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We derive the generalized Boltzmann equation (GBE) near equilibrium from the Kadanoff-Baym

equation for quark excitation with ultrasoft momentum (� g2T, where g is the coupling constant and T is

the temperature) in quantum chromodynamics at extremely high T, and show that the equation is

equivalent to the self-consistent equation derived in the resummed perturbation scheme used to analyze

the quark propagator. We obtain the expressions of the dispersion relation, the damping rate, and the

strength of a quark excitation with ultrasoft momentum by solving the GBE. We also show that the GBE

enables us to obtain the equation determining the n-point function containing a pair of quarks and (n� 2)

gluon external lines whose momenta are ultrasoft.
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I. INTRODUCTION

Theories containing fermions and bosons such as the
Yukawa model, quantum electrodynamics (QED), and es-
pecially quantum chromodynamics (QCD) suggest that the
plasmas that are described by these theories including
QED plasma and the quark-gluon plasma [1] at so high
temperature (T) that the particle masses are negligible, are
multiscale systems. For example, the average interparticle
distance is of order T�1, the Debye screening length is of
order ðgTÞ�1 (where g is the coupling constant) [2], and the
mean free paths of the quark and the gluon are of order
ðg2TÞ�1 [3,4]. These momentum scales, T, gT, and g2T,
are called hard, soft, and ultrasoft, respectively. Due to the
existence of these multiple scales, analyzing the spectral
properties of collective excitations at finite temperature in
these fermion-boson systems is quite a nontrivial task even
at the weak coupling (g � 1) regime in general. In the soft
scale, the well-established perturbation theory known as
the hard thermal loop (HTL) approximation [5,6] is appli-
cable, and the analysis using that approximation suggests
the existence of the plasmon [2], which is a bosonic
excitation and is well known in nonrelativistic plasma. In
addition to the bosonic excitation, a fermionic excitation
called plasmino [7] is also suggested to exist (Fig. 1),
owing to the fact that the particle masses are negligible
compared with T. By contrast, the HTL approximation
cannot be used when the momentum scale is of order of
or much smaller than g2T. In fact, an infrared singularity
known as the pinch singularity appears in the computation
of the transport coefficients, in which the zero momentum
limit of the two-point correlator needs to be analyzed [8,9].
In the analysis of the quark spectrum whose momentum is
of order g2T, there is no pinch singularity, but the HTL

approximation gives the wrong result. Then one needs a
resummed perturbation theory [4,10,11] to obtain the cor-
rect result even at the leading order in g. Due to the same
reason, the resummed perturbation theory is also necessary
in the calculation of the ultrasoft gluon propagator [12].
The resummed perturbation theory is also needed in
computing the transport coefficient [8,9,13–15] since that
method regularizes the pinch singularity and gives the
correct result. The analysis using the resummed perturba-
tion revealed the existence of a novel quark excitation
(ultrasoft fermion mode) whose momentum is ultrasoft
[4] in addition to the plasmino [7], and the expression of
the pole position and the strength of that excitation were
obtained by solving the self-consistent equation derived in
the resummed perturbation, in the Yukawa model and QED
[10]. We note that results which suggest the existence of
the ultrasoft fermion mode were also obtained by other
analyses, in which the Schwinger-Dyson equation [16], the
Nambu-Jona-Lasinio model [17], and effective models in
which the boson has finite bare mass [18] are used. On the
other hand, in QCD, the self-consistent equation has not
been solved, and thus the expressions of the pole position
and the strength of the ultrasoft fermion mode have not
been obtained. In this paper, we extend the analysis in the
Yukawa model and QED [10] to QCD, and obtain the
expression of the pole position and the strength of that
excitation.
Now we introduce another point of view: each perturba-

tion scheme is equivalent to different kinetic equations
near equilibrium. In fact, the HTL analysis of the soft
boson (fermion) propagator is equivalent to the usual (gen-
eralized) collisionless kinetic equation called the (general-
ized) Vlasov equation [19]. Here the generalized Vlasov
equation means the collisionless kinetic equation in which
there is a fermionic background field in place of a bosonic
one, in contrast to the usual Vlasov equation case. On the*d-sato@ruby.scphys.kyoto-u.ac.jp
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other hand, it was shown that the resummation scheme
used in the analysis of the gluon propagator, whose mo-
mentum is ultrasoft, is equivalent to the Boltzmann equa-
tion [12]. It reflects the fact that the interaction among the
particles cannot be neglected when the space-time scale is
comparable with or much larger than the mean free path,
which is of order ðg2TÞ�1 in the case of the hard quark and
gluon [3,4]. We note that this discussion explains the
reason why the resummed perturbation, which takes into
account the interaction effect among the hard particles, is
necessary in the analysis of the ultrasoft momentum re-
gion. The resummation scheme used in the analysis of the
ultrasoft fermion propagator [4,10] is also interpreted as a
generalized version of the Boltzmann equation (GBE) near
equilibrium in the case of the Yukawa model and QED
[20]. In this paper, we derive the GBE that is equivalent to
the self-consistent equation derived in the resummed
perturbation [4] in QCD.

The aim of this paper is twofold: One is to obtain the
expression of the dispersion relation, the damping rate, and
the strength of the ultrasoft fermion mode in QCD. The
other is to derive the GBE that is equivalent to the self-
consistent equation obtained in the resummed perturbation
[4] from the Kadanoff-Baym equation [21,22] in QCD.
The derivation helps us to establish the foundation of the
resummed perturbation scheme [4], and to obtain the ki-
netic interpretation of the procedure of that scheme. As a
by-product, the derivation using the Kadanoff-Baym equa-
tion enables us to evaluate also the nonlinear response that
is caused by the average gluon field, not only the linear
response caused by the quark average field [12,19,21]. Due
to this merit, we can analyze the n-point function whose
external lines are (n� 2) ultrasoft gluons and a pair of
ultrasoft quarks, not only the ultrasoft quark propagator.
This paper is a generalization of Refs. [10,20], from the
Yukawa model and QED to QCD, and also an extension of
Ref. [12], from the gluon propagator to the quark propa-
gator. Since there is self-coupling of the gluon and the
color structure of the off-diagonal propagator (which is an
important quantity in our analysis and will be introduced
later) is complicated in general in QCD, the extension to
QCD is nontrivial and thus it deserves a paper.

This paper is organized as follows: We derive the GBE
near equilibrium that is equivalent to the self-consistent
equation obtained in the resummed perturbation theory
[4,10] in the linear response regime in Sec. II, in a similar
method to the case of the Yukawa model and QED [20]. We
also show that the Ward-Takahashi identity is satisfied, and
that the identity can be derived from the conservation of the
color current. In Sec. III, we analyze the properties of the
ultrasoft fermion mode such as the dispersion relation,
damping rate, and residue in QCD, by solving the GBE
in some momentum region as in the case of the Yukawa
model and QED [10]. Section IV is devoted to obtaining
the equation determining the n-point function whose

external lines are a pair of quarks and (n� 2) gluons
with ultrasoft momenta. We summarize our paper and
give concluding remarks in Sec. V. In Appendix A, we
show that the longitudinal component of the off-diagonal
propagator introduced in Sec. II is much smaller than the
transverse component of that quantity. We give a detailed
derivation of Eqs. (2.51) and (2.64) in Appendix B.
Appendix C is devoted to the derivation of Eq. (3.1).

