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When inflation is driven by a pseudoscalar field � coupled to vectors as �
4 �F

~F, this coupling may lead

to a copious production of gauge quanta, which in turns induces non-Gaussian and non-scale-invariant

corrections to curvature perturbations. We point out that this mechanism is generically at work in a broad

class of inflationary models in supergravity, hence providing them with a rich set of observational

predictions. When the gauge fields are massless, significant effects on cosmic microwave background

scales emerge only for relatively large �. We show that in this regime, the curvature perturbations

produced at the last stages of inflation have a relatively large amplitude that is of the order of the upper

bound set by the possible production of primordial black holes by non-Gaussian perturbations. On the

other hand, within the supergravity framework described in our paper, the gauge fields can often acquire a

mass through a coupling to additional light scalar fields. Perturbations of these fields modulate the

duration of inflation, which serves as a source for non-Gaussian perturbations of the metric. In this regime,

the bounds from primordial black holes are parametrically satisfied and non-Gaussianity of the local type

can be generated at the observationally interesting level fNL �Oð10Þ.
DOI: 10.1103/PhysRevD.87.103506 PACS numbers: 98.80.Cq, 04.65.+e, 98.80.Es, 04.62.+v

I. INTRODUCTION

In a recent series of papers [1–3] a new broad class of
models of chaotic inflation in supergravity (SUGRA) has
been developed. These models generalize the simplest
model of this type proposed long ago in Ref. [4]; see also
Refs. [5–20] for a partial list of other closely related
publications.

The new class of models [1–3] describes two scalar
fields, S and �, with the superpotential

W ¼ Sfð�Þ; (1)

where fð�Þ is a real holomorphic function such that
�fð ��Þ ¼ fð�Þ. Any function which can be represented by
Taylor series with real coefficients has this property. The
Kähler potential can be chosen to have the functional form

K ¼ Kðð�� ��Þ2; S �SÞ: (2)

In this case, the Kähler potential does not depend on � ¼ffiffiffi
2

p
Re�. Under certain conditions on the Kähler potential,

inflation occurs along the direction S ¼ Im� ¼ 0, and the
field � plays the role of the inflaton field with the potential

Vð�Þ ¼ jfð�=
ffiffiffi
2

p Þj2: (3)

All scalar fields have canonical kinetic terms along the
inflationary trajectory S ¼ Im� ¼ 0.

This class of models can be further extended [3,11] to
incorporate a KKLT-type construction with strong moduli
stabilization [21], which may have interesting phenomeno-
logical consequences and may provide a simple solution of
the cosmological moduli and gravitino problems [22,23].

The generality of the functional form of the inflationary
potential Vð�Þ allows one to describe any combination of
the parameters ns and r. Thus, this rather simple class of
models may describe any set of observational data which
can be expressed in terms of these two parameters by an
appropriate choice of the function fð�Þ in the superpoten-
tial. Meanwhile the choice of the Kähler potential controls
masses of the fields orthogonal to the inflationary trajec-
tory [1–3]. Reheating in this scenario requires considering
the scalar-vector coupling ��F��F

�� [3,24]. If not only

the inflaton but some other scalar field has a mass much
smaller than H during inflation, one may use it as a
curvaton field [25] for the generation of non-Gaussian
perturbations in this class of models [26].
In this paper, we will study an alternative formulation of

this class of models, with the Kähler potential

K ¼ Kðð�þ ��Þ2; S �SÞ: (4)

The simplest version of models of that type, with W ¼
mS� and the Kähler potentialK ¼ S �Sþ 1

2 ð�þ ��Þ2, was
first proposed in Ref. [4]. In this class of models, the Kähler

potential does not depend on � ¼ ffiffiffi
2

p
Im�, which plays

the role of the inflaton field with the potential

Vð�Þ ¼ jfð�= ffiffiffi
2

p Þj2: (5)

The description of inflation in the models (2) and (4) co-
incides with each other, up to a trivial replacement� ! �,
as long as vector fields are not involved in the process.
The difference appears when one notices that in the

model (4) the inflaton field is a pseudoscalar, which can
have a coupling to vector fields
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�

4
�F��

~F��; (6)

where ~F�� � �����F�� and � is a dimensionful constant.

This coupling is expected to be present since it is compatible
with all the symmetries, including a shift symmetry in �.

The study of the phenomenological effects of such a
coupling during inflation has received a lot of attention
lately [27–33]. In particular, it has been shown in
Refs. [30,31] that, if the constant � is large enough, such
a coupling can lead to a copious production of gauge fields
due to the time dependence of �. Through their inverse
decay into inflaton perturbations, these gauge fields yield
an additional contribution to the scalar power spectrum,
which is both non-Gaussian and violates scale invariance.
In this way it is possible to obtain non-Gaussian and non-
scale-invariant effects that can be observed by the Planck
satellite and has not yet been ruled out byWMAP, although
the parameter space corresponding to such a signal is
relatively small [33]. In addition, gauge fields source tensor
modes and lead to a stochastic gravity-wave signal that
could be detected at interferometers, such as Advanced
LIGO or Virgo [32,34] (see also [35]).

Since the new class of inflationary models in supergrav-
ity needs a coupling between the inflaton and gauge fields
to have successful reheating, we have to consistently take
into account the violations of Gaussianity and scale invari-
ance induced by the inverse decay mechanism. This is the
topic of Sec. II.

A potential threat in this model is the overproduction of
primordial black holes. As we will see in Sec. III, at very
small scales—far beyond what is observable by the cosmic
microwave background (CMB)—the produced gauge
quanta largely increase the curvature power spectrum. At
some point, various forms of backreaction stops this
growth, but by then the power spectrum has reached �2

	 �
Oð10�3Þ. At such high values, a statistical fluctuation might
locally increase the density so that primordial black holes
are formed. In this way the nondetection of primordial
black holes puts an observational upper bound on the power
spectrum [36–41], which we discuss in Sec. IV. Our esti-
mates for the late-time power spectrum land a factor of six
above this bound [compare, e.g., Eq. (33) with Eq. (39)].
Since we expect our estimate to be reliable up to factors of
order one, we cannot definitively claim that the inverse
decay mechanism and its interesting phenomenology is
incompatible with current data, but our result on the pro-
duction of primordial black holes highlights a clear tension.

In Sec. V we describe an alternative mechanism of the
generation of non-Gaussian perturbations, proposed in
Ref. [33]. This mechanism requires the introduction of a
light charged field h with mass mh � H, where H is the
Hubble constant during inflation. Inflationary perturbations
of this field generate a slightly inhomogeneous distribution
of a classical scalar field hðxÞ. This field induces the vector
field mass due to the Higgs effect.

As a result, the vector field mass� ehðxÞ takes different
values, controlled by fluctuations of the field h. In the parts
of the universe where the value of the vector field mass is
small, the vector field fluctuations are easily produced
since the gauge mass quenches the tachyonic instability.
This in turns leads to a longer stage of inflation because of
the additional friction generated by the gauge fields.
Meanwhile, in the parts of the universe where the fluctua-
tions of the light scalar field h make this field large, the
vector field mass becomes larger and inflation is shorter
due to the lack of backreaction. As a result, fluctuations of
the light scalar field h lead to fluctuations of the total
number of e-foldings 
N, i.e., to adiabatic perturbations
of the metric. We will show that this effect may generate
significant primordial local non-Gaussianity. Also, in the
regime of parameters relevant for this scenario the primor-
dial black hole bounds are satisfied parametrically.
To implement this mechanism in our supergravity-based

inflationary scenario, one should find a way to guarantee
the smallness of the mass of the field h during inflation. We
will describe a model where the mass squared of this field
during inflation is equal to m2

h ¼ �H2, where � can be

made small by a proper choice of the Kähler potential.
In Sec. VI we study the evolution of the light field h

during inflation in our scenario, which is similar to the
evolution of the curvaton field � in Ref. [26], so for
simplicity we will continue calling this field the curvaton.
One can use the results of Ref. [26] for the description of its
evolution. However, in the original model of Ref. [26], just
as in any other curvaton model [25], adiabatic perturbations
of the metric are generated by perturbations of the field �
after a complicated sequence of reheating, expansion of the
universe, and the subsequent decay of the curvaton field. In
our scenario, adiabatic perturbations are produced due to
the modulation of the duration of inflation by the perturba-
tions of the field h. As wewill demonstrate, this mechanism
can easily produce local non-Gaussianity in the potentially
interesting range fNL from Oð10Þ to Oð100Þ, even if the
coupling constant � is not very large.
Finally, in Sec. VII, we find that typical values of the

coupling constant � considered in this work lead to a
relatively high perturbative reheating temperature T �
1010 GeV. This should be read as a lower limit, since the
already copious nonperturbative production of gauge fields
during inflation could lead to an even higher reheating
temperature. This could lead to the cosmological gravitino
problem [42], but in the class of models with strong moduli
stabilization and gravitino mass Oð100Þ TeV this problem
does not appear [23].

