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We study the restoration of spontaneously broken symmetry at nonzero temperature in the framework

of the Oð2Þ model using polar coordinates. We apply the Cornwall-Jackiw-Tomboulis formalism to

calculate the masses and the condensate in the double-bubble approximation, both with and without a term

that explicitly breaks the Oð2Þ symmetry. We find that, in the case with explicitly broken symmetry, the

mass of the angular degree of freedom becomes tachyonic above a temperature of about 300 MeV. Taking

the term that explicitly breaks the symmetry to be infinitesimally small, we find that the Goldstone

theorem is respected below the critical temperature. However, this limit cannot be performed for

temperatures above the phase transition. We find that, no matter whether we break the symmetry

explicitly or not, there is no region of temperature in which the radial and the angular degree of freedom

become degenerate in mass. These results hold also when the mass of the radial mode is sent to infinity.
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I. INTRODUCTION

The OðNÞ model is of great importance for the theory
of critical phenomena [1] and has been intensely studied
in different theoretical frameworks [2–9]. Using a mass
term with a ‘‘wrong’’ sign, the OðNÞ symmetry is sponta-
neously broken to OðN � 1Þ in the vacuum. At sufficiently
high temperature T, the OðNÞ symmetry is restored. The
case N ¼ 4 has been profusely investigated because of
its application to the chiral phase transition in quantum
chromodynamics (QCD) [10–15]. QCD has a chiral
SUðNfÞR � SUðNfÞL symmetry (where Nf is the number

of quark flavors) which is spontaneously broken to
SUðNfÞRþL in the vacuum. The group Oð4Þ is locally

isomorphic to SUð2Þ � SUð2Þ, and Oð3Þ is locally isomor-
phic to SUð2Þ. Therefore, using the universality hypo-
thesis, the Oð4Þ model can be considered as an effective
theory for the restoration of chiral symmetry in QCD with
two quark flavors.

Most studies of symmetry restoration within the OðNÞ
model [10–12,14,15] have been performed in Cartesian

coordinates, ~� ¼ ð�1; �2; . . . ; �NÞ. Then, when the
symmetry is spontaneously broken, the first coordinate is
usually selected to assume a nonvanishing vacuum expec-
tation value ’, �1 ! ’þ�1, and the remaining N � 1
coordinates are taken to be the N � 1 Goldstone modes
arising from spontaneous symmetry breaking. However, in
the absence of explicit symmetry-breaking terms, the ef-
fective potential is of the well-known ‘‘Mexican hat’’ type,

with any state on the circle j ~�j ¼ ’ ¼ const being ener-
getically degenerate with the vacuum state ’. Therefore,
the Goldstone modes actually correspond to angular vari-

ables when moving along the circle j ~�j ¼ const, and the
massive degree of freedom corresponds to the radial degree
of freedom when trying to ‘‘climb’’ the rim of the hat.

This observation constitutes the main motivation for
the present paper where we study symmetry restoration
within the OðNÞ model in polar coordinates. For the sake
of simplicity, we shall concentrate on the case N ¼ 2,
because the transition from Cartesian to polar coordinates
is particularly simple in this case. Nevertheless, the con-
ceptual issues are the same in this case as for N ¼ 4. In a
certain sense, the case N ¼ 2 corresponds to QCD with
one flavor in the absence of the axial anomaly. For Nf ¼ 1,

the (most simple) anomaly term would introduce a linear
term in the massive degree of freedom, corresponding to an
explicit symmetry breaking term. This is different from the
two-flavor case, i.e., N ¼ 4, which corresponds to the case
of maximal anomaly or maximal Uð1ÞA breaking. Because
of the similarities with the chiral symmetry of QCD and its
breaking and restoration at nonzero T, in the following we
shall also refer to the transition in the Oð2Þ model as
‘‘chiral transition.’’ The order parameter for the transition,
’, will be called ‘‘chiral condensate,’’ and the 2 degrees of
freedom (the ‘‘chiral partners’’) are referred to as the �
meson and the pion. The so-called ‘‘chiral limit’’ is the
case where explicit symmetry-breaking terms are sent to
zero, in which case the pion becomes a true Goldstone
boson.
Another motivation for our work is that, if we send the

mass of the radial degree of freedom (the � meson) to
infinity, we just obtain the leading-order Lagrangian of
chiral perturbation theory (�PT) [16–18], with the
Goldstone boson (the pion) as angular degree of freedom.
In our simplified framework of the Oð2Þ model, it is
then possible to perform a test of the validity of angular
variables at nonzero T.
The transition from Cartesian to polar coordinates rep-

resents a change of the representation of the same theory.
Obviously, physical quantities should be independent from
the adopted representation. This fact is ensured by the
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so-called S-matrix equivalence theorem [19] which states
that the elements of the S-matrix do not change when
performing a transformation of the fields. However, for
actual calculations one must use a certain approximation
scheme. Then, the results obtained in one representation
are not necessarily equal to those obtained in another
representation [20]. In this work we shall explicitly show
that, by using the Cornwall-Jackiw-Tomboulis (CJT) for-
malism in the double-bubble approximation [21], quanti-
ties computed in polar coordinates are actually quite
different from those evaluated in the standard Cartesian
coordinates.

Our results are the following. (i) For explicit symmetry
breaking, the pion mass becomes tachyonic at high T,
signalizing a breakdown of the CJT formalism in the
double-bubble approximation. (ii) When the explicit
symmetry-breaking term is sent to zero (which, in analogy
to the case N ¼ 4, we refer to as the chiral limit), the
Goldstone boson (pion) remains massless at each T in polar
coordinates, thus satisfying the Goldstone theorem. This is
contrary to Cartesian coordinates where a nonzero value of
the pion mass is obtained as soon as the temperature is
switched on, see, e.g., Ref. [12]. However, due to singular
terms �1=’ in the equations for the masses and the
condensate, and because the order parameter ’ ¼ 0 above
the phase transition, the model becomes ill defined.
(iii) Both with and without explicit symmetry breaking,
there is no region of temperature in which the chiral
partners become degenerate in mass. (iv) Similar results
hold also in the nonlinear limit, i.e., when the radial
excitation becomes infinitely heavy.

The reason why polar coordinates are problematic at
high T can be traced back to the decreasing value of the
chiral condensate ’; in fact, in polar coordinates there are
interaction terms proportional to inverse powers of ’,
which render the application of the CJT formalism
(or any other resummation scheme) problematic when ’
is too small. In order to circumvent this problem one can
perform a slightly different transformation to polar coor-
dinates, in which the polar coordinates are not defined with
respect to the origin of the Cartesian coordinates [22]. In
this way a smooth limit from Cartesian to polar coordinates
is realized, in which all the results of Cartesian coordinates
can be reobtained. Interestingly, it is possible to investigate
these issues also in the very simple situation of a free
Lagrangian; see Sec. IV for details. In the Cartesian rep-
resentation the results for thermodynamical quantities,
such as the pressure, are exact in this case. The deviations
of the results in the polar representation from the Cartesian
one explicitly show the limitations of polar coordinates.

A further issue of polar coordinates is the fact that the
Jacobian associated with the field transformation is not
unity: an additional term emerges in the transformation
of the interaction measure, which is potentially relevant in
the context of quantum field theory. We discuss in detail

why it is justified to neglect its contribution for our
conclusions. For this purpose, we rely on perturbative
cancellations between Jacobian contributions and certain
divergences (which will be shown in detail in Appendix C),
we discuss the vanishing of the Jacobian contributions in
the dimensional regularization scheme, and we study a
different field representation in terms of polar variables,
in which the Jacobian is indeed unity. In all cases we
studied, the qualitative picture does not change and the
same conceptual issue of diverging interaction terms in
the high-temperature region exists also in this case.
The paper is organized as follows. In Sec. II we write

the Oð2Þ model in terms of polar coordinates and discuss
the subtleties concerning this coordinate transformation. In
Sec. III we apply the CJT formalism and present the
numerical results. The simple case of a free Lagrangian
is discussed in Sec. IV. In Sec. V the alternative represen-
tation with unit Jacobian is discussed. Finally, we give our
conclusions and an outlook in Sec. VI. Our units are ℏ ¼
c ¼ kB ¼ 1; the metric tensor is g�� ¼ diagðþ;�;�;�Þ.

