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The potential between a heavy quark and an antiquark inside the quark-gluon plasma is studied on the

basis of the gauge-gravity duality. A real-time complex potential VQ �Qðt; rÞ is derived from the Wilson

loop, which is evaluated by its gravity dual in the Euclidean five-dimensional anti–de Sitter black hole

metric. To make the analytic continuation from the imaginary time to the real time, specific variational

configurations of the string world sheet in the Euclidean metric are introduced. A rapid approach of

VQ �Qðt; rÞ to its stationary value is found at the time scale t ’ ð�TÞ�1, and the imaginary part of VQ �Qð1; rÞ
becomes significant above the length scale r ¼ 1:72ð�TÞ�1. Also, these scales are independent of the ’t

Hooft coupling �. Implications of these results to the properties of heavy quarkonia in quark-gluon plasma

are briefly discussed.
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The quark-gluon plasma (QGP), whose properties are
important to understand the physics of the early Universe
at 10�4–10�5 sec after the big bang, is actively studied in
heavy-ion collision experiments at the Relativistic Heavy
Ion Collider (RHIC) and the Large Hadron Collider
(LHC). The experimental data suggest that QGP with the
temperature (T) of a few hundred MeV is not a weakly
interacting gas of quarks and gluons but rather a strongly
coupled quark-gluon plasma (sQGP) [1]. One of the key
quantities that characterizes sQGP is a small ratio of shear
viscosity to entropy density �=s ¼ ð4�Þ�1 [2] obtained by
using the holographic duality between N ¼ 4 super-
Yang-Mills theory and the classical supergravity on
AdS5 � S5 [3].

Another quantity that can probe sQGP is the spectra of
heavy quarkonia at finite T [4]. It was originally proposed
in the context of the string breaking and Debye screening at
finite T [5,6]. Later, the lattice QCD simulations [7] and the
QCD sum rule analyses [8] were attempted to study the
melting pattern of quarkonia. It was also realized that
the heavy-quark potential at finite T can be defined from
the Minkowski Wilson loop in the thermal medium: The
potential thus defined is found to be time-dependent and
complex by using thermal perturbation theory [9] and
lattice QCD simulations [10]. (See also Ref. [11].)

The purpose of this paper is to derive such a time-
dependent complex potential in sQGP on the basis of the
gauge-gravity duality in the large Nc and large ’t Hooft
coupling � ¼ g2YMNc. We start with an Euclidean Wilson

loop WEð�; rÞ [� (r) is the temporal (spatial) extent with
0 � � < � ¼ T�1]. After evaluating WEð�; rÞ by its grav-
ity dual in the Euclidean AdS5 black hole metric following

Maldacena’s conjecture [12], we carry out an analytic
continuation to obtain the Minkowski Wilson loop
WMðt; rÞwith real-time t. Then, we extract the heavy-quark
potential VQ �Qðt; rÞ from WMðt; rÞ. We note that there is a

previous attempt to derive a complex potential under the
Minkowski AdS5 black hole metric [13]: Its relation to our
approach and its limitation in studying the time-dependent
phenomena will also be discussed.
Let us start with the rectangular Wilson loop WEð�; rÞ in

the Euclidean space-time and its spectral decomposition [10]:

WEð�; rÞ ¼ lim
M!1

Z 1

�2M
d!e�!��ð!; rÞ: (1)

Here M is a bare heavy-quark mass taken to infinity at the
end, and �ð!; rÞ is the spectral function of the heavy Q �Q
with relative distance r in thermal environment. The fre-
quency ! denotes energy relative to 2M. The heavy-quark
potential VQ �Qðt; rÞ at finite T in the Minkowski metric is

obtained from the analytic continuation of Eq. (1),
WMðt; rÞ ¼ WEð� ! it; rÞ [9,10]:

VQ �Qðt; rÞ ¼ i@t lnWMðt; rÞ ¼
R1
�1 d!e�i!t!�ð!; rÞR1
�1 d!e�i!t�ð!; rÞ : (2)

Although �ð!; rÞ and WEð�; rÞ are both real and positive,
WMðt; rÞ and VQ �Qðt; rÞ become complex after the analytic

continuation. The major questions to be addressed in this
paper are (i) how fast the real-time potential approaches its
asymptotic value as a function of t in sQGP and (ii) what
the typical time-scale and length-scale characterizing the
imaginary part of the potential would be.
Following Ref. [12], we consider the gravity dual de-

scription ofWEð�; rÞ given by the extremum of the Nambu-
Goto (NG) action in the background metric of the classical
supergravity:
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WEð�; rÞ ¼ e�SNGð�;r;X�Þ; (3)

where X� (� ¼ 0; . . . ; 4) are the coordinates of string
world sheet embedded in the five-dimensional Euclidean
space-time with a finite rectangular contour on the bound-
ary. These coordinates satisfy the equation of motion,
�SNG=�X

