variable N in both the given and kinematical bases,
respectively. In Secs. III C, III D, III E, and III F, we
uncover how the mode interactions are determined by the
kinematics of the field trajectory and geometric features of
the inflationary Lagrangian. We start with the case of no

sourcing in Sec. III C and develop a series of mode con-
servation laws in Sec. III D. In Sec. III E, we treat the
special and very interesting case of quadratic potentials
with canonical kinetic terms where all mode equations
greatly simplify and assume the same form. We use this
case as a reference for exploring the mode interactions in
general multifield inflation in Sec. III F.

A. Field vector perturbation equation

Here we work exclusively in the flat gauge. In this
gauge, the field perturbations decouple from the metric
perturbations and equal the gauge-invariant Mukhanov-
Sasaki variable ��f ¼ ��þ c�0, where c represents

the scalar metric perturbation on spatial hypersurfaces
[70,71]. From here forward, we drop the subscript f from
��f for simplicity.

The equation for the field perturbations is obtained by
imposing covariant conservation of energy, as has been
demonstrated before [17,18,21]. However, we break from
convention by using N as the time variable, both because it
is physically intuitive and because it makes the equation of
motion dimensionless. We derived such an equation in the
context of general two-field inflation with noncanonical
kinetic terms in Ref. [13]. Following the same series of
steps as outlined in Ref. [13], we arrive at the same
expression, with the exception that the curvature term
arising from the field metric is more complicated, reflect-
ing the additional field degrees of freedom.3 The resulting
equation in Fourier space is

1

ð3� �Þ
D2��

dN2
þD��

dN
þ
�
k2

a2V

�
��

¼ �
�
~Mþ ��y

ð3� �Þ2
�
��; (41)

where k is the comoving wave number. The term ~M is the
effective mass matrix,4 and we define it as

~M � M� 1

ð3� �ÞR; (42)

and the curvature matrix, R, is defined as [21]

Ra
d � 2�Ra

bcde
b
1e

c
1; (43)

where Ra
bcd is the Riemann curvature tensor associated

with the field metric. Because of the symmetry and anti-
symmetry properties of the Riemann curvature tensor, it
follows that R is symmetric. Moreover, R�0 ¼ 0, and
hence R ¼ R??.

3For comparison, in two-field inflation, the curvature term
effectively reduces to a single degree of freedom, the Ricci
scalar, times a scaled outer product of two kinematical basis
vectors.

4For comparison to our dimensionless definition of the effec-
tive mass matrix, Groot Nibbelink and van Tent defined the
effective mass matrix as ~M2 � ryrV �H2R [23].
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Now we simplify Eq. (41) for use in the superhorizon
limit. In this limit, the modes are significantly outside the
horizon such that ð k

aHÞ2 � 1 and the subhorizon term

ð k2

a2V
Þ�� can be neglected. We also invoke the multifield

slow-roll approximation, as correctly outlined in Sec. II C.

To start, the term �� y
ð3��Þ2 can be neglected since this term is

much smaller than M as long as the field trajectory is not
turning rapidly. In brief, the simplification follows from the
fact that � ¼ �M� in the multifield slow-roll limit, as we
showed in more depth in Ref. [13] for two-field inflation.
We also introduce another simplifying condition, which
completes the extrapolation of the slow-roll limit to the
multifield case: like for M and Z, the dimensionless co-
efficients of R must satisfy

jRijj � 1: (44)

Whenever all these conditions apply in the superhorizon
limit, it can be shown [23,72] that the acceleration of the
field perturbations can also be neglected and Eq. (41)
reduces to

D��

dN
¼ � ~M��; (45)

where

~M ¼ M� 1

3
R (46)

in the slow-roll limit. Equations (45) and (46) show that
the superhorizon, slow-roll evolution of the modes is deter-
mined by only M, which can be viewed as the covariant
dimensionless couplings of the fields, andR, which encap-
sulates the curvature of the fieldmanifold.We point out that
the simplicity of this equation follows from working in
terms of the time variable N and hence justifies our choice
to depart from convention.

B. Mode evolution equations in the kinematical basis

Now we examine the interactions among the dmodes in
the superhorizon limit. These interactions have been studied
in depth for general two-field inflation and for certain
classes of multifield potentials (e.g., product potentials,
sum potentials) [13,31–42,66,67,73]. But surprisingly,
studying the interactions among modes one by one like
this has not receivedmuch attention in the generalmultifield
case. Here we fill this important gap in the literature.

In general, the interactions among modes are most
easily understood in the kinematical basis. First, in this
basis, the density mode can be teased out from the d
modes. Second, the turn rate matrix simplifies in this basis.
In the kinematical basis, the nth mode is represented as

��n � en � ��; (47)

that is, themodes are decomposed by their projections along
the kinematical basis vectors. The adiabatic or densitymode

corresponds to ��1, the component of �� that is parallel to
the field trajectory. The remaining components of �� in the
kinematical basis correspond to entropy modes, represented
collectively as��?. Entropymodes are linear combinations
of the field perturbations that leave the overall density
unperturbed. As there are d fields in the system, there will
be d� 1 entropy modes, all of which are orthogonal to the
field trajectory and to each other. When a mode ��m affects
the evolution of mode ��n, we say that ��m sources ��n,
regardless of whether that interaction causes ��n to
increase or decrease in amplitude. Since we group all
sourcing terms on the right-hand side of each equation,
we refer to such equations as mode sourcing equations.
We start with the well-known mode sourcing equation

for the adiabatic mode, ��1, which is most easily derived
from the fact that the comoving density perturbation van-
ishes in the superhorizon limit. Imposing this constraint
yields [13,23,32]

�
��1

v

�0 ¼ 2
De1
dN

� ��
v

¼ 2Z21

�
��2

v

�
: (48)

In the slow-roll limit, the above equation can be written as

��0
1 þM11��1 ¼ 2Z21��2; (49)

where we have used that M11 ¼ � 
1

v from Eq. (38).

ExaminingEq. (48) reveals that the adiabaticmode is sourced
only when the field trajectory changes direction with respect
to the field manifold (e.g., Refs. [3,13,21,23,32]). The
strength of the sourcing depends on the e1 turn rate: the
faster the background trajectory changes direction,
the faster the adiabatic density mode grows.5 Moreover,
the adiabatic mode can be sourced only by the entropy
mode ��2; none of the other modes can source the adia-
batic mode. Otherwise, when the field trajectory does not
turn or ��2 vanishes, it follows that ��1 / v, which is
tantamount to single-field behavior.
For each of the entropy modes, we can likewise derive a

mode sourcing equation. We start from Eq. (45), which is a
vector equation but takes a different form in the kinemati-
cal basis because the basis vectors can rotate, causing the
equation of motion to pick up extra terms that trivially
vanish in the original given basis. Using the fact that

��0
n ¼ en � ��0 � eynZ��; (50)

it follows that the corresponding equation in the kinemati-
cal basis is

5In the classical treatment of Eq. (48), this statement is implied
to be taken with respect to assuming that ��1 and ��2 are both
positive. In the quantum treatment, when we speak of the mode
��1 growing, it is implied that we are referring to the variance of
��1 growing. Similar assumptions are made when discussing
the other modes.
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D��

dN
¼ �½ ~Mþ Z��� (51)

in the slow-roll limit. This quite simple but elegant equa-
tion is equivalent to the corresponding equation derived in
Ref. [23] but tells us more straightforwardly that the evo-
lution of modes depends only on the turn rate matrix and
the effective mass matrix, which includes corrections from
any nontrivial field metric. Now projecting out the adia-
batic mode and using Eq. (39), the evolution of the d� 1
entropy modes is described by

D��?
dN

¼ �½ ~Mþ Z�??��?; (52)

where the special matrix projection was defined in
Eq. (19). Equation (52) shows that the adiabatic mode
does not source any of the entropy modes in the super-
horizon limit—a result that holds true regardless of whether
the slow-roll limit applies.

The individual equations for each of the d� 1 entropy
modes form a series of mode sourcing equations. The
evolution of the ��2 entropy mode is determined by

��0
2 þ ~M22��2 ¼ �ð ~M23 � Z32Þ��3 �

Xd
m¼4

~M2m��m;

(53)

which follows from Z2n ¼ 0 for n � 4. Similarly, for the
��n mode, where n � 3, the sourcing equation is

��0
n þ ~Mnn��n ¼ �ð ~Mn;n�1 þ Zn;n�1Þ��n�1

� ð ~Mn;nþ1 � Znþ1;nÞ��nþ1

� Xd
m¼2;jn�mj�2

~Mnm��m: (54)

This equation follows from the fact that Z is skew sym-
metric with Zmn ¼ 0 when jm� nj � 2.

C. Mode evolution in the absence of sourcing

In the remainder of Sec. III, we analyze how the geome-
try and kinematics of inflation dictate the superhorizon
evolution of modes.