II. THE Oð2Þ MODEL IN POLAR COORDINATES

A. Tree-level, zero temperature

The Oð2Þ model in Cartesian coordinates ~� ¼ ð�1; �2Þ,
including an explicit symmetry breaking term �H, is
described by the Lagrangian

LCart ¼ 1

2
@� ~� � @� ~�þm2

2
~� � ~�� �

2
ð ~� � ~�Þ2 þH�1:

(1)

As usual, we consider the shift �1 ! �1 þ�, where �
is a constant. At zero temperature the minimization of
the potential Vð�1 ¼ �;�2 ¼ 0Þ leads to the minimum
� ¼ ’ satisfying the following equation:

m2’� 2�’3 þH ¼ 0: (2)

When H ¼ 0 the symmetry of the Lagrangian (1) under
Oð2Þ transformations is exact. For m2 > 0 and H ¼ 0 the
global minimum is realized for � � ’ � 0, i.e., the
ground state breaks the Oð2Þ symmetry spontaneously.
The vacuum expectation value ’ is referred to as chiral
condensate in our model. In the vacuum, the numerical
value for ’ is chosen to be the pion decay constant, ’ �
f� ¼ 92:4 MeV. When H � 0 an additional explicit
breaking of chiral symmetry is realized.
By shifting the fields around their values at the global

minimum, one obtains the zero-temperature tree-level
masses m1 and m2 as

m2
1¼�m2þ6�f2�; m2

2¼�m2þ2�f2�¼ H

f�
: (3)

It is clear that m2 ! 0 for H ! 0, i.e., this particle repre-
sents the Goldstone boson emerging from the spontaneous
breaking of chiral symmetry.
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We now introduce polar coordinates ð�;�Þ through the
transformation

�1 ¼ � cos
�

�
; �2 ¼ � sin

�

�
; (4)

leading to

Lpol ¼ 1

2
@��@

��þ 1

2

�2

�2
@��@

��þm2

2
�2

� �

2
�4 þH� cos

�

�
: (5)

Just as above, one shifts the field� as� ! �þ�. At zero
temperature the minimization of the potential leads to
the same Eq. (2) for the minimum � ¼ ’. Also the
zero-temperature tree-level masses m� and m� coincide
with the expressions of Eq. (3):

m2
� ¼ m2

1 ¼ �m2 þ 6�f2� m2
� ¼ m2

2 ¼
H

f�
: (6)

In order to extract m2
�, we have expanded the cosine

in Eq. (5).

B. Mathematical issues using polar coordinates:
The Jacobian and the integration intervals

Denoting �=� � � and taking into account that the
Jacobian of the transformation in Eq. (4) is �, the partition
function can be rewritten as

Z ¼
I 1

�1
D�1D�2 exp

�
�
Z 1=T

0
d	

Z
V
d ~xLE;cart

�

¼
I 1

0
D��

I 2�

0
D� exp

�
�
Z 1=T

0
d	

Z
V
d ~xLE;pol

�
;

(7)

where periodic boundary conditions are understood:
�1ð	; ~xÞ ¼ �1ð	þ 1=T; ~xÞ, etc. The suffix E means that
the Lagrangians are considered in Euclidean space.

The right-hand side of Eq. (7) describes the partition
function in polar coordinates. Because of the fact that the
Jacobian is not unity and that both fields � and � do not
vary between ð�1;1Þ, the question arises if we can apply
the usual Feynman rules to the Lagrangian Lpol.

One can rewrite the contribution of the Jacobian asI 1

0
D�� !

I 1

0
Dð��Þ

� exp

�
�
Z 1=T

0
d	

Z
V
d ~x

�
��	�

3
x ln

�

�

��
;

(8)

where �	�
3
x is an infinite constant of dimension energy4.

(In discretized Euclidean space-time ��1
	 ¼ a	 is the

lattice spacing in time and ��1
x ¼ ax the lattice spacing

in spatial direction.) In the following, we also use the
notations

�	�
3
x � I � 
4ð0Þ � T

X1
n¼�1

Z d3 ~k

ð2�Þ3 1: (9)

It is evident that the term in the exponent of Eq. (8) induces
a divergent contribution to the effective action requiring
regularization. In the framework of dimensional regulari-
zation the contribution of the Jacobian vanishes in virtue of
Veltman’s rule [23]; see also the explicit perturbative
analyses performed in Refs. [9,22,24]. Since the trans-
formation to polar coordinates turns a renormalizable
Lagrangian into a nonrenormalizable one, one expects a
perturbative cancellation of divergent contributions from

the nonrenormalizable term 1
2

�2

�2 @��@
�� appearing in

Eq. (5) with the divergent contributions from the
Jacobian. Indeed, it was shown in Ref. [9] that divergent
contributions, �I, arising from the momentum-dependent
interaction term, exactly cancel the vertices from the
Jacobian order by order in a perturbative loop expansion.
Using a power-counting argument, we demonstrate explic-
itly in Appendix C how this cancellation works for the CJT
effective potential. However, it turns out that the cancella-
tion does not occur for a truncation of the CJT effective
potential at a given loop order (e.g., in Hartree approxima-
tion where only double-bubble diagrams are included), but
only when higher-order loop contributions are taken into
account (see Appendix C). We nevertheless omit contribu-
tions �I, assuming that the aforementioned cancellation
has happened before studying a particular truncation of the
effective potential. Therefore, we neglect the Jacobian
from the beginning, independent of the renormalization
scheme, and simultaneously omit terms �I arising from
the momentum-dependent vertices [in our study this only
concerns the first term appearing in Eq. (A13)].
Apart from this general argument why one should omit

the Jacobian, we explicitly verified that the relevant
features of our results are the same independent of the
renormalization scheme (trivial regularization, counter-
term regularization, or dimensional regularization
scheme). In addition, in Sec. V we introduce polar coor-
dinates in a slightly modified manner which corresponds to
a unit Jacobian. Again, our conclusions remain unchanged.
We now turn to the extension of the range of integration

over the fields � and �. The possibility to extend the
angular integration interval,

R
2�
0 D� ! R1

�1 D�, origi-

nates from the periodicity of the integrand. This point is
subtle since it is in general not possible to split a path
integral over the interval I ¼ I1 [ I2 into the sum of two
path integrals over the intervals I1 and I2, respectively. For
potentials of the form Uð�Þ and for 2�-periodic potentials
Uð�; �Þ (as in the present case) one can show that extend-
ing the range of integration simply yields a countably
infinite overall constant which can be absorbed into a
normalization constant [25]. The extension in the � direc-
tion from ð0;1Þ to ð�1;1Þ can be achieved with the
help of a modified Heaviside step function defined in
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such a way that its contribution vanishes in dimensional
regularization [25].

Besides the divergences�I which cancel order by order
in perturbation theory, one encounters the standard UV
divergences in loop integrals; see Appendix A. In many-
body resummation schemes, the cancellation of these
divergences is subtle and commonly requires additional
counterterms compared to those encountered in perturba-
tion theory [26]. Unfortunately, wewere not able to identify
these counterterms in the polar coordinate representation,
but we shall assume that they exist and cancel the above
mentioned standard divergences.

C. Shift of the potential

In this section we show how to circumvent the problems
arising from the fact that polar coordinates are ill defined at
the origin. Inspired by Ref. [22], we first shift the potential
along the�1 axis by an arbitrary amount v > 0. In this way
the global minimum realized at the critical temperature
(and above) is not located at � ¼ 0, but at � ¼ v. After
the shift, the Lagrangian (1) reads

Lv¼1

2
@��1@

��1þ1

2
@��2@

��2þm2

2
ð�1�vÞ2

þm2

2
�2

2�
�

2
½ð�1�vÞ2þ�2

2�2þHð�1�vÞ: (10)

When performing the transformation to polar coordinates,
Eq. (4), we obtain

Lv¼Lpol�m2v�cos�þm2

2
v2

�1

2
�vðv�2�cos�Þð2�2þv2�2�vcos�Þ�Hv:

(11)

Note that obviously Lv¼0 ¼ Lpol from Eq. (5), thus the

study of Sec. II A can be regarded as a special case of this
more general treatment. After performing a Taylor expan-
sion of the trigonometric functions about � ¼ 0 and shift-
ing � ! �þ�, we can easily determine the additional
tree-level contributions to the masses and the interaction
vertices.

