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We perform the complete stability study of the model of chromo-natural inflation by Adshead and

Wyman [Phys. Rev. Lett. 108, 261302 (2012)], where, due to its coupling to a SU(2) vector, a

pseudoscalar inflaton � slowly rolls on a steep potential. As a typical example, one can consider an

axion with a sub-Planckian decay constant f. The model was recently studied by Dimastrogiovanni,

Fasiello, and Tolley [J. Cosmol. Astropart. Phys. 02, 046 (2013)] in the mg � H limit, where mg is the

mass of the fluctuations of the vector field, and H the Hubble rate. We show that the inflationary

solution is stable for mg > 2H, while it otherwise experiences a strong instability due to scalar

perturbations in the subhorizon regime. The tensor perturbations are instead enhanced at large mg,

while the vector ones remain perturbatively small. Depending on the parameters, this model can give a

chiral gravity wave signal that can be detected in ongoing or forthcoming cosmic microwave

background experiments. This detection can occur even if, during inflation, the inflaton spans an

interval of size �� ¼ OðfÞ which is some orders of magnitude below the Planck scale, evading a well

known bound that holds for a free inflaton by Lyth [Phys. Rev. Lett. 78, 1861 (1997)]. The spectral tilt

of the scalar perturbations typically decreases with decreasing mg. Therefore the simultaneous require-

ments of stability, sufficiently small tensor-to-scalar ratio, and sufficiently flat scalar spectrum can pose

nontrivial bounds on the parameters of the model.

DOI: 10.1103/PhysRevD.87.103501 PACS numbers: 98.80.Cq

I. INTRODUCTION

Inflation is a successful paradigm for the physics of the
early Universe [1]. Besides solving the classical problems
of modern cosmology (e.g., the flatness, entropy, and hori-
zon problems), it provides primordial perturbations in
perfect agreement with the observations [2,3]. A challenge
for inflationary models is to protect the required flatness of
the inflaton potential against radiative corrections. This
protection can be provided by an approximate shift sym-
metry as in models of natural inflation [4,5]. The symmetry
can be broken by a controllably small amount; the best
known example of this is the case of an axion field acquir-
ing a potential from instantons. The application of this to
inflation, however, requires a greater than Planckian axion
decay constant f [6], which may not be stable against
gravitational corrections [7] and which may be impossible
to realize in string theory [8]. Proposed solutions to this
problem include using two [9] or more [10] axions, which
provide an effective large scale evolution even if the decay
constants of the original axions are sub-Planckian, requir-
ing nontrivial compactifications in string theory [11], suit-
ably coupling the axion to a 4-form [12], modifying the
axion kinetic term [13], and slowing down the axion evo-
lution through particle production [14,15] as in warm
inflation [16].

In particular, in the mechanism of [14] the dissipation
occurs through the production of a U(1) field coupled to
the inflaton � through the interaction �F ~F [where F is
the U(1) field strength, and ~F its dual]. Reference [17]
showed that this coupling can also affect the background

evolution if the U(1) field is replaced by a SU(2)
field with a nonvanishing vacuum expectation value
(vev). Specifically, due to the interaction with the vev
of the vector multiplet, the inflaton can be in slow roll
even if its potential would otherwise (i.e., in absence
of this interaction) be too steep to give inflation.1 Such
a model has been dubbed chromo-natural inflation
in [17].2

The model is characterized by the action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g
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MP
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where � is the axion inflaton, with the potential

V ¼ �4

�
1þ cos

�

f

�
(2)

1This mechanism has been extended to a Chern-Simons inter-
action in [18]. For recent reviews of vector fields in inflation,
see [19].

2Chromo-natural inflation has trajectories in common
with the so-called gauge-flation model [20,21]—a model
characterized by a SU(2) field with a ðF��

~F��Þ2 term besides
the usual F��F

�� Yang-Mills term—in the limit in which
the axion is close to the bottom of its potential [22,23].
Perturbations of gauge-flation were studied in the last reference
among [19].
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and Fa
�� ¼ @�A

a
� � @�A

a
� � g�abcAb

�A
c
�. We use the con-

vention �0123 ¼ 1 for the Levi-Civita tensor. The vector
field has the vev3

Aa
0 ¼ 0; Aa

i ¼ �a
i aðtÞQðtÞ; (3)

which is chosen to give isotropic expansion. We note that,
for a generic theory with vector fields, an isotropic solution
may be unstable against anisotropic perturbations. For
instance, this can be the case when a dilaton-like coupling
fð’ÞF2 of a scalar inflaton ’ to a SU(2) field with the vev
(3) or to an orthogonal U(1) triplet is arranged so as to
produce a scale invariant spectrum for the vectors.4

Isotropy is instead preserved if the vector fields are massive
[27], as in the current model (if the mass arises from an
explicit breaking, one should also check that the theory has
no ghosts [28]).

Reference [17] performs a thorough analysis of the
background evolution of the model. The study of the
chromo-natural inflation theory at the perturbative level
was recently performed in [29], for

m2
g � 2g2Q2 � H2; (4)

where mg is the mass of the vector field fluctuations in this

limit [29] (as we also discuss below). When this condition
is realized, the vector field can be integrated out while, at
the same time, leaving its mark on the inflationary dynam-
ics (this is an explicit realization of the so-called gelaton
[30] mechanism). In this limit, chromo-natural inflation is
equivalent to a single scalar field PðX;�Þ ¼ X þ X2=�4 �
Vð�Þ theory [where X � �ð@�Þ2=2 and �4 � 8f4g2=�4].
The noncanonical kinetic term precisely encodes the effect
of the gauge fields.

In [29] it is also shown that an effective field theory
equivalence of chromo-natural inflation to a noncanonical
PðX;�Þ Lagrangian holds as long as m2

g > 8H2. Beyond

this limit, a general perturbative study of the dynamics of
the gauge field and the axion becomes necessary in order to
test the stability of the theory and formulate its predictions.
This is precisely the scope of the present work. We perform
a full linear order study of scalar, tensor and vector per-
turbations and we show that the inflationary background
solution of the model is stable for mg > 2H, and it is

otherwise unstable.

A full phenomenological study of the model is beyond
our purposes. Nonetheless, we explore the scalar and ten-
sor modes’ production for a given choice of f � Mp and

� � 1 for which the coupling with the vector fields is
crucial to ensure slow roll. Specifically, we choose f ¼
10�2Mp, and � ¼ 500, while mg=H is a free parameter

controlled by the value of g. The stability condition
mg=H > 2 provides a lower bound for this ratio. Too small

values are also excluded because they lead to a too red
spectrum of the scalar modes (we obtained this numeri-
cally; this behavior is also seen in the analytic study of [29]
in the regime of validity of their analysis). On the other
hand, the amount of gravity wave signal increases with
mg=H, and a level which can be observed in the current or

forthcoming experiments [31] can be obtained even if the
inflaton in the model spans a range of some orders of
magnitude below Mp, evading the so called Lyth bound

[32] (in contrast to what was expected in [17]). Therefore,
requiring a stable solution, with a sufficiently flat scalar
power spectrum, and sufficiently small tensor modes pro-
vides constraints on the parameters of the model that go
in opposite directions. For our choice f ¼ 10�2Mp and

� ¼ 500, we could not find any acceptable solution. We
expect that the situation should improve at larger f, where
the inflaton potential becomes flatter (and the model
approaches conventional slow roll inflation).
The paper is organized as follows: in Sec. II we review

the background evolution of the model for different (stable
or unstable) ranges of the theory; in Sec. III we start the
perturbation analysis by introducing the most general
decomposition of the metric, the inflaton, and the gauge field
fluctuations, identifying the physical degrees of freedom and
verifying that scalar, vector and tensor perturbations
decouple at linear order; we also quantize the system and
define the cosmological correlators; in Secs. IV, V, and VI we
study the fluctuations for, respectively, tensor, vector and
scalar modes; finally in Sec. VII we draw our conclusions.
We supplement our perturbation analysis with three

appendixes. In Appendix Awe outline in detail the method
that we use to compute the perturbations. We explicitly
show that the presence of vector fields does not give rise to
any additional conceptual difficulty with respect to the case
of scalar field inflation. In Appendix B we write the qua-
dratic action for the scalar perturbations of the model,
disregarding the terms that involve metric perturbations.
These terms are given in Appendix C, where we explicitly
show that neglecting scalar metric fluctuations does not
affect the stability analysis of the model (while it consid-
erably simplifies the computations).

II. THE MODEL AND THE
BACKGROUND SOLUTION

Chromo-natural inflation is described by the action (1)
of a pseudoscalar field � coupled to a SUð2Þ gauge

3We follow the standard convention of using greek letters for
space-time indices, i; j; k . . . for space indices, and a; b; c; . . . for
internal SU(2) indices. The index a should not be confused with
the scale factor aðtÞ, that enters in the line element as ds2 ¼
�dt2 þ a2ðtÞ�ijdx

idxj ¼ a2ð	Þ½�d	2 þ �ijdx
idxj�. We denote

by dot a derivative with respect to physical time t, and by prime a
derivative with respect to conformal time 	.