II. GENERALIZED BOLTZMANN EQUATION

In this section, we derive the GBE that is equivalent to
the self-consistent equation obtained in the resummed
perturbation theory [4] from the Kadanoff-Baym equation
[21,22] by using the background field gauge method [23],
which enables us to obtain the resultant equations in a
gauge-covariant way. We also check that the resultant
kinetic equation satisfies the Ward-Takahashi identity,
which is a necessary condition of the SUðNÞ gauge
invariance.

A. Background field gauge method

Let us introduce the background field gauge method
[21,23]. In this method, the following generating func-
tional is used:

~Z½j; �; ��;A;�; ���
¼

Z
½Da�½D �c �½Dc �½D ���½D��

� exp

�
i
Z
C
d4xðL½Aa

� þ aa�;�þ c ; ��þ �c �

þLFP � ðja�aa� þ �c�þ ��c ÞÞ
�
; (2.1)

where the time integral is defined using the closed-time-
path formalism [21,24]:

R
C d

4x � R
C dx

0
R
d3x, whereR

C dx
0 is the integral along the contour C, which is defined

in Fig. 2 and consists of Cþ, C�, and C0. Here tf is larger

than any time we consider. Aa
� and aa� are the vector fields,

� ( ��) and c ( �c ) the (anti)spinor fields, � ( ��) the (anti)

FIG. 1 (color online). The correspondence between the dia-
grammatic methods and the kinetic equations, and the fermionic
modes that result from the analysis using the two methods. The
vertical axis denotes the energy scale.
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ghost field, ja� the external current, and � ( ��) the external

(anti)fermion source, respectively.
The Lagrangian of QCD is defined as

L½a;c ; �c �¼ i
XNf

j¼1

�c j 6D½a�c j�1

4
F��a½a�Fa

��½a�; (2.2)

where Fa
�� � @�a

a
� � @�a

a
� � gfabcab�a

c
� is the field

strength, D�½a� � @� þ igaa�t
a the covariant derivative

in the fundamental representation, ta (a ¼ 1; . . .N2 � 1)
the generator of the SUðNÞ group in the fundamental
representation, fabc the structure constant of the SUðNÞ
group, respectively. We note that Nf, the flavor number,

and N, the color number, are not specified in this paper,
because we want to see how the expressions of the prop-
erties of the ultrasoft mode, which will be analyzed in
Sec. III, depend on N and Nf. In the real world, N ¼ 3.

Since we are considering the case that the quark current
mass is negligible in every flavor, we drop the index for the
flavor from now on.

We adopt the temporal gauge fixing, which was used in
the analysis based on the resummed perturbation [4]. In
this gauge-fixing, the Faddeev-Popov term is

L FP ¼ ��
ð ~Ga½a�Þ2

2
� ��a

�
@0
g
�ab � fadbðAþ aÞd0

�
�b;

(2.3)

where the gauge-fixing function is ~Ga½a� ¼ aa0 with

� ! 1, which is equivalent to the following constraint:

aa0 ¼ 0: (2.4)

We note that the possible gauge-fixing dependence needs
to be checked apart from the covariance with respect to
the background gauge transformation, which will be
introduced later.

In the background field gauge method, we impose the
following conditions:

haa�i ¼ hc i ¼ h �c i ¼ 0: (2.5)

Aa
�, � ( ��) become equal to the gluon and the (anti)quark

average field after imposing these conditions [23].

We note that the action in Eq. (2.1) is invariant under the
following transformation [21]:

�ðxÞ ! hðxÞ�ðxÞ; ��ðxÞ ! ��ðxÞhyðxÞ;
c ðxÞ ! hðxÞc ðxÞ; �c ðxÞ ! �c ðxÞhyðxÞ;

Aa
�ðxÞta ! hðxÞAa

�ðxÞtahyðxÞ � i

g
h@�h

yðxÞ;
aa�ðxÞta ! hðxÞaa�ðxÞtahyðxÞ;
ja�ðxÞta ! hðxÞja�ðxÞtahyðxÞ; �ðxÞ ! hðxÞ�ðxÞ;

��ðxÞ ! ��ðxÞhyðxÞ; �aðxÞta ! hðxÞ�aðxÞtahyðxÞ;
��aðxÞta ! hyðxÞ ��aðxÞtahðxÞ; (2.6)

where hðxÞ � exp ½i�aðxÞta�.

B. Derivation

We consider the following situation: The system is at
equilibrium in which the temperature is T before the initial
time t0. Then, external quark, antiquark, and gluon external
sources disturb the system, and hence the system becomes
a nonequilibrium state. In this paper, we focus on the case
where the external fermion source is so weak that we need
to retain only the contributions that are in the linear order in
the magnitude of the fermionic average field � to the
induced fermion source, which will be introduced later.
Due to the linear response theory, analysis in such situation
is equivalent to the computation of the fermion propagator
with ultrasoft momentum at equilibrium. We note, how-
ever, that the induced fermion source contains all the order
contributions in Aa

� in our approximation, in which we

have a good machinery to compute the n-point function
whose external lines are two ultrasoft quarks and (n� 2)
ultrasoft gluons, not only the ultrasoft fermion propagator.
In this sense, we are going to analyze the region which is
beyond the linear response regime. The derivation will be
performed in a similar way to that in Refs. [12,20]: we will
apply the gradient expansion and the weak coupling ap-
proximation to the Kadanoff-Baym equation [21,22]. We
note that both of them are justified by the smallness of the
coupling constant, as we will see later.
By performing an infinitesimal variation of the integral

variable in Eq. (2.1), we get the following equations:

hi 6Dx½Aþ a�ð�þ c ÞðxÞi ¼ �ðxÞ; (2.7)

hð ~D�½Aþ a�ÞabFb�
�½Aþ a� � ghð ��þ �c Þta	�ð�þ c Þi

� fabcg0�h ��b�ci ¼ ja�ðxÞ: (2.8)

Here ~D�½a� � @� þ igaa�T
a is the covariant derivative in

the adjoint representation, where ðTaÞbc � �ifabc is the
generator of the SUðNÞ group in the adjoint representation.
By imposing Eq. (2.5), we get the following equations of
motion for the average fields:

FIG. 2. The contour C in the complex x0 plane.
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i 6Dx½A��ðxÞ ¼ �ðxÞ þ �indðxÞ; (2.9)

~Dab
�x½A�Fb��½A�ðxÞ � g ��ðxÞta	��ðxÞ ¼ ja�ðxÞ þ ja�indðxÞ:

(2.10)

Here �ind and ja�ind are the induced fermion source and the

induced color current defined as

�indðxÞ � gtahaaðxÞc ðxÞi; (2.11)

j
a�
indðxÞ � gh �c ta	�c i þ fabcg0�h ��b�ci

þ gfabc
����hab�@�ac�i þ g2
̂����
abcd Ab

�hac�ad�i
þ g2fabcfcdehab�ad�ae�i; (2.12)

where we have introduced 
���� � 2g��g�� � g��g�� �
g��g�� and


̂
����
abcd � 1

2
½feabfecdðg��g�� � g��g��Þ

þ feacfedbðg��g�� � g��g��Þ
þ feadfebcðg��g�� � g��g��Þ�: (2.13)

It was shown [21] that Eqs. (2.9) and (2.10) transform
under the gauge transformation given in Eq. (2.6) in a
covariant way.