III. RESULTS AT NONZERO T

In this section we present the results at nonzero
temperature for the model described by the Lagrangian
Lv for different cases.

For reasons of simplicity, numerical results in Secs. III A,
III B, III C, and III D were obtained using the so-called
trivial regularization: the vacuum part of the integrals is
simply set to zero; for details see Appendix A. For a
discussion of the alternative counterterm regularization
and dimensional regularization schemes we refer to
Sec. III F.

A. H � 0, v¼ 0

In this case the system is described by the Lagrangian
(5) in Sec. II A. The effective potential in the CJT formal-
ism reads

Veff ¼Uð�Þþ1

2

X
i¼�;�

Z
k
½lnG�1

i ðkÞþD�1
i ðk;�ÞGiðkÞ�1�

þV2½�;G�;G��; (12)

where U ¼ �m2�2=2þ ��4=2�H� denotes the clas-
sical potential and the inverse tree-level propagators read

D�1
� ðk;�Þ ¼ �k2 þm2

� ¼ �k2 �m2 þ 6��2;

D�1
� ðk;�Þ ¼ �k2 þH

�
:

(13)

At nonzero T the condensate and the masses become
T-dependent functions

’ ! ’ðTÞ; m� ! M�ðTÞ; m� ! M�ðTÞ; (14)

and the dressed propagators are given by

G�1
� ðkÞ � �k2 þM2

� G�1
� ðkÞ � �Z2k2 þM2

�; (15)

where Z is a wave-function renormalization factor for the
pion.
The term V2 in Eq. (12) is the contribution of all 2PI

vacuum graphs, � denotes the connected 1-point function
in the presence of a source, and G denotes the full con-
nected 2-point function in the presence of the source. In
general, V2 consists of infinitely many diagrams, which
prohibits an explicit calculation of V2. In practice, one
therefore has to restrict oneself to certain classes of dia-
grams. We shall use the so-called Hartree approximation
where only double-bubble diagrams are taken into account:

V2 ¼ 3

2
�

�Z
k
G�ðkÞ

�
2 � H

8�3

�Z
k
G�ðkÞ

�
2

� 1

2�2

�Z
q
G�ðqÞ

��Z
k
k2G�ðkÞ

�
:

By extremizing the effective potential in Eq. (12) we
obtain the following equations:

m2’�2�’3þH

¼6�’
Z
k
G�ðkÞ� H

2’2

Z
k
G�ðkÞ

þ 3H

8’4

�Z
k
G�ðkÞ

�
2þ 1

’3

�Z
q
G�ðqÞ

��Z
k
k2G�ðkÞ

�
;

(16)

M2
� ¼ �m2 þ 6�’2 þ 6�

Z
k
G�ðkÞ � 1

’2

Z
k
k2G�ðkÞ;

(17)
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M2
� ¼ H

’
� H

2’3

Z
k
G�ðkÞ; (18)

Z2 ¼ 1þ 1

’2

Z
k
G�ðkÞ; (19)

where � ¼ ’ denotes, in general, an extremum. At T ¼ 0
the masses coincide with their tree-level values in Eq. (3)
and ’ ¼ f�. Furthermore,

H ¼ m2
�f�; (20)

� ¼ m2
� �m2

�

4f2�
; (21)

m2 ¼ m2
� � 3m2

�

2
: (22)

The following numerical values are used at zero
temperature: m� ¼ 600 MeV, m� ¼ 139:5 MeV, and
f� ¼ 92:4 MeV.

The numerical results for the masses, the condensate,
and pressure can be found in the upper row of Fig. 1. The
results for polar coordinates are also compared to the
standard results obtained in Cartesian coordinates. One
observes that in general the results in polar coordinates
differ substantially from those in Cartesian coordinates,
except for the pressure at low temperatures, where the
agreement between solid and dashed curves is seen to be
quite good. Moreover, although the condensate decreases
sharply at a temperature �300 MeV, indicating the onset
of chiral symmetry restoration, the pion mass does not

become degenerate with the � mass for high T. On the
contrary, above a temperature Tmax ’ 300:5 MeV (where
the curves in Fig. 1 terminate) it becomes tachyonic,
signalizing a breakdown of the model for large T. This
fact shows a limitation of the application of angular vari-
ables at nonzero temperature, at least in the Hartree
approximation.
The effective potential is shown in Fig. 2 for different

temperatures. There is a region around the origin where
the effective potential is not defined since no real-valued
solutions exist. Because of the singular terms with
inverse powers of � there is no extremum at the origin.
At low temperature there is only a global minimum at a
large value � � �> 0. At a certain temperature a sec-
ond minimum and a maximum (both at smaller values
of �) occur. At T� ’ 279:6 MeV the effective potential
assumes the same value at both minima, indicating a
first-order phase transition. Above this temperature, the
global minimum � moves closer and closer to the origin,
but never becomes zero. Above Tmax ’ 300:5 MeV no
real solutions to the system of equations exist at the
global minimum.
The reason why no real solution exists above Tmax is due

to the fact that the pion mass becomes imaginary, and
therefore the system is not stable. In order to see this in
more detail, we show the function M�ð�Þ at T ¼ Tmax in
Fig. 3 (solid line). We observe that M�ð�Þ has an imagi-
nary part below a value �turn ’ 15 MeV. At �turn the
imaginary part vanishes and M� becomes a positive defi-
nite, real- (but multi-) valued function of �. At T ¼ Tmax ,
the value M�ð� ¼ �turnÞ coincides with M� at the global
minimum of the effective potential. The solid line above
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FIG. 1. Upper row (H � 0), from left to right: masses, extrema of the effective potential, pressure (dashed lines: Cartesian; solid
lines: polar, v ¼ 0). Lower row (H ¼ 0), from left to right: masses, extrema of the effective potential, pressure (dashed lines:
Cartesian; solid lines: polar, v ¼ 0). The dotted and dash-dotted lines in the middle panel of the upper row correspond to the
condensate in the polar case with v ¼ 0:5f� and v ¼ 0:7325f�, respectively.
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�turn is the solution forM�ð�Þ which has to be used to plot
the effective potential. Using the lower branch instead
would lead to a discontinuous jump of the effective poten-
tial near � ¼ 19 MeV. Below Tmax the point �turn is
located such that the extremum ’>�turn, i.e., real solu-
tions at the global minimum � exist. With increasing
temperature � approaches �turn and finally hits the ill-
defined region for Tmax .

B. H¼ 0, v¼ 0

In this section we study the case where the explicit
symmetry breaking parameter is set to zero, H ¼ 0.
Equations (16)–(19) simplify to

m2’� 2�’3 ¼ 6�’
Z
k
G�ðkÞ;

M2
� ¼ �m2 þ 6�’2 þ 6�

Z
k
G�ðkÞ;

(23)

Z2 ¼ 1þ 1

’2

Z
k
G�ðkÞ; M2

� ¼ 0: (24)

Here, we have used Eq. (A6) from Appendix A and the fact
thatM2

� ¼ 0 to eliminate the pion tadpole term in Eq. (18).
The numerical results for the masses, the condensate, and
the pressure as functions of temperature are shown in the
lower row of Fig. 1. Note that M2

� ¼ 0 indicates that the
Goldstone theorem is fulfilled at each T below the chiral
phase transition. This is a property which does not hold in
Cartesian coordinates; see for instance the lower left panel
of Fig. 1. Unfortunately,M2

� ¼ 0 also above the transition,
indicating that the chiral partners do not become degener-
ate in the chirally restored phase where ’ ¼ 0.
The effective potential (relative to its value at its global

minimum) for different temperatures is shown in Fig. 4.
For temperatures in the transition region, one clearly
observes the features of a first-order phase transition, i.e.,
three minima separated by two maxima.

