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A Higgs boson mass�126 GeV as determined by the LHC data requires a large loop correction, which

in turn implies a large sfermion mass. Implication of this result for the stability of the proton in

supersymmetric grand unified theories is examined including other experimental constraints along with

the most recent result on cold dark matter from Planck. It is shown that over the allowed parameter space

of supergravity unified models, proton lifetime is highly sensitive to the Higgs boson mass and a few GeV

shift in its mass can change the proton decay lifetime for the mode p ! ��Kþ by as much as two orders of

magnitude or more. An analysis is also given on the nature of radiative breaking of the electroweak

symmetry in view of the high Higgs boson, and it is shown that most of the parameter space of universal

and nonuniversal supergravity unified models lies on the hyperbolic branch of radiative breaking of the

electroweak symmetry, while the ellipsoidal branch and the focal point regions are highly depleted and

contain only a very small region of the allowed parameter space. Also discussed are the naturalness

criteria when the proton stability constraints along with the electroweak symmetry breaking are

considered together. It is shown that under the assumed naturalness criteria, the overall fine-tuning is

improved for larger values of the scalar mass with the inclusion of the proton stability constraint. Thus, the

naturalness criteria including proton stability along with electroweak symmetry breaking constraints tend

to favor the weak scale of supersymmetry in the several TeV region. Implications for the discovery of

supersymmetry in view of the high Higgs mass are briefly discussed.
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I. INTRODUCTION

Over the past year, the ATLAS and the CMS collabo-
rations have identified a signal for a boson around
�126 GeV. Thus, the ATLAS Collaboration finds a signal
at 126:0� 0:4ðstatÞ � 0:4ðsysÞ GeV, which is at the 5:0�
level [1] while the CMS Collaboration finds a signal at
125:3� 0:4ðstatÞ � 0:5ðsysÞ GeV at the 5:0� level [2].
While the properties of the new boson still need to be
fully established, it is widely believed that the discovered
boson is indeed the Higgs boson [3–5] that enters in the
breaking of the electroweak symmetry of the Standard
Model [6,7]. Remarkably, the Higgs boson mass lies close
to the upper limit predicted in supergravity grand unified
models [8–11], which predict an upper limit of around
130 GeV [12–16] (for a recent review of Higgs and
supersymmetry (SUSY), see Ref. [17]). The high mass
�126 GeV requires a large loop correction, which in turn
implies that some of the sparticles entering the loop
corrections (for a review, see Ref. [18]) to the Higgs
mass must be in the several TeV range. In this case the
heavy particles could be out of reach of the LHC. One
possibility is that a part of the Higgs boson arises from
sources outside of the minimal supersymmetric Standard
Model such as from corrections arising from vectorlike
multiplets [19–22]. However, in this work we do not make
that assumption.

In the early analyses using radiative breaking of the
electroweak symmetry (for a review, see Ref. [23]), only
the ellipsoidal branchwas known, in that a fixed value of the
� (the Higgs mixing parameter) implied upper limits on
sparticle masses. However, the situation changed drasti-
cally with the discovery of the hyperbolic branch [24,25]
(for related work, see Refs. [26,27]) when it was discovered
that another branch of radiative breaking of the electroweak
symmetry existed in which the sparticle masses could lie in
the several TeV region while� could still be at the sub-TeV
scale. Specifically on this branch, TeV size scalars can exist
consistent with small �. In this work we investigate the
allowed parameter space of supergravity models under the
constraint that the models accommodate the high Higgs
mass. We show that for supergravity models, most of the
allowed parameter space under the high Higgs mass restric-
tion lies on the hyperbolic branch (HB)while the ellipsoidal
branch (EB) and focal point (FP) region accommodate
only a small fraction of the allowed parameter space. We
discuss the above for supergravity models with universal
boundary conditions (minimal supergravity grand unifica-
tion/constrained minimal supersymmetric standard model
(mSUGRA/CMSSM)) as well as supergravity models with
nonuniversal gaugino masses (supergravity grand unified
models with nonuniversalities (NuSUGRA)). Sensitivity of
the proton lifetime to the Higgs boson mass is investigated,
and it is shown that the proton lifetime is correlated very
sensitively to the Higgs boson mass. Further, we discuss
issues of naturalness in view of the large Higgs boson mass
and the stability of the proton. It is shown that a composite
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fine-tuning including proton stability along with the radia-
tive electroweak symmetry breaking constraint prefers a
SUSY scale in the several TeV region.