4This effect originates from the sum of the IR modes that, in
general, strongly breaks isotropy [24]. It is however possible that
we live in a realization of inflation where this effect is small, as
we believe that must be assumed in the computations of [25].
Analogous considerations may apply to the model of [26].
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multiplet. The vector multiplet has the vev (3). The 00
component of Einstein equations reads

3M2
PH

2 ¼ 3

2
ð _QþHQÞ2 þ 3

2
g2Q4 þ _�2

2
þ Vð�Þ: (5)

Inflation can only occur if the potential Vð�Þ is the major
contribution to the total energy density, i.e., 3H2M2

P ’ V;
the parameters �1 � Q2=M2

P, �2 � g2Q4=H2M2
P, �Q �

_Q2=H2M2
P and �� � _�2=2H2M2

P are all much smaller

than unity.
The equations of motion for the inflaton and the gauge

field are

€�þ 3H _���4

f
sin

�
�

f

�
¼ � 3g�

f
Q2ð _QþHQÞ; (6)

€Qþ 3H _Qþ ð _H þ 2H2ÞQþ 2g2Q3 ¼ g�

f
Q2 _�: (7)

If we neglect €�, €Q and _H, one can solve Eqs. (6) and (7) for
_� and _Q [17]

_� ’
g�fQ2Hð2g2Q3

H �HQ� fV;�

g�Q2Þ
3f2H2 þ g2�2Q4

; (8)

_Q’�HQð2f2H2þ2g2f2Q2þg2�2Q4Þþ g�Q2fV;�

3

3f2H2þg2�2Q4
: (9)

In these equations we then assume

3f2H2 � g2�2Q4; �2Q2 � 2f2; (10)

and we obtain

_� ’ fH

g�Q2

�
2g2Q3

H
�HQ� fV;�

g�Q2

�
; (11)

_Q ’ �HQ� fV;�

3g�Q2
: (12)

Equation (12) can be rewritten as an equation of motion for
the gauge field in terms of an effective potential

H _Qþ @VeffðQÞ
@Q

¼ 0; Veff � H2Q2

2
� fHV�

3g�Q
; (13)

where Veff is minimized by

Qmin ¼
�
�4 sin ð�=fÞ

3g�H

�
1=3

: (14)

In the minimum, the two terms of Veff are parametrically
equal to each other. Therefore, the same is true for the last
two terms in (11). As a consequence, the first term on the
right-hand side of (11) dominates over the other two in the
regime m2

g � H2 studied in [29]. This implies that [29]

m2
g ¼ 2g2Q2 � H2 ) m2

g ’ g�Q
_�

f
: (15)

For general values of the parameters, inserting Qmin ,
Eq. (11) becomes

_� ’ 2

32=3
f4=3

�4=3

3 �2=3

f2=3
H8=3 þ 31=3g4=3ð�V;�Þ2=3
g2=3H1=3ð�V;�Þ1=3

: (16)

By looking at Eq. (6), one realizes that, when the gauge
field settles in its minimum, it originates an actual damping
term for the motion of the axion. Notice also that, when
Q ¼ Qmin , the kinetic energy of the fields can be disre-
garded [see e.g., Eq. (12)]; therefore the slow roll parame-
ter (which would normally receive contributions also from
�Q and ��) will be, instead, mostly due to �1 and �2

� � � _H

H2
’ Q2

M2
P

þ g2Q4

H2M2
P

: (17)

Finally we have


 � _�

H�
’ 2g2Q4

H2M2
P

þ
_Q

HM2
P�

�
2Qþ 4g2Q3

H2

�
: (18)

From Eq. (16) we can compute the number of e-foldings

N ’
Z

dx

31=3

2 ð �MP
Þ4=3g2=3�4=3ðsin xÞ1=3ð1þ cos xÞ2=3

ð �
MP
Þ8=3�2=3ð1þ cos xÞ4=3 þ 32=3g4=3ðsin xÞ2=3 ;

(19)

where we defined x � �=f.
Let us introduce the parameter y

y �
�

��4

3g2M4
p

�
2=3

; (20)

in terms of which the expression (19) is rewritten as

N ’ 3
ffiffiffi
y

p
�

2

Z dzz

2yþ z� yz3
; z �

�
1� cos

�

f

�
1=3

:

(21)

An upper bound on N can be obtained by ‘‘pretending’’
that the slow roll approximation holds at all values of �,

corresponding to 0 � z � 21=3. The resulting upper limit is
maximized for y ’ 1, where it evaluates to N & 0:6�. In
the y � 1 limit, the upper limit acquires the simple form

N <
3
ffiffi
y

p
�

22=3
.
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In terms of y, the slow roll solutions read

H ’ �2ffiffiffi
3

p
Mp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þcosx

p � �2ffiffiffi
3

p
Mp

fHðxÞ;

Q’Mp

y1=4

�1=2

�
sinxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þcosx
p

�
1=3 � Mp

�1=2
fHðxÞfAðxÞ;

_�’ 2f�2ffiffiffi
3

p
Mp�

yð1þcosxÞ4=3þðsinxÞ2=3ffiffiffi
y

p ð1þcosxÞ1=6ðsinxÞ1=3 ’Hf

�
f _�ðxÞ;

(22)

where we have defined

fH � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos x

p
; fA � y1=4ðsin xÞ1=3

ð1þ cos xÞ2=3 ;

f _� � 2
yð1þ cos xÞ4=3 þ ðsin xÞ2=3ffiffiffi
y

p ð1þ cos xÞ2=3ðsin xÞ1=3 :

(23)

Figure 1 allows us to appreciate the accuracy of these
slow roll approximations. In the figure we show the evo-
lution of _� for four choices of y, comparing the exact
evolution with the slow roll approximation (22).5 In all
cases, we take f ¼ 0:01Mp, as the main purpose of this

model is to allow slow roll for f � Mp. This is ‘‘compen-

sated’’ by � � 1, and in all cases we fixed for definiteness
� ¼ 500. We note that fixing the value of y does specify a
relation between� and g, but does not fix these two values.
As typical in inflationary models, the parameters can be
specified only from fixing the normalization of the power
spectrum of the scalar modes to the observed value P� ’
2:5� 10�9 [2]. The evolutions shown in the figure cover
60 e-folds of inflation.

We note from the figure that _� performs very small
oscillations around the slow roll solution. We believe that
they are due to the fact that QðtÞ is tracking a time-
dependent minimum (14) (we do not show this here, but
also this tracking is extremely accurate during the slow roll
phase). The oscillations appear somewhat large in the
logarithmic scale chosen, but we see that they do not
lead to any net departure from the slow roll solution.
Moreover, in Sec. VI we compare full numerical solutions
of the scalar perturbations, obtained using the full numeri-
cal background solutions, with analytical solutions, for

which the slow roll approximations are used, and we also
find excellent agreement. As we discussed after Eq. (21),
decreasing y in the y < 1 region, while keeping the other
parameters (including the initial value of �) fixed, de-
creases the amount of inflation. As a consequence, y � 1
can result in sufficient inflation only if the inflaton is
initially close to the top of the potential. Another way to
express this is to note that the inflaton rolls faster as y
decreases (with the other parameters kept fixed), as it is
clear both from the slow roll expression (22) and from the
figure.
Perhaps the most surprising feature of the model is that,

although all the solutions shown in Fig. 1 appear to be
acceptable inflationary solutions (in all cases the slow roll
solution appears to be an attractor; we note however that
the background dynamics only probes homogeneous de-
partures from the slow roll solution), and although they
only differ from each other by the value of y, the back-
ground solution with y ¼ 5 is unstable, while the other
ones are stable. This emerges from the study of the scalar
perturbations around these solutions that we perform
below.

III. LINEARIZED EQUATIONS FOR
THE PERTURBATIONS

In this section we discuss at the formal level how we
compute, we quantize, and we solve the linearized theory
for the perturbations of the model around the background
solution discussed in the previous section. The discussion
is divided in two subsections. In the first subsection we
discuss how the perturbations can be divided into three
groups, decoupled from one another at the linearized level.
In the second subsection we give the form of the quadratic
action and we discuss how we compute the corresponding
linearized theory for the perturbations.
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FIG. 1 (color online). Evolution of _� during inflation for four
different values of y. The other parameters are � ¼ 500 and f ¼
10�2Mp. The evolutions shown correspond to 60 e-folds of

inflation.

5The initial conditions for the numerical evolution shown in
the figure are chosen as follows: we fix an initial value for �; we
then employ (22) to have the initial value for _� and Q. We set
_Q ¼ 0, and we then obtain the initial value for _a by solving the
00 Einstein equations exactly at the initial time. We make sure
that the initial value of � leads to more than 60 e-folds of
inflation (so that the slow roll solution can be achieved; we
note that the system starts slightly displaced from the slow roll
solution, since we set _Q ¼ 0; the displacement is however very
small, since _Q � HQ in the slow roll solution, and the back-
ground evolution quickly approaches the slow roll solution). The
evolutions shown in Fig. 1 are restricted to the final 60 e-folds of
inflation.
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A. Decomposition

There are 23 perturbations in the system, one of the
inflaton, 12 of the SU(2) vector field, and 10 of the metric,
that we decompose as

� ¼ �þ �� Aa
0 ¼ aðYa þ @aYÞ

Aa
i ¼ a½ðQþ �QÞ�ai þ @iðMa þ @aMÞ

þ �iacðUc þ @cUÞ þ tia�
g00 ¼ �a2ð1� 2�Þ g0i ¼ a2ðBi þ @iBÞ
gij ¼ a2½ð1þ 2c Þ�ij þ 2@i@jEþ @iEj þ @jEi þ hij�:

(24)

In this expression, a ¼ 1, 2, 3 is the SU(2) index [we also
denote by a the scale factor, as there is no ambiguity
between it and a SU(2) index], while i ¼ 1, 2, 3 ranges
over the spatial coordinates. We denote as ‘‘tensor modes’’
the perturbations tia and hij, which we impose to be

transverse (@ihij ¼ @itia ¼ @atia ¼ 0) and traceless (tii ¼
hii ¼ 0); due to these properties, the tensor sector contains
four perturbations. We denote as ‘‘vector modes’’ the
perturbations Ya, Ma, Uc, Bi, Ei, which we impose to be
transverse (@iYi ¼ � � � ¼ @iEi ¼ 0); due to this, the vector
sector contains ten perturbations. We denote as ‘‘scalar
modes’’ the remaining nine perturbations.