II. CMB SCALES: VIOLATIONS OF GAUSSIANITY
AND SCALE INVARIANCE

Recently there has been a lot of interest in the effect of
gauge field production in axion inflation [27–33]. In this
section we summarize the main points.
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Consider a pseudoscalar inflaton with a potential suit-
able for inflation. The symmetries of the theory allow for a
coupling �F��

~F�� to some U(1) gauge sector. This cou-

pling is essential for reheating in the supergravity models
we discussed in Sec. I. We will therefore consider the
following bosonic part of the action:1

S ¼ �
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2
ð@�Þ2 þ 1

4
F2 þ �

4
�F ~Fþ Vð�Þ

�
:

Since all relevant effects arise from the couplings above we
can safely neglect the gravitational interaction between
perturbations and work with an unperturbed Friedmann-
Lemaı̂tre-Robertson Walker metric.2 We organize the per-
turbation theory based on the equations that we are able to

solve. Consider two classical3 fields ~Aðx; tÞ and �ðtÞ that
solve these two coupled differential equations,

€�þ 3H _�þ @V

@�
¼ �h ~E � ~Bi; (7)

~A 00 � r2 ~A� ��0r � ~A ¼ 0; (8)

where ~E � � _~A=a, ~B � a�2r� ~A and ~E � ~B ¼ �F ~F=4

are computed from ~A.

Now let us look at the action expanded around � and ~A,

i.e., S½�þ 
�; ~Aþ 
 ~A�. By organizing the result at vari-

ous orders in 
� and 
 ~A, one finds

S¼ const�
Z
d4x

ffiffiffiffiffiffiffi�g
p ð
�Þ�½h ~E � ~Bi� ~E � ~B�

�
Z
d4x

ffiffiffiffiffiffiffi�g
p �

1

2
ð@
�Þ2þ1

2

@2V

@�2
ð
�Þ2þ1

4
ð
FÞ2

þ�

4
�
F
 ~Fþ�

2

�
F ~F

�

�
Z
d4x

ffiffiffiffiffiffiffi�g
p �

�

4

�
F
 ~Fþ1

6
ð
�Þ3@

3V

@�3

�
; (9)

where again the classical background fields � and ~A solve
Eqs. (7) and (8). Notice that there is a ‘‘tadpole’’ for 
�
due to the fact that at the background level we solved an

inhomogeneous equation for ~A but just a homogeneous one

for�. From this term one also sees that 
�will source 
A0,
and hence it will modify the constraint. The equations of
motion in Coulomb gauge @iA

i ¼ 0 are

a €
Ai � @2kð
AiÞ
a

þ aH _
Ai � � _�r� ð
 ~AÞ

¼ � _
�r� ~A� �ðr
�Þ � _~A� @tða@ið
A0ÞÞ; (10)

ð €
�Þþ3H _
��r2
�þ@2V

@�2

�¼�

4
ðhF ~Fi�F ~F�2
F ~FÞ;

(11)

a@i@ið
AÞ0 ¼ ��rð
�Þ � r � ~A: (12)

The solution for the constraint equation for 
A0 is


A0ðx; tÞ ¼ a�1
Z

d3y
�rð
�Þ � r � ~A

4�jx� yj : (13)

Unfortunately, this coupled system of equations is hard to
solve. Hence, Refs. [30,31] made the approximation of
neglecting all terms quadratic or higher in 
�, 
A, and
A, which yields

a €
Ai � @2k
Ai

a
þ aH _
Ai � � _�r� 
 ~A ¼ 0 (14)

€
�þ3H _
��r2
�þ@2V

@�2

�¼�ðh ~E � ~Bi� ~E � ~BÞ: (15)

This is a good approximation as long as F ~F (or equiv-

alently h ~E � ~Bi) is not too large [a more quantitative con-
dition is given in Eq. (29)], which is the regime we will
discuss in this section. Note from Eqs. (8) and (14) that in
this approximation there is no way to tell A apart from 
A.

In the next section we will see that, since h ~E � ~Bi grows
with time, towards the end of inflation this description in
not valid anymore, and one has to take backreaction into
account.
Solving the equation of motion (8) one finds a tachyonic

enhancement of the gauge fields. For the growing mode of
one of the two polarizations of the gauge field we get

A ¼ 1ffiffiffiffiffi
2k

p e�
=2W�i
;1=2ð2ik�Þ: (16)

Here W�;�ðxÞ denotes the Whittaker function, and 
 is

defined as4

1Notice that in the existing literature, such a coupling is
usually associated with the interaction of the axion field with
vector fields, with a coupling � �

4f . In our approach it is not
necessary to associate the pseudoscalar field with the axion field
with the radius of the potential�f, so we normalize the coupling
in terms of the reduced Planck mass Mp, which we then set to
one, and consider the interaction term � �

4 �F��
~F��.

2We are neglecting vector and tensor modes and the slow-roll
suppressed interactions coming from the solution of the con-
straints on the lapse and the shift.

3Here we are assuming that the occupation number of the
relevant gauge modes is large enough that one can approximate
the resulting electromagnetic field with a classical one. This
assumption is implicit in all other approaches so far.

4Note that we have some minus signs that are different from
Ref. [30], but this is a matter of conventions. We will work with a
model that has _�< 0 during inflation and define 
 to be positive.
The sign of h ~E � ~Bi is always opposite to the sign of _�. Therefore
the physical effect of the tachyonic enhancement is always that
inflation is prolonged. To be precise: when _� is negative, the
growing field is actually the opposite polarization, i.e., A�,
which makes h ~E � ~Bi> 0 (see, for example, Eq. (8) in Ref. [28]).
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 � � _��

2H
: (17)

As one can see, the relation between the coupling constant
� and the value of 
 60 e-foldings before the end of
inflation is model dependent, but for our model there is
an approximate relation that is valid for the parameters that
we are going to explore,

�� 15
: (18)

For 
 > 1 the new coupling therefore leads to the generation
of perturbations of the vector fields around horizon scales.
The produced gauge fields then change the dynamics of �
and H. The cosmological homogeneous Klein-Gordon
equation and the Friedmann equation get extra contributions
from the gauge fields and can now be written as

€�þ 3H _�þ @V

@�
¼ �h ~E � ~Bi; (19)

3H2 ¼ 1

2
_�2 þ V þ 1

2
h ~E2 þ ~B2i: (20)

They are computed as

h ~E � ~Bi ¼ 1

4�2a4

Z 1

0
dkk3

@

@�
jAj2; (21)

� ~E2 þ ~B2

2

�
¼ 1

4�2a4

Z 1

0
dkk2½jA0j2 þ k2jAj2�: (22)

After renormalization, one can reduce the integration inter-
val to the region 1

8
 <
k
aH < 2
, which is where the enhance-

ment in the (derivative of the) gauge field takes place.
From the homogeneous Klein-Gordon equation (15) one

reads off that the influence of the produced gauge fields on
the homogeneous dynamics of � and H can be safely
neglected as long as

�h ~E � ~Bi
3H _�

� 1;
1
2 h ~E2 þ ~B2i

3H2
� 1: (23)

Of these two conditions the first one is always the most
stringent. When it stops to hold, the backreaction on the
homogeneous evolution becomes important and the evolu-
tion of � and H will be slowed down, which makes
inflation last longer. We will see in the next section that
the backreaction on the inhomogeneous equation for 
�
happens even earlier. In this section we focus on the regime
in which all of these effects are negligible, which, e.g., for a
quadratic potential corresponds roughly to 
 & 4. This is
appropriate for the description of CMB scales.