First, consider what happens in the absence of sourcing.
For ��n to be unsourced, Eqs. (48), (53), and (54) show
that en must not be turning and the effective mass matrix
coefficients ~Mnm must vanish for all m � n. When these
conditions are met, the evolution of the ��n mode is
governed solely by ~Mnn. In the past, the mode amplitude
decay has sometimes been modeled as approximately pro-

portional to e� ~M�
nnN� , where ~M�

nn is the value of the effec-
tive mass at horizon exit and N� is the number of e-folds
since the mode exited the horizon. But as we discussed in
Ref. [13] for the case of two-field inflation, this assumption
often leads to large inaccuracies of up to orders of magni-
tude in estimating the mode amplitudes and the spectra

(see Ref. [13] and references therein). Hence, to accurately
model the behavior of the unsourced mode, the expression

��nðNÞ ¼ ��nðN1Þe�
R

N

N1

~MnnðN2ÞdN2
(55)

should be used; the integral of ~Mnn most accurately gives
that mode’s relative change in amplitude.
Now the effective mass ~Mnn depends on two quantities:

the covariant Hessian of the inflationary potential Mnn �
rnrn lnV and 1

3Rnn, where R depends on the curvature

tensor of the field manifold contracted with two field
velocity vectors, as shown in Eq. (43). Since both are
geometric quantities, we can predict the behavior of ��n

by determining the geometries of the inflationary potential
and field metric. Take first the covariant Hessian of
the inflationary potential, Mnn. If the potential lnV is
covariantly concave up along the en direction—
rnrn lnV > 0—��n will decay. Conversely, if the poten-
tial is concave down along the en direction, ��n will grow.
A well-known example of this behavior is the adiabatic
mode in single-field inflation, which is often likened to a
ball rolling down a hill that speeds up or slows down
depending on the concavity of its path. A second example
is the ��2 mode in two-field inflation; if the two-
dimensional field trajectory lies in a valley (concave up),
then ��2 decays, but if it lies along a hill (concave down),
then ��2 grows in amplitude.
The second geometrical quantity involved, the curvature

term Rnn, involves the Riemann tensor of the field metric.
Geometrically, it represents 2� times the en component of
the failure of e1 to be parallel transported around a closed
loop defined by the directions e1 and en. If this deviation
from parallel transport of e1 results in a positive component
along the en direction, then ��n will grow; conversely, a
negative value causes ��n to decay. For example, in two-
field inflation, since R22 is proportional to negative � times
the Ricci scalar of the field manifold, if the field manifold is
locally elliptical, ��2 will decay, while a locally hyperbolic
surface will cause ��2 to grow. Note that if both Mnn and
Rnn have the same sign, they will partially negate each
other. Therefore, we can view the effective mass as some
sort of measure of the net curvature or geometry of the
inflationary Lagrangian along en. It represents the com-
bined effects of the concavity of the potential and the
curvature of the field manifold on the mode evolution,
with positive concavity and a negative field manifold cur-
vature coefficient promoting mode decay.

D. Mode conservation laws

The corollary of Eq. (55) is that when ��n is unsourced,
the quantity

��ne
R

~MnndN (56)

is conserved in the superhorizon limit. For example, in
single-field inflation, the ��1 mode is automatically
unsourced, and thus the quantity
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��1e
R

�
~M11dN / ��1

v
(57)

is conserved. In inflation with two effective fields, the
entropy mode ��2 is unsourced, so the quantity

��2e
R

�
~M22dN (58)

is conserved; this allows one to find a semianalytic ex-
pression for ��1 without needing to solve a set of coupled
equations [13]. Therefore, Eq. (56) is the multifield gen-
eralization of the well-known single-field conservation law
for the adiabatic mode in Eq. (57). Equation (56) endows
each of the d modes with a conservation equation that
holds whenever ��n is not sourced—which occurs when
��nþ1 vanishes or when en is not turning and ~M has no
off-diagonal components along the direction en. So there
are up to d potential conserved quantities related to the
modes.

A mode’s effective mass is not only important in the
absence of sourcing but also in determining when sourcing
effects are important and need to be taken into account. For
example, consider two-field inflation where the entropy
mode ��2 sources the adiabatic mode. If the effective
mass of the entropy mode ��2 is significantly large and
positive, then the entropy mode will decay, thereby reducing
the ability of the entropymode to source the adiabatic mode.
Taking the limit where the effective entropy mass is very
large and positive, we can neglect the entropy mode, and the
adiabaticmode is unsourced,making the scenario effectively
single-field. In the opposite limit, if the effective entropy
mass is large and negative, the entropy mode will grow
rapidly, resulting in much stronger sourcing. And this latter
scenario is alsomore likely to result in large non-Gaussianity
(see Ref. [68]).

Extrapolating to general multifield inflation, we expect
that the size and magnitude of the effective mass ~Mnn plays
a significant role in determining how much ��n influences
the evolution of ��n�1. In particular, when the effective
mass for the nth mode is very large and positive, the
scenario is likely to behave like a multifield scenario
with n� 1 effective fields. And in the case where all but
one of the fields have a large and positive effective mass,
there are d mode conservation laws and the scenario can
effectively be treated as single field with a reduced poten-
tial (e.g., Ref. [74]).

E. Sourcing in the special case of quadratic potentials
with canonical kinetic terms

Before we consider sourcing in the general case, we first
consider the mode interactions in the special case of
quadratic potentials with canonical kinetic terms. It turns
out that the mode interactions simplify greatly in this
scenario and that the results can be used as a reference
for comparing other inflationary Lagrangians.

For quadratic potentials with canonical kinetic terms,
the effective mass matrix simplifies to

~Mij ¼ Mij ¼ @i@j lnV; (59)

and the potential satisfies

@i@j@kV ¼ 0 (60)

for all i, j, and k. Therefore, repeatedly taking the deriva-
tive of Eq. (59) and using Eq. (60) gives

DM

dN
¼ 2�ðMþ�0�0yÞ � D

dN
ð�0�0yÞ;

D2M

dN2
¼ ð4�2 þ 2�0 � �ÞðMþ�0�0yÞ � D2

dN2
ð�0�0yÞ;

. . .

DnM

dNn ¼ V

�
DnV�1

dNn

�
ðMþ�0�0yÞ � Dn

dNn ð�0�0yÞ: (61)

Using the above results, we can show that the turn rate
matrix for these scenarios can be expressed solely in terms
of the mass matrix coefficients in the slow-roll limit. First,
for all inflationary scenarios,

Z21 ¼ �M21; (62)

which follows from projecting Eq. (38) onto the basis
vector e2. Differentiating Eq. (38) and projecting it onto
en, where n � 3, gives

�n ¼ �Mn2
2 �
�
DM

dN

�
n1
v; (63)

where we have used that Mn1 ¼ 0 and 
n ¼ 0 for all
n � 3. But for quadratic potentials with trivial field met-
rics, ðDM

dN Þn1 ¼ 0 for n � 3 by virtue of Eq. (61) and the

facts that Mn1 ¼ 0 for n � 3 and 	ðmÞ
n ¼ 0 for m< n.

Using this result in Eq. (63), it therefore follows that

Z32 ¼ �M32 (64)

and

Mn2 ¼ 0 for n � 4: (65)

Similarly, differentiating Eq. (38) a second time, projecting
it onto en where n � 4, and using Eq. (65) gives

	ð4Þ
n ¼ �Mn3�3 � 2

�
DM

dN

�
n2

2 �

�
D2M

dN2

�
n1
v: (66)

But by Eq. (61), ðDM
dN Þn2 and ðD2M

dN2 Þn1 vanish for n�4,

yielding

Z43 ¼ �M43;

Mn3 ¼ 0 for n � 5:
(67)

Repeating this series of steps, we find that for this special
class of scenarios

Znþ1;n ¼ �Mnþ1;n; (68)
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and

Mmn ¼ 0 for jm� nj � 2;�
DpM

dNp

�
mn

¼ 0 for jm� nj � pþ 1;

(69)

where p � 1.
Equation (68) shows that the turn rate matrix can be

expressed entirely in terms of coefficients of the mass
matrix. The rate at which the en basis vector turns into
the direction of enþ1 is given simply by �Mnþ1;n.

Substituting this result into Eq. (54), the mode sourcing
equation for all d modes reduces to

��0
n þMnn��n ¼ 2Znþ1;n��nþ1: (70)

Therefore, whenever the Lagrangian consists of a quadratic
potential and canonical kinetic terms, the ��n mode is
sourced only by the ��nþ1 mode; the other d� 2 modes
do not influence ��n. Moreover, the ��n mode is
sourced only when the en basis vector rotates into the
enþ1 direction. This provides a very simple way to under-
stand this special class of Lagrangians in terms of the
geometry or kinematics of inflation. It also explains why
these scenarios are the simplest to solve: every mode obeys
an equation of motion that is identical in form to that for
the adiabatic mode. Mathematically, the solution for the
nth mode becomes

��n ¼ ���
ne

�
R

N

N�
MnndN1

þ
Z N

N�
2Znþ1;n��nþ1e

�
R

N1
N�

MnndN2dN1: (71)

Finally, since there is no sourcing when Znþ1;n ¼ 0, the
number of kinematical basis vectors that are changing
direction inversely indicates the number of conserved
mode quantities.