We point out that the terms ‘‘tensor/vector/scalar’’ are
appropriate for the perturbations of the metric and of the
inflaton, as they indicate how these modes transform under
a spatial rotation. We extend this terminology also to the
perturbations of the vector field, following the notation of
[21], even if, strictly speaking, these terms are inappropri-
ate [given that the SU(2) index has been used in the
decomposition]. We nonetheless adopt it since the fact
that the vector vev is diagonal (hAa

i i / �a
i ) plus the trans-

versality properties that we have imposed guarantee
that the tensor/vector/scalars that we have defined above
remain decoupled from one another at the linearized
level [21].

We Fourier transform these modes

�ðt;xÞ ¼
Z d3k

ð2Þ3=2 eik�x�ðt;kÞ; (25)

where � denotes any of the perturbations, and we study the
theory in Fourier space. In our stability study, we solve for
the perturbations at the linearized level, and therefore we
study a mode with a given momentum k (modes of differ-
ent momenta are coupled to one another at the nonlinear
level). We can actually fix the orientation of k along the z
axis without loss of generality. Starting from a general

direction for k, we rotate the coordinates so that k ¼ kk̂,

where k̂ is the unit vector along the z axis, and k > 0. After
a general rotation, hAa

i i is no longer proportional to �a
i ;

however we can reobtain hAa
i i ¼ Q�i

a through a global

SU(2) rotation. Therefore, we can set kx ¼ ky ¼ 0 without

loss of generality. This choice simplifies our algebra.
We need to remove the redundancy associated to general

coordinate and SU(2) transformations. Under an infinitesi-
mal coordinate transformation with parameter �� ¼
ð�0; �i þ @i�Þ,
c ! c �H�0; E ! E� �; Ei ! Ei � �i

(26)

and we remove the freedom of infinitesimal coordinate
transformations by setting c ¼ E ¼ Ei ¼ 0, which
corresponds to the so-called spatially flat gauge. Consider
instead a SU(2) transformation with infinitesimal
parameter �a ¼ �a þ @a� (with �a transverse). Under
this transformation,

U ! Uþ gQ�; Ui ! Ui þ gQ (27)

and we can fix the SU(2) freedom by setting U ¼ Ui ¼ 0.
Clearly, also other modes of the metric and of the gauge
field change under these transformations, and different
gauge choices can be made. Our choices are motivated
by the fact that (i) they completely fix the freedom, and
(ii) they preserve all the �g0� and �Aa

0 modes. These

perturbations are nondynamical, as they enter in the qua-
dratic action of the perturbations without time derivative,
and can be immediately integrated out. We describe this
procedure in detail in Appendix A.
With our gauge choices, and with k ¼ kz, the decom-

position (24) acquires the explicit form

� ¼ �þ �� A1
� ¼ aðY1; Qþ �Qþ tþ;þt�; @zM1Þ

A2
� ¼ aðY2; t�; Qþ �Q� tþ; @zM2Þ

A3
� ¼ að@zY; 0; 0; Qþ �Qþ @z@zMÞ (28)

and

g�� ¼ a2

�1þ 2� B1 B2 @zB

1þ hþ h� 0

1� hþ 0

1

0
BBBBB@

1
CCCCCA: (29)

We verified explicitly that the scalar modes
ð��; Y; �Q;M;�; BÞ, the vector modes ðY1;2;M1;2; B1;2Þ
and the tensor modes ðtþ; t�; hþ; h�Þ are decoupled from
one another at the linearized level. Namely, the quadratic
action for the perturbations splits into three decoupled parts:

S2 ¼ S2;scalar þ S2;vector þ S2;tensor: (30)

B. Quantization of coupled systems and correlators

We have seen that the total action for the perturbations
splits in a sum of three decoupled quadratic actions. Let us
denote by Y the vector formed by the perturbations in one
of these three systems. We can perform a transformation
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Yi ¼ Mij�j (31)

so that the action for the array � is of the type

S ¼ 1

2

Z
d	d3k½�0y�0 þ �0yK���yK�0 � �y�2��:

(32)

Hermitianity of the action implies that K is an anti-
Hermitian matrix, and�2 a Hermitian matrix; the matrices
obtained in the current model are actually real. In the
following we quantize the system (32), so as to obtain
the initial conditions for the modes, and we give an
expression for the correlators between the modes. This
discussion summarizes the one of [33]. We first ‘‘rotate’’

c � R�; (33)

where R is a unitary matrix [so that the kinetic term in (32)
remains canonical], satisfying

R0 ¼ RK: (34)

As K is real, R can also be taken as real, and, therefore,
orthogonal. We note that R is not uniquely determined by
this condition, and we fix it by setting R ¼ 1 at the initial
time 	in; the goal of the present discussion is also to
understand when this initial time can be set. As we will
see, the explicit solution for R is not needed. In terms of the
vector c , the action becomes

S ¼ 1

2

Z
d	d3k½c 0yc 0 � c y ~�2c �;

~�2 � Rð�2 þ KTKÞRT:
(35)

We then introduce the orthogonal matrix C satisfying

CT ~�2C ¼ diagð!2
1; !

2
2; !

2
3Þ � !2 (36)

and we decompose

c i ¼ Cij½hjlal þ h	jla
y
l �; (37)

where ai (a
y
i ) destroys (creates) a quantum with the fre-

quency !i. These operators satisfy the algebra

½aið ~kÞ; ayj ð ~pÞ� ¼ �ð3Þð ~k� ~pÞ�ij: (38)

For the systems that we study, in the deep subhorizon
regime ðaHÞin � k

~�2
in ¼ ð�2 þ KTKÞin � k21þ a2H2C (39)

with C constant at leading order in slow roll. Therefore,

provided that ~�2
in ’ k21, we can set the initial conditions in

the adiabatic vacuum

h ’ e�i
R

	
d	!ffiffiffiffiffiffiffi

2!
p U ¼ e

�i
R

	

	in
d	!ffiffiffiffiffiffiffi

2!
p ; (40)

where U is a constant arbitrary orthogonal matrix. [At the
practical level, Eq. (40) is an approximate solution of the

equations of motion at early times; the closer ~�2
in is to k

21,
the better this approximation is. This determines how early
	in needs to be taken.] The matrix U is unphysical, as it
drops from the equations of motion for the modes, and
from the physical correlators (which, as we will see, are
given in terms of hhy). The freedom associated to U is the
generalization to N fields of the freedom of changing by a
constant phase the wave function in the single field case. In
the final expression in (40) we have used the freedom
associated to U to set the wave functions to be real at the
initial time.
Combining (33) and (37), we have

�i ¼ Dijaj þD	
ija

y
j ; D ¼ RTCh: (41)

Using the fact that ~�2
in ’ k21 at 	in, so that initially

C ’ 1, we arrive at

Din ¼ 1ffiffiffiffiffi
2k

p ; D0
in ¼ �i

ffiffiffi
k

2

s
: (42)

We start from these initial conditions and evolve the
equations of motion for the modes following from (32)

D00 þ 2KD0 þ ð�2 þ K0ÞD ¼ 0: (43)

In this discussion, all the expressions are given in
Fourier space. Let us denote by Yi the original fields in
real space,

Yi ¼
Z d3k

ð2Þ3=2 eik�xYi: (44)

We have the two-point correlation functions

Cijð ~x; ~yÞ ¼ 1

2
hYið	; ~xÞYjð	; ~yÞ þ Yjð	; ~yÞYið	; ~xÞi

�
Z dk

k

sin ðkrÞ
kr

P ij; r � j ~x� ~yj (45)

where the power spectra are given by

P ijðkÞ ¼ k3

22
Re½hYYyiij� ¼ k3

22
Re½ðMDDyMTÞij�:

(46)

These correlators are the theoretical prediction, to be con-
fronted with the statistical average of the corresponding
quantities. The power spectra (46) are the generalization to
a system of N fields Yi of the standard power spectrum of
single field inflation.
To summarize, starting from the original fields Yi in

momentum space, we perform (31) to have a canonical
kinetic term for �i. We then decompose this field in terms
of annihilation/creation operators of the physical quanta in
the system (the particles of frequencies !i). We work in
terms of the coefficientsDij of this decomposition. We can
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set the initial conditions (42) for these coefficients, pro-
vided that the initial time is chosen sufficiently early such
that �2 þ KTK ’ k2. Starting from these initial condi-
tions, the coefficients Dij evolve according to (43). We

will see that for some choice of parameters some of the
perturbations become exponentially large on a time scale
� H�1, signaling an instability of the linearized theory.
For values of parameters leading to stable solutions, the
coefficients enter in observable quantities through the
power spectra (46).