The outline of the rest of the paper is as follows. In
Sec. II we discuss the radiative breaking of the electroweak
symmetry under the constraint of the high Higgs boson
mass. Here, we show that most of the parameter space of
supergravity unified models with universal boundary con-
ditions lies on the hyperbolic branch while the ellipsoidal
branch and the focal point region are essentially empty. In
Sec. III we discuss the implications of the high Higgs
boson mass on the proton lifetime and show that the proton
lifetime is very sensitive to small shifts in the Higgs boson
mass. Thus, a shift of a few GeVof the light Higgs boson
mass can change the proton lifetime by as much as 2 orders
of magnitude or more. In Sec. IV we extend the discussion
to supergravity unified models with nonuniversalities and
show that the broad conclusions drawn in the previous
sections still hold. In Sec. V we discuss the issue of natural-
ness and fine-tuning when the proton stability constraints
are combined with the constraints from electroweak sym-
metry breaking. Here, it is shown that the fine-tuning
criteria including both the proton stability and the electro-
weak symmetry breaking constraints favor a high sfermion
scale. Conclusions are given in Sec. VI.

II. HIGGS MASS AND BRANCHES
OF RADIATIVE BREAKING OF

THE ELECTROWEAK SYMMETRY

It is of interest to investigate the allowed parameter
space of the supergravity unified models under the
constraint of the high Higgs boson mass. We consider first
supergravity unified models with universal boundary con-
ditions consisting of the universal scalar mass m0; univer-
sal gaugino mass m1=2; universal trilinear coupling A0,

tan� ¼ hH2i=hH1i, where H2 gives mass to the up quarks
and H1 gives mass to the down quarks and leptons; and the
Higgs mixing parameter�, which enters the superpotential
via the term �H1H2. Of specific interest is to determine
the branch of radiative breaking of the electroweak sym-
metry preferred by the high mass. Thus, the radiative
electroweak symmetry breaking can be exhibited in the
following form [24,28]:

�2 þ 1

2
M2

Z ¼ m2
0C1 þ A02

0 C2 þm2
1=2C

0
3 þ ��2

loop; (1)

where A0
o � A0 þ C4

2C2
m1=2 and

C1 ¼ 1

tan 2�� 1

�
1� 3D0 � 1

2
tan 2�

�
;

C2 ¼ tan 2�

tan 2�� 1
k; C0

3 � C3 � C2
4

4C2

;

(2)

C3¼ 1

tan2��1
ðg�etan2�Þ; C4¼� tan2�

tan2��1
f: (3)

Here, e:f, g, and k are as defined in Ref. [29], and D0ðtÞ is
defined by

D0ðtÞ ¼ ð1þ 6Y0FðtÞÞ�1: (4)

In the above Y0 ¼ htð0Þ2=ð4�2Þ, where htð0Þ is the top
Yukawa coupling at the grand unified theory scale (GUT),
MG ’ 2� 1016 GeV. FðtÞ is defined by FðtÞ¼R

t
0Eðt0Þdt0,

where EðtÞ¼ð1þ�3tÞ16=3b3ð1þ�2tÞ3=b2ð1þ�1tÞ13=9b1 .
Here, �i¼�ið0Þbi=ð4�Þ and bi¼ð�3;1;11Þ for SUð3Þ,
SUð2Þ andUð1Þ and t ¼ ln ðM2

G=Q
2Þ, whereQ is the renor-

malization group point.We are using the normalizations for
which �3ð0Þ ¼ �2ð0Þ ¼ 5