The results for quadratic potentials with trivial field
metrics are not just interesting in and of themselves, but
they provide a critical vantage point from which to under-
stand the mode interactions in general multifield inflation,
as we will show in the next section.

F. Sourcing in the general case

Finally, we consider entropy mode sourcing in the gen-
eral case. We start by discussing the three types of terms
that can give rise to sourcing effects. Then we discuss how
general multifield inflation differs from the canonical
quadratic case and how various order covariant derivatives
of the potential affect the mode interactions.

According to Eq. (54), sourcing effects can arise from
the following:

(1) off-diagonal terms in the mass matrix,
(2) any nontrivial geometry of the field manifold,
(3) the kinematical basis vectors changing direction.

We will consider each sourcing effect in turn.

The first type of sourcing effect arises from off-diagonal
terms in the mass matrix, which is the covariant Hessian of
lnV. These off-diagonal terms are measures of the cou-
pling between fields in the potential and of whether this
coupling results in a higher or lower potential energy state.
But these terms can also be viewed as geometric effects
because Mnm represents how much the nth component of
the covariant derivative of lnV varies along the em direc-
tion. Therefore the shape of the potential via its Hessian
provides insight into this type of sourcing effect. If the
coupling termMnm is positive, then ��m will cause ��n to
decay; otherwise, if it is negative, it will increase the
amplitude of ��n. Interestingly, since the mass matrix is
symmetric, a nonzero Mn;nþ1 leads to parallel sourcing

effects; for example, a negative value forMn;nþ1 will cause

both the ��n and ��nþ1 modes to grow.6

The second type of sourcing effect arises from the curva-
ture matrixR. As explained earlier, the form of the kinetic
terms in the inflationary Lagrangian can be represented
through a field metric, and this metric can be viewed as
inducing a field manifold. If the field manifold has non-
trivial geometry, then the Riemann curvature tensor will be
nonzero, and this will be manifested in the form of a
nonzero symmetric curvature matrix Ra

d � 2�Ra
bcde

b
1e

c
1.

Specifically, if the em component of the failure of e1 to be
parallel transported around the closed loop defined by e1
and en is nonzero, then the curvature matrix will cause��m

to source ��n. Since the curvature matrix can be factored
into � times a term involving the Riemann tensor, this term
technically combines geometric and kinematical effects; so
when all else is equal, the impact of noncanonical kinetic
terms on themode sourcing tends to be greatest at the end of
inflation andwhenever else the field speed is large.Now like
the mass matrix, since the curvature matrix is symmetric, a
positive value for a given curvature matrix coefficient Rnm

will cause both the ��m and ��n modes to grow. Note that
in comparison to the mass matrix, the curvature matrix
appears in the equation of motion with the opposite sign.
Thus, wemay view themass matrix and curvature matrix as
representing the sourcing effects due to the geometry of the
Lagrangian, with the mass matrix primarily corresponding
to the potential and the curvature matrix to the field metric.
The third and last kind of sourcing effect is purely a

kinematical effect—a direct consequence of the kinemati-
cal basis vectors changing direction. Importantly, the co-
efficients of the turn rate matrix allow ��n to be sourced
by only two modes: ��n�1 and ��nþ1. Consider first the
term Znþ1;n��nþ1 in Eq. (54). The kinematical term Znþ1;n

represents how quickly the en basis vector is turning into
the direction of the enþ1 basis vector. Since Znþ1;n is

always non-negative, this turning will always cause ��n

6Again, when working in the classical picture, our statements
are with respect to positive field fluctuations; it is straightforward
to extrapolate to other cases.
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to grow. And the faster en is turning into the enþ1 direction,
the more ��nþ1 sources ��n. This sourcing effect can be
interpreted physically as follows: the direct rotation of the
kinematical basis vectors causes what was once a ��nþ1

mode to be partially converted into a ��n mode. The other
kinematical sourcing term, �Zn;n�1��n�1, can be under-

stood similarly. However, this term causes ��n to shrink in
magnitude, which can be explained by the fact that ��n is
being partially converted into ��n�1 by the rotation of
basis vectors. The antisymmetry of the turn rate matrix
neatly encapsulates these antithetical kinematic effects.
These effects, along with the other sourcing effects, are
summarized in Table I.

Though we have dubbed the third type of sourcing a
kinematical effect, the question naturally arises as to
whether the kinematics can be directly related back to
the geometry of the Lagrangian. In the case of a quadratic
potential with canonical kinetic terms, we saw that this is
the case and the turn rates can be expressed neatly in terms
of the mass matrix coefficients. But in general, this is not
true, and the turn rates involve more complex combinations
of the various nth-order covariant derivatives of lnV.
Hence it is often easiest to view the effects from the turn
rate matrix as kinematical effects, rather than a compli-
cated combination of geometric effects. What is different
in the general case of multifield inflation is that rnV � 0
for n � 3 and R � 0, producing additional terms in the
mode sourcing equations. This can be seen by starting with
the slow-roll expansion for the nth kinematical vector,

�ðnþ2Þ ¼ � Xn
m¼0

n

m

 !��
D

dN

�
m
M

�
�ðn�mþ1Þ; (72)

which follows from differentiating Eq. (38) for � a total of
n times. For instance, the jerk is

� ¼ �M��DM

dN
�0: (73)

Since � has only three nonzero components in the kine-
matical basis, projecting the jerk onto the basis vectors
gives

�3 ¼ �M32
2 �
�
DM

dN

�
31
v;�

DM

dN

�
n1

¼ �Mn2Z21 for n � 4:

(74)

Notice the presence of the extra term ðDM
dN Þn1, where n � 3,

in each of the two equations above. It no longer vanishes
because r3V � 0 and instead it equals

�
DM

dN

�
n1

¼ en ��
0 � rrrVe1

V
; (75)

causing the turn rate Z32 to no longer equal �M32:

Z32 ¼ �M32 þ 1

M21

e3 ��
0 � rrrVe1

V
(76)

for M21 � 0. Thus in comparison to quadratic potentials
with canonical kinetic terms, Z32 picks up extra terms that
depend on the third covariant derivative ofV. Similarly, one
can show that the next turn rate in the series is

Z43 ¼ �M43 � 2�M21

�3V
e4 � D

dN

rrrVe1e1
M21

� �

� 1

�3

e4 � � � rrrV�0

V

� �
; (77)

where

�3 ¼ e3 �M2�0 þ e3 ��
0 � rrrV�0

V
; (78)

for�3 � 0. The result here differs from the simple quadratic
case by the presence of terms that depend on the third
and fourth covariant derivatives of V. In general, one can
show that

Znþ1;n ¼ �Mnþ1;n þ higher-order corrections; (79)

where the ‘‘corrections’’ vanish for n ¼ 1 but otherwise
depend on the higher-order covariant derivativesrpV up to
order p ¼ nþ 1. Interestingly, plugging Eq. (79) into the
entropymode equation (54) tells us that the sourcing of��n

by ��n�1 is controlled by these corrections arising from
higher-order covariant derivatives:

��0
n þ ~Mnn��n ¼ �ðcorrectionsÞ��n�1

þ ð2Znþ1;n þ correctionsÞ��nþ1

� Xd
m¼2;jn�mj�2

Mnm��m

þ 1

3

Xd
m¼2;m�n

Rnm��m; (80)

where the two sums also include corrections from higher-
order covariant derivatives of V and from the curvature of
the field manifold. Similarly, we can view the sourcing of

TABLE I. The three types of sourcing effects in the mode
sourcing equation for ��n and what each set of terms effectively
represents. More detailed explanation of the terms and their
impacts on mode sourcing is given in the text below.

Sourcing terms What the terms represent

Mnm Covariant Hessian of potential

(geometry of potential)

Rnm Riemann tensor of field manifold, �
(geometry of field manifold, kinematics)

Znþ1;n, Zn;n�1 Turn rate of en (kinematics)
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��n by ��nþ1 to be controlled by a term that is twice the
turn rate Znþ1;n, plus corrections from higher-order cova-

riant derivatives of V.
This results in a very interesting and useful way to view

the interactions among modes: the interactions can essen-
tially be divided into sourcing effects shared in common
with canonical quadratic models (Znþ1;n terms) and sourc-

ing effects arising from deviations from this fundamental
Lagrangian (the higher-order derivatives of V and the
corrections from the field metric). Taylor expansion of
the inflationary potential with an understanding of the
relative sizes of the various order terms in the expansion
can therefore indicate how much each term Znþ1;n differs

from �Mnþ1;n and hence the degree to which the scenario

differs from the canonical quadratic case, as we illustrated
above. We advocate this novel approach as a powerful
prescription for exploring how differences in inflationary
Lagrangians translate into differences in mode dynamics.