Now we move to the power spectrum. The copiously
generated gauge fields may, by inverse decay, produce
additional perturbations of the inflaton field 
�, propor-
tional to the square of the vector field perturbations. As was
shown in Refs. [30,31], this can be described (up to back-
reaction effects to be described in the next section) by

using Eq. (15). The inclusion of the source term leads to
an extra contribution to the power spectrum of the curva-
ture perturbation on uniform density hypersurfaces 	 ¼
� H

_� 
�, which has been computed in Refs. [30,31] (we

present a quick estimate in Appendix B),

�2
	 ðkÞ ¼ �2

	;srðkÞð1þ�2
	;srðkÞf2ð
Þe4�
Þ; (24)

where f2ð
Þ was defined in Refs. [30,31] and can be
computed numerically [a useful large 
 approximation is
given in Eq. (B14)], and

�2
	;srðkÞ ¼

�
H2

2�j _�j
�
2

(25)

is the amplitude of the vacuum inflationary perturbations as
in standard slow-roll inflaton. WMAP [43] has measured
�2

	;srðk?Þ ¼ 2:43� 10�9, where k? ¼ 0:002 Mpc�1 is the

pivot scale that we will take to correspond with N ¼ 60
e-foldings before the end of inflation. The second term in
Eq. (24) violates scale invariance (and Gaussianity, as we
will see below) since it comes schematically from A2,
i.e., the square of a Gaussian which grows with time as
in Eq. (16).
We move to the bispectrum. The produced gauge fields

lead to equilateral non-Gaussianity in the CMB [30,31],

fNL ¼ �6
	 ðkÞ

�4
	;srðkÞ

e6�
f3ð
Þ; (26)

where f3ð
Þ is another function defined in Refs. [30,31],
which can be computed numerically [see Eq. (D7) for a
useful approximation]. The amount of non-Gaussianity,
therefore, depends exponentially on 
. Between 
 ¼ 0
and 
 ¼ 3 it grows from Oð1Þ to Oð104Þ and most of the
growth takes place in a small interval around 
 ’ 2:5.
The analysis of Ref. [33] showed that the bounds coming

from the power spectrum (especially from WMAP plus
ACT, because of the violation of scale invariance) and from
the bispectrum (from WMAP) are compatible, with the
former being typically slightly more stringent. Specifying
a confidence region in 
 requires assuming some prior for
this parameter. The physically best-motivated prior is
log-flat in 
 reflecting the fact that the scale of the
dimension-five coupling �F ~F could be anywhere (with
strong indications that it should be below the Planck scale
[44]). In this case at 95% C.L. one finds 
 & 2:2. A flat
prior on 
 leads to 
 & 2:4.

III. VERY SMALL SCALES:
STRONG BACKREACTION

In this section we want to estimate the power spectrum
and bispectrum towards the end of inflation, i.e., on scales
that are too small to be observed in the CMB. The only
observational handle available in this regime is the non-
detection of primordial black holes, which puts an upper
bound on the power spectrum [36–41].
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To make these estimates it is essential to recognize that
many of the formulas described in the previous section and
given in the literature about inverse decay are valid only in
the regime in which the backreaction on the inhomoge-
neous equation for 
� is small [see Eq. (29)]. As we show
in the following, the scales relevant for the production of
primordial black holes leave the horizon when backreac-
tion is large. The authors of Ref. [45] did not account for
backreaction and therefore their conclusion that gauge field
production during inflation leads to black hole production
might be premature.

For concreteness, we will consider a quadratic potential
Vð�Þ ¼ 1

2m
2�2, with the mass chosen such that at the pivot

scale k? (that we take to correspond with N ¼ 60) we get
�2

	 ðk?Þ ¼ 2:43� 10�9.

Let us first look at the dynamics of � and H. As we
already discussed, when enough gauge field quanta have
been produced, the conditions in Eq. (23) stop to hold

(the inequality for h ~E � ~Bi is violated first) and � and H
are slowed down. As a result, inflation lasts longer. Let us
check this. The behavior of �, H, and 
 as functions of N
(the number of e-folds left to the end of inflation) follows
from simultaneously solving Eqs. (17), (19), and (20). In
Figs. 1 and 2 we have plotted the solutions for �ðNÞ and
HðNÞ, with and without backreaction taken into account.
For 
ðN ¼ 60Þ ¼ 2:2, the effect of backreaction becomes
10% around N ¼ 11.

Now let us consider perturbations. Of course they will be
affected by the backreaction on the homogeneous dynam-
ics � andH that we described above, but there is more. Let
us consider Eqs. (10)–(12). In the last section we solved for
A in a homogeneous background and used that result
[Eq. (16)] to compute the source term in the equation for
� perturbations. But as A and 
� grow larger toward the
end of inflation (both of them grow as e2�
) the source
on the right-hand side of Eq. (10) cannot be neglected
anymore. If we were able to solve this equation, we would

find that ~E � ~B now depends on the perturbation 
�. By

expanding ~E � ~B—which is the source term in Eq. (11)—in
powers of 
� we find several new terms, including addi-
tional friction and a modified speed of sound. In
Refs. [28,32] it was proposed that one can estimate these
effects in the regime of strong backreaction by just con-

sidering the additional friction term _
�. The equation of
motion for the perturbation 
� becomes

€
�þ3�H _
��r2

a2

�þ@2V

@�2

�¼�½ ~E� ~B�h ~E� ~Bi�; (27)

with the additional friction term

� � 1� 2�
�
h ~E � ~Bi
3H _�

: (28)

Here the new term in � is caused by the dependence

of h ~E � ~Bi on _� (via its dependence on 
). The behavior
of � has been plotted in Fig. 3. It is always positive.5

The new source of backreaction can be neglected as
long as

2�
�
h ~E � ~Bi
3H _�

� 1: (29)

Note [from a comparison with Eq. (23)] that the factor of
2�
 causes the backreaction on the power spectrum to
become significant before the backreaction on H and �
does. For 
ðN ¼ 60Þ ¼ 2:2 we find that backreaction
becomes of order 10% (� ¼ 1:1) at N ¼ 22.
The modified equation of motion (27) suggests that

(as was already noted in Ref. [32]; see also Appendix B)
we can estimate


� � �ð ~E � ~B� h ~E � ~BiÞ
3�H2

; (30)

which leads to the power spectrum

10 20 30 40 50 60
N

2

4

6

8

10

12

14

FIG. 1 (color online). The evolution of the inflaton field �, as a
function of the number of e-folds N left to the end of inflation
(time is moving to the left) for 
½N ¼ 60� ¼ 2:2. The result in
dashed blue does take backreaction from the sources in Eqs. (19)
and (20) into account; the result in red does not. It is clear that
backreaction prolongs inflation.

10 20 30 40 50 60
N

0.00001

0.00002

0.00003

0.00004

H

FIG. 2 (color online). The evolution of the Hubble scale H as a
function of N for 
½N ¼ 60� ¼ 2:2. Again the dashed blue line
is the result corrected for backreaction from the sources in
Eqs. (19) and (20).

5We work with negative _�, which yields positive h ~E � ~Bi, while
working with _� > 0 gives h ~E � ~Bi< 0.

