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The ��� ! �0 transition form factors are investigated within the light-cone QCD sum rules method.

Using the most general form of the interpolating current of �0 baryon and the distribution amplitudes of

� baryon we calculate the Q2 dependence of the electromagnetic form factors. Our results are compared

with the predictions of the covariant spectator quark model.
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I. INTRODUCTION

The investigation of electromagnetic form factors of
hadrons plays a key role in understanding their internal
structure. The form factors measured in experiments de-
scribe the spatial distribution of charge and magnetization
of hadrons [1], and indicate the deviation of hadron struc-
ture from the pointlike particle. At present, the studies are
mainly focused on the nucleon form factors. Recent ex-
perimental and theoretical progress on this subject can be
found in [1,2] and references therein.

The study of electromagnetic form factors of the ground
state spin-1=2 baryons receives special interest. However,
except the proton and neutron, the electromagnetic form
factors of other members, the octet baryons, have not yet
been measured. The main difficulty can be attributed to the
unstable nature of the baryons containing a strange quark.
From a theoretical point of view, the main problem is related
to the fact that the formation of hadrons belongs to the non-
perturbative region of QCD where the perturbative approach
does not work. For this reason some nonperturbative ap-
proaches are needed in order to calculate these form factors,
and the QCD sum rules method is recognized to be the most
predictive one among all other nonperturbative approaches.
Another advantage of the QCD sum rules method is that it is
based on the fundamental QCD Lagrangian.

The nucleon electromagnetic form factors are calculated
in framework of the light-cone version QCD sum rules
method for the Ioffe and general currents in [3,4]. The
electromagnetic form factors of �, �, and � baryons are
studied for the Chernyak-Zhitnisky and Ioffe currents in
[5]. The electromagnetic form factors of octet baryons for
the most general form of the interpolating currents are
studied within the light-cone QCD sum rules method in
[6]. It should be noted here that the electromagnetic form
factors of nucleons and other members of octet baryons
have already been studied in numerous works within the

framework of lattice calculations (see [7] and references
therein), and relativistic constituent quark model [8].
In the present work, we study the electromagnetic tran-

sition form factors of the ��� ! �0 in the framework of
the light-cone QCD sum rules method using the most gen-
eral form of the interpolating current for the�0 baryon. This
decay is studied in the framework of the nonrelativistic
quark model and general QCD parametrization method
[9], the covariant spectator quark model [10], chiral pertur-
bative theory [11,12], chiral quark model [13], and Skyrme
model [14]. The ��� ! �0 transition is interesting in
several respects: it is unique between two different baryons
that belong to the same octet family even in an exact isospin
symmetry case. The second interesting peculiarity of this
transition is that having different initial and final baryons
is contrary to the case observed in elastic scattering of the
octet baryons. For these reasons, the electric charge form
factorGEðQ2Þ atQ2 ¼ 0 should vanish. Hence, the value of
GEðQ2Þ is expected to be small in its dependence on Q2.
Therefore, investigation of the Q2 dependence of the form
factors receives special interest. It should be noted that the
magnetic moment for the ��� ! �0 transition is investi-
gated within the light-cone QCD sum rules method in [15].
The modern status of QCD and particularly the QCD sum
rules for baryons is presented in great detail in [16].
The structure of this paper is organized as follows. In

Sec. II, we derive sum rules for the form factors of the
��� ! �0 transition. In Sec. III, we present our numerical
results and conclusions.

II. SUM RULES FOR ��� ! �0 TRANSITION
FORM FACTORS

The transition form factors for ��� ! �0 are deter-
mined by the matrix element of the electromagnetic current
between the � and �0 baryons. Using the conservation of
the electromagnetic current, this matrix element can be
determined in the following way:

h�0ðp0Þjjel�j�ðpÞi¼ �u�0ðp0Þ
�
F1ðQ2Þ

�
���

6qq�
q2

�

� i

m�þm�0

���q
�F2ðQ2Þ

�
u�ðpÞ; (1)
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where q ¼ p� p0, Q2 ¼ �q2 and ��� ¼ i
2 ½��; ���.

Here, F1ðQ2Þ and F2ðQ2Þ are the Dirac and Pauli type
form factors, respectively.