By differentiating Eq. (2.7) with respect to ja�ðyÞ and
Eq. (2.8) with respect to ��ðyÞ, we get the following
equations:

i 6Dx½A�Ka
�ðx; yÞ � g	�Dba

��ðx; yÞtb�ðxÞ ¼ i
��indðxÞ
�j�aðyÞ ;

(2.14)

ðð ~D2½A�Þabg�� � ð ~D�½A� ~D�½A�Þab
þ 2igFc��½A�Tc

abÞxKb
�ðy; xÞ � gð ��ðxÞta	�hc ðxÞc ðyÞi

þ Sðy; xÞta	��ðxÞÞ ¼ i
�j

a�
indðxÞ

� ��ðyÞ ; (2.15)

where we have introduced the following propagators:

Dab
��ðx; yÞ � hTCa

a
�ðxÞab�ðyÞi; (2.16)

Sðx; yÞ � hTCc ðxÞ �c ðyÞi; (2.17)

Ka
�ðx; yÞ � hTCc ðxÞaa�ðyÞi: (2.18)

Here TC means the path-ordered product whose path is C:

Dab
��ðx; yÞ ¼ �Cðx0; y0ÞD>ab

�� ðx; yÞ þ �Cðy0; x0ÞD<ab
�� ðx; yÞ;

(2.19)

Sðx; yÞ ¼ �Cðx0; y0ÞS>ðx; yÞ � �Cðy0; x0ÞS<ðx; yÞ; (2.20)

Ka
�ðx; yÞ ¼ �Cðx0; y0ÞK>a

� ðx; yÞ þ �Cðy0; x0ÞK<a
� ðx; yÞ;

(2.21)

where we have introduced the step-function along the
contour C, �Cðx; yÞ, and the following functions:

D>ab
�� ðx; yÞ � haa�ðxÞab�ðyÞi; (2.22)

D<ab
�� ðx; yÞ � hab�ðyÞaa�ðxÞi; (2.23)

S>ðx; yÞ � hc ðxÞ �c ðyÞi; (2.24)

S<ðx; yÞ � h �c ðyÞc ðxÞi; (2.25)

K>a
� ðx; yÞ � hc ðxÞaa�ðyÞi; (2.26)

K<a
� ðx; yÞ � haa�ðyÞc ðxÞi: (2.27)

In fact, K>a
� ðx; yÞ coincides with K<a

� ðx; yÞ in our approxi-

mation as in the case of the Yukawa model and QED [20],
so we simply write these two functions as Ka

�ðx; yÞ from
now on. We call Ka

� the ‘‘off-diagonal propagator’’ since

that quantity is the propagator between the quark and the
gluon [20]. We note that Ka

� vanishes at equilibrium. The

off-diagonal propagator is the most important propagator
in our analysis, which can be seen from the discussion in
Sec. II D. The transformation form of these propagators
under the gauge transformation is given in Ref. [21].
From Eq. (2.4), we get

Dab
0�ðx; yÞ ¼ Dab

�0ðx; yÞ ¼ 0; (2.28)

Ka
0 ðx; yÞ ¼ 0: (2.29)

Because of these constraints, we do not have to deal with
the temporal components of these propagators.
By setting x0 2 Cþ and y0 2 C�, and interchanging x

and y in Eq. (2.15), we get

i 6Dx½A�Ka
i ðx; yÞ � g	jD<ba

ji ðx; yÞtb�ðxÞ ¼ i
��indðxÞ
�jiaðyÞ ;

(2.30)

ðð ~D2½A�Þabgij�ð ~Di½A� ~Dj½A�Þabþ2igFcij½A�Tc
abÞyKb

j ðx;yÞ

þgS<ðx;yÞta	i�ðyÞ¼ i
�jaiindðyÞ
� ��ðxÞ ; (2.31)

where we have neglected ��ðyÞhc ðyÞc ðxÞi because
hc ðyÞc ðxÞi contains more than one average quark field.
The induced source terms are evaluated as follows [20]:
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��indðxÞ
�jiaðyÞ ¼

Z
C
d4zð�ðx; zÞKa

i ðz; yÞ þbjðx; zÞDba
ji ðz; yÞÞ

¼ �i
Z 1

�1
d4zð�Rðx; zÞKa

i ðz; yÞ
þRbjðx; zÞD<ba

ji ðz; yÞÞ; (2.32)

�jaiindðyÞ
� ��ðxÞ ¼

Z
C
d4zð�abijðz; yÞKb

j ðx; zÞ þaiðz; yÞSðx; zÞÞ

¼ �i
Z 1

�1
d4zð�Aabijðz; yÞKb

j ðx; zÞ
�Raiðz; yÞS<ðx; zÞÞ: (2.33)

Here � is the quark self-energy,�ab
�� the gluon self-energy,

and a
� the off-diagonal self-energy [20], and they are

decomposed as follows:

�ðx;yÞ¼�Cðx0;y0Þ�>ðx;yÞ��Cðy0;x0Þ�<ðx;yÞ; (2.34)

�ab
��ðx; yÞ ¼ �Cðx0; y0Þ�ab>

�� ðx; yÞ þ �Cðy0; x0Þ�ab<
�� ðx; yÞ;

(2.35)

a
�ðx; yÞ ¼ �Cðx0; y0Þa>

� ðx; yÞ þ �Cðy0; x0Þa<
� ðx; yÞ:

(2.36)

We have also introduced the retarded quark self-energy �R,
the advanced gluon self-energy �Aab

�� , and the retarded off-

diagonal self-energy Ra
� , which are defined as

�Rðx; yÞ � i�ðx0; y0Þ½�>ðx; yÞ þ �<ðx; yÞ�; (2.37)

�Aab
�� ðx;yÞ��i�ðy0;x0Þ½�ab>

�� ðx;yÞ��ab<
�� ðx;yÞ�; (2.38)

Ra
� ðx; yÞ � i�ðx0; y0Þ½a>

� ðx; yÞ �a<
� ðx; yÞ�: (2.39)

From Eqs. (2.30), (2.31), (2.32), and (2.33), we have

i 6Dx½A�Ka
i ðx; yÞ � g	jD<ba

ji ðx; yÞtb�ðxÞ

¼
Z 1

�1
d4zð�Rðx; zÞKa

i ðz; yÞ þRbjðx; zÞD<ba
ji ðz; yÞÞ;

(2.40)

ðð ~D2½A�Þabgij � ð ~Di½A� ~Dj½A�Þab
þ 2igFcij½A�Tc

abÞyKb
j ðx; yÞ þ gS<ðx; yÞta	i�ðyÞ

¼
Z 1

�1
d4zð�Aabijðz; yÞKb

j ðx; zÞ �Raiðz; yÞS<ðx; zÞÞ:
(2.41)

Now we perform the Wigner transformation [21], which
is defined as

fðk; XÞ �
Z

d4seik�sf
�
X þ s

2
; X � s

2

�
; (2.42)

where s � x� y, X � ðxþ yÞ=2, and fðx; yÞ is an arbi-
trary function. After this manipulation, Eqs. (2.40) and
(2.41) become�
6kþ i

2
6@X � g 6AbðXÞtb

�
Ka

i ðk; XÞ � g	jD<ba
ji ðk; XÞtb�ðXÞ

¼ �Rðk; XÞKa
i ðk; XÞ þRbjðk; XÞD<ba

ji ðk; XÞ; (2.43)

�
½ð�k2 þ ik � @XÞ�ab � 2gk � AcðXÞðTcÞab�glj

�
��
�klkj þ i

2
ð@lXkj þ kl@jXÞ

�
�ab

� gðTcÞabðklAcjðXÞ þ AclðXÞkjÞ
��
Kb

j ðk; XÞ
þ gS<ðk; XÞta	l�ðXÞ ¼ �Aabijðk; XÞKb

j ðk; XÞ
�Raiðk; XÞS<ðk; XÞ: (2.44)