C. H ! 0, v¼ 0

The chiral limit, i.e., H ! 0, does not exist, since for
arbitrarily small, but nonzero values of H, the effective
potential has no extremum near the origin ’ ¼ 0. We have
confirmed this numerically by taking successively smaller
values of H (compare discussion of Fig. 6). The reason for
this nonanalyticity of the chiral limit is the inverse powers
of ’ in Eqs. (16)–(19). When setting H ¼ 0 from the
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FIG. 3. H � 0, v ¼ 0, T ¼ 300:5 MeV ’ Tmax . Top: pion
mass as function of the variable �. Solid line: M�ð�Þ when
only the real solution exists, � � �turn. Dashed line: ReM�ð�Þ;
dotted line: ImM�ð�Þ. Bottom: effective potential as function of
the variable �. The latter can be plotted only for � � �turn, i.e.,
where real-valued solutions for the pion mass exist. For �<
�turn also the effective potential becomes a complex function.
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FIG. 2. H � 0, v ¼ 0. Effective potential minus its value at its
global minimum � ¼ � for a temperature T ¼ 278:91 MeV
(dashed line) and T� ¼ 279:6 MeV (solid line).
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FIG. 4. H ¼ 0, v ¼ 0. Effective potential minus its value
at its global minimum for T ¼ 0 (dotted line), T ¼ 1:998f�
(dot-dot-dashed line), T� ¼ 2:787f� (solid line), and T ¼
2:87f� (dot-dashed line).
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beginning, this problem does not exist because the singular
terms are eliminated right away. Therefore, we conclude
that the model cannot describe the chirally restored phase
and is limited to the chirally broken phase. Again,
polar coordinates have demonstrated a limited range of
applicability. Interestingly, this problem does not exist in
Cartesian coordinates where taking the limit H ! 0 is not
problematic in the chirally restored phase.

D. H � 0, v � 0

As argued in Refs. [9,22], the nonanalyticity at the origin
’ ¼ 0 encountered in the previous subsections can be
eliminated by introducing a nonvanishing value for the
parameter v, i.e., shifting the vacuum expectation value
to nonzero values ’ ¼ v. Now we have to consider the full
Lagrangian (11). In the double-bubble approximation, the
following equations are obtained:

0 ¼ �m2ð’� vÞ þ 2�ð’� vÞ3 �H þ 6�ð’� vÞ
Z
k
G�ðkÞ

þ
�
m2v�H

2’2
þ �ð’� vÞ

�
v

’
þ v2

’2

��Z
k
G�ðkÞ �

�
3

8

m2v�H � 2v3�

’4
þ 4v2�

’3
� v�

4’2

��Z
k
G�ðkÞ

�
2

þ 1

’3

�Z
q
G�ðqÞ

��Z
k
k2G�ðkÞ

�
�
�
� 4v2�

’3
þ 3v�

’2

��Z
q
G�ðqÞ

��Z
k
G�ðkÞ

�
; (25)

M2
� ¼ 6�ð’� vÞ2 �m2 þ 6�

Z
k
G�ðkÞ � 1

’2

Z
k
k2G�ðkÞ þ 2�

v

’

�
3� 2

v

’

�Z
k
G�ðkÞ; (26)

M2
�¼H�m2v

’
þ2�

v

’
ð’�vÞ2�2�

v

’

�
2
v

’
�3

�Z
k
G�ðkÞ�

�
H�m2v

2’3
þ�

v

’3
ð’�vÞ2�6�

v2

’2

�Z
k
G�ðkÞ; (27)

Z2 ¼ 1þ 1

’2

Z
k
G�ðkÞ: (28)

In the limit v ! 1 the system of Eqs. (25)–(28) reduces
to the system of equations for Cartesian coordinates
[see Eqs. (28a), (28b), and (30a) in Ref. [12] for N ¼ 2
with the replacement’ ! ’� v]. This is easily explained
by the fact that the radial as well as the angular variable are
defined relative to the origin so that for large � we have
sin �

� ’ �
� and cos �

� ’ 1. Hence, in the limit v ! 1 polar

coordinates become Cartesian:

�1 ¼ � cos
�

�
þ � cos

�

�
’ �þ �;

�2 ¼ � sin
�

�
þ � sin

�

�
’ �:

Solving the system of Eqs. (25)–(28) in the case H � 0
yields the condensate ’� v shown in the middle panel of
the upper row of Fig. 1 (dotted and dash-dotted lines). For
values v & 0:73f� (for instance v ¼ 0:5f�, dotted line)
the manner in which the condensate ’ðTÞ is multivalued
reminds us of the behavior for a first-order phase transition.
However, for this to be the case, there would have to be a
third solution for ’� v near the origin. This solution
does not exist and therefore there is neither a first-
order transition nor a restored phase. Above v * 0:73f�
(dash-dotted line) the behavior of ’ðTÞ smoothly
approaches the known Cartesian behavior, as expected.

E. The limit m� ! 1
In this section we study the properties of the nonlinear

sigma model [27] in polar coordinates at nonzero tempera-
ture. This investigation is also interesting in comparison to
chiral perturbation theory at nonzero temperature; see also
Ref. [28] and references therein.
The nonlinear sigma model is obtained by taking the

limit m� ! 1 and keeping the ratio �=m2 fixed. Inserting
Eqs. (21) and (22) into Eq. (17) we obtain

M2
� ¼ 3m2

�

2f2�

�
f2� � ’2 �

Z
k
G�ðkÞ

�
� 1

’2

Z
k
k2G�ðkÞ

þ m2
�

2f2�

�
3’2 � f2� þ 3

Z
k
G�ðkÞ

�
: (29)

For m� ! 1, the last term dominates. Therefore, if
this term is positive definite, also M2

� ! 1. We have to
demand that the last term is positive definite in order to
have real-valued solutions for M�. Since

R
k G�ðkÞ ! 0

for M� ! 1, the positive definiteness of the last term
requires that

’ � f�ffiffiffi
3

p : (30)

This means that the range’< f�=
ffiffiffi
3

p
cannot be described,

neither for H � 0 nor for H ! 0 (i.e., m� ! 0). Thus, the
model is not applicable in the chirally restored phase where
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we expect ’ ’ 0. This result shows that it is not possible
to describe the phase transition in polar coordinates
(in the framework of the CJT formalism) when taking the
limit to the nonlinear sigma model.

F. Dependence on the regularization procedure

It is important to verify how the results change when a
different regularization scheme is employed. In this section
we compare three different regularization schemes: the
trivial regularization scheme, the counterterm regulariza-
tion scheme of Ref. [12], and the dimensional regulariza-
tion scheme of Ref. [29]. In the latter two cases we assume
that suitable counterterms exist for the Hartree approxima-
tion in polar coordinates; see remark at the end of Sec. II B.

In the counterterm scheme, the vacuum contribution of
the thermal tadpole integral (A2),

Z d3 ~k

ð2�Þ3
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þM2

p ; (31)

is not neglected as in the trivial regularization scheme but
is first rewritten using the residue theorem,

Z d4k

ð2�Þ4
1

k2 þM2
: (32)

This integral is then regularized by introducing a renor-
malization scale � [12]:

Q�ðMÞ ¼
Z d4k

ð2�Þ4
�

1

k2 þM2
� 1

k2 þ�2
� �2 �M2

ðk2 þ�2Þ2
�

¼ 1

ð4�Þ2
�
M2 ln

�
M2

�2

�
�M2 þ�2

�
: (33)

We set � ¼ m� for the counterterm scheme and � ¼
m�=

ffiffiffi
e

p
for the dimensional regularization scheme, in order

to satisfy the constraint ZðT ¼ 0Þ ¼ 1 for the vacuum
value of the pion wave-function renormalization factor.
The initial values M�ðT ¼ 0Þ ¼ m�, M�ðT ¼ 0Þ ¼ m�,
and’ðT ¼ 0Þ ¼ f� correspond to the following parameter
choice:

m2 ¼ 1

2

�
m2

� �m2
�

�
5Qðm�Þ
4f2�

þ 3

2
þ 3f2�

2f2� �Qðm�Þ
��
;