IV. SPECTRAL OBSERVABLES

Sections II and III explored how the kinematics and
geometry of the inflationary potential and the field mani-
fold determine the evolution of modes. In this section, we
connect these results to the cosmic observables. Since most
of these connections follow straightforwardly from our
discussion of mode sourcing in Secs. III C, III D, III E,
and III F, here we focus on how the inflationary geometry
and kinematics determine the effective number of infla-
tionary fields (Sec. IVA) and how this is reflected in the
cosmic power spectra, bispectrum, and trispectrum
(Secs. IVB, IVC, IVD, IVE, and IV F). In tandem, we
introduce a new cosmic multifield observable that can
potentially distinguish two-field models from models
with three or more fields (Sec. IVE), and we present a
new multifield consistency relation (Sec. IV F).

A. Effective number of fields

We define the effective number of fields or dimension of
inflation to be the minimum number of fields necessary to
adequately describe both the background and perturbed
solutions across the distance scales of interest.

To represent the background solution, the minimum
number of fields is the same as the number of fields needed
to reproduce all the kinematical vectors, as defined in
Eq. (14). This corresponds to the number of basis vectors
needed to span the space defined by the kinematical vec-
tors. Because of the way we constructed the kinematical
basis vectors in Eq. (15), the dimension relates to the
number of kinematical basis vectors that are changing
direction. If no kinematical basis vectors are changing
direction, then inflation is single field. If only the e1 and
e2 basis vectors are changing direction, then the inflation-
ary scenario has two effective field degrees of freedom; this
produces the single turn rate that characterizes the kine-
matics of two-field inflation. Thus, the number of unique

nonzero components of the turn rate matrix determines the
minimum dimension of multifield inflation. In geometric
terms, inflationary scenarios with canonical kinetic terms
will produce trajectories lying along a line if single field, a
plane if two field, and so on. This is illustrated in Fig. 1.
Extrapolating to noncanonical kinetic terms, the modifica-
tion is that the geometry of the background trajectory will
be determined with respect to parallel transport of the
kinematical vectors along the field manifold.
The number of fields representing the perturbed solution

is more difficult to determine. We define the minimum
number of fields to describe the perturbed solution as the
number needed to reproduce solutions for ��1 (the adia-
batic mode) and ��2 (the first entropy mode). In the case
where the e1 basis vector never turns, the adiabatic mode is

never sourced and the quantity ��1

v is conserved in the

superhorizon limit, like in single-field inflation. However,
the dimension of the perturbed fields can still be more than
one if there are two or more fields during inflation and
hence a power spectrum of entropy modes.
In the case where the field trajectory does change direc-

tion during inflation, there are two reasons why the effec-
tive dimensions of the background and perturbed fields do
not necessarily coincide. The first reason is that the curva-
ture matrix R can couple together the various entropy
modes, independently of the turning behavior of the kine-
matical basis vectors. Second, in general, it is not true that
Znþ1;n ¼ �Mnþ1;n in the slow-roll limit, as we showed

earlier. So even if the kinematical basis vector en is not
turning, a nonzero Mnþ1;n could still allow the ��nþ1

mode to source the ��n mode. Similarly, it is possible
for higher-order covariant derivatives of the potential to
produce a nonzero turn rate Znþ1;n even if Mnþ1;n ¼ 0.
(Of course, for many models, when Znþ1;n ¼ 0, it will also
be true thatMnþ1;n¼0.) Therefore, for models with at least

two fields, the effective number of field perturbations we
need to consider in order to find expressions for ��1 and
��2 equals two plus the number of consecutive sourced
perturbations when starting at ��3 and counting upwards
in the series of modes. This follows directly from the series
of slow-roll sourcing equations in Eq. (54). Therefore, the
exact same geometric and kinematical quantities that
determine the number and strength of sourcing relation-
ships can be used to determine the effective dimension of
the perturbed fields. In particular, scenarios with at least
one large positive effective mass ~Mnþ1;nþ1 and/or a

negligible turn rate Znþ1;n over all scales of interest are

prime candidates for dimensional reduction; such features
usually indicate that ��nþ1 has a negligible impact on ��n

and that the series of mode sourcing equations can be
truncated after ��n.
Based on the above analysis, we take the effective

dimension of the perturbed field system, which can be
larger than the dimension of the unperturbed system,
as the overall effective dimension of a multifield scenario.
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Yet although we can assign an overall dimension to each
scenario, it is also useful to consider that an inflationary
scenario may be broken into multiple phases, with each
one defined by a different effective number of fields being
active. For example, in canonical quadratic models with
very different masses for the fields, there are periods
dominated by the dynamics of a single field, punctuated
by periods in which two fields dominate the dynamics. By
understanding that a model with multiple fields can be
approximated by a series of scenarios with a much smaller
effective dimension—such as a series of single-field and
two-field scenarios—we can gain much greater insight into
the key features of such models, and they become more
computationally tractable.

B. Tensor power spectrum

With these insights, we explore the main spectral
observables to see how they reflect the effective dimension
of multifield scenarios.

We start with the power spectra. The tensor power
spectrum is unchanged by the presence of multiple fields
and has the form [75]

PT ¼ 8

�
H�
2�

�
2
; (81)

under the common convention for normalization of the
spectrum. The tensor spectral index represents the scale
dependence of the tensor spectrum and is defined as

nT � d lnP T

d ln k
: (82)

Since d ln k ¼ dN to first order in slow roll,

nT ¼ �2��; (83)

and nT depends only on the speed of the field vector and not
on any other kinematic or geometric properties of inflation.

C. Transfer matrix formalism

The scalar power spectra are typically given in terms of
the spectra of curvature and isocurvature perturbations.
The curvature perturbation R during inflation is related
to the adiabatic density mode by [19]

R ¼ ��1

v
: (84)

The isocurvature modes, S, are typically defined in the
following gauge-invariant and dimensionless manner
[32,35]:

S � �p

p0 �
��

�0 : (85)

Calculating the above quantity reveals that S depends only
on the entropymode��2, up to a normalization factor. Here
we choose the normalization factor so that the isocurvature
and curvature spectra have equal power at horizon crossing:

S � ��2

v
: (86)

The relationship between the curvature and isocurvature
modes can be described in terms of the transfer matrix
formalism [35,76]. In two-field inflation, the transfer
matrix formalism represents the evolution of curvature
and isocurvature modes as

R

S

 !
¼ 1 TRS

0 TSS

 !
R�
S�

 !
; (87)

which follows from the fact that the adiabatic mode is
sourced by the entropy mode but not vice versa. The trans-
fer function TRS represents the sourcing of the curvature
mode by the isocurvature mode, while the transfer function
TSS represents the intrinsic evolution of the isocurvature
mode. In general multifield inflation, a collection of
entropy modes replaces the single entropy mode repre-
sented by S, so the transfer matrix formalism can be
generalized as

R
��?
v

 !
¼ 1 TR?

0 T??

 ! R�
���

?
v�

0
@

1
A; (88)

where ��?
v is a d� 1 dimensional vector and the analogous

transfer functions are the vector TR? and the matrix T??.
The expression for T?? represents the evolution of the
entropy mode vector divided by the field speed since
horizon exit. But despite the presence of additional entropy
modes, it is still true that only the ��2 entropy mode
sources ��1; this follows from Eq. (48), which can be
rewritten as

DR
dN

¼ 2Z21S: (89)

This implies that the transfer function TR? has the form

TR?ðNÞ ¼
Z N

N�
2Z21ðN1ÞTS?ðN1ÞdN1;

TS?ðNÞ � e y
2 ðNÞT??ðNÞ;

(90)

where the time dependence is indicated explicitly.
To find an expression for T??ðNÞ, we return to the

expression for the evolution of entropy modes in Eq. (52).
From this equation, it follows that

T??ðNÞ ¼ 1

vðNÞ e
�
R

N

N�
½ ~M??ðN1ÞþZ??ðN1Þ�dN1 (91)

to lowest order in the slow-roll limit. If no approximate
analytic solution for T?? can be found, the solution can be
estimated using theMagnus series expansion. According to
the Magnus series expansion (see Ref. [77] and references
therein), if
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e�ðNÞ � e
�
R

N

N�
A1dN1 ; (92)

where A1 � AðN1Þ, then the first three terms in the series
expansion are

�1 ¼ �
Z N

N�
A1dN1;

�2 ¼ 1

2

Z N

N�

Z N1

N�
½A1;A2�dN2dN1;

�3 ¼ � 1

3!