Here we have used the gradient expansion [12,19] by
assuming k � @X, as in Ref. [20], and set i ! l in the
latter equation. This assumption is justified [20] by using
the fact that k� T and @X � g2T, which is valid since we
are focusing on the ultrasoft energy region. By multiplying
Eq. (2.43) by ð6kþ i6@X=2� g 6AbðXÞtb � �Rðk; XÞÞ, multi-
plying Eq. (2.44) by the projection operator into the

transverse component PT
ilðkÞ, which is defined as PT

��ðkÞ �
g�ig�jð�ij � k̂ik̂jÞ with k̂i � ki=jkj, and subtracting the

latter from the former, we obtain

ð2ik � @X � 2gk � AbðXÞtb � f6k; �Rðk; XÞgÞKa
i ðk; XÞ

� 2gk � AcðTcÞabKb
i ðk; XÞ þ PT

ilðkÞ�Aabljðk; XÞKb
j ðk; XÞ

¼ gð6kD<ba
ji ðk; XÞ þ PT

jiðkÞ�abS
<ðkÞÞ ~
bjðk; XÞ; (2.45)

with g ~
a
�ðk; XÞ � gta	��ðXÞ þRa

� ðk; XÞ. Here we have
neglected the longitudinal component ofKa

i ðk; XÞ, which is
much smaller than the transverse one as is shown in
Appendix A, and used PT

ilðkÞKalðk; XÞ ’ �Ka
i ðk; XÞ.

The diagonal propagators in the right-hand side can
be replaced by that in the free limit at equilibrium since
we are considering the case where the system is near the
equilibrium so that the induced fermion source contains
only one average fermion field (�) [20]:

S0<ðkÞ ¼ 6k�0ðkÞnFðk0Þ; (2.46)

D0<ab
ij ðkÞ ¼ �ab�

0ðkÞnBðk0ÞPT
ijðkÞ; (2.47)

where �0ðkÞ � 2�sgnðk0Þ�ðk2Þ is the free spectral function
and nFðk0Þ � ðek0=T þ 1Þ�1 [nBðk0Þ � ðek0=T � 1Þ�1] is
the fermion (boson) distribution function at equilibrium.
We note that only k satisfying k2 ¼ 0 contributes to the
fermion induced source since �ðk2Þ appears in the right-
hand side of Eq. (2.45).
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Now let us see that the self-energy terms in Eq. (2.45) are
not negligible in comparison with the first term in the left-
hand side, i.e., 2ik � @XKa

i ðk; XÞ. First, we evaluate the
diagonal self-energy terms. The dominant parts of the
diagonal self-energies are those at the leading order and
at equilibrium. Their diagrams are shown in Figs. 3 and 4
and their expressions are given as follows:

f6k; �RðeqÞðkÞg ¼ m2
q � 2i�qk

0; (2.48)

PT
�iðkÞ�AðeqÞab��ðkÞ¼��abPT�

i ðkÞðm2
gþ2i�gk

0Þ; (2.49)

where mq � gT
ffiffiffiffiffiffi
Cf

p
=2 [mg � gT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN þ Nf=2Þ=6

q
] is the

quark (gluon) asymptotic thermal mass [25], with Cf �
ðN2 � 1Þ=ð2NÞ. �q (�g) is the quark (gluon) damping rate,

which is of order g2T ln ð1=gÞ [3]. We have used the fact
that k� T and k2 ¼ 0. Since Eqs. (2.48) and (2.49) are of
order g2T2, we confirm that the diagonal self-energy terms
in the left-hand side of Eq. (2.45) have the same order of
magnitude as that of 2ik � @XKa

i ðk; XÞ in the left-hand side
because k� T and @X � g2T. For this reason, we cannot
neglect the diagonal self-energies in that equation, in
contrast to the soft case (@X � gT) [19].

As in the diagonal self-energies case, the off-diagonal
self-energy needs to be taken into account. The expression
of the off-diagonal self-energy at the leading order, whose
diagrams are shown in Fig. 5, is given by the following
equation:

Ra�ðk; XÞ ¼ �g2
Z d4k0

ð2�Þ4 	
jtbS0Rðkþ k0Þ	�taKb

j ðk0; XÞ

� g2
Z d4k0

ð2�Þ4 	
mtdD0Rcd

mk ðk0 � kÞifabc

� ½gljð2k0 � kÞ� þ g�jð�k� k0Þl
þ g�lð2k� k0Þj�Kb

j ðk0; XÞ; (2.50)

where S0RðkÞ � �6k=½ðk0 þ i�Þ2 � k2� and D0Rcd
lm ðkÞ �

��cdfPT
lmðkÞ=½ðk0 þ i�Þ2 � k2� þ k̂lk̂m=ðk0 þ i�Þ2g are

the free quark and gluon retarded propagator at equilib-
rium, respectively. By making an order estimate of
Eq. (2.50), we see that the off-diagonal self-energy term
in Eq. (2.45) has the same order of magnitude as that of
2ik � @XKa

i ðk; XÞ, and thus that term cannot be neglected.

By inserting Eqs. (2.46), (2.47), (2.48), (2.49), and (2.50)
into Eq. (2.45), we obtain the following equation (see
Appendix B for a detailed derivation):

ð2ik � @X � 2gk � AbðXÞtb þ 2i�k0 þ �m2ÞKa
i ðk; XÞ

� 2gk � AcðTcÞabKb
i ðk; XÞ

¼ 6k�0ðkÞPT
ijðkÞðnBðk0Þ þ nFðk0ÞÞgta

�
	j�ðXÞ

þ gtb
Z d4k0

ð2�Þ4
kl	j þ 	lk0j

k � k0 Kb
l ðk0; XÞ

�
; (2.51)

where we have introduced

�m2 � m2
g �m2

q ¼ g2T2

�
N

24
þ 1

8N
þ Nf

12

�
(2.52)

and � � �q þ �g, and used the relation PT
ilðkÞKalðk; XÞ ’

�Ka
i ðk; XÞ again. We note that this equation transforms in a

covariant way under the gauge transformation Eq. (2.6),
which can be confirmed by using the transformation
property of Ka

i ðk; XÞ [21],

Ka
i ðk; XÞ ! hðXÞKb

i ðk; XÞ~habðXÞ; (2.53)

where ~hðxÞ � exp ½i�aðxÞTa�. The diagram that corre-
sponds to Eq. (2.51) is shown in Fig. 6. From Eq. (2.51),
we get the following equation for Kiðk; XÞ � taKa

i ðk; XÞ:

FIG. 3. The quark retarded self-energy �RðeqÞðkÞ whose mo-
mentum is hard in the leading order. The solid line is the quark
propagator and the curly line is the gluon propagator. We note
that the gluon propagator in this figure is the HTL-resummed one
[29], which results in the anomalously large imaginary part (�q)

of �RðeqÞðkÞ.

FIG. 4. The gluon advanced self-energy �AðeqÞab��ðkÞ whose
momentum is hard in the leading order. The notations are the
same as in Fig. 3. The gluon propagators in the second diagram
are the HTL-resummed ones [29], which result in the anoma-
lously large imaginary part (�g) of �

AðeqÞab��ðkÞ. The diagram

which has ghost propagators is omitted since its contribution to
the transverse sector of �AðeqÞab��ðkÞ is zero.