(34)

� ¼ 4f2�½2f2� �Qðm�Þ�ðm2
� �m2

�Þ �m2
�Q

2ðm�Þ
16f4�½2f2� �Qðm�Þ�

; (35)

H ¼ 2f3�m
2
�

2f2� �Qðm�Þ
; (36)
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FIG. 5. The sigma mass (left panel), the pion mass (middle panel), and the condensate (right panel) as functions of temperature in the
case H � 0, v ¼ 0 in the trivial regularization (solid line), the dimensional regularization scheme with � ¼ m�=

ffiffiffi
e

p
(dotted line), and

the counterterm regularization scheme with � ¼ m� (dashed line).
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case H ! 0, v ¼ 0. Results for trivial regularization are shown as solid lines, for dimensional regularization with � ¼ m�=
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where Qðm�Þ � Q�ðm�Þ from Eq. (33) for the counter-

term scheme, and Qðm�Þ � QDR
� ðm�Þ from Eq. (B3) for

the dimensional regularization scheme.
Figures 5 and 6 show the temperature dependence of the

condensate and the masses applying the trivial regulariza-
tion, the dimensional regularization, and the counterterm
regularization prescription, respectively. As one can see,
the choice for the regularization scheme yields qualita-
tively similar results. It is also not possible to avoid the
pion from becoming tachyonic at high temperatures, nei-
ther in the case with explicitly broken symmetry, nor in the
chiral limit. In the latter case, cf. Fig. 6, Goldstone’s
theorem is fulfilled since the pion is massless in the phase
of broken symmetry. Nevertheless, as with the trivial regu-
larization scheme, since the pion becomes tachyonic, no
chirally restored phase exists beyond a certain Tend when
approaching H ¼ 0.

IV. THE INSTRUCTIVE EXAMPLE
OF THE FREE LAGRANGIAN

In order to explain the problems related to polar coor-
dinates, in this section we consider a free Lagrangian in
Cartesian coordinates:

Lfree-Cart ¼ 1

2
@� ~� � @� ~��m2

2
~� � ~�; (37)

where m2 > 0. The pressure can be calculated exactly:

pfree-Cart ¼ � 1

2

Z
k
lnD�1

� � 1

2

Z
k
lnD�1

� ;

with D�1
�;�ðk;�Þ ¼ �k2 þm2

�;� ¼ �k2 þm2. Explicitly,

pfree-Cart ¼ � T

�2

Z 1

0
dkk2 ln

�
1� e�

ffiffiffiffiffiffiffiffiffi
k2þm2

p
T

�
: (38)

Let us now perform the transformation to polar coordi-
nates. The Lagrangian

Lpolar ¼ 1

2
@��@

��þ 1

2

�2

�2
@��@

���m2

2
�2 (39)

follows directly from Eq. (5) by setting � ¼ 0 and
replacing m2 ! �m2. Note that, although the original
Cartesian Lagrangian (37) is that of a noninteracting sys-
tem, the transformation to polar coordinates introduces a
momentum-dependent four-particle interaction.

The effective potential in double-bubble approximation
reads

Veff ¼ m2

2
�2 þ 1

2

Z
k
½lnG�1

� ðkÞ þ lnG�1
� ðkÞ

þD�1
� ðkÞG�ðkÞ þD�1

� ðkÞG�ðkÞ � 2�
� 1

2�2

�Z
q
G�ðqÞ

��Z
k
k2G�ðkÞ

�
: (40)

The (inverse) tree-level propagators are (as usual neglect-
ing contributions �I from the Jacobian)

D�1
� ðkÞ ¼ �k2 þm2; D�ðkÞ ¼ �k2: (41)

The stationarity condition for � is simply

0 ¼ m2’þ 1

’3

Z
q
G�ðqÞ

Z
k
k2G�ðkÞ: (42)

Because of Eq. (A6), the last integral is proportional toM2
�.

Therefore, if M� ¼ 0, the only solution of the stationarity
condition is ’ ¼ 0, as one would expect since no symme-
try is broken.
The equations for the masses and the wave-function

renormalization constant are given by

M2
� ¼ m2 � 1

’2

Z
k
k2G�ðkÞ; (43)

M2
� ¼ 0; (44)

Z2 ¼ 1þ 1

’2

Z
k
G�ðkÞ: (45)

Because the tadpole
R
k k

2G�ðkÞ vanishes for M� ¼ 0, see
Eq. (A6), we obtain the very simple set of stationarity
conditions

’ ¼ 0; M� ¼ m; M� ¼ 0; Z ¼ 1: (46)

Inserting this solution into the effective potential (40), we
obtain the pressure in polar coordinates (and in double-
bubble approximation)

ppolar � �Veffð’Þ

¼ � 1

2

Z
k
½lnD�1

� ðkÞ þ lnD�1
� ðkÞ þ 2 lnZ� 1�:

(47)

Ignoring the last two terms in brackets, we obtain

ppolar¼� T

2�2

Z 1

0
dkk2 ln

�
1�e�

ffiffiffiffiffiffiffiffiffi
k2þm2

p
T

�
þT4�2

90
: (48)

The pressure ppolar represents the sum of one particle with

mass m and one particle with mass m ¼ 0. This latter
contribution is, however, not correct and overestimates
the exact result of Eq. (38). In principle, due to the
S-matrix equivalence theorem, the result for the free theory
should be the same in Cartesian and polar coordinates. The
inequivalence found in the double-bubble approximation
demonstrates the inadequacy of this approximation when
polar coordinates are used. We suspect that an infinite
resummation of a certain class of (or of all) higher-loop
2PI diagrams is required in order to prove the equivalence
between the Cartesian and the polar-coordinate represen-
tation. This simple example shows once more that care is
needed when polar coordinates (and a certain many-body
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approximation) are used to study properties of a system at
nonzero T.

V. AN ALTERNATIVE WAY TO INTRODUCE
POLAR COORDINATES

A. The transformation

As we have discussed in Sec. II B, the Jacobian associ-
ated with the transformation to polar coordinates intro-
duced in Eq. (4) is not unity. In this section we present
an alternative polar representation ðc ; �Þ for the Oð2Þ
linear � model, which is defined as

�1 ¼ 2
ffiffiffiffiffiffiffiffiffi
�c

p
cos

�

2�
; �2 ¼ 2

ffiffiffiffiffiffiffiffiffi
�c

p
sin

�

2�
: (49)

In this case the associated Jacobian remains unity. Here the
massive scalar field acquiring a nonvanishing vacuum
expectation value in the case of spontaneously broken
symmetry is represented by c .

The Lagrangian (1) expressed in terms of the fields c
and � introduced in Eq. (49) reads

L ¼ 1

2
ð@�c Þ2 þ 1

2
ð@��Þ2 � 2m2�2 � 8��4 þ 2H�

� c 2

2

�
16��2 þ H

2�

�
� �2

2

H

2�
� ð@�c Þ2 c

2�

þ ð@��Þ2 c

2�
� H

8�2
c�2 þ H

8�2
c 3 þ ð@�c Þ2 c 2

2�2

� 5H

64�3
c 4 þ H

192�3
�4 þ H

32�3
c 2�2

þ higher-order terms; (50)

where the shift c ! c þ� has also been performed.
The corresponding inverse tree-level propagators and

tree-level masses are given by

D�1
i ðk;�Þ ¼ �k2 þm2

i ; i ¼ c ; �;

m2
c ¼ 16��2 þ H

2�
; m2

� ¼ H

2�
:

(51)

Applying the CJT formalism we derive the effective
potential within the double-bubble approximation:

Veffð�;G�;Gc Þ
¼ 2m2�2 þ 8��4 � 2H�

þ 1

2

Z
½lnG�1

c ðkÞ þD�1
c ðk;�ÞGc ðkÞ � 1�

þ 1

2

Z
½lnG�1

� ðkÞ þD�1
� ðk;�ÞG�ðkÞ � 1�

þ V2ð�;G�;Gc Þ; (52)