IV. TENSOR MODES

We introduce the two doublets

�L � �þ þ i��ffiffiffi
2

p ; �R � �þ � i��ffiffiffi
2

p (47)

for the left and right helicities, where

�þ �
aMpffiffi

2
p hþffiffiffi
2

p
atþ

0
@

1
A; �� �

aMpffiffi
2

p h�ffiffiffi
2

p
at�

0
@

1
A: (48)

The action for the tensor modes splits into two separate
actions, one for the left- and one for the right-helicity
doublet, which are formally of the type (32). The action
for the left-helicity doublet is characterized by

K12 ¼ 1

Mp

ðQ0 þHQÞ ’ aHO

�
1ffiffiffiffi
�

p
�

(49)

and

�2
11 ¼ k2 � 2H 2 � 1

M2
p

ðQ0 þHQÞ2 þ 3g2a2Q4

M2
p

þ �02

2M2
p

’ k2 þ a2H2

�
�2þO

�
1

�

��

�2
12 ¼ ak

2gQ2

Mp

þH
Mp

ðQ0 þHQÞ � g�Q2a�0

fMp

’ akHO

�
1ffiffiffiffi
�

p
�
þ a2H2O

�
1ffiffiffiffi
�

p
�

�2
22 ¼ k2 � ak

�
2gQþ�

f
a�0

�
þ g

�

f
Qa�0

’ k2 � akHAþ a2H2B; (50)

where the first expression for each coefficient is exact,
while the second one is obtained from the slow roll ap-
proximation (22) (we note that _Q � HQ). The quantities
A andB are both of Oð�0Þ. Using the slow roll result (12)
with Q given by (14), they evaluate to

A ’ 4gQ

H

�
1þ H2

2g2Q2

�
; B ’ 2g2Q2

H2

�
1þ H2

g2Q2

�
:

(51)

The action for the right-helicity doublet is related to (50)
by k ! �k, signaling the breaking of parity invariance
induced by the evolution of the pseudoscalar inflaton.
The interactions between the gravity wave and vector

field tensor perturbations are slow roll suppressed.
However, the effective frequency squared �2

22 of tL turns
negative for an intermediate interval of time next to hori-
zon crossing.6 This leads to a tachyonic growth of tL in this
interval of time, and, correspondingly, to a growth of hL.
The same growth does not occur in the right-helicity sector
due to the opposite sign of the linear term in k. The
situation is analogous to that first studied in [14], where
the interaction �FF between a vector field and a pseudo-
scalar rolling inflaton results in a tachyonic growth of the
vector modes of a given helicity.
We note from (51) that the length of the tachyonic region

increases with increasing

mg

H
¼

ffiffiffi
2

p
gQ

H
’

ffiffiffi
2

y

s
sin 1=3x

ð1þ cos xÞ2=3 (52)

(the last expression is the slow roll approximation). This
corresponds to a larger tensor mode production with grow-
ing

mg

H . This corresponds to decreasing y in the numerical

examples that we show below.

V. VECTOR MODES

The vector modes Y1, Y2, B1, B2 are nondynamical, and
can be integrated out. Namely, they enter in the quadratic
action of the perturbations without time derivatives, and
therefore their equations of motion are algebraic equations
in these variables (recall that we are in momentum space).
When we solve these equations, we obtain an expression
for the nondynamical modes in terms of the two dynamical
modes M1 and M2. We then insert this expression back in
to the quadratic action for the vector modes, and obtain an
action for M1;2 only. In other words, the nondynamical

modes do not introduce additional degrees of freedom,
but are completely determined by the dynamical ones.
After integrating out the nondynamical modes, we define

M1 ¼ F1V1 þ iF2V2; M2 ¼ iF1V1 þ F2V2; (53)

where

F1;2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

pð
kþ gaQÞ2 þ g2a2Q2ðM2
P þ 2Q2Þ

q
ffiffiffi
2

p
gkMpa

2Q
(54)

(with the upper þ sign corresponding to F1 and the lower
� sign corresponding to F2). The modes V1;2 are the

canonical modes of the system, and are decoupled from
each other at the linearized level:

6At late times, the k dependence becomes negligible, and the
mass term for the two vector perturbations tL=R reproduces the
value mg given in [29].
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S2;vector ¼ 1

2

Z
d	d3k½jV0þj2 ��2

vþjVþj2 þ jV0�j2

��2
v�jV�j2�: (55)

An explicit computation gives

�2
v

a2

¼ p2 
 �

f
_�p

þ M4
p½c4p4 
 c3p

3 þ c2p
2 
 c1pþ c0�

½M2
pp

2 
 2gM2
pQpþ 2g2Q2ðM2

p þQ2Þ�2 ;

(56)

where p ¼ k
a is the physical momentum, and the

coefficients ci are functions of background quantities. We
note that

�2
vþðpÞ ¼ �2

v�ð�pÞ: (57)

We also note that the denominator in (56) is always posi-
tive, as it can be written as a sum of squares. The exact
expressions for ci are readily obtained, but they are not
illuminating. We report here the leading expressions in the
slow roll � � 1 expansion:

c4¼H2

�
2g2Q2

H2
þO

�
1

�

��

c3¼H3

�
g2Q2

H2

�
6g

Q

H
þ�

f

_�

H

�
þO

�
1

�

��

c2¼H4

�
g2Q2

H2

�
3þ4g

Q

H

�

f

_�

H
þ8g2

Q2

H2

�
þO

�
1

�

��

c1¼H5

�
g4Q4

H4

�
4g

Q

H
þ6

�

f

_�

H

�
þO

�
1

�

��

c0¼H6

�
4g5

Q5

H5

�

f

_�

H
þO

�
1

�

��
:

(58)

Using (22), it can be immediately seen that, in each of
the above expressions, the dominant term in the square
parenthesis that we have written explicitly is a Oð1Þ coef-
ficient. Moreover, the second term on the right-hand side of
(56) evaluates to 
pHOð1Þ. Therefore, at leading order in
slow roll,

�2
v
 ’ k2; p � H

�2
v
 ’ fAf _�

y3=4
a2H2; p � H

(59)

in the deep subhorizon and superhorizon regimes, respec-
tively. We conclude that the vector sector is stable.

We note that the superhorizon limit of (59) is precisely
the slow roll expression of a2m2

g in the mg � H limit. The

two dynamical vector modes originate from the perturba-
tions of the vector field, and the expression for the mass in
this limit coincides with that found in [29].

VI. SCALAR MODES

After gauge fixing, the system of scalar perturbations
comprises one mode from the inflaton, ��; three from the
SU(2) field, Y, �Q, M; and two from the metric, � and B.
Among these six modes, ��, �Q and M are dynamical,
while the other three modes are nondynamical; namely
they enter in the quadratic action without time derivatives,
and they can be integrated out (see the discussion at the
start of the previous section). The full quadratic action for
the scalar modes is given in Eq. (C1).
Integrating out the metric perturbations makes the alge-

bra extremely involved; for this reason, in the study pre-
sented in the main text we make the approximation of
setting � ¼ B ¼ 0 from the start. We then integrate out
Y, and we denote the resulting quadratic action by S2;scalar.
We also performed the full computation, which we present
in Appendix C. We denote by S2;scalar-full the quadratic

action obtained by including all the modes and by integrat-
ing out the three nondynamical ones. Both S2;scalar and

S2;scalar-full are functionals of the three dynamical modes.

We expand all entries in these actions in slow roll. As we
show in Appendix C, all entries of the matrices of the two
actions agree at the leading order in this expansion at all
scales (namely, for all values of H=p), with a single
exception. The exception is the 11 coefficient of the fre-
quency matrix �2, for which the agreement is excellent
only up to H & 10p. The discrepancy that takes place
afterwards is surely completely irrelevant for the stability
study that we perform here (as wewill see, the instability, if
present, manifests itself deeply inside the horizon). Not
surprisingly, the metric perturbations do not affect the
stability of the background solution. Very likely, this dis-
agreement has also no significant consequence for the
power spectra that we show below, since it manifests itself
only after the power has frozen (see the appendix for a
detailed study).
A closed equation for the scalar field perturbations (in

the spatially flat gauge) in models of slow roll scalar field
inflation can be found for example in Eq. (8.60) of [34]. In
that equation it is manifest that the metric perturbations
modify the evolution equation for the dynamical variables
only in a slow roll suppressed way. The reason for this is
that the field fluctuations are coupled to the perturbations
of the metric only through the way that they locally affect
the energy-momentum. However, local change in the
potential energy is proportional to derivatives of the po-
tential, which is suppressed for slow roll inflation, or to the
kinetic energy of the field, which is also slow roll sup-
pressed (this second suppression is even true at the back-
ground level).7 The computations of Appendix C show that
this suppression (with one exception) is present also in the
current model. This can be more directly understood by
inspection of the action (1). We are interested in �g� �A

7We thank Toni Riotto and David Wands for discussions.
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and �g� �� couplings. Metric perturbations do not enter
in the last term. Therefore, the �g� �A coupling only
arises from the

ffiffiffiffiffiffiffi�g
p

F2 term. As this term is quadratic or

higher in the vector field, such couplings are suppressed by
at least one power of the vector field vev, which is a slow
roll suppressed quantity [see Eq. (22)]. The �g� ��
coupling arises instead only from the

ffiffiffiffiffiffiffi�g
p ½� 1

2 ð@�Þ2 �
Vð�Þ� term in (1), and it is therefore suppressed as shown in
[34]. This can be verified explicitly from the interactions
given in Eq. (C2). More accurately, performing this explicit
check, one notices that one interaction term in (C2),

namely a4

2 V;�ð�	��þ H:c:Þ, is actually not slow roll sup-

pressed. In standard models of slow roll inflation this term
is proportional to the slow roll parameter

ffiffiffi
�

p
. In the current

model instead the inflaton potential is no longer flat. This
term does not present spatial derivatives, and it is therefore
relevant only outside the horizon. This precisely explains
the discrepancy in �2

11 that we have mentioned in the
previous paragraph.

We therefore set � ¼ B ¼ 0, and we obtain the action
(B1) that we explicitly write in Appendix B.We integrate Y
out of this action. The expression for Y in terms of the
dynamical variables is

Y ¼ 1

k2 þ 2g2a2Q2

�
��Q0 þ k2M0 þ g�aQ2

f
��

�H�Qþ k2HM

�
(60)

which is of the type (A4). Inserting this solution back into
the action (B1) we readily obtain the action for the dy-
namical modes of the system. This action is formally of the
type (A6), and we can employ it to set the initial conditions
and derive the equations of motion for the dynamical
modes, as in the standard computations of scalar field
inflation.