� ¼ 0. We adopt the Euclidean AdS5 black
hole metric as a dual description for a strongly coupled
large Nc gauge theory at finite T:

ds2 ¼ ‘2s

�
u2

R2
ffðuÞd�02 þ dx2g þ R2

u2
du2

fðuÞ
�
; (4)

where ‘s is the string length and fðuÞ¼1�u4h=u
4

with uh ¼ �TR2 being the location of the event horizon in

the fifth coordinate.R ¼ ð2�Þ1=4 is a radius in the string unit.
It is a formidable task to solve analytically the partial

differential equation for a string world sheet with a finite
rectangular contour on its boundary. Even if one could
solve the problem numerically, it is not trivial to make an
analytic continuation � ! it only with the numerical data
ofWEð�; rÞ. In this paper, we take a variational approach to
solve the string world sheet within specific configurations,
so that one can pick up qualitative features of the Euclidean
solution as well as its analytic continuation. Following the
definition of the NG action in Eq. (3) as the area of the
string world sheet multiplied by the string tension, we
evaluate the area of our variational configurations.

For small �, we consider a variational configuration I
(box type) shown in Fig. 1(a): It has only one variational
parameter, the bottom stringy coordinate a in the fifth
direction. The treatment of the cusp at each corner of the
Wilson loop will be discussed later. As � grows, another
configuration II (wedge type) having a ¼ uh would be
relevant. For � getting close to�, we consider thevariational
configuration III (antibox type) shown in Fig. 1(b) [14].

By substituting configuration I into the NG action, we
obtain a formula with a single variational parameter a:

SðIÞNGð�; r; aÞ ¼
1

2�

�
�r

a2

R2

ffiffiffiffiffiffiffiffiffi
fðaÞ

q
þ 2�ðu1 � aÞ

þ 2r

�Z u1

a
du

1ffiffiffiffiffiffiffiffiffi
fðuÞp �

� 2ð�þ rÞu1
�

(5)

¼ 1

2�

�
�r

a2

R2

ffiffiffiffiffiffiffiffiffi
fðaÞ

q
�2�a

�2raF

�
�1

4
;
1

2
;
3

4
;
u4h
a4

��
; (6)

with F being the Gauss hypergeometric function. The first,
second, and third terms of Eq. (5) come from the area A, B,
and C in Fig. 1(a), respectively. The forth term in Eq. (5)
corresponds to the subtraction of the quark self-energy 2ð�þ
rÞð2�Þ�1u1 in the temporal and spatial direction [12]: The
action becomes finite for u1 ! 1 after this subtraction. The

extremum condition �SðIÞNG=�a ¼ 0 given � and r reads

�a� 1

�
¼ 1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
�T

�a

�
4

s
; (7)

with �a � aR�2. The solution of Eq. (7) obeys the scaling
law, �að�; r; TÞ ¼ �Tfð�T�;�TrÞ. Therefore, the charac-
teristic space-time scale obtained from �að�; r; TÞ would be
ð�TÞ�1. The configuration III gives a similar equation for

að�; rÞ through SðIIIÞNG ð�; r; aÞ [14].
In Fig. 2, we plot WEð�; rÞ obtained by minimizing SNG

in each configuration as a function of � with fixed r. We
consider only the real solution of að�; rÞ as the physically
acceptable one in the Euclidean space-time. It turns out
that such a real solution disappears for configuration I (III)
for large (small) � [15]. Although the configurations I, II,
and III are not connected smoothly, either the extended
variational configurations or the fluctuations of the string
world sheet would eventually remove the nonsmoothness.
If we consider the branch with larger value of �SNG given
� in Fig. 2, the result is qualitatively consistent with that
obtained from lattice QCD simulations [10].
Within our variational approach, the analytic continu-

ation ofWEð�; rÞ is equivalent to solve Eq. (7) with � ! it.
u = uh

u = ur

τ u = a
A BB

C

C

r

τβ

(a)

(b)

u = a

x

τ´

FIG. 1 (color online). Configuration Ansatz of world sheet in
the AdS5 black hole metric with a rectangular contour on the
boundary. Configurations I, II, and III correspond to (a) with
a > uh, (a) or (b) with a ¼ uh, and (b) with a > uh, respectively.
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FIG. 2 (color online). Wilson loop as a function of the Euclidean
time � for r ¼ ð�TÞ�1. The solid, the dotted, and the dashed
lines correspond to the configurations I, II, and III, respectively.
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Below, we focus on the configuration I; it should correctly
describe the short-time dynamics, which is one of the main
aims of this paper. Moreover, the potential obtained from
configuration I is qualitatively consistent with the known
results even in the asymptotic (static) limit, as will be
shown later. We mention here that configuration III may
receive a sizable correction from the mixing between the
thermal Wilson loop and the Polyakov loop correlation
[16] as indicated in thermal perturbation theory [17]. In
the gauge-gravity duality, such a mixing appears beyond
the classical supergravity adopted in this paper.