GAUGE FIELD PRODUCTION IN SUPERGRAVITY . . . PHYSICAL REVIEW D 87, 103506 (2013)

103506-5



�2
	 ðkÞ ’ h	ðxÞ2i ’

�
�h ~E � ~Bi
3�H _�

�
2
: (31)

This estimate turns out to be particularly good in the
regime in which we can check it, i.e., when 
 & 4, that
is, when the backreaction is negligible and we can compare
with Eq. (24) (see Appendix B). This gives us confidence
to also use it in the strong-backreaction regime. It is easy to
see that when the backreaction becomes large, the second
term in Eq. (28) dominates, and we end up with

�2
	 ðkÞ ’

�
1

2�


�
2
: (32)

The estimate (31) for the power spectrum has been plotted
in Fig. 4 together with the formula (24), valid only when
the backreaction is negligible. Indeed, in the regime of
strong backreaction the power spectrum asymptotes the
estimate in Eq. (32). At the end of inflation we have

 ’ 6:7 [for 
ðN ¼ 60Þ ¼ 2:2], which gives

�2
	 ðkÞ ’ 7:5� 10�4: (33)

IV. BOUNDS FROM PRIMORDIAL BLACK HOLES

Now let us try to compare this with the existing bounds
on the power spectrum coming from the nondetection of
primordial black holes. These will form if at horizon re-
entry (i.e., smoothing 	 on scales of order H) we have
	 > 	c, with 	c � 1 denoting the critical value leading to
black hole formation. If one assumes that 	 follows a
Gaussian distribution (with h	i ¼ 0) one can express the
probability of having 	 > 	c in terms of the variance h	2i
by analyzing the Gaussian probability distribution func-
tion. This probability corresponds to the fraction of space b
that can collapse to form horizon-sized black holes.
Hawking evaporation and present-day gravitational effects
constrain this fraction b. Typically one finds b in the range
(10�28–10�5), with the strongest bounds coming from
CMB anisotropies [37] (spectral distortion and photodis-
sociation of deuterium lead to a bound b & 10�20, as for
example in Ref. [36]). Setting 	c ¼ 1 gives for the upper
bound on the power spectrum [40]

�2
	;cðkÞ ’ h	ðxÞ2i ’ 0:008–0:05: (34)

Here the lower bound corresponds to b ¼ 10�28 and the
upper bound to b ¼ 10�5.
However, in our case 	 does not follow a Gaussian

distribution. Instead we have (see Appendix B)

	 ¼ ��ð ~E � ~B� h ~E � ~BiÞ
3�H _�

: (35)

The stochastic properties of the vector field A are close to
those in a free theory, i.e., it has Gaussian perturbations
around hAi ¼ 0. As a consequence we can write6

	 ¼ g2 � hg2i; (36)

with g a Gaussian distributed field. This model was studied
in Ref. [40] and we follow that derivation (see also
Refs. [38,39]). The probability distribution function of 	
follows from setting Pð	Þd	 ¼ PðgÞdg, and takes the form

Pð	Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð	 þ �2Þp

�
e
�	þ�2

2�2 ; (37)

with �2 � hg2i. For a given value of b we can again infer

�2. Setting t � 	
�2 þ 1 (and tc � 	c

�2 þ 1) we have d	 ¼
�2dt, which gives

b ¼
Z 1

	c

Pð	Þd	 ¼
Z 1

tc

e�t
2ffiffiffiffiffiffiffiffi

2�t
p dt ¼ Erfc

� ffiffiffiffi
tc
2

r �
; (38)

where ErfcðxÞ � 1� ErfðxÞ is the complementary error
function. Taking again b in the range 10�28–10�5 one
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FIG. 3 (color online). Evolution of (�� 1) as function of N,
for 
ðN ¼ 60Þ ¼ 2:2.
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FIG. 4 (color online). Evolution of the power spectrum as a
function of N, for 
ðN ¼ 60Þ ¼ 2:2. The expression (24) that
does not take backreaction into account is in tinily dashed blue.
In solid red is the estimate (31). When backreaction becomes
significant this estimate coincides with the late-time estimate
ð2�
½N�Þ�2, in largely dashed green.

6Here we can safely neglect the linear term, which is just the
standard vacuum slow-roll contribution to 	 . See also our
estimate for fNL at small scales in Appendix D.
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gets a tighter upper bound on the power spectrum than in
the Gaussian case,7

�2
	;cðkÞ’ h	ðxÞ2i¼2hg2i2’1:3�10�4–5:8�10�3: (39)

Now let us estimate what value of b is relevant for our
investigation.

At the end of inflation, the total mass concentrated in the
volume associated with perturbations leaving the horizon
N e-foldings before the end of inflation with the Hubble
constant H can be estimated by

MN ’ 4

3
��r3 ’ 4�M2

p

H
e3N; (40)

where we reinserted the reduced Planck massMp, which is

set to one in the rest of the paper, andH is calculated at the
end of inflation. In order to study the subsequent evolution
of matter in the comoving volume corresponding to this
part of the universe, one should distinguish between two
specific possibilities depending on the dynamics of reheat-
ing after inflation, discussed in Sec. VII.

If reheating is not very efficient, then the universe for a
long time remains dominated by scalar field oscillations,
with the average equation of state p ¼ 0. In this case, the
total mass in the comoving volume does not change, and
therefore at the moment when the black hole forms, its
mass MBH is equal to MN evaluated in Eq. (40). For the
parameters of our model, this gives an estimate of (see
Appendix E for details)

MBH ’ 10e3N g: (41)

On the other hand, if reheating is efficient, then the post-
inflationary universe is populated by ultrarelativistic parti-
cles and the energy density in the comoving volume scales
inversely to the expansion of the universe. In this case, the
black hole mass can be estimated as (see Appendix E)

MBH ’ 10e2N g: (42)

In our estimates of the black hole production we will
assume the latter possibility, though in general one may
have a sequence of the first and the second regime. The
final conclusion will only mildly depend on the choice
between these two possibilities.

Now, the bounds on b in terms of the would-be black
hole mass MBH were given in Ref. [36] and updated in
Ref. [37]. Here we follow the result in Ref. [37].8 Using
Eq. (38) and our estimates of the black hole mass as a
function of N, we can translate this into a bound on the
power spectrum as a function of N. The result is shown
in Fig. 5.

Our estimate (33) violates this bound for allN & 20 by a
factor of about six. Since we have made some approxima-
tions both in deriving the late-time power spectrum and in
deriving its observational upper bound, our estimate could
well be off by some order-one factor and therefore we
cannot draw a definitive conclusion. It is clear though
that the parameter values giving rise to an observable but
not yet ruled out violation of scale invariance and non-
Gaussianity in the CMB window produce a late-time
power spectrum that comes at least very close to the
primordial black hole bound. A more precise computation
is needed to establish whether or not this bound is actually
violated.
However, if such a computation revealed that primordial

black holes do indeed constrain these models, that would
yield a much stronger bound on 
 as the ones coming from
non-Gaussianity and the violation of scale invariance.
Since we have seen that the power spectrum has a late-
time asymptotic of ð2�
½N�Þ�1, this problem persists for a
wide range of values of 
.
For all values of 
, our estimate for the power spectrum

sharply increases before the end of inflation, the closer to
the end the smaller 
 is. However, if we disregard black
hole bounds for MBH & 108 g, which rely on uncertain
model-dependent assumptions, there are no black hole
bounds for N & 8. From Fig. 5 we then see that we get


ðNCMBÞ & 1:5 (43)

for the bound on 
 at CMB scales from primordial black
hole production. In terms of the coupling constant �, this
bound implies the constraint

� & 23: (44)

This bound is derived using Eq. (42), i.e., radiation domi-
nation right after the end of inflation. This assumption
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FIG. 5 (color online). Evolution of our estimate for the power
spectrum as a function of N. The lines shown in the figure, in
order from right to left: In dashed red is the result for 
½N ¼
64� ¼ 2:2. Other lines are for 
½N ¼ 64� ¼ 2:5 (solid brown),

½N ¼ 64� ¼ 2 (solid blue), 
½N ¼ 64� ¼ 1:5 (solid green),

½N ¼ 64� ¼ 1 (solid yellow), and 
½N ¼ 64� ¼ 0:5 (solid or-
ange). The black hole bound is the upper line in dashed black.