FIG. 5. The off-diagonal self-energy a
�ðk; XÞ whose momen-

tum is hard in the leading order. The propagator that is composed
of the solid line and the curly line with the black blob is the off-
diagonal propagator. The other notations are the same as in
Fig. 3.
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ð2ik � @X � 2gk � AaðXÞta þ 2i�k0 þ �m2ÞKiðk; XÞ
¼ gCf 6k�0ðkÞPT

ijðkÞðnBðk0Þ þ nFðk0ÞÞ
�
	j�ðXÞ

þ g
Z d4k0

ð2�Þ4
kl	j þ 	lk0j

k � k0 Klðk0; XÞ
�
: (2.54)

From this equation, we confirm that Kiðk; XÞ transforms
under the gauge transformation Eq. (2.6) in the same way
as �ðXÞ in contrast to Ka

i ðk; XÞ.
By introducing��	ðk; XÞ, which is definedbyK�ðk;XÞ�

2��ðk2Þ½�ðk0Þ��þðk;XÞþ�ð�k0Þ���ð�k;XÞ�, we arrive
at the following GBE1:

�
2iv �DX½A� 	 �m2

jkj þ 2i�

�
�	ðk; XÞ

¼ 2gCf 6v½nBðjkjÞ þ nFðjkjÞ��ðXÞ � g2Cf	i 6v½nFðjkjÞ

þ nBðjkjÞ�P�i
T ðvÞ

X
s¼	

Z d3k0

ð2�Þ3
1

2jk0j

� sjkjv�	� 	 jk0jv0
�	

�

jkjjk0jv � v0 �s�ðk0; XÞ; (2.55)

where v� � ð1; k̂Þ and v0� � ð1; k̂0Þ, with k̂ � k=jkj.
Since the structure of this equation is the same as that in
QED [20], the interpretation of each term in that equation is
the same as in the QED case [20].

C. Linear response regime

When A
�
a ¼ 0, the color structure of the off-diagonal

propagator becomes simple. In this case, Eq. (2.51)
becomes

ð2ik � @X þ 2i�k0 þ �m2ÞKa
i ðk; XÞ

¼ 6k�0ðkÞPT
ijðkÞðnBðk0Þ þ nFðk0ÞÞgta

�
	j�ðXÞ

þ gtb
Z d4k0

ð2�Þ4
kl	j þ 	lk0j

k � k0 Kb
l ðk0; XÞ

�
: (2.56)

This equation tells us that Ka
i has the following color

structure:

Ka
i ðk; XÞ ¼ ta

Kiðk; XÞ
Cf

: (2.57)

In the present case, Kiðk; XÞ has the same color structure as
that of �ðXÞ. For later use, we point out that Ra

i has also
the same color structure as Ka

i . By using Eqs. (2.57) and
(2.56) becomes

ð2ik � @X þ 2i�k0 þ �m2ÞKiðk; XÞ

¼ gCf 6k�0ðkÞPT
ijðkÞðnBðk0Þ þ nFðk0ÞÞ

�
	j�ðXÞ

þ g
Z d4k0

ð2�Þ4
kl	j þ 	lk0j

k � k0 Klðk0; XÞ
�
: (2.58)

D. Equivalence between generalized Boltzmann
equation and resummed perturbation

Let us show that the GBE in the Aa
�ðXÞ ¼ 0 case is

equivalent to the self-consistent equation derived in the
resummed perturbation [4]. For this purpose, we write
the off-diagonal propagator in terms of the off-diagonal
self-energy using Eq. (2.58):

ð2k � pþ 2i�k0 þ �m2ÞKiðk; pÞ
¼ g6k�0ðkÞPT

ijðkÞðnBðk0Þ þ nFðk0ÞÞ ~
jðk; pÞ: (2.59)

Here we have performed the Fourier transformation as
fðpÞ � R

d4X=ð2�Þ4eip�XfðXÞ, where fðXÞ is an arbitrary

function, and introduced ~
jðk; pÞ, which is defined as

+=

+
FIG. 6. The diagrammatic representation of the self-consistent equation for Ka

i at the leading order. For simplicity, Aa
� is set to be

zero. The solid (curly) line with a black blob is the resummed quark (gluon) propagator, whose information is reflected in Eqs. (2.48)
and (2.49).

1In the case of the analysis of the lightlike momentum instead
of the ultrasoft one, an equation which is similar to this equation
was obtained before [26]. However, the equation in Ref. [26]
does not contain all the leading contributions: the equation does
not contain the third term in the left-hand side and the second
term in the right-hand side in Eq. (2.55).

ULTRASOFT FERMION MODE AND OFF-DIAGONAL . . . PHYSICAL REVIEW D 87, 096011 (2013)

096011-7



~
ajðk; pÞ ¼ ta ~
jðk; pÞ=Cf. Since R
i has the same color

structure as that of �, so does ~
j. Now we can obtain
the self-consistent equation in terms of the off-diagonal
self-energy, by inserting Eq. (2.59) into Eq. (B3):


iðk; pÞ
Cf

’ 	i þ g2
Z d4k0

ð2�Þ4
kj	i þ 	jk0i

k � k0

� 6k0�0ðk0ÞPT
jlðk0ÞðnBðk00Þ þ nFðk00ÞÞ

2k0 � pþ 2i�k00 þ �m2

lðk0; pÞ;

(2.60)

where we have introduced 
iðk; pÞ by ~
iðk; pÞ �

iðk; pÞ�ðpÞ; note that 
iðk; pÞ does not have a color
structure. This equation is none other than the self-
consistent equation in Ref. [4]. By comparing Eq. (2.60)
with the self-consistent equation in Ref. [4], we see that

a
i ðk; pÞ � ta
iðk; pÞ=Cf is the vertex function introduced

in Refs. [4,10] whose momenta are hard and ultrasoft.
We see that the color structure of 
a

i is the same as that
of the bare vertex, ta	i, as was shown in Ref. [4] in a
diagrammatic way, by using the fact that 
i does not have a
color structure.

Also the induced fermion source can be expressed in
terms of the vertex correction: from the definition of
�indðXÞ in Eq. (2.11) and its Fourier transformation,
we have

�indðpÞ ¼ gta	�
Z d4k

ð2�Þ4 K
a
�ðk; pÞ

’ g	i
Z d4k

ð2�Þ4 Kiðk; pÞ: (2.61)

By using the relation [19–21]

�indðpÞ ¼ �RðpÞ�ðpÞ; (2.62)

which is valid in the linear response regime, and Eq. (2.59),
we obtain

�RðpÞ ¼ g2
Z d4k

ð2�Þ4 	
i
6k�0ðkÞPT

ijðkÞðnBðk0Þ þ nFðk0ÞÞ
2k � pþ 2i�k0 þ �m2

� 
jðk; pÞ: (2.63)

This expression coincides with that in Ref. [4]. Thus we see
that our kinetic equation is equivalent to the self-consistent
equation in the resummed perturbation [4]. This equiva-
lence establishes the foundation of the resummed pertur-
bation scheme. The diagrammatic expressions [4] of
Eqs. (2.60) and (2.63) are shown in Figs. 7 and 8. For later
use, we drew Fig. 7 by using the four-point function, or
‘‘rungs’’ [8,9], which is denoted by a gray square.
By using the correspondence between the self-consistent

equation in the resummed perturbation theory [4,10] and
the GBE [Eq. (2.55)], we can obtain kinetic interpretations
of the procedures of the resummed perturbation theory.
Since the structure of the GBE is almost the same as that in
the QED case [20], we refrain from giving the interpreta-
tion of the resummation scheme in this paper.
Here we compare the resummed perturbation for analy-

sis of the ultrasoft fermion self-energy [4,10] and that for
computation of the transport coefficient [8]. For this pur-
pose, we draw the diagrammatic expression of the self-
consistent equation [9] in the resummed perturbation
theory used in the computation of the electric conductivity
in Fig. 9. We note that this self-consistent equation is
equivalent to the usual Boltzmann equation [13]. By com-
paring Figs. 7 and 9, we see that only tree-level rungs are
retained in the calculation of the ultrasoft quark self-energy
while the one-loop rungs2 have to be taken into account in
the computation of the electric conductivity. It is because
that only the imaginary parts of the four-point functions
contribute in the computation of the transport coefficient,
which makes the tree-level four-point function’s contribu-
tion vanish. This difference of the absence of the contribu-
tion from the real parts can be understood by checking the
forms of the terms which contain the momentum integral in