3�1ð0Þ ¼ �Gð0Þ, and �Gð0Þ is the
common value of the normalized �0s at the GUT scale.
Finally, ��2

loop is the loop correction [30]. To understand

the origin of the branches of radiative breaking, it is useful
to choose a renormalization group scale Q where the loop
correction ��2

loop is minimized. In this circumstance if all

the coefficients C1, C2, C
0
3 are positive, the right-hand side

of Eq. (1) is a positive sum of squares, which leads to an
upper limit on each of the soft parameters determined by the
size of�2 þ 1

2M
2
Z on the left-hand side. This is the so-called

EB, where� sets an upper limit on the soft parameters and
thus on the size of the sparticle masses. This is typically the
case if the loop correction ��2

loop is small. However, the

situation changes drastically if the loop correction��2
loop is

large. This is so because Ci are functions of the renormal-
ization group (RG) scale Q, and for the case in which the
loop correction ��2

loop is large, the RG dependence of Ci

can become significant. Indeed, as we change the renormal-
ization group scaleQ, there is a rapid change in��2

loop and

a rapid compensating change also in the remaining terms on
the right-hand side of Eq. (1) so that�2 does not exhibit any
rapid dependence on Q. Now it turns out that there are
regions of the parameter space in which one or more of
the Ci may turn negative as Q varies. For the supergravity
unified models with universal boundary conditions, this is
the case for C1, i.e., in certain regions of the parameter
space, C1 can turn negative while the remainder on the
right-hand side of Eq. (1) remains positive. In this case it
is useful to write Eq. (1) in the following form:

�2 ¼
þ1 ðEBÞ
0 ðFPÞ

�1 ðHBÞ

0
BB@

1
CCAm2

0jC1j þ �2; (5)

where�2 stands for the rest of the terms in Eq. (1). In Eq. (5)
þ1 corresponds to the EB,�1 corresponds to the HB, and
C1 ¼ 0 is the boundary point between the two, which we
call the FP. Its approximate form when tan� � 1 is the
focus point [31]. C1 ¼ 0 is achieved when D0 ¼ 1=3
(see Appendix A). We wish now to identify the allowed
regions of the mSUGRA parameter space in terms of the
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branch onwhich they reside, i.e., EB,HB, or FP. To quantify
the region FP, we define a small corridor around C1 ¼ 0.
This is feasible since the FP is very sensitive to the top quark
mass, andwe utilize the error in the top quarkmass to define
the corridor aroundC1 ¼ 0. Currently, the top quarkmass is
determined to be mt ¼ ð173:5� 1:0Þ GeV, and thus we
define the FP corridor so that [32]

jC1j< �ðQ;mtÞ; �ðQ;mtÞ � 1; (6)

where

�ðQ;mtÞ ’ 3ð1�D0Þ�mt

mt

; (7)

and where D0 is defined in Eq. (4). Thus, the FP corre-
sponds to the corridor �j�j<C1 < j�j, the EB corre-
sponds to C1 > j�j, and HB corresponds to C1 <�j�j.
The EB consists of closed elliptical curves and closed
surfaces in the soft parameter space for fixed �, while the
HB region C1 <�j�j consists of open curves and open
surfaces. We now define a focal curve (FC) on HB as the
one on which two soft parameters can get large while �
remains fixed. It was shown in Ref. [32] that in mSUGRA
there exist two varieties of focal curves, FC1 and FC2, as
shown in Table I. On FC1 m1=2 and � remain fixed while

m0 and m1=2 get large, and thus FC1 is an open curve lying

in them0 � A0 plane. On FC2 A0 and� remain fixed while
m0 and A0 get large, and thus FC2 is an open curve lying in
them0 �m1=2 plane. A convolution of focal curves leads to

focal surfaces.1 It is interesting to classify the allowed
parameter space of mSUGRA in terms of the branch of
radiative breaking of the electroweak symmetry on which
they lie, i.e., EB, HB, or FP. This is done under the con-
straints of the most recent LHC searches [33–37] and other
experimental constraints including the most recent results
from the Planck experiment [38].