7A similar but less precise estimate was made in Ref. [46].
8However, we do not take the constraints forMBH < 108 g into

account, as these are either very model dependent, or assume that
black hole evaporation leaves stable relics.
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fixes the expansion history of the universe and therefore
specifies NCMB ’ 64, for the N corresponding to CMB
scales (see Appendix E for a derivation). This is required
for consistency but changes the numerics very little.
Therefore in all other sections we still use NCMB ¼ 60.

For the matter-domination regime, the black hole masses
would be greater for a given N [see Eq. (41)], and therefore
we would have a slightly stronger constraint on 
 and �.
We find 
 & 1:3, which corresponds to � & 20. Instead of
concentrating on it, we will now investigate the model
where non-Gaussian perturbations may be generated for
much smaller 
 and �, without leading to the primordial
black hole problem.

V. LOCAL NON-GAUSSIANITY FROM
HEAVY VECTOR FIELDS

Now let us turn to a scenario—described in Ref. [33]—
in which the produced gauge fields are massive. The pro-
duction of gauge quanta decreases with the mass of the
gauge fields: for mA � 
H all production is killed. In this
scenario, the gauge fields get their mass via the Higgs
mechanism. Fluctuations in the Higgs field h lead to fluc-
tuations in mA, which in turn generate fluctuations in the
amount of produced gauge quanta, and therefore in
the amount of extra friction in the dynamics of � and H.
In the end, one has perturbations in�N, namely the number
of extra e-folds of inflation due to gauge field production.
This leads to a non-Gaussian signal in the CMB of the local
type [33]. Using the 
N formalism one finds

flocalNL � 102
�
�N3=4

max e


10�3

�
4
�
mA


H

�
2
: (45)

Here �Nmax is the increase of the duration of inflation for
the case where the vector fields are massless, h is the
Higgs-like field responsible for the mass of the gauge field,
e is its U(1) charge, mA ¼ eh, and we assumed a quadratic
inflaton potential, so that H ¼ m�ffiffi

6
p .

For a complete description we refer the reader to the
original reference [33], Sec. VII. Here we only want to
stress that this scenario can also work for 
� 1. Then it
will surely satisfy the bounds from primordial black holes.

Note that the classical field hðxÞ, which gives the vector
field mass eh, can be produced either due to the tachyonic
mass of the field h at h ¼ 0, as in the standard Higgs
model, or due to accumulation of long-wavelength infla-
tionary perturbations of the field h. In both cases, the
mechanism of Ref. [33] requires that the mass of the field
h during inflation should be smaller than the Hubble con-
stant. As a result, even if one assumes that the field has the
standard Higgs potential, the value of the field during
inflation does not correspond to the position of the mini-
mum of the potential. Instead of that, the field takes differ-
ent values in different exponentially large parts of the
universe. The value of flocalNL in this scenario will depend

on a typical local value of the field h, which can be
determined by the stochastic approach to the investigation
of curvaton fluctuations [26].
For simplicity, and to make a clear link to the inves-

tigation performed in Ref. [26], we will call the light field h
the curvaton, but one should remember that the mechanism
of conversion of perturbations of the curvaton field to
adiabatic perturbations is different, involving a compli-
cated dynamical processes during reheating. In our case,
fluctuations of the field h lead to fluctuations 
N during
inflation, and thus to a direct production of adiabatic
perturbations of the metric.
This scenario can work only if we have a charged scalar

field with a mass much smaller than H. At first glance, one
could achieve it by assuming that the relatively light field S
plays the role of the Higgs field. However, the superpoten-
tial W ¼ mS� would break gauge invariance unless we
assume that the field � is also charged. This would be
inconsistent with the postulated functional form of the
Kähler potential.9 Therefore we must add to our model at
least one charged scalar field Q.
Fortunately, one can easily do this. Just like in the

simplest supersymmetric (SUSY) version of the Abelian
scalar electrodynamics, one should consider the charged
fieldQwithout any superpotential associated with it. In the
global SUSY limit, the simplest version of this theory with
vanishing FI coefficient would contain a D-term potential

VD ¼ g2

2 ð �QQÞ2, but it would not induce any mass of the

field Q.

However, in supergravity the radial component h=
ffiffiffi
2

p
of

the scalar field Q does acquire mass, depending on the
choice of the Kähler potential. (The complex phase of the
field Q ¼ hffiffi

2
p ei� is eliminated due to the Higgs effect.) We

will consider the following addition to the Kähler potential
of our model:

�K ¼ Q �Qþ �Q �QS �S: (46)

Terms of similar functional form were included in many
versions of our inflationary scenario to stabilize the inflaton
trajectory. One can easily find that the resulting mass
squared of the field h during inflation is given by

m2
h ¼ 3H2ð1� �Þ: (47)

Thus in the absence of the term �Q �QS �S the field h
would be too heavy, but by considering models with
� � 3ð1� �Þ � 1 one can have a consistent theory of a
light charged scalar field with mass squared �H2 with
� � 1, as required.
Of course, this requires fine-tuning, but this is just a

price which one should be prepared to pay for the descrip-
tion of non-Gaussian inflationary perturbations. We will

9We are grateful to the referee for attracting our attention to
this issue.
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study observational consequences of this model in the next
section.

VI. STOCHASTIC APPROACH

In this section wewant to find out how fluctuations in the
curvaton field h lead to a variable gauge field mass, and
therefore to a non-Gaussian signal in the CMB. We will
begin our study with an investigation of the behavior of the
distribution of the fluctuations in h, following Ref. [26].
During inflation, the long-wavelength distribution of this
field generated at the early stages of inflation behaves as a
nearly homogeneous classical field, which satisfies the
equation

3H _hþ Vh ¼ 0; (48)

which can be also written as

dh2

dt
¼ � 2Vhh

3H
: (49)

However, during each time interval H�1 new fluctuations
of the scalar field are generated, with an average amplitude
squared of10

h
h2i ¼ H2

2�2
: (50)

The wavelength of these fluctuations is rapidly stretched
by inflation. This effect increases the average squared
value of the classical field h in a process similar to
Brownian motion. As a result, the square of the field h at
any given point with inflationary fluctuations taken into
account changes—on average—with the speed, which
differs from the predictions of the classical equation of

motion by H3

4�2 ,

dh2

dt
¼ � 2Vhh

3H
þ H3

2�2
: (51)

Using 3H _� ¼ �V�, one can rewrite this equation as

dh2

d�
¼ 2Vhh

V�

� V2

6�2V�

: (52)

By solving this equation with different boundary con-
ditions, one can find the most probable value of the locally
homogeneous field h.