FIG. 7. The self-consistent equation that is equivalent to the generalized Boltzmann equation [Eq. (2.60)], which was obtained
diagrammatically in Ref. [4]. The vertex with a blob is 
�ðk; pÞ. The four-point function, or ‘‘rungs’’ [8], which is denoted by a gray

square, is introduced for the comparison between the analysis of the ultrasoft quark self-energy and the computation of the transport
coefficient.

2Due to the presence of the collinear singularity, another
resummed vertex denoted by a gray circle in Fig. 9 needs to
be included in the one-loop rungs [9]. Physically, the inclusion of
this resummed vertex is interpreted as taking into account the
Landau-Pomeranchuk-Migdal effect [27]. By contrast, there is
no collinear singularity if we consider only the tree-level rungs,
so the Landau-Pomeranchuk-Migdal effect does not need to be
taken into account in the analysis of the ultrasoft fermion self-
energy at the leading order.
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the usual and generalized Boltzmann equation, and which
are absent in the usual and generalized Vlasov equation
[19,21]; in the linearized Boltzmann equation, which is
equivalent to the resummed perturbation for transport co-
efficients, the collision term contains the square of the
matrix element, which is connected to the imaginary part
of the self-energy [12,13,21]. By contrast, it is not the case
in the generalized Boltzmann equation, which is equivalent
to the resummed perturbation for the ultrasoft fermion self-
energy: Raiðk; XÞ in Eq. (B3) does not have such form.

E. Ward-Takahashi identity

We show explicitly that the Ward-Takahashi (WT) iden-
tity derived from SUðNÞ gauge symmetry is satisfied in the
present analysis in this subsection. We also show that the
WT identity can be derived from the conservation law of
the current.

By multiplying Eq. (2.50) by k�, we obtain

k�
Ra�ðk; XÞ ¼ gta�indðXÞ: (2.64)

See Appendix B for the detailed calculation. This equation
generates the WT identity at the leading order by setting
Aa
� ¼ 0.

Now we show that the WT identity can be derived
from the conservation law of the color current, which
reads [19,21]

@�j
�
indðxÞ¼ igtað ��ðxÞta�indðxÞ� ��indðxÞta�ðxÞÞ; (2.65)

where we have set Aa
� ¼ 0 and introduced j

�
ind � taj

a�
ind. By

differentiating Eq. (2.65) with respect to ��ðyÞ, we get
@�x

�ðy;xÞ¼gta�ðx0�y0Þ�ð3Þðx�yÞta�indðxÞ: (2.66)

Here we have set x0, y0 2 Cþ, and neglected the term
which is of order g3T�. By multiplying this equation byR
d4s exp ðik � sÞ and taking only the leading-order terms

[20], we find

� k�
R�ð�k; XÞ ¼ gtata�indðXÞ: (2.67)

We see that this equation is nothing but Eq. (2.64) by using
the color structure of R� in the linear response regime.

III. ULTRASOFT FERMION MODE

In this section, we show the existence of the ultrasoft
mode in QCD, and obtain the expressions for the pole
position and the residue of that mode by solving the
self-consistent equation that determines the off-diagonal
propagator in the linear response regime, Eq. (2.58). We
focus on the momentum region ~p � g2T with ~p � ðp0 þ
i�;pÞ, in which we can solve the self-consistent equation
analytically.
As a result of the analysis using Eqs. (2.58) and (2.61),

we find that the quark retarded self-energy with the
momentum that satisfies ~p � g2T has the following
expression:

�RðpÞ ¼ �Yð~pÞ
Z

; (3.1)

where Yð~pÞ� ~p0	0þ p̂ ��=3 and Z�g2Cf=ð16�2�2A2Þ,
with � � g2T2Cf=ð8�m2Þ and the expression of A is

FIG. 9. The self-consistent equation and the expression of the
photon self-energy in QED, from which the electric conductivity
is calculated [9]. The gray circle is another resummed vertex
which is found to be necessary by performing the power count-
ing in which the collinear singularity is taken into account. This
vertex function is determined by another integral equation [9].
We note that the real parts of the rungs do not contribute to the
electric conductivity. The self-consistent equation is equivalent
to the Boltzmann equation near equilibrium [13].

FIG. 8. The quark self-energy �RðpÞ whose momentum is
ultrasoft in the leading order.

 0 0
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p0 /g
2 T

p/g2T

FIG. 10 (color online). The dispersion relation in the fermionic
sector. The vertical axis is the energy p0, while the horizontal
axis is the momentum jpj. The solid (blue) lines corresponds to
the normal fermion and the antiplasmino and the bold solid (red)
one to the ultrasoft mode. The dotted lines denote the light cone.
Since our analysis on the ultrasoft mode is valid only for jpj �
g2T, the plot for jpj * g2T may not have a physical meaning.
The residue of the antiplasmino becomes exponentially small for
jpj � gT, so the plot of the antiplasmino does not represent
physical excitation for jpj � gT, either. The parameters are set
as follows: g ¼ 0:2 and N ¼ 3.
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obtained in Eq. (C5); see Appendix C for a detailed deri-
vation. Since Z� g2, �RðpÞ is much larger than the inverse
of the free part of the quark propagator. Thus, the ultrasoft
quark retarded propagator at the leading order is

SRðpÞ’ 1

�RðpÞ
¼�Z

2

�
	0� p̂ ��

p0þjpj=3þ i�
þ 	0þ p̂ ��
p0�jpj=3þ i�

�
: (3.2)

This expression implies that there is a fermionic excitation
in the ultrasoft region, which was suggested originally in
Ref. [4], whose pole position is

p0 ¼ 
jpj
3

� i�: (3.3)

This expression means that excitation’s velocity is 1=3 and
the damping rate is � � g2T ln ð1=gÞ. The dispersion rela-
tion of the mode is plotted in Fig. 10 with those of the two
soft fermionic excitations [7], for comparison. The residue
of that pole is

Z ¼ g2

16�2Cf

�
Cf þ 8�m2

g2T2

�
2

¼ g2
N

8�2ðN2 � 1Þ
�
5

6
N þ 1

2N
þ 2

3
Nf

�
2
: (3.4)

If we set N ¼ 3 and Nf ¼ 3, the expression becomes

Z ¼ g2
49

48�2
: (3.5)

We emphasize that these expressions are obtained in
this paper for the first time in QCD. These results are
summarized in Table I. We note that the expressions are
qualitatively the same as those in the Yukawa model and
QED [10].

IV. n-POINT FUNCTION (n � 3)

In this section, we obtain the equation determining the
n-point function whose external lines consist of a pair of
quarks and (n� 2) gluons with ultrasoft momenta, where
n � 3. We also make an order estimate of the n-point
function by using that equation. We note that the equation
was obtained by going beyond the linear response theory,
and it is a merit of the Kadanoff-Baym formalism.