Z N

N�

Z N1

N�

Z N2

N�
ð½A1; ½A2;A3��

þ ½A3; ½A2;A1��ÞdN3dN2dN1; (93)

where ½A;B� � AB� BA is the commutator of matrices
A and B and here

AðNÞ � ~M??ðNÞ þ Z??ðNÞ: (94)

Fortunately, the Magnus expansion for Eq. (91) simplifies

because ~M and Z are symmetric and antisymmetric,
respectively, so their commutator vanishes. It therefore
follows that Eq. (91) can be decomposed as

T??ðNÞ � 1

vðNÞ e
�
R

N

N�
~M??ðN1ÞdN1e

�
R

N

N�
Z??ðN1ÞdN1 ; (95)

with the Magnus series expansion applied to each matrix
exponential separately. Additional gains in reducing the
computational complexity of T??ðNÞ are possible when-
ever the set of entropymodes can be dimensionally reduced.
This can be done whenever the series of kinematical mode
sourcing relations can be truncated, as discussed in
Secs. III C, III D, III E, III F, and IVA.

The dependence of the transfer functions on the geome-
try and kinematics of inflation follows from our discus-
sions of the mode sourcing relations in Secs. III C, III D,
III E, III F, and IVA; however, we provide a few examples
here for illustration. The transfer function TR? depends on
the turn rate of the background trajectory times the transfer
function TS?, a vector function representing how much the
��2 mode is sourced by the other d� 2 entropy modes
modulo a factor of v. For example, if the e2 basis vector is
rapidly turning into the e3 direction while e1 also turns
significantly, then ��2 will be strongly sourced by ��3,
causing a boost in the amplitudes of both transfer func-
tions. As a second example, if the field trajectory rolls
along a ridge in the potential while negligibly turning,
then the ��2 mode will dramatically grow in amplitude,
causing a boost in the e2 component of TS? but only a
small increase in the amplitude of TR?. As a third ex-
ample, if a strong negative curvature R32 arises from the
kinetic terms in the Lagrangian and dominates the dynam-
ics of the ��2 and ��3 modes, both modes will decay,
thereby reducing the amplitude of TS? and blunting the
sourcing function TR?. Thus, we emphasize that one can
understand how the Lagrangian translates into the spectral
observables by studying the mode sourcing in detail.

D. Curvature spectrum

Now we find the scalar spectra in terms of the transfer
matrix formalism. The beauty of the transfer matrix
formalism is that the multifield spectra follow from the
two-field results but with the promotion of the transfer
functions from scalars to tensors.
For the curvature spectrum, we make the canonical

assumption that following inflation, curvature modes are
conserved on superhorizon scales, and so the density and
curvature spectra are equivalent up to factors of Oð1Þ.
Employing the transfer matrix formalism, the curvature
power spectrum at the end of inflation [23,35,76] can be
written as

PR ¼
�
H�
2�

�
2 1

2��
ð1þ jTR?j2Þ; (96)

where it is understood that the function TR? is evaluated at
the end of inflation.7 Equation (96) shows that the curva-
ture spectrum at the end of inflation equals the curvature
spectrum at horizon exit plus an enhancement due to
sourcing of the density mode, TR?.
To determine how the effective number of fields is

reflected in the spectra, we define a new unit vector

eR � TR?
jTR?j (97)

and the scalar quantity

TR? � jTR?j: (98)

The unit vector eR necessarily lies in the
(d� 1)-dimensional subspace spanned by the kinematical
basis vectors e�2; e�3; . . . ; e�d, where again � represents that a
quantity is evaluated at horizon exit. If inflation has two
effective fields, then eR ¼ e�2; however, if inflation has
more than two effective fields, then eR � e�2. Moreover,
one plus the number of nonzero components of eR in the
kinematical basis gives the effective number of fields.
Therefore, to probe the number of effective fields during
inflation, we need to obtain information on the number of
nonzero components of eR. But by Eq. (98), the curvature
power spectrum for general multifield inflation can be
rewritten as

PR ¼
�
H�
2�

�
2 1

2��
ð1þ T2

R?Þ; (99)

which eliminates eR from the expression and renders
Eq. (99) identical in form to the corresponding expression
for two-field inflation [13]. Therefore, the curvature spec-
trum provides no insight into the number of fields during
inflation.
However, combining the curvature and tensor spectra

together does reveal whether inflation is single field or

7We take the end of inflation to correspond to � ¼ 1, but in
principle, another end point may be chosen instead.
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multifield, as is well known. For single-field inflation,
TR? ¼ 0 and therefore the tensor-to-scalar ratio rT ,
defined by

rT � P T

PR
; (100)

produces the single-field consistency relation

rT ¼ �8nT: (101)

In multifield inflation, however, the ratio satisfies the upper
bound [13,35]

rT ¼ �8nTcos
2�N 	 �8nT; (102)

where

tan�N ¼ TR?: (103)

Therefore, if the upper bound in Eq. (102) is not saturated,
then inflation is multifield.

As an aside, the multifield curvature power spectrum can
also be given in terms of the �N formalism. Under the �N
formalism, correlators of R can be written in terms of
covariant derivatives of N, so the curvature power spec-
trum can be written as [17]

PR ¼
�
H�
2�

�
2jrNj2; (104)

where rN is the covariant derivative of the number of
e-folds of inflation. By comparing Eqs. (96) and (104)
and using that e�1 � eR ¼ 0, it follows that

ryN ¼ 1ffiffiffiffiffiffiffiffi
2��

p ðe�1 þ TR?eRÞ; (105)

and therefore, the unit vector in the direction of ryN is

eN ¼ cos�Ne
�
1 þ sin�NeR: (106)

These results generalize those found for two-field inflation
in Ref. [68] and will be useful later in calculating the non-
Gaussianity arising from multifield inflation.

E. Isocurvature and cross spectra

If there is more than one field present, there will also be a
relic spectrum of isocurvature modes and a cross spectrum
between the curvature and isocurvatures modes. Therefore,
the detection of an isocurvature mode spectrum arising
from inflation would indicate that at least two fields were
present during inflation.

Note, however, that unlike for the curvature modes, deter-
mining the isocurvature spectrum after inflation ends is more
complicated because the isocurvature modes may decay fur-
ther, or in the case of preheating, can be amplified. Such
postinflationary processing is highly model dependent and
depends on the dynamics of reheating. Tomake our discussion
as broadly applicable as possible,we focus on the amplitude of
the isocurvature modes at the end of inflation. In the absence
of preheating, these results can be construed as upper limits
on the mode amplitudes. Otherwise, the postinflationary

model-dependent processing of the isocurvature modes is
to be added onto our base model here by extending the
transfer functions to encompass the additional evolution of
the modes from the end of inflation to the present era. This
can be represented by introducing a prefactor in the spectra
and additional scale-dependent terms in the spectral indices
for the isocurvature and cross spectra.
Using some prior results from Refs. [13,23], the isocur-

vature spectrum at the end of inflation can be written as

PS ¼
�
H�
2�

�
2 1

2��
jTS?j2; (107)

where TS? is given by Eqs. (90) and (91) and is calculated
at the end of inflation.
How the geometry and kinematics of inflation affect the

isocurvature spectrum follows from our detailed discussion
of the mode sourcing in Secs. III C, III D, III E, III F, and
IVC. So we focus on how the number of fields is reflected
in the isocurvature spectrum. Like for the other transfer
function, we can break TS? into two parts:

eS � TS?
jTS?j ; TS? � jTS?j: (108)

In the case of two-field inflation, eS ¼ e�2, whereas for
inflation with three or more effective fields, eS � e�2.
Using these two quantities, the multifield isocurvature
spectrum becomes

PS ¼
�
H�
2�

�
2 1

2��
T2
S?: (109)

Like for the curvature spectrum, the expression for themulti-
field isocurvature spectrum has the same form as in the two-
field case and therefore does not provide us any insight into
the number of fields present during multifield inflation, at
least not to lowest order in the slow-roll expansion.
Also if inflation is multifield, there will be a cross

spectrum between the curvature and isocurvature modes,
representing the mode correlations. Combining results
from Refs. [13,23], we can write the cross spectrum as

CRS ¼
�
H�
2�

�
2 1

2��
ðTR? � TS?Þ: (110)

Using Eqs. (97), (98), and (108), this becomes

CRS ¼
�
H�
2�

�
2 1

2��
TR?TS?ðeR � eSÞ: (111)

Comparing the above result to the two-field result in
Ref. [13], we see that the results are identical with the
exception of the term eR � eS . This is the first instance of a
spectral quantity whose expression differs from the two-
field case.
We can therefore use the cross spectrum to devise a test

that will distinguish two-field inflation from inflation with
three or more effective fields. In analogy to the tensor-to-
scalar ratio, the cross-correlation ratio [34] is
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rC � CRSffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PRPS

p : (112)

Substituting Eqs. (99), (109), and (111) into Eq. (112)
yields

rC ¼ sin�NeR � eS : (113)

If inflation is effectively two field, then eR ¼ eS ¼ e�2 and
rC ¼ sin�N . But if eR � eS , then rC < sin�N , signaling
the presence of three or more effective fields.