Experimentally, a more convenient set of the electromag-
netic form factors are the Saches form factors defined as

GEðQ2Þ ¼ F1ðQ2Þ � Q2

ðm� þm�0Þ2 F2ðQ2Þ;

GMðQ2Þ ¼ F1ðQ2Þ þ F2ðQ2Þ:
(2)

In order to calculate the form factors F1ðQ2Þ and F2ðQ2Þ
for the ��� ! �0 transition, we consider the following
correlation function:

��ðp;qÞ¼ i
Z
d4xeiqxh0jTf��0ð0Þjel�ðxÞgj�ðpÞi; (3)

where T means the time ordering, j�ðpÞi is the � baryon

state with four-momentum p, ��0 is the interpolating
current for the �0 baryon, i.e.,

��0 ¼ ffiffiffi
2

p
"abcfðuaTCsbÞ�5d

c þ ðdaTCsbÞ�5u
c

þ �ðuaTC�5s
bÞdc þ �ðdaTC�5s

bÞucg: (4)

Here C is the charge conjugation operator, � is an arbitrary
parameter, and jel� is the electromagnetic current defined as

jel�ðxÞ ¼ eu �uðxÞ��uðxÞ þ ed �dðxÞ��dðxÞ þ es �sðxÞ��sðxÞ:
(5)

The correlation function can be calculated in terms of
hadrons (phenomenological part) and in terms of quark and
gluon degrees of freedom. Equating these two representa-
tions of the correlation function (1) we get the sum rules for
the form factors of ��� ! �0 transition.

Saturating (1) with the hadronic states with the quantum
numbers of �0 baryon and separating the ground state, for
the phenomenological part, we get

��ðp; qÞ ¼
h0j��0 j�0ðp0Þih�0ðp0Þjjel�j�ðpÞi

m2
�0 � p02 þ � � � ; (6)

where � � � denotes contribution of the higher states and
continuum.

The matrix element h0j��0 j�0i is determined as

h0j��0 j�0i ¼ ��0
uðp0Þ;

where ��0
is the residue of the �0 baryon. Moreover, the

matrix element h�0jjel�j�ðpÞi is determined as is given in

Eq. (1). Using these definitions, for the phenomenological
part, we get

�
ph
� ¼ ��0

ð6p0 þm�0Þ
m2

�0 � p02

�
F1ðQ2Þ

�
�� � 6qq�

q2

�

� i

m� þm�0

���q
�F2ðQ2Þ

�
u�ðpÞ: (7)

We see from Eq. (7) that there appears numerous structures
in determining the transition form factors F1ðQ2Þ and
F2ðQ2Þ. For this aim we choose the structures p� and

p� 6q, as a result of which, for the coefficients of the

selected structures, we get

�ð1Þ ¼ 2��0
F1ðQ2Þ

m2
�0 �p02 ; �ð2Þ ¼ 2

m�0
þm�

��0
F2ðQ2Þ

m2
�0 �p02 : (8)

As has already been noted, these form factors are de-
scribed in terms of� baryon distribution amplitudes (DAs).
The � baryon matrix element of three-quark operator
"abchua�ða1xÞdb�ða2xÞsc�ða3xÞj�ðpÞi is given in terms of �

baryon DAs. The definition of this matrix element in terms
of DAs and expressions of these DAs can be found in [5].
In constructing sum rules for the transition form factors

F1ðQ2Þ and F2ðQ2Þ, we need the expression for the
correlation function from the QCD side. This correlation
function in QCD can be calculated for large negative p02
and q2 ¼ �Q2 in terms of � baryon distribution ampli-
tudes using the operator product expansion. Matching
then the coefficients of the structures p� and p� 6p in the

expressions of the correlation function in the phenomeno-
logical and QCD sides, we get the sum rules for the
transition form factors F1ðQ2Þ and F2ðQ2Þ of the ��� !
�0 transition.
In order to enhance the ground state contribution and

suppress the higher state contributions, it is necessary to
perform Borel transformation on the theoretical and phe-
nomenological parts of the correlation function. After the
Borel transformation, we get the final expressions for the
transition form factors F1ðQ2Þ and F2ðQ2Þ as

F1ðQ2Þ ¼
ffiffiffi
2

p
4

1

2��0

e
m2

�0
=M2

�Z 1

x0

dx

�
�	2ðxÞ

x
þ 	4ðxÞ

M2x2
� 	6ðxÞ

2M4x3

�
e
�
�
Q2 �x

M2x
þm2

�
�x

M2

�

þ
�

	4ðx0Þ
Q2 þm2

�x
2
0

� 1

2x0

	6ðx0Þ
ðQ2 þm2

�x
2
0ÞM2

þ 1

2

x20
ðQ2 þm2

�x
2
0Þ
�
d

dx0

	6ðx0Þ
x0ðQ2 þm2

�x
2
0ÞM2

�	
e�s0=M

2

�
; (9)