We investigate the issue of classification of the branches
of mSUGRA by mapping the soft parameters space
in the following ranges: m0 2 ð200 GeV; 30 TeVÞ, m1=22
ð100GeV;5TeVÞ, A02ð�6m0;6m0Þ, and tan� 2 ð1; 60Þ.
Experimental constraints are then applied for all model
points including the limits on sparticle masses from the
large electron-positron collider [39]: m~�1 > 81:9 GeV,

m~	�
1
>103:5GeV, m~t1>95:7GeV, m~b1

>89GeV, m~eR>

107GeV, and m ~�R
> 94 GeV. The most recent Planck

measurement [38] of the relic density of cold dark matter
gives �	h

2 ¼ 0:1199� 0:0027. Here, we apply the 4�

upper bound, i.e., �	h
2 < 0:13. Other constraints

applied include the g� � 2 constraint ð�11:4� 10�10Þ �
�ðg� � 2Þ � ð9:4� 10�9Þ and the flavor-changing neutral
current (FCNC) constraint from B-physics measurements
[40–42], i.e., ð2:77�10�4Þ�Brðb!s
Þ�ð4:37�10�4Þ
and BrðBs ! �þ��Þ � 1:1� 10�8. As done in
Refs. [32,43], we will refer to these constraints as the
general constraints. These constraints are imposed using
MICROMEGAS [44] for the relic density as well as for the

indirect constraints and SOFTSUSY [45] for the sparticle
mass spectrum. We will also consider NuSUGRA models.
(For recent works on NuSUGRA, see Refs. [46–48], and
for a review, see Ref. [49]. String-based models also allow
for nonuniversalities of gaugino masses; see, e.g.,
Ref. [50].) The supergravity grand unification formalism
of Ref. [8] still applies. For the NuSUGRA case to be
discussed in Sec. IV, all of the experimental constraints
discussed above still apply except that the ranges of the soft
parameters are chosen as follows: m02ð200GeV;30TeVÞ,
mi2ð100GeV;5TeVÞ, A0 2 ð�6m0; 6m0Þ, and tan� 2
ð1; 60Þ where i ¼ 1, 2, 3 for NuSUGRA.
In Fig. 1 we exhibit the allowed parameter space of the

supergravity unified models with universal boundary con-
ditions in the m0 �m1=2 plane consistent with all the

constraints discussed above. The region excluded by the
most recent ATLAS and CMS searches is exhibited. In this
figure we also show the regions of the parameter space that
lie on the HB, EB, and FP branches of radiative breaking of
the electroweak symmetry. The figure shows that essen-
tially all the parameter space of the universal supergravity
unified model lies in the HB region (indicated by green
points), and the EB region (indicated by red points) and the
FP region (indicated by blue points) are essentially both
empty except for a few scattered points (see also Ref. [32]).
The analysis of Fig. 1 shows that the Higgs mass as well as
the FCNC constraints are even stronger than the LHC data
on sparticle mass limits. We also note that it is tempting to
think that the LHC exclusion plots may be extrapolated
beyond m0 ¼ 3 TeV. This region is controlled by the
Higgs pole constraint on the relic density [51], which
puts limits on the allowed range of the neutralino mass
and hence on the gluino mass. The relic density here is
insensitive to m0. However, an analysis of the LHC limits
beyond 3 TeV depends on knowledge of the backgrounds
and on the specifics of the detectors, and a proper analysis

TABLE I. Classification of focal curves in mSUGRA. The
focal curve HB/FC1 corresponds to the case in which m1=2 is

kept fixed while m0 and A0 get large keeping � fixed (the
asymptotic form of these curves gives m0=A0 ¼ �1 [27]). The
focal curve HB/FC2 corresponds to the case in which A0 and �
are kept fixed while m0 and m1=2 get large.

Focal curve Large soft parameters Small soft parameters

HB/FC1 m0 � A0 m1=2

HB/FC2 m0 �m1=2 A0

1The classification of the parameter space of SUGRA models
into focal curves and focal surfaces is a geometric one indepen-
dent of issues of fine-tuning. The focal curves and focal surfaces
automatically arise on HB for the mSUGRA case when C1 < 0.
For NuSUGRA the HB gets redefined such that � remains
constant while two or more soft parameters get large due to
one or more of the Ci turning negative as discussed in Sec. IV.
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of this can only be done by the ATLAS and the CMS
collaborations.