V2ð�;G�;Gc Þ
¼ � 1

2�2

Z
k
k2Gc ðkÞ

Z
l
Gc ðlÞ þ 15H

64�3

�Z
k
Gc ðkÞ

�
2

� H

64�3

�Z
k
G�ðkÞ

�
2 � H

32�3

Z
k
Gc ðkÞ

Z
k
G�ðkÞ:

(53)

Finally, the stationary conditions for the effective poten-
tial give the following equations for the temperature-
dependent masses, the condensate, and the wave-function
renormalization for the c field:

2H ¼ 4m2’þ 32�’3 þ
�
16�’� H

4’2

�Z
k
Gc ðkÞ

� H

4’2

Z
k
G�ðkÞ þ 1

’3

Z
k
k2Gc ðkÞ

Z
l
Gc ðlÞ

� 45H

64’4

�Z
k
Gc ðkÞ

�
2 þ 3H

64’4

�Z
k
G�ðkÞ

�
2

þ 3H

32’4

Z
k
Gc ðkÞ

Z
k
G�ðkÞ; (54)

M2
c ¼ 16�’2 þ H

2’
þ H

16’3

�
15
Z
k
Gc ðkÞ �

Z
k
G�ðkÞ

�

� 1

’2

Z
k
k2Gc ðkÞ; (55)

M2
� ¼ H

2’
� H

16’3

�Z
k
Gc ðkÞ þ

Z
k
G�ðkÞ

�
;

Z2
c ¼ 1þ 1

’2

Z
k
Gc ðkÞ:

(56)

B. Results

In this subsection we present the numerical results for
this alternative polar representation. Figure 7 shows the
condensate and the masses as function of T using the trivial
and the counterterm regularization schemes in the case of
explicit chiral symmetry breaking. In Fig. 8 the same
quantities are shown in the chiral limit. The initial values
Mc ðT ¼ 0Þ ¼ mc , M�ðT ¼ 0Þ ¼ m�, Zc ðT ¼ 0Þ ¼ 1,

and ’ðT ¼ 0Þ ¼ f�=2 correspond to the following
parameter choices. For trivial regularization,

H¼m2
�f�; m2¼�m2

c �3m2
�

2
; �¼m2

c �m2
�

4f2�
; (57)

and for counterterm regularization,
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H ¼ 2f3�m
2
�

2f2� �Q�ðm�Þ
;

� ¼ 1

4f2�

�
m2

c � H

2f3�
½2f2� �Q�ðm�Þ�

�
;

m2 ¼ H

f�

�
1þ 4f2�Q�ðm�Þ � 3Q2

�ðm�Þ
8f4�

�
� 2�f2�;

(58)

where we have to choose � ¼ mc due to the condition

Zc ðT ¼ 0Þ ¼ 1.

In the case of explicitly broken symmetry there is a
crossover transition and one observes no degeneration
of the chiral partners at high T. Just as in Sec. III, for
T * 300 MeV the validity of the model breaks down and
the numerical results are no longer reliable. Moreover,
chiral restoration is approached very slowly, also when
the chiral limit is taken.

Summarizing the results, the alternative polar represen-
tation does not offer a better description of the chiral phase
transition (at least not within the chosen many-body ap-
proximation). The reason for this is that, when constructing

this alternative polar representation, one has to evaluate
several terms of the form fð1þ xÞ with x ¼ c =� and
x ¼ �=�. Increasing the temperature the condensate starts
melting while the fluctuation of the fields become larger
and the calculation becomes no longer reliable for higher
temperatures. Especially when approaching the critical
temperature all terms of the form x=�, with x ¼ �, c ,
become problematic, limiting the validity of the model to
lower temperatures.

VI. CONCLUSIONS

In this paper, we have studied the Oð2Þ model in polar
coordinates at nonzero temperature. After having clarified
some issues related to the transformation from Cartesian to
polar coordinates in the functional integral representation
of the partition function, we have computed the latter in
the CJT formalism in double-bubble approximation. We
have studied in detail the cases where the chiral symmetry
is explicitly broken and where the explicit symmetry
breaking parameter is set to zero. We have distinguished
the latter case from the chiral limit, where the explicit
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FIG. 7. The temperature-dependent condensate (left) and the meson masses (right) for the alternative polar representation in the case
of explicitly broken symmetry, in the trivial regularization (solid lines), and in the counterterm regularization scheme (dashed lines)
with � ¼ mc .
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symmetry breaking parameter is smoothly sent to zero.
We have found that this limit does not exist in the strict
mathematical sense, due to nonanalytic terms

1

2

�2

�2
@��@

�� and H� cos
�

�

appearing in the Lagrangian for polar coordinates. Except
when the explicit symmetry-breaking parameter is exactly
zero, we have found that, when approaching � ! 0, the
ensuing divergences are sufficiently severe to invalidate the
approach above a certain maximal temperature Tmax ,
above which no physical solutions exist. The same results
hold in the nonlinear limit m� ! 1.

We have also investigated the possibility of shifting
the potential by an amount v along the �1 direction in
order to circumvent the divergences resulting from the
nonanalytic terms in the Lagrangian. Variation of v allows
us to change smoothly from polar coordinates to Cartesian
coordinates (corresponding to v ! 1). Our conclusions
about the suitability of polar coordinates remain un-
changed. However, Tmax increases with v, so that the range
of applicability of polar coordinates is extended. Moreover,
the larger v, the better the agreement with the Cartesian
results.

We have furthermore introduced and studied an
alternative representation for polar coordinates (with unit
Jacobian in the functional integral representation of the
partition function). Also in this case, the above mentioned
problems persist.

Our most important result is that, both in the chiral limit
and in the case of explicitly broken symmetry, the chiral
partners do not become degenerate in mass at high T, not
even when approaching Tmax where the order parameter
has already decreased by a substantial amount. In general,
the sigma particle becomes more massive while the pion
mass decreases or remains zero (in the absence of explicit
symmetry breaking). Above Tmax the pion even becomes
tachyonic. The absence of degeneracy of the chiral partners
means that an important indication for the restoration of
chiral symmetry is missing when using polar coordinates
and the Hartree approximation. We conclude that the
use of angular variables is not well suited for the study
of the chiral phase transition, at least in the Hartree
approximation.

A possible extension of the present study would be to
use four-dimensional polar coordinates, corresponding to
the Oð4Þ model. The polar Oð4Þ model has the advantage
that 3 degrees of freedom can be identified with the three
pions, �0 and �	, and the remaining one with their chiral
partner, the sigma particle. The number of angular degrees
of freedom could affect the behavior of the equations in the
limit ’ ! 0. However, we believe that this generalization
will not fix the problem encountered in the polar version of
the Oð2Þ model, since the divergences pointed out above
are general.

Finally, although on a conceptual level each representa-
tion is equivalent, on a practical level the use of Cartesian
coordinates is favorable to study thermodynamical proper-
ties of systems described by theOðNÞmodel. In connection
to QCD, one should extend the model by incorporating all
the relevant low-energy mesons: besides scalar and pseu-
doscalar particles, also vector and axial-vector degrees of
freedom should be included in an enlarged UðNÞ �UðNÞ
symmetry for a more realistic treatment of properties of
QCD at nonzero T [30–33].
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Jochen Wambach for useful discussions. M.G. and E. S.
thank HGS-HIRe for FAIR for funding. D.H. R. thanks
Kari J. Eskola and the department of physics of Jyväskylä
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APPENDIX A: THERMAL INTEGRALS

In this Appendix we list the standard thermal integrals
which were used for numerical calculations. In our nota-

tion k2 ¼ k20 � ~k2 and

Z
k
fðk0; ~kÞ � T

X1
n¼�1

Z d3 ~k

ð2�Þ3 fði2�nT;
~kÞ: (A1)

Carrying out the Matsubara summation of the thermal
tadpole integral gives

Z
k

1

�k2þM2
¼
Z d3 ~k

ð2�Þ3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~k2þM2
p

�
"
1

2
þ 1

expð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2þM2

p
=TÞ�1

#
; (A2)

consisting of a finite contribution,

QTðMÞ ¼
Z d3 ~k

ð2�Þ3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~k2 þM2
p 1

e
ffiffiffiffiffiffiffiffiffiffiffi
~k2þM2

p
=T � 1

¼
Z 1

0

dk

2�2

k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p 1

e
ffiffiffiffiffiffiffiffiffiffiffi
k2þM2

p
=T � 1

;

and a divergent vacuum contribution,

QVðMÞ ¼
Z d3 ~k

ð2�Þ3
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þM2

p ¼
Z d4k

ð2�Þ4
1

k2 þM2
:

(A3)

For the explicit calculations we need the following
integrals:

Z
k
G� ¼ QVðM�Þ þQTðM�Þ; (A4)
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Z
k
G� ¼ 1

Z2

�
QV

�
M�

Z

�
þQT

�
M�

Z

��
; (A5)

Z
k
k2G� ¼ M2

�

Z4

�
QV

�
M�

Z

�
þQT

�
M�

Z

��
: (A6)

For the effective potential we need in addition:

1

2

Z
k
½D�1

� G� � 1�

¼ 1

2

Z
k

"
ð�k2 þm2

�Þ 1

�k2 þM2
�

��k2 þM2
�

�k2 þM2
�

#

¼ 1

2
ðm2

� �M2
�Þ
Z
k

1

�k2 þM2
�

¼ 1

2
ðm2

� �M2
�Þ½QVðM�Þ þQTðM�Þ�; (A7)

1

2

Z
k
½D�1

� G� � 1�

¼ 1

2

Z
k

"
ð�k2 þm2

�Þ 1

�Z2k2 þM2
�

��Z2k2 þM2
�

�Z2k2 þM2
�

#

¼ 1

2
ðm2

� �M2
�Þ 1

Z2

�
QV

�
M�

Z

�
þQT

�
M�

Z

��

þ 1

2
ðZ2 � 1ÞM

2
�

Z4

�
QV

�
M�

Z

�
þQT

�
M�

Z

��
; (A8)

1

2

Z
k
lnG�1

� ¼ 1

2
RVðM�Þ þ 1

2
RTðM�Þ; (A9)

1

2

Z
k
lnG�1

� ¼ 1

2
RV

�
M�

Z

�
þ 1

2
RT

�
M�

Z

�
; (A10)

where

RT

�
M

Z

�
¼ T

�2

Z 1

0
dkk2 ln

 
1� e

�
ffiffiffiffiffiffiffiffiffiffi
k2þM2

Z2

q
=T

!
; (A11)

which in the case M ¼ 0 and Z � 0 simplifies to

RTð0Þ ¼ �T4�2

45
: (A12)

We note that in expression (A6) we have already
dropped a divergent contribution. In Sec. II B we justified
this omission within the scope of our work. However, the
starting point is the result

Z
k
k2G� ¼ � 1

Z2
T

X1
n¼�1

Z d3 ~k

ð2�Þ3 1

þM2
�

Z4

�
QV

�
M�

Z

�
þQT

�
M�

Z

��
: (A13)

Except for the discussion in Secs. III F and V, we
neglected the contributions from renormalization, i.e.,
QV � 0 as well as RV � 0. This approximation scheme
is called the trivial regularization.

APPENDIX B: DIMENSIONAL REGULARIZATION

This Appendix contains calculations relevant for the
discussion of the role of the Jacobian and the choice of
the regularization scheme.
First we give derivations for the renormalized thermal

integrals using the dimensional regularization scheme. In
dimensional regularization the thermal tadpole integral is
given by [29]

Z
k

1

�k2þM2

¼ 1

ð4�Þ2
�
�

M

�
2�
"
T2

4e���ð12Þ
�
�
5
2�1��

	
2M2�

�
Z 1

0
dk

k2�2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þM2

p �
e


ffiffiffiffiffiffiffiffiffiffiffi
k2þM2

p
�1

	�e���ð1þ�Þ
�ð1��Þ M2

#
;

(B1)

where � is the Euler-Mascheroni constant and � denotes
an arbitrary renormalization scale. Expanding the second
term about � ¼ 0 one can isolate the divergent part
�M2=ð16�2�Þ. Dropping this divergence (which could
be achieved by introducing appropriate counterterms in
the Lagrangian) we obtain in the limit � ! 0

Z
k

1

�k2 þM2
¼ QTðMÞ þQDR

� ðMÞ; (B2)

with

QDR
� ðMÞ ¼ � M2

16�2

�
1þ ln

�2

M2

�
: (B3)

Accordingly, using dimensional regularization, we obtain
for Eq. (A13)

Z
k
k2G� ¼ M2

�

Z4

�
QDR

�

�
M�

Z

�
þQT

�
M�

Z

��
; (B4)

since the divergent term (9) vanishes in dimensional regu-
larization due to Veltman’s rule [23].
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APPENDIX C: PERTURBATIVE CANCELLATION
OF INFINTIES

In polar coordinates, the Jacobian of the integration
measure leads to the appearance of infinite terms �I,
cf. Eqs. (8) and (9). It was shown in Refs. [9,22,24] that
these terms cancel in perturbation theory. This cancellation
is affected by the momentum-dependent vertices in the
polar Lagrangian (5). As we will show in this Appendix,
such a cancellation does not happen in a truncation of the
CJT effective potential at a given loop order, i.e., in a
certain many-body approximation. The reason is, as we
shall see in the following, that diagrams with momentum-
dependent vertices of higher-loop order are required to
cancel terms �I at a lower-loop order. Expanding the
effective potential in a given order in the interaction terms
�1=’ in the Lagrangian (5), we explicitly demonstrate
how this cancellation happens in the two lowest orders. We
conjecture (although we cannot prove it) that this also
works to arbitrarily high order.

Adding the contribution (8) from the Jacobian to the
Lagrangian (5), performing the shift � ! �þ�, and
expanding the trigonometric functions as well as the
logarithm from the Jacobian in a power series in the fields,
we obtain up to fourth order in the fields

Lpol ¼ 1

2
@��@

��� 1

2

�
6��2 �m2 þ I


2

�2

�
�2

þ 1

2
@��@

��� 1

2

H
2

�
�2 þ 


�
�@��@

��

þ 
2

2�2
�2@��@

��� 2���3 � �

2
�4 þ H
4

24�3
�4

�H
2

2�2
��2 þ I




�
�þ I


3

3�3
�3 � I


4

4�4
�4

�Uð�Þ þOð�5; ��4Þ: (C1)

Here, we introduced a power-counting parameter, 
, in all
terms arising from the expansions of the transcendental
functions in the Lagrangian (5), in a way that each power of
1=� is accompanied by a factor 
. Our proof of cancella-
tion of infinities �I will here include terms up to Oð
3Þ.
The classical (tree-level) potential is given by

Uð�Þ ¼ �m2

2
�2 þ �

2
�4 �H�: (C2)

The CJT effective potential is still given by Eq. (12), but
the inverse tree-level propagators now read

D�1
� ðk;�Þ ¼ �k2 �m2 þ 6��2 þ I


2

�2
; (C3)

D�1
� ðk;�Þ ¼ �k2 þH
2

�
; (C4)

where apart from the additional factor of 
2 in the mass
term of the pion propagator, the tree-level propagator for

the sigma receives an additional contribution from the
expansion of the logarithm arising from the Jacobian,
cf. Eq. (C1).
Applying the usual Feynman rules for the construction

of the 2PI contribution to the effective potential (12), the
latter can now be ordered in powers of 
 accompanying the
interaction terms in Eq. (C1). Up to two-loop order we
obtain

V2-loop
2 ¼ Vð0Þ

2 þ Vð2Þ
2 þ Vð3Þ

2 þ Vð4Þ
2 þ Vð6Þ

2 ; (C5)

where

Vð0Þ
2 ¼ 3

2
�

�Z
k
G�ðkÞ

�
2 � 12�2�2

�
Z
k;q

G�ðkÞG�ðqÞG�ðkþ qÞ; (C6)

Vð2Þ
2 ¼ � 
2

2�2

Z
q
G�ðqÞ

Z
k
k2G�ðkÞ

� 
2

�2

Z
k;q
ðk � qÞ2G�ðkÞG�ðqÞG�ðkþ qÞ; (C7)