We define

�� � �1

a
�Q � �2ffiffiffi

2
p

a

�M � gaQ�2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2g2a2Q2

p
�3ffiffiffi

2
p

gk2a2Q
:

(61)

In terms of the multiplet � ¼ ð�1;�2;�3ÞT , the quadratic
action for the scalar modes acquires, up to a total deriva-
tive, the form (32). We denote as Ks and �2

s the 3� 3
matrices entering in this action. These matrices have the
following entries:

Ks;12

a
¼ g�Q2ffiffiffi

2
p

f

Ks;13

a
¼� g2�Q3ffiffiffi

2
p

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þ 2g2Q2

p Ks;23

a
¼ 0

(62)

and

�2
s;11

a2
¼p2þ g2�2p2Q4

f2ðp2þ2g2Q2Þþ
g2Q4

M2
p

þV;���2H2

þ _�2

2M2
p

þð _QþHQÞ2
M2

p

�2
s;12

a2
¼3g�HQ2ffiffiffi

2
p

f
þ

ffiffiffi
2

p
g�Q _Q

f

�2
s;13

a2
¼�

ffiffiffi
2

p
�

f

�
g2HQ3

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þ2g2Q2

p þ2p4þ3g2p2Q2þ4g4Q4

2ðp2þ2g2Q2Þ3=2

�ð _QþHQÞ
�

�2
s;22

a2
¼p2þ4g2Q2�g�Q _�

f

�2
s;23

a2
¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þ2g2Q2

q �
2gQ��

f
_�

�
�2

s;33

a2
¼p2þ4g2Q2ðp2þg2Q2Þ

p2þ2g2Q2
� g�p2Q _�

fðp2þ2g2Q2Þ
þ6g2p2ð _QþHQÞ2

ðp2þ2g2Q2Þ2 : (63)

We stress that these expressions are obtained by disregard-
ing the scalar metric perturbations, but that they are other-
wise exact. We can also verify that the eigenvalues of the
fi; kg ¼ f1; 2g part of �2

ij are ’ a2m2
g in the superhorizon

regime and for mg � H, in agreement with [29].

We solve the theory specified by this action following
the steps outlined in Sec. III B. We assume that, after
inflation, only the inflaton field provides a sizable contri-
bution to reheating (we note that the energy in A� is much

smaller than the inflaton energy during inflation). In this
limit, we have the curvature perturbation � ’ � H

_� ��, with

the power spectrum

P� ¼ H2P 11

_�2
; (64)

where P is given in (46), with Yi being the three fields on
the left-hand side of (61).
In Fig. 2, we then present the time evolution of P 11 for a

single mode (a given k) and for the same choices of
background parameters that we used in Fig. 1 for the
background evolution. For definiteness, we considered in
all cases the mode that leaves the horizon 60 e-folds before
the end of inflation, and we denoted the corresponding
comoving momentum by k60. We choose the initial time
of the evolution such that the mode is deeply inside the
horizon at the start, and the last term in (39) is negligible.
We observe that the choice y ¼ 5 leads to an instability of
the linearized theory, while the other three cases are stable,
and are characterized by a power that freezes outside the
horizon, as in the standard inflationary models.
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The instability of the y ¼ 5 choice manifests itself at
some scale inside the horizon, namely punstable ¼
k=aunstable � H. Even the stable solutions show a different
evolution at this scale (note in the figure the small change
in the slope of PðtÞ for the stable cases at the same scale at
which the y ¼ 5 solution becomes unstable). We can see
this analytically, by considering the approximated expres-
sions of the scalar system inside the horizon. We will
obtain the scale �H times a numerical factor, where

� �
ffiffiffiffi
�

p

y1=4
Mp

f
; � � 1 (65)

(in the numerical examples that we have shown, � ¼ffiffiffi
2

p
103y�1=4). Let us discuss the approximation in more

detail. First of all, using the slow roll conditions (22), we

find g2Q2 ’ y�3=2f2AH
2 � �2H2 in all cases that we have

studied. Therefore, we can disregard g2Q2 in comparison
to p2 inside Eqs. (62) and (63). From this, and from the
slow roll approximations (22), we obtain, in the subhorizon
regime

Ks;12

a
¼ g�Q2ffiffiffi

2
p

f
¼ Oð�HÞ Ks;13

a
¼ O

�
�H H

p

�
� K12;s

(66)

and

�2
s;11

a2
’p2þg2�2Q4

f2
¼Oð�2H2Þ �2

s;12

a2
¼Oð�H2Þ

�2
s;13

a2
’�

ffiffiffi
2

p
�p

f
HQ¼Oð�HpÞ

�2
s;22

a2
;
�2

s;33

a2
¼p2þOðH2Þ �2

s;23

a2
¼OðHpÞ: (67)

We want to solve the evolution equations (43) until
p��H. We can do so by rewriting them as

€Dij þ Ks;ik

a
_Dkj þ

�2
s;ik

a2
Dkj ’ 0 (68)

by inserting only the terms written explicitly in (66) and
(67), and by treating these terms as constant. All these
approximations amount in considering only terms that
contribute to the dynamics at Oðp2;�Hp;�2H2Þ. We

note for instance that _D ¼ OðpDÞ in this regime, so that
it is consistent to set �2

s;12 ¼ 0 in the approximated equa-

tion, while retaining Ks;12 and the dominant term of �2
s;13.

We also note that the fastest evolving coefficient in the
matrices is p that evolves on a OðH�1Þ time scale; there-
fore time derivatives of the terms in (66) and (67) introduce
at most terms with an additional factor H, which are there-
fore suppressed in the p >�H and p ’ �H regimes.
Performing these approximations, the system (68)

reduces to a set of linear second order equations with
constant coefficients. The equations split into three sepa-
rate groups, one for the complex unknowns Di1 (with i ¼
1, 2, 3), one for the complex unknownsDi2, and one for the
three complex unknowns Di3. In each group we need to
solve three second order differential equations, and there-
fore we have six possible solutions; we note that the three
groups have the identical set of equations, and they differ
only in the initial conditions. Therefore the solutions are of
the type

D ’ X6
a¼1

Cae
�at; (69)

where the matrices Ca are integration constants (so as to
match the initial conditions) and �a are constant numbers.
The system is unstable if any of the �a has a real and
positive part. By solving the system, one can see that the
only coefficient that can possibly be real is

� ¼
2
4�p2 � 3g2�2Q4

2f2

þ �Q

f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p2ðH2 þ g2Q2Þ þ 9

4

�2g4Q6

f2

s 3
51=2

(70)

and therefore

stability , p2 > �p2 � �2Q2

f2
ð2H2 � g2Q2Þ (71)

where, using the slow roll condition,

�p2

H2
¼ �2y1=2f2Af

2
H

�
2� f2A

y3=2

�
: (72)

If the expression in parenthesis is negative the back-
ground solution is stable. Otherwise, there is an instability
at sufficiently large wavelengths. Therefore
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FIG. 2 (color online). Time evolution of the power (normal-
ized to one at the initial time shown), for a mode that leaves the
horizon 60 e-folds before the end of inflation, and for the same
background evolutions shown in Fig. 1.
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stability , y <
sin 2=3x

2ð1þ cos xÞ4=3 : (73)

For any fixed y, this condition is violated at sufficiently
small x. This provides an upper bound to the amount of
inflation in the model (for any given choice of parameters).
One needs to verify that this upper bound is comparable
with the required amount of inflation. For the evolutions
shown in Fig. 1, the inflaton field, at 60 e-folds before the
end of inflation, evaluates to � ’ 2:45f for y ¼ 5, to � ’
2:20f for y ¼ 1, to � ’ 2:00f for y ¼ 0:4, and to � ’
1:56f for y ¼ 0:1. Correspondingly, the rhs of the condi-
tion (73) evaluates to ’ 2:62 for y ¼ 5, to ’ 1:43 for y ¼ 1,
to �0:95 for y ¼ 0:4, and to ’ 0:49 for y ¼ 0:1. The
criterion (73) therefore indicates that the choice y ¼ 5
does not lead to a stable inflationary solution of 60 e-folds
(recall that f and � are fixed to 10�2Mp and to 500,

respectively, in this example), while the other choices do.
This is in perfect agreement with Fig. 2.

Equation (71) confirms that the instability, if it exists,
takes place at p < �p ¼ �H times an order 1 factor. For
example, for the unstable y ¼ 5 choice, the criterion (71)
gives an instability starting at �p ’ 2:67�H, corresponding
to aH= �p ’ 0:00025, in excellent agreement with the evo-
lution seen in the figure.

Moreover, let us verify that the instability is extremely
fast. Let us assume that we have a background solution
with 2H2 > g2Q2. At any given moment, modes with p �
�p have Re� ¼ 0, and are therefore stable. Moreover, the
instability is also negligible at very large scales, given that
� ! 0 for p ! 0. However, for p & �p, a quick study of
Eq. (70) shows that � ¼ Oð�HÞ for p smaller than, but
parametrically equal to �p. (For 2H2 � g2Q2, the maxi-
mum of � is obtained for p ¼ �p=2.) This corresponds to a
very short instability time � 1

H� � H�1. Therefore, each

mode experiences a strong instability while still inside the
horizon.

The model (1) is a perfectly healthy model, as it simply
describes an axion with a potential coupled to a SU(2)
field. This model admits a stable Minkowski solution, with
vanishing background fields. The instability that we have
found is therefore an instability of the inflationary back-
ground solution. The starting assumption of the model is
that the potential (2) is too steep to drive inflation, and that
slow roll is obtained through the coupling with a SU(2)
multiplet with a nonvanishing vev. Contrary to the mecha-
nism of [14] [where the inflaton was coupled to a U(1) field
with no vev], the additional friction provided by this cou-
pling is not due to particle production, but it takes place at
the background level. This requires that the gauge field is
non-Abelian (g � 0), and it has a vev (Q � 0). Therefore,
it is to be expected that, for any given value of H, one
cannot achieve a stable inflationary background for arbi-
trary small gQ. As we discussed after Eq. (4), Ref. [29]
showed that, in the gQ> 2H regime, the model (1) can be

effectively described by a stable model with a single field.
However, the single field description is no longer possible
at smaller values of gQ [29], and therefore the instability
can only be obtained and understood in a multifield
description.