III. PROTON STABILITY

In supersymmetric GUTs proton decay from dimension-
five operators depends very sensitively on the sparticle
spectrum since the sparticle spectrum enters in the dressing
loop diagrams which involve the exchange of squarks and
sleptons, gluinos, charginos, and neutralinos [52–56]
(for recent reviews, see Refs. [57–59]). Thus, low values
of sfermion masses can lead to too rapid a proton decay for
the mode p ! ��Kþ in conflict with the current experimen-
tal limit [59], i.e.,

�exp ðp ! ��KþÞ> 4� 1033 yr: (8)

Since a heavy Higgs boson mass in the vicinity of
�126 GeV implies relatively large values of sfermion
masses, it is pertinent to investigate proton stability within
the constraint of the experimentally observed large Higgs
boson mass. We will limit ourselves to generic SUð5Þ type
models. Further, while chargino ~	�, gluino ~g, and neutra-
lino ~	0 exchange diagrams all contribute to the decay
width, the dominant contribution comes from the chargino
exchange diagram, and we will limit ourselves to consid-
erations for decay with this exchange. Thus, here, the
decay width is given by Ref. [60],

�ðp ! ��iK
þÞ ¼

�
�p

MH3

�
2jAj2jBij2C; (9)

where MH3
is the Higgsino triplet mass and �p is the

matrix element between the proton and the vacuum

state of the three quark operator so that �pU


L ¼

�abc���h0jd�aLu�bLu
cLjpi, where U

L is the proton spinor.

The most reliable evaluation of �p comes from lattice

gauge calculations and is given Ref. [61] as �p ¼
0:0118 GeV3. Other factors that appear in Eq. (9) have
the following meaning: A contains the quark mass
and Cabibbo-Kobayashi-Maskawa (CKM) factors, Bi are
the functions that describe the dressing loop diagrams, and
C contains chiral Lagrangian factors which convert the
Lagrangian involving quark fields to the effective
Lagrangian involving mesons and baryons. Individually,
these functions are given by

A ¼ �2
2

2M2
W

msmcV
y
21V21ALAS; (10)

where msðmcÞ are the strange (charm) quark mass, Vij are

the CKM factors, AL and AS are the long-distance and the
short-distance renormalization group suppression factors
as one evolves the operators from the GUT scale down to
the electroweak scale and then from the electroweak scale
down to 1 GeV [53,62–65], and Bi are given by

Bi ¼ 1

sin 2�

md
i V

y
i1

msV
y
21

�
P2B2i þ mtV31V32

mcV21V22

P3B3i

�
; (11)

where md
i is the down quark mass for flavor i and mt is the

top quark mass. Here, the first term in the bracket is the
contribution from the second generation, and the second
term is the contribution from the third generation, and P2,
P3 with values (�1) are the relative parities of the second-
and the third-generation contributions. The functions Bji

are the loop integrals defined by Bji ¼ Fð~ui; ~dj; ~	�Þ þ
ð~dj ! ~ejÞ, where
Fð~ui; ~dj; ~	�Þ

¼½Ecos
� sin
þ ~fð~ui; ~dj; ~	�
1 Þ

þcos
þ sin
� ~fð~ui; ~dj; ~	�
2 Þ	

�1

2

�i3m
u
i sin2�uiffiffiffi

2
p

MW sin�
½Esin
� sin
þ ~fð~ui1; ~dj; ~	�

1 Þ

�cos
�cos
þ ~fð~ui1; ~dj; ~	�
2 Þ�ð~ui1! ~ui2Þ	; (12)

and where ~f appearing in Eq. (12) is given by

~fð~ui; ~dj; ~	�
k Þ¼sin2�uifð~ui1; ~dj; ~	�

k Þþcos2�uifð~ui2; ~dj; ~	�
k Þ:

(13)