Now we will consider the case when the mass of the
curvaton field is given by

m2
h ¼ �H2 ¼ �m2�2

6
; (53)

with � � 1. This corresponds to the total potential

Vð�; hÞ ¼ m2

2
�2 þ �

2
H2h2: (54)

We assume that h � 1, and therefore one can estimate

H2 � m2

6 �2. In this case, Eq. (52) becomes

dh2

d�
¼ 2��h2

6
�m2�3

24�2
: (55)

This equation has a family of different solutions,

h2 ¼ 3m2

4�2�2

�
1þ �

�2

6

�
þ Ae��

2=6; (56)

where A is a constant which could be either positive or
negative, depending on initial conditions. During inflation
these solutions converge to a simple attractor solution,

h ¼
ffiffiffi
3

p
m

2��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ��2

6

s
: (57)

We are interested in using this formula to estimate the size
of the non-Gaussianity, which is produced by the conver-
sion of perturbations in h into curvature perturbations
when the backreaction from gauge fields on the homoge-
neous evolution becomes substantial, i.e., close to the end
of inflation. Hence we should take �� 1 in Eq. (57). For

� � 1, this solution approaches a constant h ¼
ffiffi
3

p
m

2�� during

the last stages of inflation. Note that this a posteriori
justifies the assumption that h � 1, as long as � 	 10�6.
To give a particular numerical example, we will use

Eq. (45) for the case 
 ¼ 0:5. A numerical analysis shows
that in this case �Nmax � 0:044, and therefore

flocalNL � 2:5� 1011e6��2��2 (58)

at the end of inflation with ��2=6 � 1.
All our approximations should work fine if the mass of

the vector field is much smaller than H, which leads to a
constraint e � ��.
Consider for example � ¼ 0:1 and � ¼ 1, which corre-

sponds to the very end of inflation. [We should stress that it
would not be consistent to take �much larger thanOð1Þ in
Planck units since that is its value when curvature pertur-
bations are generated in our scenario. Moreover, the main
contribution to �Nmax is given by the last part of the
inflationary trajectory where � ¼ Oð1Þ.] In this case,

flocalNL � 2:5� 1013e6: (59)

To have non-Gaussian perturbations with flocalNL ¼ Oð10Þ
one should take e � 10�2.

10For a real massless field we would get h
h2i ¼ H2

4�2 . An extra
coefficient of 2 appears in Eq. (50) because the field Q is
complex, so its absolute value changes faster because of inde-
pendent fluctuations of its two components. One could argue that
in the unitary gauge we only have one scalar degree of freedom.
However, unitary gauge is problematic in the description of
Brownian motion and cosmic string formation in the Higgs
model. We present the results which should be valid in the
regime of a small gauge coupling constant e. Our main con-
clusions are unaffected by this factor-of-2 issue.
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VII. GAUGE FIELD PRODUCTION IN
SUGRA INFLATION: REHEATING

We have found that the coupling �F ~F needed for re-
heating in (the pseudoscalar variant of) the new class of
SUGRA inflation models proposed in Refs. [1–3] can as
well yield an observable non-Gaussian signal. It only
remains to be seen what the effects of the typically needed
values for 
 are for the reheating in the combined model.

In Ref. [3] the reheating temperature TR for the decay of
a scalar inflaton field to two photons due to the interaction
�
4 �F2 was estimated as

TR � ffiffiffi
2

p
�� 109 GeV: (60)

A similar estimate is valid in our case. One may also repre-

sent it in an equivalent way using the relation �
4 ¼ � 
H

2 _� and

an expression for the slow-roll parameter � ¼ _�2

2H2 ,

TR � 2
ffiffiffi
�

p � 109 GeV: (61)

As long as one can describe reheating as a particle-by-
particle decay, reheating in inflationary models of this type
does not depend much on whether the inflaton field is a
scalar or a pseudoscalar. In both types of models, one may
consider interactions with� � 1, which results in a reheat-
ing temperature TR & 108 GeV. This solves the cosmologi-
cal gravitino problem for gravitino in the typical mass range
m3=2 & 1 TeV.

However, for � * 1, which is required for the produc-
tion of non-Gaussianity in the models based on the pseudo-
scalar inflaton, the estimate described above gives TR >
109 GeV. It is good for the theory of leptogenesis, but it
could be bad from the point of view of the gravitino
problem. Moreover, for � * 1 an entirely different mecha-
nism of reheating is operating. At the end of inflation, when
the time-dependent parameter 
 grows and becomes large,

a significant fraction of the energy of the inflaton field
gradually becomes converted to the energy of the vector
field (see Fig. 6). This is a very efficient mechanism, which
may lead to a very rapid thermalization of energy in the
hidden sector. This may exacerbate the gravitino problem.
Fortunately, this problem does not appear for the super-
heavy gravitino with mass m3=2 * 102 TeV. Such graviti-

nos appear in many versions of the models of mini-split
supersymmetry, which became quite popular during the
last few years; see Refs. [23,47] and references therein.

VIII. CONCLUSIONS

The new class of chaotic inflation models in supergrav-
ity needs a gauge-gauge-inflaton coupling for reheating.
The inclusion of this coupling can produce gauge fields and
can provide a Planck observable, but they have not yet
ruled out a non-Gaussian signal in the CMB.
In this article we have studied two possible realizations

of this scenario. Taking the parameter 
 ’ 2:2–2:5
(� ’ 32–37) produces a large amount of gauge quanta,
that by inverse decay give rise to an equilateral non-
Gaussianity in the CMB, as studied in Refs. [30,31].
However, we have estimated that towards the end of in-
flation the power spectrum grows so much that the model
may be ruled out because it overproduces primordial black
holes. As our order-one estimate lands within a factor of
six from the critical black hole bound on the power spec-
trum (with the non-Gaussian nature of the signal taken into
account), we need a more precise computation to draw a
definitive conclusion.
In the second scenario, where the produced gauge fields

are massive due to the Higgs effect in the presence of a
light curvaton-type field, one can take a smaller value for

, of order 0.5–1, corresponding to an � from 8–15. Then
the model is free of black hole trouble. In this case,
fluctuations in the curvaton field modulate the duration of
inflation and can give rise to adiabatic non-Gaussian per-
turbations of the local type with fNL �Oð10Þ. For smaller
values of �, we return to the standard chaotic inflation
scenario with Gaussian adiabatic perturbations [48].
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APPENDIX A: VARIANCE OF ~E � ~B

The variance of ~E � ~B is defined as

�2 � hð ~E � ~BÞ2i � h ~E � ~Bi2 (A1)

¼ hEiEjihBiBji þ hEiBjihBiEji: (A2)

0 10 20 30 40 50 60
N

10 10

10 8

10 6

10 4

0.01

1
x

FIG. 6 (color online). Evolution of the normalized energy of
the vector field, x � 1

2 ðE2 þ B2Þ=3H2 as a function of N, for


½N ¼ 60� ¼ 2:2 (solid red), 
½N ¼ 60� ¼ 1:0 (largely dashed
blue) and 
½N ¼ 60� ¼ 0:5 (tinily dashed green).
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We find

hEiEjihBiBji ¼ 1

a8

Z dkdq

ð2�Þ6 jA
0ðkÞj2jAðqÞj2q4k2

Z
d2�kd

2�q�iðkÞ�iðqÞ�
j ðkÞ�
j ðqÞ;

hEiBjihBiEji ¼ 1

a8

Z dkdq

ð2�Þ6 AðkÞA
0
ðkÞA0ðqÞA
ðqÞq3k3

Z
d2�kd

2�q�iðkÞ�iðqÞ�
j ðkÞ�
j ðqÞ:
(A3)

Here we use the polarization tensor conventions given in Ref. [31],

~k � ~��ð ~kÞ ¼ 0; ~k� ~��ð ~kÞ ¼ �ik ~��ð ~kÞ; ~��ð� ~kÞ ¼ ~��ð ~kÞ?; (A4)

which are normalized via ~��ð ~kÞ? � ~��0 ð ~kÞ ¼ 
��0 . Given our
conventions (see Footnote 4), here we are dealing with ~��.