A background instability typically manifests itself

through the presence of tachyonic modes, and our result

shows that the model (1) is not an exception to this. The
�
f �F

~F interaction needed for slow roll at the background

level unavoidably leads to couplings between the pertur-

bations, and possible vacuum amplification (i.e., the

tachyonic instability). The vacuum amplification that we

have obtained has the typical properties of the vacuum

amplification of gauge modes due to the their coupling to

axions that was found in [14] and to the amplification of

gravity waves studied in Sec. IV.8 As in these cases, it is

due to a linear term in the momentum p, which is induced

by the �
f �F

~F interaction. This is the �2
13;s term in (67),

which indeed vanishes for �f ! 0. When compared with the

other terms in (68), this term is subdominant to the stan-

dard p2 term at very large p, and to the p-independent
mass term at very small p. If the mass term is sufficiently

large, the interaction encoded by�2
13;s never dominates the

frequency of the modes, and the background solution is

never tachyonic. This occurs for sufficiently large mg /
gQ, and indeed, the quantitative study of the eigenfre-

quency results precisely in the stability condition that we

have found.
We conclude this section by showing in Fig. 3 the power

spectrum P� for the stable y ¼ 0:1, 0.4, 1 configurations,

which we discuss in the next section.
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FIG. 3 (color online). Power spectra for � ¼ 500 and three
different values of y. The spectral index (defined as P� / kns�1)

is ns ’ 0:81 for y ¼ 1, ns ’ 0:92 for y ¼ 0:4 and ns ’ 0:96 for
y ¼ 0:1.

8We thank Lorenzo Sorbo for discussions.
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VII. CONCLUSIONS

We performed a complete study of the linear order
quantum fluctuations for the chromo-natural inflation
model. We separated the metric, gauge and axion fluctua-
tions into scalar, vector and tensor modes, verifying
explicitly that they decouple at the linearized level. We
computed their equations of motion and worked out the
quantization of the system. The tensor sector consists of
the two gravity wave polarizations plus two modes from
the gauge field. The gauge mode of one helicity becomes
tachyonic for some finite interval of time next to horizon
crossing, sourcing one gravity wave helicity. The vector
sector consists of two dynamical modes that originate from
the vector field, and that remain perturbatively small. The
scalar sector contains three dynamical modes, one origi-
nating from the inflation and two from the gauge field.

We showed that, for some parameter choice, one of the
eigenfrequencies of this system, that we denoted by �, can
become imaginary inside the Hubble horizon, leading to a
fast instability. Let us compare this with a standard result in
inflation. Specifically, let us consider the gravity wave
amplitude �gij ¼ a2hTTij . The canonical variable hc /
ahTT obeys h00c þ�2hc ¼ 0 with the dispersion relation
�2 ¼ a2ðp2 � 2H2Þ. As a consequence hc / a outside the
horizon, corresponding to a frozen amplitude of hTT .
Therefore, although the frequency of the canonical mode
becomes tachyonic outside the horizon, its magnitude is
not large enough to lead to a physical instability. The
situation is analogous for a test scalar field or for the scalar
perturbations in the standard case.

For the case at hand, the eigenfrequency � is given in
Eq. (70). In this discussion, for illustrative purposes, let us
approximate the full expression obtained in Eq. (70) with
�2 � p2 � c�2H2, where � � 1 is defined in (65), and c
an order 1 factor. No instability appears if c is negative.
Otherwise, an instability takes place for modes of physical
momentum p ¼ Oð�HÞ. The time scale of the instability
is j�j�1 ¼ Oð 1

�HÞ � H�1 (or, equivalently, the amplitude

of the scalar modes grows proportionally to a large power
of the scale factor) which indeed corresponds to a fast
instability. This heuristic discussion reproduces the results
obtained from the precise form of � (see Sec. VI for the
precise computation). Moreover, we also performed a fully
numerical and exact study of the scalar perturbations that
confirms these analytical results.

The parameters of the model can be chosen so that �
remains real inside the horizon (equivalently, c < 0 in the
heuristic expression) so that the instability is avoided. This

corresponds to choosing mg �
ffiffiffi
2

p
gQ> 2H, where Q is

the vev of the vector field, and g the SU(2) coupling. In the
opposite case, the inflationary background solution is un-
stable. This instability reflects the fact that the inflationary
mechanism of [17] requires both that the vector field is
non-Abelian (g � 0) and that it has a nonvanishing vev
(Q � 0), so that one cannot expect a stable inflationary

solution for arbitrarily small gQ. The strong tachyonic
instability in the unstable regime is triggered by the �F ~F
coupling, precisely as the gauge field amplification that
takes place in the mechanism of [14]. Contrary to the U(1)
case of [14], the vector field is now massive,mg / gQ, and

a sufficiently high mass can shut off the tachyonic insta-
bility. This explains why the inflationary solution is stable
if and only if the vector field is sufficiently heavy.
We have obtained the boundary of the stable region

mg � H analyzed in [29] and our formalism can be readily

employed to study the phenomenology of the boundary
region. This study is beyond the purposes of the present
work. For illustrative purposes, we have however com-
puted the power spectrum of � for some sample choices
of parameters. Specifically, Fig. 3 shows the power spec-
trum for an axion decay constant f ¼ 0:01Mp, for � ¼
500 (we stress that the main motivation for the model is to
provide inflation for a sub-Planckian axion decay constant,
and that this can be obtained for sufficiently large �), and
for three choices of y. We note that, among those shown in
Fig. 3, only the power spectrum obtained for y ¼ 0:1 is
sufficiently flat to meet the observational bounds [2,3]. We
numerically found that the spectral tilt is a decreasing
function of y in the 0:1< y< 1 interval (equivalently, it
is an increasing function of mg=H in this interval). This

behavior can also be seen in the analytic relation given in
[29] in the large mg regime. Therefore, both the require-

ments of stability and of flatness of the power spectrum
pose a lower bound on mg=H.

On the other hand, the discussion around Eq. (52) leads
to the conclusion that a largemg=H leads to a detectable or

ruled out gravity wave signal. The enhanced signal is parity
violating, which results in nonvanishing temperature-B
mode polarization (TB) and E mode–B mode polarization
(EB) correlations. A measure of the net handedness of the
tensor modes is

j��j �
��������PL � PR

PL þ PR

��������; (74)

where PL=R is the power spectrum of the left-/right-helicity

gravity wave modes. The corresponding observational
bounds have been studied in [35,36]. In Fig. 4 we compare
the bounds presented in [36] with the values of r and ��
obtained in this model, for our choice of f ¼ 0:01Mp and

� ¼ 500, and for different values of y in the 0:35< y<
0:7 range (the tensor power spectra are obtained from the
11 element of (46) for the left- and right-helicity tensor
sectors, following the procedure outlined in Sec. III B).
Greater values of y do not lead to a visible gravity wave
signal even in a cosmic variance limited experiment,
while lower values are ruled out by the current limit
r < 0:13 [3,37].
We point out that all values of y considered in this plot

are actually ruled out because they lead to a too small value
of ns (the largest value ns ’ 0:93 is obtained for y ¼ 0:35,
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and ns then further decreases at larger y). We stress that our
choice of f ¼ 0:01Mp and � ¼ 500 is only dictated by the

requirement of f � Mp, � � 1, so that the coupling to the

gauge field plays a relevant role for the inflation dynamics
(which, in turn, is the initial purpose of the model [17]).
Obviously, these values can be changed, and our phenome-
nology discussion has the only purpose of understanding
what kinds of limits can be imposed on the model. We
expect that a viable region will exist at larger f (and
smaller �), as the model becomes closer to a free inflaton
model slowly rolling on a flat potential.

At the theoretical level, it is interesting to note that the
model can result in an observable gravity wave signal in
the near future, even if the inflaton spans a range which is
some orders of magnitude smaller than the Planck scale.
This evades the Lyth bound [32], that states that r * 0:01 is
possible only for an excursion of the inflaton of OðMpÞ
during the last �60 e-folds of inflation. We note that the
model we have studied evades the bound because of the
�F ~F interaction. Quite interestingly, the only other
examples that we are aware of where r > 0:01 can be
achieved even if the inflation evolution is orders of magni-
tude below the Planck scale9 are those studied in
Refs. [14,40], which are characterized by the same pseu-
doscalar interaction. As we already mentioned, Ref. [14] is
also characterized by a �f � Mp evolution due to the

damping from gauge field production. In this case, an
interesting parity violating gravity wave signal can be
generated [41] from the produced gauge quanta, but
one needs to evade the simultaneous generation of too
many non-Gaussian scalar density perturbations [42].
Reference [41] achieves this by considering a large number
of gauge fields (this reduces non-Gaussianity by the central
limit theorem) or by introducing a curvaton field.
Reference [40] shows that r * 0:01 can be obtained, and
the non-Gaussianity limit can be respected, if the rolling
scalar is not the inflaton.
An important difference is that, however, in the mecha-

nism of [14,40] the tensor modes are produced at the
nonlinear level by the vector fields produced by the rolling
inflaton. For the model [17], the production occurs already
at the linear level, due to its mixing with the vector mode
induced by the vector vev and the non-Abelian structure
(g, Q � 0). Quite likely, also in this model the vector
modes tL can source a significant amount of scalar density
perturbations at the nonlinear level. This may reduce r
from the level studied here, although a too large mg will