Here, the tilde quantities in the arguments are the sparticle

masses, i.e., ~ui are the up squark masses for flavor i, and ~dj
are the down squark masses for flavor j, and the function f
is defined by

FIG. 1 (color online). The parameter points in the m0 �m1=2

plane in supergravity unified models with universal boundary
conditions passing the general constraints. The plot exhibits the
parameter points that lie on the HB (green), EB (red), and FP
(blue). The analysis shows that most of the allowed parameter
space lies on the HB while the allowed regions of the EB and FP
are essentially empty except for a few scattered points. For the
analysis here and elsewhere in the paper, we have used a top
mass of 172.9 GeV. The region excluded by the ATLAS and
CMS collaborations is also exhibited.
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fða; b; cÞ ¼ mc

m2
b �m2

c

�
m2

b

m2
a �m2

b

ln

�
m2

a

m2
b

�
� ðma ! mcÞ

�
:

(14)
Further in Eq. (12), 
� ¼ �þ � ��, where sin 2�� ¼
ð��m2Þ=½4�2� þ ð��m2Þ2	1=2,

ffiffiffi
2

p
�� ¼ MWðsin��

cos�Þ, and sin 2�u3 ¼ �2ðAt þ� cot�Þmt=ðm2
~t1
�m2

~t2
Þ,

E¼1when sin2�>�m2=M
2
W , and E¼�1when sin 2�<

�m2=M
2
W . Finally, C is given by

C ¼ mN

32�f2�

��
1þmNðDþ FÞ

mB

��
1�m2

K

m2
N

��
2
; (15)

where ~ti are the stop masses and f�, D, F, etc., are the
chiral Lagrangian factors and we use the numerical values
f� ¼ 0:131 GeV, D ¼ 0:8, F ¼ 0:47, mN ¼ 0:94 GeV,
mK ¼ 0:495 GeV, and mB ¼ 1:15 GeV and we choose
P2 ¼ 1 and P3 ¼ �1. The partial decay lifetime of the

proton into p ! ��Kþ mode is given by �ðp ! ��KþÞ ¼
ℏ=�ðp ! ��KþÞ.
Typically, supersymmetric models give too rapid a pro-

ton decay for the mode p ! ��Kþ from dimension-five
operators [66]. One possible way out is the cancellation
mechanism for the reduction of proton decay arising from
different Higgs triplet representations at the GUT scale
[67]. This is equivalent to raising the value of the effective
Higgs triplet mass. [68]. Specification of the GUT physics
allows one to determine the effective Higgs triplet mass
(see, e.g., Refs. [67,69]). Here, however, we do not commit
to a specific GUT structure but rather consider SUð5Þ-like
models in which, due to various Higgs representations that
enter at the GUT scale, one has a number of Higgs triplets/
antitriplets Hi, �Hi. Suppose we choose the basis in which
onlyH1, �H1 couple to matter, i.e., one has couplings of the
type [68] �H1J þ �KH1 þ �HiMijHj, where J and �K are

bilinear in matter fields and Mij is the superheavy Higgs

mass matrix. Many grand unified models automatically
lead to such a possibility [70,71]. Specifically in models
of the type discussed in Ref. [70], one has only one
light doublet and several Higgs triplets/antitriplets. On
eliminating the superheavy fields, one finds that the effec-
tive proton decay operator is of the form � �KðM0

H3
Þ�1J

whereM0
H3

¼ ðM�1
11 Þ�1. This allowsM0

H3
to be much larger

than the GUT scale. In the analysis here, we will use the
effective mass Meff

H3
¼ M0

H3
=ALAS, and we consider three

cases Meff
H3
=MG ¼ 10, 25, 50 for analysis in this work.