The fermion induced source also generates an n-point
function, not only the two-point function of the quark,
which was analyzed in Sec. II C. Here we work in

the n ¼ 3 case. In this case, we use the following
relation [12,19,20]:

�ð4Þðp� q� rÞg�
a
�ðp;�q;�rÞ

¼ �2�indðpÞ
��ðqÞ�Aa�ðrÞ

��������A;�¼0

’ g	i
Z d4k

ð2�Þ4
�2Kiðk; pÞ

��ðqÞ�Aa�ðrÞ
��������A;�¼0

: (4.1)

Here g�
a
�ðp;�q;�rÞ is the quark-gluon vertex correc-

tion function whose momenta (p, �q, and �r) are
ultrasoft. To determine �
a

�ðp;�q;�rÞ, we expand the

off-diagonal propagator in the following way:

Kiðk; XÞ ¼ Kiðk; XÞA¼0 þ �Kiðk; XÞ þOðA2�Þ; (4.2)

where Kiðk; XÞA¼0 is in the linear order in � while
�Kiðk; XÞ is so in � and Aa

�. By collecting the terms that

are in the linear order in � and Aa
�, Eq. (2.54) becomes

ð2ik � @X þ 2i�k0 þ �m2Þ�Kiðk; XÞ
� 2gk � AaðXÞtaKiðk; XÞA¼0

¼ g2Cf 6k�0ðkÞPT
ijðkÞðnBðk0Þ þ nFðk0ÞÞ

�
Z d4k0

ð2�Þ4
kl	j þ 	lk0j

k � k0 �Klðk0; XÞ: (4.3)

Since Kiðk; XÞA¼0 is determined from Eq. (2.58), we can
determine �Kiðk; XÞ from this equation. By using
�Kiðk; XÞ, �
a

�ðp;�q;�rÞ can be obtained from

Eq. (4.1). The similar analysis can be done also in the
case of n � 4.
Here we make an order estimate of the three-point

function. Since k� T and @X � g2T, we see that Ki
A¼0 �

g�1T�3� by using Eq. (2.58). From this estimate and
Eq. (4.3), we find that �Ki � g�2T�4�A�. Therefore,
the vertex correction whose momenta are ultrasoft is esti-
mated as g�
� � g�1. We note that this quantity is much
larger than the bare vertex, which is of order g. Similarly,
in the case that n � 4, the n-point function is of order g2�n.

V. SUMMARYAND CONCLUDING REMARKS

We have derived the generalized Boltzmann equation
from the Kadanoff-Baym equation for quark excitation
with an ultrasoft momentum (� g2T) near equilibrium,
and have showed that the equation is equivalent to the self-
consistent equation obtained in the resummation scheme
[4] that is used in the analysis of the quark propagator with
an ultrasoft momentum, in the linear response regime in
QCD at extremely high T. We have obtained the expression
of the dispersion relation, the damping rate, and the
strength of the ultrasoft fermion mode for the first time
in QCD, by solving the generalized and linearized
Boltzmann equation. We have showed that the Ward-
Takahashi identity is satisfied in our approach, and that

TABLE I. The dispersion relation, the damping rate, and the
residue of the ultrasoft fermion mode in QCD.

Dispersion relation 
jpj=3
Damping rate �f þ �b � g2T lng�1

Residue g2 N
8�2ðN2�1Þ ð56N þ 1

2N þ 2
3NfÞ2 � g2
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identity can be derived from the conservation law of the
current. We also have obtained the equation that deter-
mines the n-point function containing a pair of quarks
and (n� 2) gluon external lines whose momenta are ultra-
soft. We note that this equation was obtained by retaining
the nonlinear response caused by the gluon average field in
the Kadanoff-Baym equation, and the resummed perturba-
tion has not been able to produce the equation.

As we mentioned in Sec. II A, the possible gauge-fixing
dependence3 should be checked by adopting gauge-fixing
other than the temporal one. Also, though the analyses in
this paper and the previous one [10] are restricted to the
Yukawa model, QED, and QCD, it is possible to extend
the analysis to other fermion-boson systems. In particular,
investigating the fermionic spectrum with ultrasoft
momentum at high temperature in the Weinberg-Salam
theory is an interesting task since the investigation can
be relevant to the analysis of the properties of the early
Universe [28].
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APPENDIX A: SMALLNESS OF LONGITUDINAL
COMPONENT OF OFF-DIAGONAL PROPAGATOR

In this appendix, we show that the longitudinal
component of the off-diagonal propagator, kiKa

i ðk; XÞ, is
negligible compared with the transverse component.

By multiplying Eq. (2.43) by (6kþ 6@X=2� �Rðk; XÞ)
and subtracting Eq. (2.44) from that quantity, we get

� kikjKa
j ðk; XÞ ¼ ��Aabijðk; XÞKb

j ðk; XÞ
þ gðS<ðk; XÞ ~
aiðk; XÞ
þ 6k ~
bjðk; XÞD<ba

ji ðk; XÞÞ: (A1)

Here we have set Aa
�ðXÞ ¼ 0 for simplicity, neglected the

terms that are of order g2T2Ka
i ðk; XÞ, and set k ! i in

Eq. (2.44). From this equation and Eq. (2.45), we see that
the longitudinal component of the off-diagonal propagator,

k̂iKa
i ðk; XÞ, has the same order of magnitude as g2Ka

i ðk; XÞ.

APPENDIX B: CALCULATION OF
OFF-DIAGONAL SELF-ENERGY

We derive Eqs. (2.51) and (2.64) in this appendix. First
we derive Eq. (2.51). To this end, we transform Eq. (2.50)
in the following way:

Raiðk;XÞ ’ g2
Z d4k0

ð2�Þ4
kj	i þ	jk0i

k � k0 tbtaKb
j ðk0;XÞ

þ ifabctcg2
Z d4k0

ð2�Þ4	
m

�
PT
lmðk0 � kÞ
�2k � k0

þ ðk0 � kÞlðk0 � kÞm
ðk00 � k0Þ2jk0 �kj2

�
½2k0iglj � gijðkþ k0Þl

þ 2kjgil�Kb
j ðk0;XÞ: (B1)

Here we have used kiKa
i ðk; XÞ ’ 0 and k2 ’ k02 ’ 0, and

neglected the term that is proportional to ki since this term
does not contribute to Eq. (2.51) due to the presence of
PT
ijðkÞ. We also have used 6kKa

i ðk; XÞ ’ 0, which can be

checked by multiplying Eq. (2.45) by 6k from the left. Using
k2 ’ k02 ’ 0 again, we get

Raiðk; XÞ ’ g2ðtatb � ifabctcÞ
Z d4k0

ð2�Þ4
kj	i þ 	jk0i

k � k0 Kb
j ðk0; XÞ

� ifabctcg2
Z d4k0

ð2�Þ4
	m

2k � k0
�
�lm � ðk0 � kÞlðk0 � kÞm

ðk00 � k0Þ2
�
½2k0iglj � gijðkþ k0Þl þ 2kjgil�Kb

j ðk0; XÞ

’ g2ðtatb � ifabctcÞ
Z d4k0

ð2�Þ4
kj	i þ 	jk0i

k � k0 Kb
j ðk0; XÞ

� ifabctcg2
Z d4k0

ð2�Þ4
	m

k � k0
�
k0igmj þ kjgim � gij

kmðjk0j2 � k0k00Þ þ k0mðjkj2 � k0k00Þ
ðk00 � k0Þ2

�
Kb

j ðk0; XÞ: (B2)

In the last line we have used k2 ’ k02 ’ 0 and kiKa
i ðk; XÞ ’ 0, and neglected the term that is proportional to ki as before.