F2ðQ2Þ ¼
ffiffiffi
2

p
4

m�0 þm�

2��0

e
m2

�0
=M2

�Z 1

x0

dx

�
�	0

2ðxÞ
x

þ 	0
4ðxÞ

M2x2
� 	0

6ðxÞ
2M4x3

�
e
�
�
Q2 �x

M2x
þm2

�
�x

M2

�

þ
�

	0
4ðx0Þ

Q2 þm2
�x

2
0

� 1

2x0

	0
6ðx0Þ

ðQ2 þm2
�x

2
0ÞM2

þ 1

2

x20
ðQ2 þm2

�x
2
0Þ
�
d

dx0

	0
6ðx0Þ

x0ðQ2 þm2
�x

2
0ÞM2

�	
e�s0=M

2

�
; (10)
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where

	6ðxÞ¼4eum
3
�ð1þ�Þxðm2

�x
2þQ2Þ ��B6ðxÞþ4edm

3
�ð1þ�Þxðm2

�x
2þQ2Þ~~B6ðxÞ

þ8esm
2
�fm2

�msð1��Þx2 ^̂C6þð1þ�Þ½m�xðm2
�x

2þQ2Þ ^̂B6�msðQ2 ^̂B6þ2m2
�x

2 ^̂B8Þ�gðxÞ;
	4ðxÞ¼eum�f�2m2

�x½2ð1��Þ ��C6�ð1þ�Þð2 ��B6�5 ��B8Þ�ðxÞþ½2ð1��Þðm2
�x

2ð �D5� �C4þ2 �C5Þ�Q2ð �D2� �C2ÞÞ
þð1þ�ÞðQ2ð3 �B2þ7 �B4Þþm2

�x
2ð2 �H1�2 �E1� �B2þ �B4�10 �B5�20 �B7ÞÞ�ðxÞ

�2m2
�x

Z �x

0
dx3½2ð1��ÞVM

1 þ5ð1þ�ÞTM
1 �ðx;1�x�x3;x3Þg

þedm�f�2m2
�x½2ð1��Þ~~C6�ð1þ�Þð2~~B6�5~~B8Þ�ðxÞþ½ð1��Þð�2m2

�x
2ð ~D5þ ~C4�2 ~C5Þ

þQ2ð ~D2þ ~C2ÞÞþð1þ�ÞðQ2ð3 ~B2þ7 ~B4Þ�m2
�x

2ð2 ~H1�2 ~E1þ ~B2� ~B4þ10 ~B5þ20 ~B7ÞÞ�ðxÞ
�2m2

�x
Z �x

0
dx1½2ð1��ÞVM

1 þ5ð1þ�ÞTM
1 �ðx1;x;1�x1�xÞg

þ2esm�f2m�ð1þ�Þ½m�xð2 ^̂B6� ^̂B8Þ�ms
^̂B6�ðxÞþ½ð1��Þð2ðm2

�x
2Ĉ5þQ2Ĉ2Þ

�m�msxð2Ĉ2�Ĉ4�Ĉ5ÞÞ�ð1þ�ÞðQ2ðB̂2�3B̂4Þþm2
�x

2ðB̂2�B̂4þ2B̂5þ4B̂7Þ
�4m�msxðB̂4�B̂5ÞÞ�ðxÞ�2m2

�ð1þ�Þx
Z �x

0
dx1T

M
1 ðx1;1�x1�x;xÞg;

	2ðxÞ¼�2eum�f½ð1��Þð �D2þ �C2Þ�ð1þ�Þð �B2� �B4Þ�ðxÞþx
Z �x

0
dx3½ð1��ÞðA3þ2V1�3V3Þ

�ð1þ�ÞðP1þS1�5T1þ10T3Þ�ðx;1�x�x3;x3Þgþ2edm�f½ð1��Þð ~D2� ~C2Þþð1þ�Þð ~B2� ~B4Þ�ðxÞ
þx