We solved Eq. (7) numerically with � ! it and found a

unique solution aðit; rÞ consistent with að�� 0; rÞ ¼ffiffiffiffiffiffi
2�

p
��1 þ � � � for the configuration I. Substituting the

solution into Eq. (6), we obtain WMðt; rÞ from WEðit; rÞ.
Then, Eq. (2) leads to

VQ �Qðt; rÞ ¼ �
ffiffiffiffiffiffi
2�

p
2�r

�
2r �aðit; rÞ � ðr �aðit; rÞÞ3

� i
r

t
ðr �aðit; rÞÞ2

�
: (8)

Since �aðit; rÞ does not depend on �, the potential is

proportional to
ffiffiffiffi
�

p
irrespective of the values of T, r, and t.

Note here that aðit; rÞ is complex, while að�; tÞ is real: This is
the reason why VQ �Qðt; rÞ can become complex while

WEð�;rÞ is real. To check if the above potential is consistent
with the known result, we consider the asymptotic limit
t ! 1 at T ¼ 0 in Eq. (8): In this case, �aðit; rÞ ! r�1

from Eq. (7), so that we obtain VQ �Qð1; rÞjT¼0 ¼
� ffiffiffiffiffiffi

2�
p ð2�rÞ�1. This is the same as that given in Ref. [12],

except that the numerical coefficient ð2�Þ�1 is smaller by
30% than the exact value 4�2�ð1=4Þ�4.

The time dependence of the real and imaginary parts of
the potential obtained from Eq. (8) are plotted in Fig. 3
for typical values of r. Irrespective of the values of r, the
potentials reach their asymptotic values quickly near
the equilibration time teq ’ ð�TÞ�1. Note that teq is

independent of �, since �a and ð2�Þ�1=2VQ �Qðt; rÞ are

�-independent. This is in contrast to the case of weakly
coupled QGP (wQGP) at Nc ¼ 3, where we have
teq ’ 10m�1

D � 10ðgTÞ�1 for r ¼ ð1–3Þð�TÞ�1 (see Fig. 1

of the second reference in Ref. [9]). Here the Debye mass

in wQGP is given by mD ¼ gT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Nf=6

q
. One finds that

teq in sQGP is not only parametrically different from that in

wQGP but also by an order of magnitude shorter than it.
(See Ref. [18] for related observation on mD.)
Here we estimate the contribution from the cusp

singularity of the rectangular Wilson loop to the time
dependence of the potential as discussed above.
Scale-invariant world sheets near the four cusps give addi-
tional logarithmic divergence in the action: Scusp �
�4R2ð2�Þ�1Fð�=2Þ log ðL="Þ, where ð2�Þ�1Fð�=2Þ ’
0:1 and " is the ultraviolet cutoff [19]. L should be chosen
as the smallest length among t, r, and ð�TÞ�1: They violate
the scale invariance around the cusp and serve as an
infrared cutoff. If t is the smallest length scale relative to
others, L� t and a power-law behavior, Vcusp �
4R2ð2�Þ�1Fð�=2Þi=t, is obtained. On the other hand, if
t > ð�TÞ�1, the time derivative of Scusp vanishes irrespec-

tive of r [20]. Therefore, the cusp contribution does not
change the results of our box Ansatz as long as t > teq ’
ð�TÞ�1 [21].
The equilibration time teq can be regarded as a time-

scale that the sQGP relaxes to its equilibrium state under
the external disturbance caused by a color-singlet heavy
Q �Q with separation distance r at t ¼ 0. Taking typical
QGP temperature T ¼ 300 MeV at the RHIC and LHC,
we have teq ’ 0:22 fm: This is comparable to the formation

time of the low-lying heavy quarkonia from the hard
process [1], so that the propagation of the heavy quarkonia
in sQGP may well be described by using the complex
potential in the asymptotic (static) limit.
It is in order here to comment on the relation between

our approach and that with the MinkowskiAdS5 black hole
metric [13]. Our method is based on the spectral decom-
position of the Euclidean Wilson loop with finite � and its
analytic continuation to the real-time t. This enables us to
study the question of the time scale as in (i) and (ii)
mentioned after Eq. (2). Such a feature is not addressed
in Ref. [13], where the static limit is taken from the
beginning. Moreover, our Euclidean approach has an ad-
vantage to single out a unique physical solution in the
Minkowski space through the analytic continuation, while
in the Minkowski approach, a careful treatment of the real-
time boundary conditions is required [22].
In Fig. 4, the real and imaginary parts of the potential

after equilibration are plotted for different values of T.
We normalize the potential by �T0R