Equation (113) can also be cast solely in terms of spectral
observables. Substituting Eq. (102) into Eq. (113) yields

rC 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rT

8nT

s
; (114)

where the equality is satisfied when inflation can be
described by two effective fields. We can therefore define
the following duo of multifield parameters:

�1 � � rT
8nT

; �2 � rCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rT

8nT

q : (115)

The first multifield parameter, �1, distinguishes multi-
field inflation from single-field inflation; it is derived
from the well-known single-field consistency relation in
Eq. (101). When �1 ¼ 1, inflation is single field, whereas
if 0<�1 < 1, inflation is multifield. The second multifield
parameter,�2, differentiates two-field models frommodels
with three or more fields.8 When�2 ¼ 1, inflation is driven
by two effective fields, whereas for models with three or
more effective fields, 0 	 �2 < 1. Moreover, these results
remain valid even if the isocurvature mode amplitudes
change after inflation, provided that they are still detect-
able.9 The reason why is because the result in Eq. (113)
depends only on the structure of the transfer matrix formal-
ism, not on the precise dynamics of the modes; these results
apply in general to any scenario that can be described by the
transfer matrix formalism. This includes the curvaton model
and inhomogeneous reheating, which both involve a very
light field present during inflation that hugely sources and
thus is said to generate the curvature perturbation following
inflation. However, if all of the isocurvature modes decay
away completely or are undetectable—as in the case of
complete thermalization after inflation—then both the iso-
curvature and cross spectra will be unmeasurable and �2

will be undefined. In this case, the power spectra can only

be used to distinguish single-field models from multifield
models. These results are summarized in Fig. 3.

F. Higher-order spectra

Finally, we consider whether higher-order spectra arising
from Fourier transforms of higher-order mode correlation
functions provide any clues about the number of fields
present during inflation. These higher-order spectra repre-
sent the non-Gaussian behavior of the curvature perturba-
tions. The two lowest-order correlation functions are known
as the bispectrum and trispectrum, respectively. For stan-
dard multifield inflation, the local forms of these spectra
predominate,10 with the local bispectrum represented by the
parameter fNL and the trispectrum by the parameters �NL

and gNL. For multifield inflation with canonical kinetic
terms, the �N formalism has been used to recast correlators
of R in terms of partial derivatives of N [78–80]. We
contend that with the substitution of covariant derivatives
for partial derivatives, the same expressions apply in gen-
eral multifield inflation with a curved field metric, giving

� 6

5
fð4ÞNL ¼ eyNryrNeN

jrNj2 ;

�NL ¼ eyNryrNryrNeN
jrNj4 ;

54

25
gNL ¼ eyNryrrNeNeN

jrNj3 :

(116)

Multifield observables

β1
r T

8nT
β2

rC

1 β1

FIG. 3. Multifield observables �1 and �2 indicate the effective
number of fields during inflation.

8Note that �2 is undefined for single-field inflation and
whenever the isocurvature spectrum is undetectable; it cannot
be applied to these cases.

9The one technical exception to the rule is if the decay of
isocurvature modes takes eS from being not parallel to eR at the
end of inflation to being parallel to eR at recombination, in
which case there would appear to be only two effective fields,
instead of at least three. But this is a highly unlikely decay
scenario.

10However, when R � 0, other forms of the bispectra and
trispectramay also be important.Wegive only the local formhere.
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Our contention has recently been confirmed and proved
in much more detail by Ref. [81], to which we refer
the interested reader. We also note that although the
first-order contribution to rN is nonzero, whenever non-
Gaussianity is expected to be detectably large, one should
ideally calculate the covariant derivatives of N and the
transfer functions to second order in the slow-roll
parameters. Similarly, the power and cross spectra should
be calculated to the same order. (Some numerical examples
showing the significance of the second-order contributions
to rN and the level of non-Gaussianity are given in
Refs. [68,82].)

We start first with fNL. Our equation for fNL includes

only the k-independent part, fð4ÞNL, which is the part of the
local bispectrum that arises from the superhorizon evolu-
tion of nonlinearities [59]; we ignore the undetectably

small contribution from the k-dependent part, fð3ÞNL, which

satisfies the bound j� 6
5 f

ð3Þ
NLj 	 11

96 rT [59,83]. For fð4ÞNL, we

calculated an expression for it in two-field inflation [68]
using the spectral observables and by operating r on the
transfer function expression for ryN in Eq. (105). The
calculation is similar for general multifield inflation, so
repeating the steps outlined in Ref. [68], the bispectrum
parameter can be written as

� 6

5
fð4ÞNL ¼ 1

2
cos 2�NðnR � nTÞ

þ sin�N cos�N½ðeyR ~Me1Þ�
þ sin�N cos�N

ffiffiffiffiffiffiffiffiffiffi�nT
p

eR � rTR?�: (117)

Equation (117) is largely a formal equation, but nonethe-
less it can be used to determine whether the bispectrum
parameter reveals the number of fields active during
inflation. In single-field inflation, eR vanishes because
TR? ¼ 0, yielding the single-field consistency relation

� 6
5 f

ð4Þ
NL ¼ 1

2 ðnR � nTÞ [84],11 which is below the detec-

tion threshold. In multifield inflation, all terms except for
eR � rTR? will be undetectably small, and the only
difference between the above result and the result for
two-field inflation is that e�2 has been replaced by eR. So
unless TR? is known, fNL cannot be used to distinguish
two-field inflation from inflation with three or more fields.

As an aside, the formal expression in Eq. (117) can be
used semianalytically if the transfer function TR? is com-
puted in a small neighborhood about the field trajectory.
Also, it can be used to gain intuition into the expected
magnitude of non-Gaussianity. We demonstrated this for
the case of two-field inflation in Ref. [68]. For example,
Eq. (117) shows that if the sourcing of curvature modes is

small (i.e., TR? � 1), but TR? varies dramatically in a
direction orthogonal to the field trajectory, then fNL will be
large and �NL 
 f2NL. Such a scenario arises when the field
trajectory rolls along a ridge in the inflationary potential.
Equation (117) is therefore useful because it tells us that
similar conditions of instability in the inflationary trajec-
tory are needed for large non-Gaussianity.
Next, we find the trispectrum parameters. First, in the

single-field limit, �NL ¼ ð65 fð4ÞNLÞ2 and hence is undetect-

ably small. This expression represents a consistency rela-
tion for single-field inflation [85]. For the multifield case,
following the steps outlined in Ref. [68], we obtain

�NL ¼ 1

sin 2�N

�
6

5
fð4ÞNL þ 1

2
cos 2�NðnR � nTÞ

�
2

þ 1

4
cos 2�NðnR � nTÞ2: (118)

This expression for general multifield inflation is identical
to the corresponding expression for two-field inflation.
Thus the trispectrum parameter �NL cannot distinguish
two-field inflation from multifield inflation with more
fields. But �NL can be written completely in terms of other
spectral observables. Using Eq. (118) and that

� rT
8nT

¼ cos 2�N; (119)

�NL can be written as

�NL ¼ 1

1þ rT
8nT

�
6

5
fð4ÞNL � rT

16nT
ðnR � nTÞ

�
2

� rT
32nT

ðnR � nTÞ2; (120)

which we note is valid only when inflation contains mul-
tiple fields. Equation (120) represents a new consistency
condition for general multifield inflation. In the limit where
fNL is detectably large (i.e., jfNLj * 3), the above multi-
field consistency condition reduces to

�NL ¼ 1

1þ rT
8nT

�
6

5
fNL

�
2
: (121)

In this limit, the value of �NL relative to f2NL is controlled
solely by the ratio of rT to nT ; the greater the sourcing of
curvature modes by isocurvature modes, the more �NL

approaches ð65 fNLÞ2. Conversely, only multifield inflation-

ary scenarios where the multifield effects are very weak
can produce �NL 
 f2NL. This observation and Eqs. (120)
and (121) represent new findings applicable to general
multifield inflation. And the size of �NL relative to f2NL in
Eq. (121) follows from the kinematics of the background
trajectory and an analysis of the effective mass matrix over
the trajectory, again reflecting how the geometry of the
inflationary Lagrangian affects the spectra.
Lastly, for the trispectrum parameter gNL, we follow the

steps in Ref. [68] to obtain

11The standard single-field consistency relation for fNL in-

cludes contributions from both fð3ÞNL and fð4ÞNL. When both con-
tributions are included, the single-field result for the local
bispectrum is � 6

5 fNL ¼ 1
2nR [84].
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54

25
gNL ¼ �2�NL þ 4

�
6

5
fð4ÞNL

�
2 þ

ffiffiffiffiffiffiffi
rT
8

r
eN � r

�
� 6

5
fð4ÞNL

�
:

(122)

As written, the above result for multifield inflation is a
formal expression, but since it is identical in form to that in
two-field inflation, it tells us that gNL can be used only to
distinguish single-field inflation from multifield inflation.
In the case of single-field inflation, the above expression
reduces to

54

25
gNL ¼ 2

�
6

5
fð4ÞNL

�
2 þ

�
� 6

5
fð4ÞNL

�0
; (123)

where dfNL

d ln k ¼ f0NL represents the scale dependence of fNL

and where we used the single-field limit of �NL.
In sum, detection of non-Gaussianity arising from the

curvature modes would indicate that inflation is multifield,
but cannot otherwise provide insight into the effective
number of fields present during inflation. The reason why
is because the multifield expressions for the non-Gaussian
parameters are identical to those in two-field inflation after
the replacement e�2 ! eR, and hence they cannot differ-
entiate models with two fields from those with three or
more fields. But fortunately, combining observables from
the tensor, curvature, isocurvature, and cross spectra can in
principle be used to distinguish among inflationary models
driven by one, two, and three or more fields, as summarized
in Fig. 3.