still likely be ruled out by the significant gravity wave
production. It is possible that, for regimes resulting in
acceptable r, the sourced scalar modes will lead to inter-
esting levels of non-Gaussianity and primordial black holes
as those obtained in [42–45]. It is also possible that, for
some choice of parameters, the vector field production will
‘‘self-regulate’’ (with a consequent decrease of r) due to its
backreaction on the inflationary dynamics, as visible in the
background evolutions studied in [14,46] (a too large
production may slow down the inflaton, and this may in
turn decrease the vector production). All these interesting
possibilities remain to be studied.
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Note added.—In the first version of this manuscript, we

pointed out that (i) the inflationary solution of [17] is stable
if and only if mg > 2H, and that (ii) the tensor-to-scalar

ratio r in this model is enhanced with respect to the case of
a free inflaton, leading to violation of the Lyth’s bound [32]
for some choice of parameters. Both these claims are
confirmed by the present analysis. The stability study is
unchanged with respect to the first version. The study of
the tensor modes, and the phenomenology considerations
that follow from it, have instead been updated, to include
the helicity violating terms in the tensor action that were
erroneously missing in the first version. Such terms result
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FIG. 4 (color online). Red/solid curve: Values of �� and r
obtained for f ¼ 0:01Mp and � ¼ 500, and for different choices

of y in the 0:35< y< 0:7 interval (successive points along the
curve denote 0.05 increments in y); black/dotted vertical line:
r < 0:13 bound from [3]; the other black/dotted curves are the
1� detection lines for the Planck (P), SPIDER (S), CMB-Pol
(C), and a cosmic-variance limited (CV) experiment. The signal
needs to be above a line to be detectable at 1� by that experi-
ment. These experimental forecasts are an approximate copy of
the lines shown in Fig. 2 of [36].

9We note that inflationary potentials leading to r * 0:01 have
been constructed where the inflationary range is smaller than, but
still of OðMpÞ [38,39].
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in a further increase of r and in a helicity violating gravity
wave signal. The relevance of these terms was pointed out
in [52], that appeared on the archive between the first and
the current versions of this manuscript. Reference [52]
agrees with our limit mg > 2H for the stability of the

inflationary solution, and our revised analysis agrees with
the effect of the helicity violating effects found in [52].

APPENDIX A: GENERAL FORMALISM
FOR COSMOLOGICAL PERTURBATIONS

AND ONE EXAMPLE

Our computation for the cosmological perturbations is
algebraically more involved than those present in the lit-
erature for scalar field inflation. However, at the formal
level, it does not differ from such computations. In this
appendix we rigorously prove this claim by spelling out in
detail the formal procedure that we follow, by showing
how this procedure reproduces the standard computation of
the perturbations of single scalar field inflation, and by
showing that we follow the precise same steps for the
computation of the perturbations for the model (1). The
procedure is

(1) Perform a gauge choice that completely fixes the
gauge freedom and preserves the manifestly non-
dynamical modes in the system.

(2) Orient the coordinates such that the momentum of
the mode studied in the linearized theory is along the
z axis.

(3) Obtain the quadratic action for the perturbations
with the above choices.

(4) Integrate out the nondynamical modes, so as to
obtain the quadratic action for the dynamical modes.

(5) Obtain from this action the initial conditions in the
subhorizon regime, and the linearized equations for
the dynamical modes.

(6) Solve these equations, with these initial conditions.
Steps 1, 2, and 3 are described in detail in Sec. III A. The

gauge we choose preserves the modes �g0� and �Aa
0 ,

which are nondynamical.10 Such variables enter without
time derivatives in the quadratic action for the perturba-
tions. These modes are nondynamical due to the structure
of R and of F2.11

In all generality, a Hermitian quadratic action for a set
fXig of dynamical modes, and a set fNig of nondynamical
modes, must be formally of the type (in Fourier space)

S ¼
Z

d	d3k½aijX0y
i X0

j þ ðbijX0y
i Xj þ H:c:Þ þ cijX

y
i Xj

þ ðdijNy
i X

0
j þ H:c:Þ þ ðeijNy

i Xj þ H:c:Þ þ fijN
y
i Nj�;
(A1)

where the matrices formed by aij, cij, fij are Hermitian.

Moreover, through an integration by parts, we can impose
that the matrix formed by bij is anti-Hermitian. The

coefficients aij; . . . ; fij are functions of background quan-

tities, and therefore are time dependent. The action (C1) is
indeed of this type.
Once the explicit form of (A1) is obtained, it does no

longer matter that some of the modes originated from a
SU(2) multiplet. Therefore we do not expect any additional
conceptual difficulty with respect to scalar field inflation.
We now explicitly prove that this is indeed the case.
The linearized equations of motion following from (A1)

are formally

�S

�Ny
i

¼ 0 ) dijX
0
j þ eijXj þ fijNj ¼ 0 (A2)

�S

�Xy
i

¼ 0 ) ðaijX0
j þ bijXj þ d	jiNjÞ0

� b	jiX0
j � cijXj � e	jiNj ¼ 0 (A3)

which are the linearized equations for the perturbations.
We note that we can also obtain these equations by perturb-
ing to linear order the equations of motion of the model,
without computing the quadratic action of the perturba-
tions. The quadratic action is only needed to set the initial
conditions of the perturbations (typically, in the adiabatic
vacuum).
Equations (A2) are the constraint equations of the sys-

tem. In these equations, no second order time derivatives of
the dynamical variables and no time derivatives of the
nondynamical variables appear. We solve these equations
by providing the nondynamical modes in terms of the
dynamical modes and their first time derivative. In matrix
form,

N ¼ �f�1ðdX0 þ eXÞ; (A4)

where we note that the matrix f needs to be invertible
[otherwise we would have a system of perturbations which
cannot be solved; we verified that f is indeed invertible for
the action (C1)]. We stress that both the dynamical fields
and their first derivatives enter in this expression, but not
the derivatives of the nondynamical modes. In other words,
the constraint equations (A2) are algebraic in the non-
dynamical modes; therefore, the nondynamical modes
are completely determined from the dynamical ones, with-
out introducing additional physical degrees of freedom.
The action for the scalar field perturbations for the

model (1) is given in Eq. (C1). In the main text we studied

10We remark that choosing a different gauge that completely
fixes the gauge freedom does not change the number of the
dynamical or the nondynamical modes, but that, in this other
gauge, the nondynamical modes may appear as linear combina-
tions of the modes preserved. The gauge that we have chosen has
simply the advantage of keeping manifest which modes are the
nondynamical ones.
11The fact that the �g0� modes are nondynamical is the basis of
the Arnowitt-Deser-Misner (ADM) formalism [47].
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the problem disregarding metric perturbations. There is
therefore only one nondynamical mode in the system,
denoted by Y. The constraint equation for this mode is
�S2;scalar
�Y	 ¼ 0 (which is nothing but the scalar projection of

the equation of motion for Aa
0 , linearized to first order in the

perturbations). This equation is solved by (60). We note
that the solution (60) is precisely of the form (A4). It is
straightforward to compute the equations for the three
nondynamical modes Y, �, B present in the full action
(C1), and explicitly verify that these equations are also of
the type (A4). Formally, this is not any different from the
computation of standard scalar field inflation, where the
constraint equations are solved by (A11). The fact that
the solutions of the constraint equations of our model,
and of standard scalar field inflation, are both of the form
(A4), mathematically proves that no additional conceptual
difficulty is present in the case at hand.

Inserting the solution (A4) into (A3), we obtain the
linearized equations in terms of the dynamical modes only:

ða� dyf�1dÞX00 þ ½ða� dyf�1dÞ0
þ ðb� dyf�1e� H:c:Þ�X0 þ ½ðb� dyf�1eÞ0
� cþ eyf�1e�X ¼ 0: (A5)

We can also insert the solution (A4) into the action (A1).
This is the sense in which we integrate out the nondynam-
ical modes from the action. We obtain

S ¼
Z

d	d3k½X0yða� dyf�1dÞX0 þ Xyðc� eyf�1eÞX
þ ðX0yðb� dyf�1eÞX þ H:c:Þ�: (A6)

This is the action of the dynamical modes of the system.
Extremization of this action also leads precisely to
Eq. (A5). By inverting the kinetic term, we can write
canonical variables �, in terms of which the action (A6)
can be cast in the form (32).

At the linearized level, the dynamical perturbations are
determined by (A6), and solely by that. The initial con-
ditions and the equations of motion (A5) that follow from
this action are studied and solved in the main text.

Once the solution for the dynamical modes has been
obtained, it can be inserted into Eq. (A4) to provide the
explicit solution also for the nondynamical variables.