2 so that the curves
are � independent. Here T0 is an arbitrarily energy scale.
At short distance, ReVQ �Qð1; rÞ shows Coulomb-type

behavior irrespective of T. On the other hand, at long
distance, the potential becomes deeper as T increases;
this is consistent with the result in lattice QCD simulations
in which the large r behavior is dictated by twice the
thermal part of single-quark free energy 2FQðTÞ [23].
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FIG. 3 (color online). Real (imaginary) part of the potential
denoted by the solid (dashed) lines as a function of the real-time
t for r ¼ 1:0ð�TÞ�1, 2:0ð�TÞ�1, and 3:0ð�TÞ�1.
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Note that such a deepening of the real part at long distances
can be also seen in Ref. [13] if we use the same definition
of ReVQ �Q as ours by subtracting only the T-independent

divergence due to the bare quark mass. We should remark

here that ReVQ �Q has a long tail �r�1=3 at large r and does

not approach a constant. This may be related to the limi-
tation of our simple box-type Ansatz.

We find that the imaginary part of the potential shown
in Fig. 4, ImVQ �Qð1; rÞ, emerges at the threshold

distance, rth ¼ ð4=27Þ1=4ð�TÞ�1. Then, it grows linearly:

ImVQ �Qð1; r � rthÞ ! � ffiffiffiffiffiffi
2�

p ð2�Þ�1ð�TÞ2r. This is quali-
tatively consistent with that obtained in Ref. [13]. Let us
now introduce a new length characterizing the dissociation
of heavy quarkonia. We define a ‘‘dissociation’’ distance
rdis, where the imaginary part of the potential starts
to dominate over the real part; for large t, Eq. (7)
shows that r �a is a function of �Tr only. Therefore, the
condition ReVQ �Qð1; rdisÞ ¼ ImVQ �Qð1; rdisÞ leads to a

�-independent relation, rdis ¼ 1:72ð�TÞ�1. Taking T ¼
300 MeV again, we have rdis ’ 0:36 fm. This is smaller
than the Q- �Q distance 0.5 fm for J=� and 0.56 fm for
�ð2SÞ but is larger than 0.28 fm for �ð1SÞ [24]. (For the
estimate of the spatial sizes of heavy quarkonia, see Table 3
in Ref. [6].) This indicates that the sequential melting of
heavy quarkonia seen in the relativistic heavy-ion collision
experiments may be closely related to the physics of the
imaginary Q �Q potential rather than the color Debye
screening. Detailed phenomenological studies are, how-
ever, necessary to make a quantitative comparison between
the theory and experiments [25].

In this paper, we have presented the time-dependent
complex potential between heavy quarks VQ �Qðt; rÞ in the

strongly coupled QGP on the basis of the gauge-gravity
duality. Our starting point is a rectangular Wilson loop in
Euclidean space-time, WEð�; rÞ. Associated classical con-
figurations of the string world sheet under the Euclidean
AdS5 black hole metric were evaluated variationally with a
single parameter að�; rÞ in the fifth dimension. A simple
algebraic equation for að�; rÞ allows us to carry out the
analytic continuation of the Euclidean Wilson loop
WEð�; rÞ to the real-time Wilson loop WMðt; rÞ for which
the logarithmic derivative with respect to t gives VQ �Qðt; rÞ.
Technically, the potential receives an imaginary part due to
the process of analytic continuation.
Resultant VQ �Qðt; rÞ is found to have interesting proper-

ties. It shows a characteristic equilibration time teq ’
ð�TÞ�1, which is by an order of magnitude smaller than
the value obtained from the weak-coupling thermal pertur-
bation theory. Also, the imaginary part of the potential
starts to dominate over the real part at rdis ¼ 1:72ð�TÞ�1,
which is comparable to the Q- �Q distance of the low-lying
heavy quarkonia. The above time scale and the length scale
indicate the validity of using t-independent heavy quark
potential in sQGP and the relevance of the imaginary part
of the potential on the sequential melting of heavy quarko-
nia in sQGP, respectively.
We have several future directions to improve our analy-

ses presented in the paper. First, we need to extend our
variational configurations so that a single smooth function
for WEð�; rÞ is obtained. It would be also necessary to
check the validity of various variational Ansätze by solving
the equation of motion in the Euclidean metric numerically
without approximation. Such a numerical solution may be
also used to reconstruct the spectral function �ð!; rÞ by the
Bayesian technique.
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