Vð3Þ
2 ¼ 4�I


3

�2

Z
k;q

G�ðkÞG�ðqÞG�ðkþ qÞ

�H
3

�3

Z
k;q

k � qG�ðkÞG�ðqÞG�ðkþ qÞ; (C8)

FIG. 9. 2PI Feynman diagrams entering the effective potential
at two-loop order. Solid lines correspond to the sigma, dashed
lines to the pion two-point function. Momentum-dependent
three-point (four-point) vertices are denoted by open circles
(boxes), with additional bars on the attached pion lines.
Regular three- and four-point vertices are denoted by filled
circles and boxes, respectively. Hashed three- and four-point
vertices are proportional to I.
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Vð4Þ
2 ¼ 3

4
I

4

�4

�Z
k
G�ðkÞ

�
2 �H
4

8�3

�Z
k
G�ðkÞ

�
2

�H2
4

4�4

Z
k;q

G�ðkÞG�ðqÞG�ðkþ qÞ; (C9)

Vð6Þ
2 ¼ �I2


6

3�6

Z
k;q

G�ðkÞG�ðqÞG�ðkþ qÞ: (C10)

Figure 9 shows these terms in a graphical form, including
combinatorial factors. The minus signs are due to the fact
that the effective potential is proportional to the negative of
the pressure. Terms with two identical (different) vertices
are of second order in the interaction and thus have an
additional factor of 1=2 (2=2). Other factors are of combi-
natorial origin and denote the number of possibilities to
connect the vertices with lines.

The stationarity condition of the effective potential with respect to the one-point function now reads

m2’� 2�’3 þH ¼
�
6�’� I


2

’3

�Z
k
G�ðkÞ �H
2

2’2

Z
k
G�ðkÞ � 24�2’

Z
k;q

G�ðkÞG�ðqÞG�ðkþ qÞ

þ 
2

’3

Z
q
G�ðqÞ

Z
k
k2G�ðkÞ þ 2


2

’3

Z
k;q
ðk � qÞ2G�ðkÞG�ðqÞG�ðkþ qÞ

� 8I
�
3

’3

Z
k;q

G�ðkÞG�ðqÞG�ðkþ qÞ þ 3
H
3

’4

Z
k;q

k � qG�ðkÞG�ðqÞG�ðkþ qÞ þOð
4Þ; (C11)

where the terms in the first line on the right-hand side originate from the one-loop terms in the effective potential, the terms
in the second line from Vð0Þ

2 , the terms in the third line from Vð2Þ
2 , and the terms in the fourth line from Vð3Þ

2 . We suppressed
terms of higher order, as our proof of cancellation of infinities extends only up to (and including) terms of order Oð
3Þ.

The stationarity conditions of the effective potential with respect to the two-point functions lead to

G�1
� ðkÞ ¼ �k2 �m2 þ 6��2 þ I


2

�2
þ 6�

Z
q
G�ðqÞ � 72�2�2
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2

�2
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q
q2G�ðqÞ

� 2

2

�2

Z
q
½q � ðk� qÞ�2G�ðqÞG�ðk� qÞ þ 24I

�
3

�2

Z
q
G�ðqÞG�ðk� qÞ

� 2
H
3

�3

Z
q
q � ðk� qÞG�ðqÞG�ðk� qÞ þOð
4Þ; (C12)

G�1
� ðkÞ ¼ �k2 þH
2

�
� 
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k2
Z
q
G�ðqÞ � 4
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Z
q
½k � ðq� kÞ�2G�ðqÞG�ðk� qÞ

� 4
H
3

�3

Z
q
k � ðq� kÞG�ðqÞG�ðk� qÞ þOð
4Þ: (C13)

At order Oð
2Þ, the following infinite terms�I arise in the
effective potential: one in the one-loop term [the second
term in Eq. (12)], where the inverse tree-level sigma
propagator appears, which features a term �I
2=�2,
cf. Eq. (C3), and one in each of the two terms from the
two-loop contribution (C7). This already demonstrates the
above mentioned fact that terms of higher-loop order are
required in order to cancel infinities at lower-loop order.
We now isolate the infinities in the two-loop terms (C7)
and prove that they cancel against the one from the one-
loop term. To this end, we have to compute these diagrams
explicitly.

In a perturbative calculation, it is sufficient to consider
the two-point functionsG�ðkÞ,G�ðkÞ appearing in both the
aforementioned one-loop term as well as in the terms in

Eq. (C7) only to order Oð
0Þ, as each of these terms is
already of order Oð
2Þ. To order Oð
0Þ, Eqs. (C12) and
(C13) reduce to

G�1
� ðkÞ¼�k2�m2þ6�

�
�2þ

Z
q
G�ðqÞ

�

�72�2�2
Z
q
G�ðqÞG�ðk�qÞþOð
2Þ; (C14)

G�1
� ðkÞ ¼ �k2 þOð
2Þ: (C15)

Plugging this approximate form of the pion propagator into
the two terms in the third line of Eq. (C12) we obtain after
some straightforward steps
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Z
q
G�ðqÞG�ðk�qÞ: (C16)

The first term on the right-hand side cancels the last term in
the first line of Eq. (C12), so there are, at least to order
Oð
2Þ, no terms �I in the two-point function of the sigma
particle. One can convince oneself that there are also no
infinities in the two-point function of the pion. The same is

true for the stationarity condition of the effective potential
with respect to the one-point function.
We now proceed to compute the Oð
2Þ terms in the

effective potential, in the approximation (C14) and (C15)
for the sigma and pion two-point functions, in order to see
the cancellation of infinite terms �I between the one-loop
term involving the tree-level sigma propagator and the two
terms of Eq. (C7):

1

2

Z
k
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2 ¼ 1

2
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where we substituted variables kþ q ! k in the last term. The q integral in this term has already been computed in the
above analysis of the sigma two-point function, cf. Eq. (C16). Utilizing this, we obtain

1
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k
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� ðk;�ÞG�ðkÞ þ Vð2Þ
2 ¼ 1
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Z
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Z
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Z
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G�ðqÞG�ðk� qÞ

�
: (C18)

We observe that the terms �I cancel, as claimed.
Now we would like to show the cancellation of infinities up to order Oð
3Þ in the effective potential. At two-loop order,

there is one term�I, cf. Eq. (C8). As one can convince oneself, this infinite contribution cannot be canceled by the second
term in Eq. (C8), which is finite. The cancellation is, however, affected by a term at the three-loop level.

Consider the diagram in Fig. 10. This is of fourth order in interaction vertices, so there is a factor 1=4!. There are
3� 2 ¼ 6 possibilities to attach the sigma lines emerging from the central vertex to the three other vertices on the pion
loop. There are 4� 2 ¼ 8 possibilities to connect the remaining pion lines to form a diagram with this particular topology.
Thus,

D3 � � 1

4!
6 � 8ð�2��Þ

�
� 


�

�
3 Z

k;q;p
ðk � qÞð�k � pÞðp � qÞG�ðkÞG�ðqÞG�ðpÞG�ðkþ qÞG�ðk� pÞG�ðpþ qÞ

¼ � 4�
3

�2

Z
k;q

G�ðkþ qÞG�ðkÞG�ðqÞ
Z
p
½ðkþ pÞ � ðq� pÞ�½� ðkþ pÞ � p�½p � ðq� pÞ�G�ðkþ pÞG�ðq� pÞG�ðpÞ;

where we isolated the p integration from the sigma propagators by the substitutions k� p ! k and pþ q ! q. The p
integral can now be computed, using the approximate form of the pion two-point function (C15),

FIG. 10. The three-loop diagram D3.
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where we made frequent use of substitutions of the integration variable. Apart from the last term, the only terms that
produce infinities are those where a single pion propagator is accompanied by a factor of p2. Collecting these, we obtain

D3 ¼ � 4�
3

�2

Z
k;q

G�ðkþ qÞG�ðkÞG�ðqÞ½Iþ finite; I � independent terms�

¼ �4�I

3

�2

Z
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G�ðkþ qÞG�ðkÞG�ðqÞ þ finite; I � independent terms: (C20)

As one can see, this term exactly cancels the infinite term in Eq. (C8).
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