The angular integral gives ð4�Þ2=3, i.e., a third of the
whole sphere. The integrals over the modulus are similar to
the one in Ref. [31] and are computed in the same way,

I2 ¼ 1

a4

Z dk

ð2�Þ3 jA
0ðkÞj2k2 ’ 2:2� 10�5 H

4


3
e2�
; (A5)

I3¼ 1

a4

Z dk

ð2�Þ3
@�
2
jAðkÞj2k3’1:9�10�5H

4


4
e2�
; (A6)

I4 ¼ 1

a4

Z dk

ð2�Þ3 jAðkÞj
2k4 ’ 1:9� 10�5 H

4


5
e2�
: (A7)

Putting things together, one finds

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4�Þ2
3

ðI23 þ I2I4Þ
s

(A8)

¼ 2:0� 10�4 H
4


4
e2�
 ’ h ~E � ~Bi: (A9)

APPENDIX B: POWER SPECTRUM ESTIMATE

In Refs. [30,31] the power spectrum (24) was obtained
by the Green’s function method. In Ref. [32] a quick
estimate was introduced to compute the power spectrum
in the case of large backreaction (� 	 1). Here we want to
review and further explore this estimate, showing how it
leads to Eq. (31) and also how, in the case of negligible
backreaction, it approximates the precise result (24) within
a factor of two.

The full equation of motion for the perturbation 
� is
(in real space)


 €�þ3�H
 _��r2

a2

�þm2
�¼�½ ~E � ~B�h ~E � ~Bi�; (B1)

with

� � 1� 2�
�
h ~E � ~Bi
3H _�

: (B2)

Near the horizon crossing we can estimate @�H. Since

we have (near the horizon crossing) H2 ¼ k2

a2
, the first

term cancels the third one. The second term can be

approximated as 3�H2
�. The last term on the left-hand
side is just a slow-roll correction and can be discarded.
This directly gives


� � �ð ~E � ~B� h ~E � ~BiÞ
3�H2

; (B3)

and therefore we have

	 � �H

_�

� � ��ð ~E � ~B� h ~E � ~BiÞ

3�H _�
: (B4)

For the position-space two-point function of 	 we imme-
diately get

h	ðxÞ2i�H2

_�2
h
�2i�H2

_�2

�
��

3�H2

�
2¼

�
�h ~E � ~Bi
3�H _�

�
2
; (B5)

with � the variance computed in the previous subsection.
To compare the position-space power spectrum with the

momentum-space power spectrum we use

h	ð ~kÞ	ð ~k0Þi � ð2�Þ3
3ð ~kþ ~k0ÞPðkÞ;

PðkÞ � 2�2�2
	 ðkÞ

k3
;

h	ðxÞ2i ¼
Z

d ln k�2
	 ðkÞ ’ Oð1Þ�2

	 ðkÞ:

(B6)

This gives the result (31),

�2
	 ðkÞ ’ h	ðxÞ2i ¼

�
�h ~E � ~Bi
3�H _�

�
2
: (B7)

This expression has been plotted in Fig. 4.
Now, when backreaction is strong we can approxi-

mate � � �2�
� h ~E� ~Bi
3H _� , which immediately gives the

approximation (32)

�2
	 ðkÞ ¼

1

ð2�
Þ2 : (B8)

We can also make an approximation for the case where
� � 1 (negligible backreaction) and compare the result
with the precise result (24), just to see how well this whole
approximation works. For � ¼ 1 we have

�2
	 ðkÞ ¼

�
�h ~E � ~Bi
3H _�

�
2
: (B9)
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Upon using the estimate for h ~E � ~Bi found in Refs. [30,31],

h ~E � ~Bi � 2:4� 10�4 H
4


4
e2�
; (B10)

and

� � � 2H


_�
; (B11)

we find

�2
	 ðkÞ ¼

4H2
2

_�2
� 5:76� 10�8 �H8


8
e4�
 � 1

9H2 _�2

¼ 2:56� 10�8 �H8

_�4
� e4�



6

¼ 2:56� 10�8 �
�
H2

2� _�

�
4 � ð2�Þ4 � e4�



6

¼ 4:0� 10�5 � �4
	;srðkÞ �

e4�



6
: (B12)

This can be compared with the more precise result
computed in Refs. [30,31] that uses the Green’s function
approach,

�2
	 ðkÞ ¼ �4

	;srðkÞ � f2ð
Þ � e4�
 (B13)

’ �4
	;srðkÞ

7:5� 10�5


6
� e4�
; (B14)

where in the second line we used the large 
 limit for f2.
We infer that this quick estimate is off by a factor less
than two.

Actually, for some 
 the estimate comes even closer than
this ratio 7:5

4 . Let us examine the situation at 
 ¼ 3 [which,

for 
ðN ¼ 60Þ ¼ 2:2), corresponds toN � 35]. Above, we

approximated the numerical function f2ð
Þ by 7:5�10�5


6 ,

which yields an overestimate by a factor of 1.3. On the
other hand, we also approximated the numerically found

result for h ~E � ~Bi by the estimate (B10) (which is an under-
estimate), which for 
 ¼ 3 only captures a fraction of 0.73

of the true h ~E � ~Bi. Putting everything together one finds
that, at 
 ¼ 3 (N ¼ 35), our estimate (B7) with � set to 1
overestimates the precisely computed numerical result
(B13) by a factor of

4

7:5
� 1:3

ð0:73Þ2 � 1:3: (B15)

At 
 ¼ 2:2 (N ¼ 60) we find that our estimate (B7) over-
estimates the precisely computed result by a factor of 2.5.

Now one might introduce a fudge factor such that at
some preferred value for 
 our approximation precisely
matches the numerically computed result. However, we
have just seen that the inclusion of such a fudge factor
will induce only a small shift in our estimate that we only
trust up to corrections of order one. Besides, the fudge

factor would always be arbitrary, as it depends on the
preferred value of 
 that makes both signals match.
Therefore it seems safe to neglect it altogether. In Fig. 7
we have for once plotted how the total power spectrum
(including the standard slow-roll contribution) would shift
from such a correction. In the rest of the paper we work
with our uncorrected estimate for the power spectrum.
N. B. This estimate involves only the gauge field con-

tribution to the power spectrum. Apart from that there is
always the standard slow-roll component �2

	;srðkÞ. This is
the dominant contribution on CMB scales. That is why any
estimate of the total power spectrum matches the precise
result so well on CMB scales, whatever order-one fudge
factor one chooses.

APPENDIX C: SKEWNESS OF ~E � ~B

We want to compute

�3 � hð ~E � ~B� h ~E � ~BiÞ3i
¼ hð ~E � ~BÞ3i � 3h ~E � ~Bi�2 � h ~E � ~Bi3
’ hð ~E � ~BÞ3ic þ 3h ~E � ~Bi3; (C1)

where we used hð ~E � ~BÞ2i ’ 2h ~E � ~Bi2 from the previous
section, and in the last step we recognized that there are

1þ 3� 2 ¼ 7 nonconnected diagrams in hð ~E � ~BÞ3i, each
one equal to h ~E � ~Bi3. Using Wick’s theorem we find many
terms. All of them have the same angular integral,Z

d2�k1d
2�k2d

2�k3�iðk1Þ�iðk2Þ�
j ðk1Þ�jðk3Þ�
j ðk2Þ�
j ðk3Þ

¼ 2�5

3
: (C2)

0 10 20 30 40 50 60
N

10 8

10 6

10 4

2

FIG. 7 (color online). Evolution of the power spectrum as in
Fig. 4, still for 
½N ¼ 60� ¼ 2:2. The red solid line is our
estimate. The blue, tinily dashed line is our estimate corrected
with a fudge factor of 1.3. The green, largely dashed line is our
estimate corrected with a fudge factor of 2.5. All signals remain
within an order-one factor from the black hole bounds in dashed
black.
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Counting all the possible pairwise contractions, one finds

hð ~E � ~BÞ3ic ¼ � 2�5

3
ð2I33 þ I2I3I4Þ

¼
�
�2:4� 10�4 H

4


4
e2�


�
3

’ �h ~E � ~Bi3; (C3)

and therefore

�3 ’ 2h ~E � ~Bi3: (C4)

APPENDIX D: BISPECTRUM AND fNL ESTIMATE

The position-space three-point function of 	 can be
directly generalized from (B5),

h	ðxÞ3i��H3

_�3
h
�3i��H3

_�3

�
��

3�H2

�
3¼�2

�
�h ~E � ~Bi
3�H _�

�
3
;

(D1)

where we used the definition of the skewness h3 [Eq. (C1)]
and its estimate (C4). h	ðxÞ3i is positive. (Again, we work
with a negative _�, which yields positive h ~E � ~Bi, while
working with _�> 0 would give h ~E � ~Bi< 0.)