In Fig. 2 we exhibit the dependence of the proton life-
time for the decay mode p ! ��Kþ as a function of the
Higgs boson mass under the constraints discussed in the
caption of Fig. 2. The curves show a very sharp dependence
of the proton lifetime on the Higgs boson mass, which
increases by up to 2 orders of magnitude with a shift in the
mass of the Higgs boson in the range of 5–10 GeV. In Fig. 3
we exhibit the proton lifetime for the decay mode p !
��Kþ as a function of m0 for the three values of M

eff
H3

when

all the parameters in the model are allowed to vary con-
sistent with the radiative electroweak symmetry breaking
constraints and the experimental constraints including

115 120 125 130
10

33

10
34

10
35

10
36

FIG. 2 (color online). An exhibition of the sensitive depen-
dence of the proton lifetime for the decay mode p! ��Kþ as a
function of the Higgs boson mass for the supergravity unified
model with universal boundary conditions. Parameters for curves
1–3 are as follows. Curve 1: m1=2¼4207GeV, A0¼20823GeV,

tan� ¼ 7:3 while m0 varies, and Meff
H3
=MG ¼ 50 here and for

other curves. Curve 2: m1=2 ¼ 2035 GeV, A0 ¼ 16336 GeV,

tan� ¼ 8 while m0 and A0 vary. Curve 3: m1=2 ¼ 3048 GeV,

A0=m0 ¼ �0:5, tan� ¼ 6:5 while m0 and A0 vary.

FIG. 3 (color online). An exhibition of the partial lifetime for the decay mode p ! ��Kþ given by blue squares as a function of m0

over the parameter space of the supergravity model with universal boundary conditions over the allowed ranges consistent with all the
experimental constraints. Left panel: The case when Meff

H3
=MG ¼ 10. Middle panel: Same as the left panel except for the case

Meff
H3
=MG ¼ 25. Right panel: Same as the left panel except for the case Meff

H3
=MG ¼ 50. The current experimental lower limit for this

mode is given by the horizontal black line. The analysis given here is consistent with the Higgs boson mass within a 2� range.
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those from the LHC and the Planck experiment. One finds
that the parameters compatible with all the constraints
clearly prefer values of m0 in the several TeV region.

IV. NUSUGRA: FOCAL CURVES AND
FOCAL SURFACES

In Sec. II a classification of radiative breaking of the
electroweak symmetry is given in terms of the branches on
which the allowed parameter space of mSUGRA resides.
Here, we extend the analysis to NuSUGRA and classify the
allowed parameter space under the constraints of radiative
breaking of the electroweak symmetry and all the experi-
mental constraints, i.e., we discuss the composition of the
parameter space in terms of the HB, EB, and FP. We will
also discuss the sensitivity of the proton decay lifetime for
the mode p ! ��Kþ for the NuSUGRA case. For specific-
ity, we define the gaugino masses at the grand unification
scale by mi where mi ¼ m1=2ð1þ �iÞ, i ¼ 1, 2, 3 and

where �i define the nonuniversalities in the Uð1Þ, SUð2ÞL,
SUð3ÞC sectors. It is shown in Appendix B that in this case
the radiative electroweak symmetry breaking equation,
Eq. (1), for the universal soft breaking case is replaced by

�2þ1

2
M2

Z¼C1m
2
0þC2A

2
0þ ~Cij

3 mimjþ ~Ci
4miA0þ��2;

(16)

where C1 and C2 are as defined by Eq. (2) while ~Cij
3 and ~Ci

4

are given by

~Cij
3 ¼ ðMmH1

Þij � tan 2�ðM~eÞij
tan 2�� 1

;

~Ci
4 ¼ � tan 2�

tan 2�� 1
ðM~fÞi:

(17)

Here,MmH1
,M~e, andM~f are defined in Appendix B.

~C3 and

~C4 in Eq. (17) reduce to the universal casewhenmi ¼ m1=2,

and in this case one has C3 ¼
P

i;j¼1;2;3
~Cij
3 and C4 ¼P

i¼1;2;3
~Ci
4. In Fig. 9 we display the dependence of ~C0s on

the RG scale Q. Here, one finds that in addition to C1, ~C
11
3

and ~C22
3 assume negative values, which gives the possibility

of new focal curves. We discuss these possibilities in
further detail below.