Z �x

0
dx1½ð1��ÞðA3�2V1þ3V3Þ�ð1þ�ÞðP1þS1þ5T1�10T3Þ�ðx1;x;1�x1�xÞg

þ4esfm�½ð1��ÞĈ2�ð1þ�ÞðB̂2�B̂4Þ�ðxÞþ
Z �x

0
dx1fð1��Þðm�xV3þmsV1Þ

þð1þ�Þ½2m�xT3�ðm�xþ2msÞT1�gðx1;1�x1�x;xÞg;
	0
6ðxÞ¼�4eum

2
�ð1þ�Þðm2

�x
2þQ2Þ ��B6ðxÞ�4edm

2
�ð1þ�Þðm2

�x
2þQ2Þ~~B6ðxÞ

�8esm
2
�fm�msð1��Þx ^̂C6þð1þ�Þ½ðm2

�x
2þQ2Þ ^̂B6þm�msxð ^̂B6�2 ^̂B8Þ�gðxÞ;

	0
4ðxÞ¼�eum

2
�fð1þ�Þ ��B6ðxÞþ2x½ð1��Þð �D2þ �D5� �C2� �C4þ2 �C5Þþð1þ�Þð �H1� �E1�2 �B2�3 �B4�5 �B5�10 �B7Þ�ðxÞ

þ2ð1��Þ
Z �x

0
dx3ðAM

1 �VM
1 Þðx;1�x�x3;x3Þgþedm

2
�f�ð1þ�Þ~~B6ðxÞþ2x½ð1��Þð ~D2þ ~D5þ ~C2þ ~C4�2 ~C5Þ

þð1þ�Þð ~H1� ~E1þ2 ~B2þ3 ~B4þ5 ~B5þ10 ~B7Þ�ðxÞþ2ð1��Þ
Z �x

0
dx1ðAM

1 þVM
1 Þðx1;x;1�x1�xÞg

�2esm�f5m�ð1þ�Þ ^̂B6ðxÞþ2½ð1��Þðm�xĈ5�ðm�xþmsÞĈ2Þ�ð1þ�Þðm�xðB̂4þB̂5þ2B̂7Þ
�msðB̂2þB̂4ÞÞ�ðxÞþ2m�ð1��Þ

Z �x

0
dx1V

M
1 ðx1;1�x1�x;xÞg;

	0
2ðxÞ¼�2euð1��Þ

Z �x

0
dx3ðA1�V1Þðx;1�x�x3;x3Þþ2edð1��Þ

Z �x

0
dx1ðA1þV1Þðx1;x;1�x1�xÞ

�4esð1��Þ
Z �x

0
dx1V1ðx;1�x�x3;x3Þ; (11)

where M2 is the Borel parameter and x0 is given as

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2 þ s0 �m2

�Þ2 þ 4m2
�Q

2
q

2m2
�

:

Here, s0 is the continuum threshold. In the expressions of 	ð0Þ
i ðxÞ, the functions F ðxiÞ are defined as

ANALYSIS OF ��� ! �0 . . . PHYSICAL REVIEW D 87, 096013 (2013)

096013-3



�F ðx1Þ¼
Z x1

1
dx01

Z 1�x0
1

0
dx3F ðx01;1�x01�x3;x3Þ;

��F ðx1Þ¼
Z x1

1
dx01

Z x0
1

1
dx001

Z 1�x00
1

0
dx3F ðx001 ;1�x001 �x3;x3Þ;

~F ðx2Þ¼
Z x2

1
dx02

Z 1�x02

0
dx1F ðx1;x02;1�x1�x02Þ;

~~F ðx2Þ¼
Z x2

1
dx02

Z x0
2

1
dx002

Z 1�x00
2

0
dx1F ðx1;x002 ;1�x1�x002 Þ;

F̂ ðx3Þ¼
Z x3

1
dx03

Z 1�x0
3

0
dx1F ðx1;1�x1�x03;x

0
3Þ;

^̂F ðx3Þ¼
Z x3

1
dx03

Z x03

1
dx003

Z 1�x003

0
dx1F ðx1;1�x1�x003 ;x003 Þ:

(12)

We also use the following shorthand notations for the combinations of the distribution amplitudes:

B2 ¼ T1 þ T2 � 2T3;

B4 ¼ T1 � T2 � 2T7;

B5 ¼ �T1 þ T5 þ 2T8;

B6 ¼ 2T1 � 2T3 � 2T4 þ 2T5 þ 2T7 þ 2T8;

B7 ¼ T7 � T8;