Let us first analyze this result in the regime where the
backreaction is negligible, i.e., � ¼ 1. Using Eqs. (B10)
and (B11) we get

h	ð ~xÞ3i ’ 2
8

27
ð2:4� 10�4Þ3 H

12e6�



9 _�6

’ 8:2� 10�12H
12e6�



9 _�6
: (D2)

Nowwewant to compare this with the momentum-space
bispectrum BðkÞ, defined via

h	ð ~k1Þ	ð ~k2Þ	ð ~k3Þi � ð2�Þ3
3ðk1 þ k2 þ k3ÞBð ~k1; ~k2; ~k3Þ;
(D3)

for which we can write

h	ð ~xÞ3i ¼
Z d3k1

ð2�Þ3
Z d3k2

ð2�Þ3 Bð
~k1; ~k2;� ~k1 � ~k2Þ: (D4)

When non-Gaussianity is large mostly on equilateral tri-
angles, the integral is supported in the region k2 ’ k1 and
�12 ’ �=3. Hence we estimate

h	ð ~xÞ3i ¼
Z

d log k
8�2

ð2�Þ6 k
6BeqðkÞ ’ 8�2

ð2�Þ6 k
6BeqðkÞOð1Þ;

(D5)

where BeqðkÞ is the bispectrum evaluated on equilateral

triangles. Now we can compare our estimate (D2) with
the precisely computed result using the Green’s function
approach, which we take from result (2.8) of Ref. [33],

BeqðkÞ ¼ 1

ð2�Þ3 h	ð
~k1Þ	ð ~k2Þ	ð ~k3Þi

’ 3� 3� 2:8� 10�7

10ð2�Þ2
H12e6�



9 _�6

1

k6
; (D6)

where we have used the large-
 estimate

f3ð
Þ ¼ 2:8� 10�7


9
: (D7)

This last result leads to

h	ð ~xÞ3i ’ 8�2

ð2�Þ6 k
6BeqðkÞ ’ 8:2� 10�12H

12e6�



9 _�6
; (D8)

which agrees (surprisingly) well with Eq. (D2).
In the regime of strong backreaction we can write

� � �2�
� h ~E� ~Bi
3H _� and the estimate (D1) directly gives the

generalization of (B8),

h	ð ~xÞ3i ’ 1

4�3
3
: (D9)

Finally, we want to convert these results into a value for
fNL. We take fNL to be defined via

h	ð ~k1Þ	ð ~k2Þ	ð ~k3Þi

¼ð2�Þ3
3ð ~k1þ ~k2þ ~k3Þð2�Þ4 3

10
fNL�

4
	 ðkÞ

P
i k

3
i

�ik
3
i

: (D10)

This gives

fNL ¼ Bð ~k1; ~k2; ~k3Þ 103
1

ð2�Þ4
1

�4
	 ðkÞ

�ik
3
iP

i k
3
i

; (D11)

which for the equilateral case becomes

f
eq
NL ¼ Beqð ~kÞ 103

1

ð2�Þ4
1

�4
	 ðkÞ

k9

3k3

¼ ð2�Þ6
8�2

1

k6
h	ð ~xÞ3i � 10

3

1

ð2�Þ4
1

�4
	 ðkÞ

k9

3k3

¼ 10

9

ð2�Þ2
8�2

h	ð ~xÞ3i
�4

	 ðkÞ
: (D12)

In the regime of negligible backreaction we can then take
our estimate (D2) and conclude that

f
eq
NL ¼ 2:8� 10�7


9

e6�
�6
	;srðkÞ

�4
	 ðkÞ

: (D13)

This again matches the result obtained in Refs. [30,31] by a
more precise computation. (Of course, after finding that
the expressions for h	ð ~xÞ3i match so well, this is only a
consistency check.)
In the regime of strong backreaction, finally, we need to

insert Eq. (D9) into Eq. (D12). Using our power spectrum
estimate (B8) we find
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f
eq
NL ¼ 10

9

ð2�Þ2
8�2

ð2�
Þ4
4�3
3

¼ 10

9
2�
 ’ 42; (D14)

where we have used the fact that towards the end of
inflation we have 
 ’ 6.

Notwithstanding the precise match between Eqs. (D2)
and (D8), there is a still an order-one factor between the
estimate for the three-point function (and for fNL) and its
precisely computed numerical value. Again, to arrive at

Eq. (D2) we have used the estimate (B10) for h ~E � ~Bi, and
to arrive at Eq. (D8) we have inserted the large-
 approxi-

mation 2:8�10�7


9 for f3ð
Þ. When using precise numerical

prescriptions rather than estimates for h ~E � ~Bi and f3ð
Þ
we find that our estimates overshoots the precisely com-
puted fNL by a factor of 9.5 at 
 ¼ 2:2 (N ¼ 60), and by a
factor of 3.8 at 
 ¼ 3 (N � 35).

Again, we will not bother introducing a fudge factor
to close this gap at some preferred value of 
. Anyway,
when the backreaction is large fNL is no longer a
suitable indicator for the amount of non-Gaussianity. In
Fig. 8 we plot our estimate for a more meaningful
quantity: the skewness, which is equivalent to fNL	 .
When backreaction becomes important, it saturates at a
value of about one, which a posteriori justifies our
approach (36).

APPENDIX E: BLACK HOLE MASSES

In this Appendix we give some details about the deriva-
tion of Eq. (42) for the black hole mass and about the total

number of e-foldings enforced by a specific expansion
history.
Suppose that the universe is radiation dominated right

after the end of inflation. Then the expansion proceeds as

a� ðt=t0Þ1=2, so HðtÞ ¼ 1
2t . This regime starts at t0, which

is not the time since the beginning of the Big Bang, but
simply the constant t0 ¼ 1

2H , where H is the Hubble con-

stant at the end of inflation. We distinguish it from the
decreasing HðtÞ ¼ 1

2t . The wavelength lt0 ¼ H�1eN grows

as lt ¼ H�1ðt=t0Þ1=2eN ¼ H�1ð2HtÞ1=2eN . The horizon
size 1=HðtÞ ¼ 2t grows and becomes equal to lt (and black
holes form) at

2t ¼ H�1ð2HtÞ1=2eN;
i.e., at

ð2HtÞ1=2 ¼ ðt=t0Þ1=2 ¼ eN:

In other words, the black holes form after the universe
expands by a factor eN since the end of inflation. The initial
energy stored inside the volume H�1eN was MN ’
10e3N g, but during this extra expansion it scales down
(redshifts) by the factor eN, so it becomes

MBH ’ 10e2N g:

It should be stressed that specifying the energy density at
the end of inflation and at reheating directly determines the
number of e-foldings corresponding to any scale (and in
particular CMB scales) according to [49]

NðkÞ ¼ 62� log
k

a0H0

� log
1016 GeV

V1=4



þ log
V1=4



V1=4
end

� 1

3
log

V1=4
end

�1=4
reh

; (E1)

where V
 is the energy density during inflation when the
mode k left the horizon, Vend is the energy density at the
end of inflation, �reh is the energy density at reheating and
the subscript 0 refers to today’s value. Taking for example
�reh ¼ Vend ¼ m2M2

p=2 and Vk ¼ m2152M2
p=2 with m ¼

6� 106Mp gives NCMB ¼ Nða0H0Þ ’ 64. We use this

value in our discussion of primordial black holes, but since
the difference between 60 and 64 changes very little in our
numerics, for simplicity we use NCMB ¼ 60 in the rest of
the paper.
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