V. CONCLUSIONS

The interactions among the field perturbations in multi-
field inflation are determined by the geometric properties
of the inflationary potential and field manifold. Because the
mode interactions serve as the critical bridge between the
inflationary Lagrangian and the cosmic observables, they
can be used to compare inflationary models based on
common geometric features that cut across several types
of Lagrangians. For example, Lagrangians that give rise to
a field trajectory that turns sharply in field space tend to
have highly scale-dependent curvature spectra [13], while
those that produce a field trajectory that rolls along a ridge
in the potential are more likely to produce large non-
Gaussianity, all else being equal [68].

It is therefore critical to develop tools to understand how
the mode interactions reflect the geometric properties of the
inflationary Lagrangian. While the mode interactions are
well understood in the case of general two-field inflation
and in some cases of multifield potentials, they are not well
understood for an arbitrary multifield Lagrangian. Instead,
the�N formalism has been heavily relied on to calculate the
spectra, which although powerful, does not provide much
insight into the evolution of modes. In this manuscript, we
extended previous work to uncover how the geometric and
kinematical features of the Lagrangian affect the mode

interactions and effective number of fields, and how this is
reflected in the spectral observables.
We started in Sec. II by presenting the covariant

equation of motion for the fields and by delineating a
framework to parse the field vector kinematics. The kine-
matics of the background fields induce a basis called the
kinematical basis and a matrix of turn rates, Z, which
characterizes how quickly these basis vectors are rotating.
We concluded our treatment of the background fields by
discussing underappreciated subtleties of the slow-roll
limit when multiple scalar fields are present.
In Sec. III, we explored the equations of motion for the

field perturbations in both the given and kinematical bases
and discussed how the evolution of modes reflects the ge-
ometry of the Lagrangian. In the combined superhorizon
and slow-roll limits, the equation of motion for the field
perturbations depends only on the effective mass matrix
~M—which represents the covariant Hessian of the potential
and the Riemann tensor of the field manifold—and the turn
rate matrixZ. We then studied the mode interactions one by
one in the kinematical basis. We started by considering the
evolution of the ��n mode in the absence of sourcing, and
we discussed how the concavity of the potential and the
curvature of the field manifold determine that mode’s
intrinsic evolution. In analogy to the adiabatic conservation
law in single-field inflation, we showed that there are up to d
mode-related quantities in d-field inflation that may be
conserved.
Next, we looked at sourcing. For quadratic potentials

with canonical kinetic terms, the mode equations simplify
radically, in a way such that each mode ��n can be sourced
only by ��nþ1 but only when the basis vector en is turning
into the direction of enþ1. For this special class of models,
all turn rate matrix coefficients can be expressed in terms
of the mass matrix coefficients, and all mode sourcing
equations assume the same form as for the adiabatic
mode. We then used this special case as a reference point
for the discussion of mode sourcing in the case of an
arbitrary Lagrangian. We argued that the mode interactions
in a general inflation model can be divided into features
shared in common with canonical quadratic models and
features that arise from higher-order covariant derivatives
of the potential and corrections from the field metric, and
we advocated this approach as a way to gain greater insight
into how differences in Lagrangians translate into differ-
ences in the cosmic observables. In parallel, we discussed
the three types of sourcing terms: two are geometrical terms
and one is kinematical. The geometrical terms involve off-
diagonal terms in both the covariant Hessian of the potential
and in the Riemann tensor of the field metric, and we
interpreted these terms geometrically. The kinematical
terms are simply the turn rates of en into the enþ1 and
en�1 directions and can intuitively be understood as gains
and losses in the amplitude of ��n due to the rotation of
basis. We also gave several examples of how inferences
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about the mode sourcing can be made by determining the
geometric and kinematical features of a Lagrangian.

With this in mind, we focused in Sec. IV on how
the Lagrangian geometry and kinematics determine the
effective number of fields and how this number is reflected
in the power spectra, bispectrum, and trispectrum. We

pointed out that the effective numbers of fields needed to

describe the background and perturbed solutions do not

necessarily coincide, and we gave a method to determine

the effective dimension of a multifield scenario in the slow-

roll limit. Next, we presented known formulas for the

power spectra and generalized the two-field expressions

for the local non-Gaussianity parameters to multifield

inflation. We found a new multifield consistency relation

among �NL, fNL, rT , and nT for detectably large non-

Gaussianity in multifield inflation, and we discovered a

multifield observable involving the cross spectrum that can

potentially distinguish two-field models from models with

three or more effective fields. This result is independent of

post-inflationary processing of the modes. However, the

caveat is that the spectra must be detectably large and

hence it does not apply in the case of scenarios such as
complete thermalization after inflation.
Stepping back and looking at the big picture, since more

sensitive measurements of the spectral observables, along
with new spectral observables, will reveal further clues into
the nature of inflation,wemust be posed to extract phenome-
nological information from these measurements. Since it is
impractical to test the myriad inflationary scenarios one by
one against thesemeasurements, it is important thatwe study
types of geometric and kinematical features that arise from
inflationary Lagrangians and determine how these features
affect the cosmic observables. This will allow us to work
backwards from constraints on the cosmic observables to
identify the key features of the inflationary Lagrangian that
described our early Universe. The work presented in this
paper represents a step forward towards this goal.
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J. Cosmol. Astropart. Phys. 07 (2007) 014.
[41] S. Renaux-Petel and G. Tasinato, J. Cosmol. Astropart.

Phys. 01 (2009) 012.
[42] X. Gao, J. Cosmol. Astropart. Phys. 02 (2010) 019.
[43] G. I. Rigopoulos, E. P. S. Shellard, and B. J.W. van Tent,

Phys. Rev. D 72, 083507 (2005).
[44] G. I. Rigopoulos, E. P. S. Shellard, and B. J.W. van Tent,

Phys. Rev. D 73, 083522 (2006).
[45] G. I. Rigopoulos, E. P. S. Shellard, and B. J.W. van Tent,

Phys. Rev. D 76, 083512 (2007).
[46] S. A. Kim and A. R. Liddle, Phys. Rev. D 74, 063522

(2006).
[47] T. Battefeld and R. Easther, J. Cosmol. Astropart. Phys. 03

(2007) 020.
[48] D. Battefeld and T. Battefeld, J. Cosmol. Astropart. Phys.

05 (2007) 012.
[49] S. Yokoyama, T. Suyama, and T. Tanaka, J. Cosmol.

Astropart. Phys. 07 (2007) 013.
[50] S. Yokoyama, T. Suyama, and T. Tanaka, Phys. Rev. D 77,

083511 (2008).
[51] A. Misra and P. Shukla, Nucl. Phys. B810, 174 (2009).
[52] Q.-G. Huang, J. Cosmol. Astropart. Phys. 06 (2009) 035.
[53] C. T. Byrnes and K.-Y. Choi, Adv. Astron. 2010, 724525

(2010).
[54] T. Tanaka, T. Suyama, and S. Yokoyama, Classical

Quantum Gravity 27, 124003 (2010).
[55] S. A. Kim, A. R. Liddle, and D. Seery, Phys. Rev. Lett.

105, 181302 (2010).
[56] N. Bartolo, S. Matarrese, and A. Riotto, Phys. Rev. D 65,

103505 (2002).
[57] F. Bernardeau and J.-P. Uzan, Phys. Rev. D 66, 103506

(2002).
[58] F. Bernardeau and J.-P. Uzan, Phys. Rev. D 67, 121301

(2003).
[59] F. Vernizzi and D. Wands, J. Cosmol. Astropart. Phys. 05

(2006) 019.