B8 ¼ �T1 þ T2 þ T5 � T6 þ 2T7 þ 2T8;

C2 ¼ V1 � V2 � V3;

C4 ¼ �2V1 þ V3 þ V4 þ 2V5;

C5 ¼ V4 � V3;

C6 ¼ �V1 þ V2 þ V3 þ V4 þ V5 � V6;

D2 ¼ �A1 þ A2 � A3;

D4 ¼ �2A1 � A3 � A4 þ 2A5;

D5 ¼ A3 � A4;

D6 ¼ A1 � A2 þ A3 þ A4 � A5 þ A6;

E1 ¼ S1 � S2;

H1 ¼ P2 � P1:

(13)

It follows from Eqs. (9) and (10) that in order to calculate the form factorsF1ðQ2Þ and F2ðQ2Þ the residue of the�0 baryon
is needed. The general form of the interpolating current for �0 baryon leads to the following result for its residue [17]:

�2
�0e

�M2

�0
=M2 ¼ 1

256
4
ð5þ 2�þ 5�2ÞM6E2ðxÞ þ ms

32
2
M2E0ðxÞfð5þ 2�þ 5�2Þh�ssi � 6ð�1þ �2Þðh �uui þ h �ddiÞg

þ 1

24

m2
0

M2
ð1� �Þf6ð1þ �Þh�ssiðh �uui þ h �ddiÞ þ ð�1þ �Þh �uuih �ddig þ 3ms

32
2
m2

0ðh �uui

þ h �ddiÞð1� �2Þ
�
�E � ln

�
M2

�2

��
� ms

192
2
m2

0f2ð5þ 2�þ 5�2Þh�ssi � 3ð�1þ �2Þðh �uui þ h �ddiÞg

� 1

6
ð1� �Þf3ð1þ �Þh�ssiðh �uui þ h �ddiÞ þ ð�1þ �Þh �uuih �ddig; (14)

where
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EnðxÞ ¼ 1� ex
Xn
k¼1

xk

k!

describes the continuum subtraction and x ¼ s0=M
2. It

should be noted that the masses and residues of nucleons
and other members of the octet baryons, for Ioffe current
(� ¼ �1) within the QCD sum rules approach, were firstly
calculated in [18,19].

III. NUMERICAL ANALYSIS OF THE SUM RULES
FOR THE TRANSITION FORM FACTORS

In order to perform numerical analysis of the transition
form factorsF1ðQ2Þ and F2ðQ2Þwithin the light-cone QCD
sum rules, we need to know the explicit expressions of the
DAs for the � baryon, as well as the values of nonpertur-
bative parameters entering into them. These input parame-
ters for the � baryon are calculated within the two-point
QCD sum rules method in [5] which are given as

f� ¼ ð6:0� 0:3Þ � 10�3 GeV2;

�1 ¼ ð1:0� 0:3Þ � 10�2 GeV2;

j�2j ¼ ð0:83� 0:05Þ � 10�2 GeV2;

j�3j ¼ ð0:83� 0:05Þ � 10�2 GeV2:

(15)

Other input parameters used in the numerical analysis are
h �uuið1 GeVÞ ¼ h �ddið1 GeVÞ ¼ �ð0:243� 0:01Þ3 GeV3,
h �ssi ¼ 0:8h �uui, m2

0ð1 GeVÞ ¼ ð0:8� 0:2Þ GeV2 [20], and

m�0
¼ 1:192 GeV.

Moreover, the sum rules for the transition form factors
F1ðQ2Þ and F2ðQ2Þ involve the continuum threshold s0,
Borel parameter M2, and the arbitrary parameter � enter-
ing to the expression for the interpolating current of the �0

baryon. For the value of the continuum threshold we shall
use s0 ¼ ð2:8� 3:0Þ GeV2, which is obtained from the
mass sum rules analysis [15]. The Borel parameter M2 is
the auxiliary parameter and physical quantities such as
F1ðQ2Þ and F2ðQ2Þ should be interdependent of it. The
lower bound of the Borel mass is obtained from the con-
dition that the higher states and continuum contributions
should be less than 40% of the perturbative contribution,
while the upper limit of M2 is determined by demanding
that the light-cone expansion with increasing twist should
be convergent. Numerical analysis shows that both con-
ditions are satisfied whenM2 lies in the region 1:3 GeV2 �
M2 � 2:0 GeV2. In our calculations, we fix the lower
bound of Q2 to be Q2 ¼ 1:0 GeV2, since above this value
of Q2 the higher twist contributions are suppressed. In
order to guarantee the higher resonance and continuum
contributions to be smaller than the spectral density con-
tribution, we consider the upper bound of Q2 as Q2 �
8:0 GeV2. In Figs. 1 and 2, we depict the dependence of
the magnetic and electric form factorsGMðQ2Þ andGEðQ2Þ
on Q2 at s0 ¼ 3 GeV2, M2 ¼ 1:4 GeV2, and at several
fixed values of �. From these figures we see that the