We note that in the derivation of Eq. (2.51), the term that is proportional to 6k in Eq. (B2) can be neglected since it
yields a higher order contribution after being multiplied by 6k. By neglecting the term that is proportional to 6k and using

3We note that the analysis in the Coulomb gauge and the temporal gauge was performed in QED, and we found no differences in the
ultrasoft fermion propagator in the two gauge-fixing conditions [20].
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6kKa
i ðk; XÞ ’ 0, we see that 	mkm ’ 	0k0 and 	mk0m ’ 	0k00 in Eq. (B2). Using these properties, it is easily shown that the

gij term in Eq. (B2) vanishes. Thus that equation becomes

Raiðk; XÞ ’ g2tatb
Z d4k0

ð2�Þ4
kj	i þ 	jk0i

k � k0 Kb
j ðk0; XÞ: (B3)

By substituting this equation into Eq. (2.45), we will get Eq. (2.51).
Next, we derive Eq. (2.64). By multiplying Eq. (2.50) by k�, we get

k�
Ra�ðk; XÞ ¼ g2

Z d4k0

ð2�Þ4 	
jtbta

6kþ 6k0
ðkþ k0Þ2 ð6kþ 6k0 � 6k0ÞKb

j ðk0; XÞ þ ifabcg2
Z d4k0

ð2�Þ4 	
mtc

�
PT
lmðk0 � kÞ
ðk0 � kÞ2

þ ðk0 � kÞlðk0 � kÞm
ðk00 � k0Þ2jk0 � kj2

�
½gljð2k0 � k� k2Þ � kjðkþ k0Þl þ klð2k� k0Þj�Kb

j ðk0; XÞ

’ g2
Z d4k0

ð2�Þ4 ðt
atb � ifabctcÞ	jKb

j ðk0; XÞ þ g2
Z d4k0

ð2�Þ4
ifabctc	m

ðk0 � kÞ2
�
�lm � ðk0 � kÞlðk0 � kÞm

ðk00 � k0Þ2
�

� ½gljð2k0 � k� k2Þ þ kjðk� k0Þl�Kb
j ðk0; XÞ: (B4)

Here we have used 6k0Kiðk0; XÞ ’ 0 and k0iKa
i ðk0; XÞ ’ 0 in the last line. Using k02 ’ 0 and k0iKa

i ðk0; XÞ ’ 0 again, we get

k�
Ra�ðk; XÞ ’ gta�indðXÞ � g2ifabctc

Z d4k0

ð2�Þ4 	
jKb

j ðk0; XÞ

þ ifabctcg2
Z d4k0

ð2�Þ4 	
l

�
�jl þ ðk0 � kÞlkj

ðk0 � kÞ2ðk00 � k0Þ2 ððk
00 � k0Þ2 � ðk0 � kÞ2 � jk0 � kj2Þ

�

Kb
j ðk0; XÞ ¼ gta�indðXÞ: (B5)

We note that the contribution from the gluon self-
interaction partly cancels the contribution from the
quark-gluon interaction.

APPENDIX C: CALCULATION OF
RETARDED QUARK SELF-ENERGY
WITH ULTRASOFT MOMENTUM

We derive Eq. (3.1) in this appendix. First, we expand
the off-diagonal propagator as

Kiðk; pÞ ¼ Kð0Þ
i ðk; pÞ þ Kð1Þ

i ðk; pÞ: (C1)

HereKð0Þ
i ðk; pÞ [Kð1Þ

i ðk; pÞ] is the zeroth (first) order term of
the expansion in terms of ~p=ðg2TÞ. By collecting the zeroth
order terms in Eq. (2.58) after the Fourier transformation,
we get

�m2Kð0Þ
i ðk;pÞ

¼ 6k�0ðkÞPT
ijðkÞðnBðk0ÞþnFðk0ÞÞ

�gCf

�
	j�ðpÞþg

Z d4k0

ð2�Þ4
kl	jþ	lk0j

k �k0 Kð0Þ
l ðk0;pÞ

�
:

(C2)

To solve this self-consistent equation, we assume that the
off-diagonal propagator at zeroth order has the following
structure:

Kð0Þ
i ðk; pÞ ¼ gCfA6k

�m2
�0ðkÞPT

ijðkÞðnBðk0Þ þ nFðk0ÞÞ	j�ðpÞ;
(C3)

where A is a constant. By utilizing this assumption, the
following expression is obtained [10]:

Z d4k0

ð2�Þ4
kl	j þ 	lk0j

k � k0 Kð0Þ
l ðk0; pÞ ’ �ACf	

j gT2

8�m2
�ðpÞ;
(C4)

where we have used that k is on shell in Eq. (C2) and
neglected the term that is proportional to 6k, which is
justified since its contribution to Eq. (C2) is negligible
due to the presence of another 6k. By using this expression,
Eq. (C2) can be solved and the result is

A ¼ 1

1þ �
: (C5)

Collecting the first order terms in Eq. (2.58) yields the
following equation:

2k � ~pKð0Þ
i ðk; pÞ þ �m2Kð1Þ

i ðk; pÞ
¼ g2Cf 6k�0ðkÞPT

ijðkÞðnBðk0Þ þ nFðk0ÞÞ

�
Z d4k0

ð2�Þ4
kl	j þ 	lk0j

k � k0 Kð1Þ
l ðk0; pÞ: (C6)

Instead of solving this equation, we multiply this equation
by 	i and integrate over k. Then, the equation becomes
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Z d4k

ð2�Þ4 2k � ~p	
iKð0Þ

i ðk; pÞ þ �m2
Z d4k

ð2�Þ4 	
iKð1Þ

i ðk; pÞ

¼ g2Cf

Z d4k

ð2�Þ4 6k�
0ðkÞ	iPT

ijðkÞðnBðk0Þ

þ nFðk0ÞÞ
Z d4k0

ð2�Þ4
kl	j þ 	lk0j

k � k0 Kð1Þ
l ðk0; pÞ: (C7)

By utilizing the properties [10]

Z d4k

ð2�Þ4 k � ~p	
iKð0Þ

i ðk; pÞ ¼ AgCf�
2T4

8�m2
Yð~pÞ�ðpÞ; (C8)

and

Z d4k

ð2�Þ4 6k�
0ðkÞ	iPT

ijðkÞðnBðk0Þ þ nFðk0ÞÞ

�
Z d4k0

ð2�Þ4
kl	j þ 	lk0j

k � k0 Kð1Þ
l ðk0; pÞ

’ �T2

8

Z d4k0

ð2�Þ4 	
lKð1Þ

l ðk0; pÞ; (C9)

we get

Z d4k

ð2�Þ4 	
iKð1Þ

i ðk; pÞ ’ � gCfA
2�2T4

4ð�m2Þ2 Yð~pÞ�ðpÞ: (C10)

Thus, we can calculate the induced fermionic source
using Eq. (2.61):

�indðpÞ ’ �Yð~pÞ�ðpÞ
Z

: (C11)

Here we have used the fact that the integral of

Kð0Þ
i ðk; pÞ vanishes because it is an odd function of k.

By remembering Eq. (2.62), we can obtain the quark
self-energy with an ultrasoft momentum, which is given
in Eq. (3.1), from the induced fermionic source given in
Eq. (C11).
We note that the same result can be obtained from the

resummed perturbation theory [4,10] because that scheme
is equivalent to the GBE.
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