[60] K.-Y. Choi, L.M.H. Hall, and C. van de Bruck, J. Cosmol.
Astropart. Phys. 02 (2007) 029.

[61] C. T. Byrnes, K.-Y. Choi, and L.M.H. Hall, J. Cosmol.
Astropart. Phys. 10 (2008) 008.

[62] A. C. Vincent and J.M. Cline, J. High Energy Phys. 10
(2008) 093.

[63] T. Wang, Phys. Rev. D 82, 123515 (2010).
[64] J. Meyers and N. Sivanandam, Phys. Rev. D 83, 103517

(2011).
[65] J. Elliston, D. J. Mulryne, D. Seery, and R. Tavakol,

J. Cosmol. Astropart. Phys. 11 (2011) 005.
[66] E. Tzavara and B. van Tent, J. Cosmol. Astropart. Phys. 06

(2011) 026.
[67] Y. Watanabe, Phys. Rev. D 85, 103505 (2012).
[68] C.M. Peterson and M. Tegmark, Phys. Rev. D 84, 023520

(2011).
[69] I.-S. Yang, Phys. Rev. D 85, 123532 (2012).
[70] M. Sasaki, Prog. Theor. Phys. 76, 1036 (1986).
[71] V. F. Mukhanov, Sov. Phys. JETP 68, 1297 (1988).
[72] A. Taruya and Y. Nambu, Phys. Lett. B 428, 37

(1998).
[73] J. Meyers and N. Sivanandam, Phys. Rev. D 84, 063522

(2011).
[74] M. Yamaguchi and J. Yokoyama, Phys. Rev. D 74, 043523

(2006).
[75] A. A. Starobinsky, JETP Lett. 30, 682 (1979).
[76] L. Amendola, C. Gordon, D. Wands, and M. Sasaki, Phys.

Rev. Lett. 88, 211302 (2002).
[77] S. Blanes, F. Casas, J. A. Oteo, and J. Ros, Phys. Rep. 470,

151 (2009).
[78] D. H. Lyth and Y. Rodrı́guez, Phys. Rev. Lett. 95, 121302

(2005).
[79] L. Alabidi and D.H. Lyth, J. Cosmol. Astropart. Phys. 05

(2006) 016.
[80] C. T. Byrnes, M. Sasaki, and D. Wands, Phys. Rev. D 74,

123519 (2006).
[81] J. Elliston, D. Seery, and R. Tavakol, J. Cosmol. Astropart.

Phys. 11 (2012) 060.
[82] C. T. Byrnes and G. Tasinato, J. Cosmol. Astropart. Phys.

08 (2009) 016.
[83] D. H. Lyth and I. Zaballa, J. Cosmol. Astropart. Phys. 10

(2005) 005.
[84] P. Creminelli and M. Zaldarriaga, J. Cosmol. Astropart.

Phys. 10 (2004) 006.
[85] T. Suyama and M. Yamaguchi, Phys. Rev. D 77, 023505

(2008).

COURTNEY M. PETERSON AND MAX TEGMARK PHYSICAL REVIEW D 87, 103507 (2013)

103507-20

http://dx.doi.org/10.1103/PhysRevD.66.043520
http://dx.doi.org/10.1103/PhysRevD.66.043520
http://dx.doi.org/10.1103/PhysRevD.67.063512
http://dx.doi.org/10.1103/PhysRevD.67.063512
http://dx.doi.org/10.1103/PhysRevD.71.123502
http://dx.doi.org/10.1103/PhysRevD.74.043529
http://dx.doi.org/10.1103/PhysRevD.74.043529
http://dx.doi.org/10.1088/1475-7516/2007/02/017
http://dx.doi.org/10.1088/1475-7516/2007/02/017
http://dx.doi.org/10.1088/1475-7516/2007/07/014
http://dx.doi.org/10.1088/1475-7516/2009/01/012
http://dx.doi.org/10.1088/1475-7516/2009/01/012
http://dx.doi.org/10.1088/1475-7516/2010/02/019
http://dx.doi.org/10.1103/PhysRevD.72.083507
http://dx.doi.org/10.1103/PhysRevD.73.083522
http://dx.doi.org/10.1103/PhysRevD.76.083512
http://dx.doi.org/10.1103/PhysRevD.74.063522
http://dx.doi.org/10.1103/PhysRevD.74.063522
http://dx.doi.org/10.1088/1475-7516/2007/03/020
http://dx.doi.org/10.1088/1475-7516/2007/03/020
http://dx.doi.org/10.1088/1475-7516/2007/05/012
http://dx.doi.org/10.1088/1475-7516/2007/05/012
http://dx.doi.org/10.1088/1475-7516/2007/07/013
http://dx.doi.org/10.1088/1475-7516/2007/07/013
http://dx.doi.org/10.1103/PhysRevD.77.083511
http://dx.doi.org/10.1103/PhysRevD.77.083511
http://dx.doi.org/10.1016/j.nuclphysb.2008.10.022
http://dx.doi.org/10.1088/1475-7516/2009/06/035
http://dx.doi.org/10.1155/2010/724525
http://dx.doi.org/10.1155/2010/724525
http://dx.doi.org/10.1088/0264-9381/27/12/124003
http://dx.doi.org/10.1088/0264-9381/27/12/124003
http://dx.doi.org/10.1103/PhysRevLett.105.181302
http://dx.doi.org/10.1103/PhysRevLett.105.181302
http://dx.doi.org/10.1103/PhysRevD.65.103505
http://dx.doi.org/10.1103/PhysRevD.65.103505
http://dx.doi.org/10.1103/PhysRevD.66.103506
http://dx.doi.org/10.1103/PhysRevD.66.103506
http://dx.doi.org/10.1103/PhysRevD.67.121301
http://dx.doi.org/10.1103/PhysRevD.67.121301
http://dx.doi.org/10.1088/1475-7516/2006/05/019
http://dx.doi.org/10.1088/1475-7516/2006/05/019
http://dx.doi.org/10.1088/1475-7516/2007/02/029
http://dx.doi.org/10.1088/1475-7516/2007/02/029
http://dx.doi.org/10.1088/1475-7516/2008/10/008
http://dx.doi.org/10.1088/1475-7516/2008/10/008
http://dx.doi.org/10.1088/1126-6708/2008/10/093
http://dx.doi.org/10.1088/1126-6708/2008/10/093
http://dx.doi.org/10.1103/PhysRevD.82.123515
http://dx.doi.org/10.1103/PhysRevD.83.103517
http://dx.doi.org/10.1103/PhysRevD.83.103517
http://dx.doi.org/10.1088/1475-7516/2011/11/005
http://dx.doi.org/10.1088/1475-7516/2011/06/026
http://dx.doi.org/10.1088/1475-7516/2011/06/026
http://dx.doi.org/10.1103/PhysRevD.85.103505
http://dx.doi.org/10.1103/PhysRevD.84.023520
http://dx.doi.org/10.1103/PhysRevD.84.023520
http://dx.doi.org/10.1103/PhysRevD.85.123532
http://dx.doi.org/10.1143/PTP.76.1036
http://dx.doi.org/10.1016/S0370-2693(98)00378-5
http://dx.doi.org/10.1016/S0370-2693(98)00378-5
http://dx.doi.org/10.1103/PhysRevD.84.063522
http://dx.doi.org/10.1103/PhysRevD.84.063522
http://dx.doi.org/10.1103/PhysRevD.74.043523
http://dx.doi.org/10.1103/PhysRevD.74.043523
http://dx.doi.org/10.1103/PhysRevLett.88.211302
http://dx.doi.org/10.1103/PhysRevLett.88.211302
http://dx.doi.org/10.1016/j.physrep.2008.11.001
http://dx.doi.org/10.1016/j.physrep.2008.11.001
http://dx.doi.org/10.1103/PhysRevLett.95.121302
http://dx.doi.org/10.1103/PhysRevLett.95.121302
http://dx.doi.org/10.1088/1475-7516/2006/05/016
http://dx.doi.org/10.1088/1475-7516/2006/05/016
http://dx.doi.org/10.1103/PhysRevD.74.123519
http://dx.doi.org/10.1103/PhysRevD.74.123519
http://dx.doi.org/10.1088/1475-7516/2012/11/060
http://dx.doi.org/10.1088/1475-7516/2012/11/060
http://dx.doi.org/10.1088/1475-7516/2009/08/016
http://dx.doi.org/10.1088/1475-7516/2009/08/016
http://dx.doi.org/10.1088/1475-7516/2005/10/005
http://dx.doi.org/10.1088/1475-7516/2005/10/005
http://dx.doi.org/10.1088/1475-7516/2004/10/006
http://dx.doi.org/10.1088/1475-7516/2004/10/006
http://dx.doi.org/10.1103/PhysRevD.77.023505
http://dx.doi.org/10.1103/PhysRevD.77.023505