FIG. 1. The dependence of the magnetic form factor GMðQ2Þ
of the ��� ! �0 transition on Q2 at s0 ¼ 3:0 GeV2,
M2 ¼ 1:4 GeV2, and at several fixed values of the arbitrary
parameter �.

FIG. 2. The same as Fig. 1, but for the electric charge form
factor GEðQ2Þ.

FIG. 3. The dependence of the magnetic form factor GM of
the ��� ! �0 transition on cos � at Q2 ¼ 1:0 GeV2,
s0 ¼ 3:0 GeV2, and at several fixed values of the Borel mass
parameter M2.
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magnitude of GMðQ2Þ and GEðQ2Þ for negative (positive)
values of � are negative (positive). Only the � ¼ �1 case
is exceptional and at this value of �, GEðQ2Þ is positive
although its value is quite small and very sensitive to the
values of the input parameters.

As has already been noted, the sum rules for the tran-
sition form factors F1ðQ2Þ and F2ðQ2Þ contain also the
auxiliary parameter �. For this reason we should find the
‘‘working region’’ of �, where these form factors exhibit
no dependence on it. For this aim we shall work with a two-
step procedure. At the first stage we use the mass sum rules
for the �0 baryon analysis of which leads to the domain
�0:6 � cos� � 0:3, where � ¼ tan � (see also [17]).
Having this region for cos � obtained from mass sum rules,
next we analyze the dependence of form factors on this
parameter. Hence, we present the dependence of GMðQ2Þ
andGEðQ2Þ on cos� in Figs. 3 and 4 at several fixed values
of other auxiliary parameters. We see from these figures
that the domain�0:2 � cos � � 0:2 is the common region
where the transition form factors are practically indepen-
dent of cos�.

In order to compare our predictions on the Q2 depen-
dence of the transition form factors with the existing ones

in the literature, we note that there are only four works
[7,8,10,12] in which Q2 dependence of the ��� ! �0

transition form factors are studied. In all other works, these
form factors are studied only at the point Q2 ¼ 0. These
form factors are studied up to Q2 ¼ 0:4 GeV2 in [12].
Unfortunately, the light-cone sum rules method is not
applicable in the region Q2 < 1 GeV2 and for this reason
we cannot compare our results with the predictions of [12].
When we compare our results on GMðQ2Þ with those

given in [8] we see that, they are very close to the pre-
diction of [8] in the working region of �0:2 � cos � �
0:2, while our results on GEðQ2Þ are larger compared to
those obtained in [8]. A comparison of our results on
GMðQ2Þ with the ones calculated in [10] shows that our
predictions are smaller than theirs. However, the situation
is contrary in the case of GEðQ2Þ, i.e., our results are larger
compared to the predictions given in [10]. Therefore,
checking the predictions of different approaches on the
study of the Q2 dependence of the form factors for the
��� ! �0 transition receives special interest. Further
improvements of our predictions on the transition form
factors could be achieved by including the Oð�sÞ correc-
tions to DAs, as well as considering possible future
improvements of nonperturbative input parameters.
In conclusion, we studied the ��� ! �0 transition form

factors within the light-cone QCD sum rules using the most
general form of the interpolating current for the�0 baryon.
We obtained the working regions for the Borel mass
parameter and the arbitrary parameter � entering to the
expressions of the interpolating current. We observed that
the electric charge form factor GEðQ2Þ is quite small as
expected. We also compared our results on GEðQ2Þ and
GMðQ2Þ with the predictions existing in the literature. We
saw that our results on GMðQ2Þ are very close to those that
are calculated by the relativistic constituent quark model
[8]. We further observed that our prediction on the mag-
netic (electric charge) form factor is smaller (larger) com-
pared to the results of the covariant spectator quark model.
TheQ2 dependence of the transition form factors presented
in this work can be very useful in choosing the right model.
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