1. One example

We now show how the steps outlined above lead to the
standard result for single scalar field inflation. We decom-
pose the metric as given in Eq. (29). In this illustrative
example we only focus on the scalar modes of the system.
So, we have the line element

ds2 ¼ a2ð	Þ½�ð1� 2�Þd	2 þ 2@zBd	dzþ �ijdx
idxj�:

(A7)

We consider single scalar field inflation with the
Lagrangian

L ¼ � 1

2
ð@’Þ2 � Vð’Þ; ’ ¼ ’ð0Þ þ �’ (A8)

and arbitrary potential V. Therefore, we have the single
dynamical mode X ¼ f�’g, and the two nondynamical
modes N ¼ f�;Bg. In a theory with n scalar fields we
would end up with the n dynamical modes X ¼
f�’1; . . . ; �’ng. We insert the above line element and
Lagrangian into the action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
M2

p

2
RþL

�
; (A9)

we expand this action at quadratic order in the perturba-
tions, and we Fourier transform. We obtain

S ¼
Z d	d3ka2

2
½j�’0j2 � ðk2 þ a2V;’’Þj�’j2

þ ’ð0Þ0 ð�	�’0 þ H:c:Þ þ a2V;’ð�	�’þ H:c:Þ
� k2’ð0Þ0 ðB	�’þ H:c:Þ þ ð’ð0Þ02 � 6M2

pH 2Þj�j2
� 2k2M2

pH ð�	Bþ H:c:Þ�; (A10)

where we recall that H ¼ a0
a . As it must be, this action is

indeed of the form (A1). In particular, the nondynamical
fields enter in the action without time derivatives.
The constraint equations are obtained by extremization

of (A10). These equations are solved by

�¼� ’ð0Þ0

2M2
pH

�’

B¼ 1

2k2M2
p

�
’ð0Þ0

H
�’0 þ

�
3’ð0Þ0 þ a2V;’

H
� ’ð0Þ03

2M2
pH 2

�
�’

�

(A11)

which are indeed of the type (A4). Namely, the nondynam-
ical quantities are given by linear combinations of dynami-
cal variables and their first time derivatives. The constraint
equations solved by (A11) are nothing but the linearized 00
and the 0i components of the Einstein equations of the
system [48]. We could have equivalently obtained them
without computation of the quadratic action.
Inserting the solutions (A11) back into the quadratic

action leads to

S ¼
Z

d	d3k
a2

2

�
j�’0j2 �

�
k2 þ a2V;’’ þ 2

a2V;’’
ð0Þ0

M2
pH

þ 3’ð0Þ02

M2
p

� ’ð0Þ04

2M4
pH 2

�
j�’j2

�
(A12)

which is indeed of the form (A6). Finally, the Mukhanov-
Sasaki variable [49,50] in the spatially flat gauge reads v ¼
a�’. In terms of v, this action reduces to the standard well
known result [48]
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S ¼ 1

2

Z
d	d3k

�
jv0j2 �

�
k2 � z00

z

�
jvj2

�
; z � a’ð0Þ0

H
:

(A13)

The computation of the cosmological perturbations per-
formed in this work exactly follows the steps outlined with
this example. Most of the procedure that we have em-
ployed is standard in cosmological perturbations theory
(see for instance [51], which also uses the spatially flat
gauge, and integrates out the �g0� modes as we do). The

only differences of our computation with respect to single
scalar field inflation are the presence of (i vector fields in
the original action, and of (ii) more than one dynamical
field. Concerning (i), Eq. (28) shows how the vector mul-
tiplet is decomposed. This decomposition leads to a qua-
dratic action for the perturbations which is precisely of the

type (A1), after which the next steps in the method can be
followed. Concerning (ii), the presence of more than one
dynamical field is also something commonly encountered
in scalar field inflation. Indeed, it is straightforward to
generalize the discussion leading from Eq. (A8) to
Eq. (A13) to the presence of more scalar fields [34].

APPENDIX B: EXPLICIT FORM OF
THE QUADRATIC ACTION FOR THE SCALAR
MODES WITHOUT METRIC PERTURBATIONS

In this appendix we write the explicit expression for the
quadratic action of the scalar perturbations without metric
perturbations. We start from the scalar perturbations ��,
Q, M, Y entering in the decomposition (28), and we insert
these fields into the action (1). We expand the action to
second order in the perturbations, and obtain

Sno�g¼
Z
d	d3k

a2

2

�
k2ðk2þ2g2a2Q2ÞjYj2þ

�
k2Y	
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þj��0j2

þ3j�Q0j2þk4jM0j2�k2ð�Q	0M0þH:c:Þþ3g�aQ2
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�
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�
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f
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p

�
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�
: (B1)

We note that this action is of the type (A1), and therefore we can proceed with the computation of the perturbations
following the steps outlined in Appendix A. The results of the computation are presented in Sec. VI.

APPENDIX C: INCLUDING SCALAR METRIC PERTURBATIONS

In Sec. VI we studied the system of linear perturbations for the model, disregarding the perturbations of the metric. Here
we summarize the results for the full system, and we confirm the accuracy of the approximation made in the main text.

We start from the full set of six scalar perturbations (after gauge fixing), including the two modes from the metric
perturbations (� and B) that we have (artificially) set to zero in the main text. The full action is

S2;scalar-full ¼ Sno �g þ S�g (C1)

where the first term is explicitly given in (B1), while the explicit expression for the second term is

S�g ¼
Z
d	d3k

a2

2

�
ð�6M2

pH 2þ3ðQ0 þHQÞ2þ�02Þj�j2þ2k2g2a2Q4jBj2�2k2M2
pH ð�	BþH:c:Þ

þ½�	ð�0��0 þ ðQ0 þHQÞð3�Q0 �k2M0 þk2YÞþa2V;���þðH ðQ0 þHQÞþ2g2a2Q3Þð3�Q�k2MÞÞþH:c:�

�
�
2k2B	ðg2a2Q3Yþ

�
Q0 þHQÞ�Qþ�0��

2

�
þH:c:

��
: (C2)

The new term (C2) collects all the dependence of the full action on the metric perturbations� and B. Both these modes
are nondynamical, and we integrate them out, together with the other nondynamical perturbation Y. We are left with three
dynamical modes, and we rotate them as in Eq. (61) of the main text. In this way, we obtain the full quadratic action for the
perturbations. It is formally of the type
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S2;scalar-full ¼ 1

2

Z
d	d3k½�0yCs;f�

0 þ�0yKs;f�

��yKs;f�
0 � �y�2

s;f��: (C3)

Namely, the modes (61) are not the exact canonical
scalar variables. However, as we now show, they provide
a very good approximation to the canonical modes in the
slow roll regime. More in general, the matrices of the full
action (C3) are extremely involved. We studied them in
slow roll approximation. Specifically, using the slow roll
approximation (22), we can cast all the elements of these
matrices in the form

P
i cik

p�iH�iP
j djk

p�jH�j
; (C4)

where the coefficients ci and dj only depend on the pa-

rameters of the model, and on slowly evolving background
quantities. We computed the leading order expression for
these coefficients in the slow roll approximation. For ex-
ample, we obtain

ðCs;fÞ11 ¼ 1þ g2Q4 _�2=M4
p

2H2p2 þ 4g2H2Q2½1þ Oð1�Þ�

¼ 1þ
Oð f2

M2
py

3=2�3ÞH4

2H2p2 þ Oð 1
y3=2

Þ½1þ Oð1�Þ�H4
: (C5)

This expression is extremely close to 1, since, parametri-
cally, the second term is ��3 � 1 outside the horizon, and
even more suppressed inside the horizon. In fact, the
kinetic matrix differs from the identity only up to slow
roll suppressed quantities:

ðCs;fÞ12 ¼ Oð�1=2ÞH2

Oðy3=2�3Þp2 þ Oð�3ÞH2
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q
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:

(C6)

Therefore, up to very small slow roll corrections, the
modes (61) are also the canonical variable of the full scalar
system.

Performing the same procedure on Ks;f , we obtain�
Ks;f

a

�
12
¼ g�Q2ffiffiffi

2
p

f

p2þm2
g½1þOð1�Þ�

p2þm2
g½1þOð1�Þ�

¼
�
Ks

a

�
12

�
1þO

�
��1

1þ y3=2p2=H2

��
�
Ks;f

a

�
13
¼� g2�Q3ffiffiffi

2
p

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

g

q ðp2þm2
gÞ½1þOð1�Þ�

p2þm2
g½1þOð1�Þ�

¼
�
Ks

a

�
13
½1þOð��1Þ�

�
Ks;f

a

�
23
¼ H4

ðp2þm2
gÞ3=2

�
O

�
1

y9=4�

�
p2

H2
þO

�
1

y15=4�

��

�O

�
Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2þH2
p f

Mp

1

�3=2

�
�
�
Ks;f

a

�
12
; (C7)

where we recall that m2
g � 2g2Q2. The 12 and 13 entries

are in excellent agreement with those given in the main
text. We recall that the 13 entry is much smaller than the 12
entry inside the horizon, and it is negligible in the stability
study. We note that, for the full system, the 23 element is
nonvanishing, while ðKsÞ23 ¼ 0. However, this element is
strongly slow roll suppressed with respect to the other two,
and completely negligible.
Proceeding in the same way (for brevity, we omit here

the powers of y), we obtain
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(C8)

and we see that, for all these entries, the expressions of�2
s;f

and of �2
s agree at all scales (namely, for any value of

H=p) up to subdominant Oð��1Þ corrections. For the 11
entry, we obtain

ð�2
s;fÞ11 � k2

ð�2
s Þ11 � k2

¼ 1þ H2

p2�

Oðp2Þ þ OðH2Þ
p2 þm2

g

: (C9)

Also on this entry, the two matrices are in perfect agree-
ment during the full subhorizon regime. However, while
for the other entries the agreement continues also in the
superhorizon regime, the 11 entries differ from each other
for H2 > Oð�p2Þ. By evaluating the coefficients in (C9),
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we found that the disagreement starts only at H * 10p for
all the evolutions studied in the main text.

To conclude, all the matrix elements, up to one excep-
tion, of the system of scalar perturbations studied in the
main text (in which we made the approximation of dis-
regarding the scalar metric perturbations) agree at all
scales (namely, for any value ofH=p) with the correspond-
ing entries of the full system up to subdominant terms in a
slow roll expansion. The single exception is the 11 entry of

�2, for which the agreement persists during the entire
subhorizon regime, at horizon crossing, and also up to
H & 10p, but not further. This proves that the stability study
performed in the main text is valid also when the metric
perturbations are included, given that the instability, when
present, manifests itself deeply inside the horizon. Most
likely, this guarantees that also the power spectra shown in
the main text are accurate, since the disagreement manifests
itself only after the powers have frozen (see Fig. 2).
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