To examine the focal curves and focal surfaces for
NuSUGRA, it is useful to define

CG
3 m

2
1=2 ¼ ~Cij

3 mimj; CG
4 m1=2 ¼ ~Ci

4mi: (18)

Further, in order to classify various regions of the radiative
electroweak symmetry breaking (REWSB) for the
NuSUGRA case, it useful to write the REWSB constraint
Eq. (16) in the form

�2 þ 1

2
M2

Z ¼ C1m
2
0 þ C2

�A2
0 þ CðiÞ

3 �m2
i ; (19)

with

�A2
0 ¼

�
A0 þ

X3
i¼1

aimi

�
2
; �mi ¼

X3
j¼1

aijmj; (20)

where ai and aij are coefficients of linear combinations and

they are functions of C2, ~C
ij
3 , and

~Ci
4.

A display of the renormalization group evolution of the
Ci is given in Fig. 9 in Appendix B. Here, we find that in

addition toC1, the elements ~C11
3 and ~C22

3 are negative,which
allows for the possibility of new focal curves and focal
sufaces over the ones discussed in Sec. II. Using the results
of Appendixes A and B, one finds that four types of focal
curves arise for the NuSUGRA case, FC1-FC4, which are
listed in Table II. FC1 is defined similar to the case for
mSUGRA. FC2 has three variations: These are HB=FC201,

where C1 > 0, ~C11
3 < 0 and m0 and m1 get large while A0,

m2, m3 and tan� remain fixed; HB=FC202, where C1 > 0,
~C22
3 < 0 andm0 andm2 get largewhileA0,m1,m3 and tan�

remain fixed; and HB=FC203, where C1 < 0, ~C33
3 > 0 and

m0 and m3 get large while A0, m1, m2 and tan� remain
fixed. It is convenient to use the parametrization of Eq. (18)
to exhibit the effect of nonuniversality on focal curves FC2.
Thus, here, one finds that the asymptotic value of m1=2=m0

for fixed � as A0 gets large is affected by nonuniversality,
i.e., one gets

m1=2

m0

!
ffiffiffiffiffiffiffiffiffi
jC1j
CG
3

s
: (21)

An illustration of the dependence of m1=2=m0 on nonuni-

versalities for FC2 will be exhibited shortly.
The focal curves FC3 arise when two of the gaugino

masses get large while other soft parameters remain fixed.

TABLE II. Classification of focal curves in NuSUGRA mod-
els. Here, one has the possibility of several focal curves. The
focal curve HB/FC1 is defined similarly to the mSUGRA case
except that m1, m2, m3 are all kept fixed. As in mSUGRA here,
too, m0 and A0 can get large while � remains fixed. The focal
curve HB/FC2 splits into three subcases because of the gaugino
nonuniversalities. Thus, the case HB=FC201 corresponds to the
case when A0, m2, m3 are kept fixed while m0 and m1 can get
large. The focal curves HB=FC202 and HB=FC03 are similarly
defined. For the NuSUGRA case, four new types of focal curves
arise. These are HB=FC313, HB=FC323, HB=FC41, and
HB=FC42. Their definitions are obvious from the table.

Focal curve Large soft parameters Small soft parameters

HB/FC1 m0 � A0 m1, m2, m3

HB=FC201 m0 �m1 A0, m2, m3

HB=FC202 m0 �m2 A0, m1, m3

HB=FC203 m0 �m3 A0, m1, m2

HB=FC313 m1 �m3 m0, A0, m2

HB=FC323 m2 �m3 m0, A0, m1

HB=FC41 A0 �m1 m0, m2, m3

HB=FC42 A0 �m2 m0, m1, m3
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There are two possibilities here. The first one isHB=FC313,
where m1 and m3 get large while A0, m0, m2, and tan�

remain fixed. This can happen when C1 > 0 but ~C11
3 is

negative. The second possibility is HB=FC323, where m2

and m3 get large while A0, m0, m1 and tan� remain fixed.

This can happen when C1 > 0 but ~C22
3 is negative. The

focal curves FC4 arise when A0 and one of the gaugino

masses get large while the remaining soft parameters re-

main fixed. There are two possibilities here. The first one is

HB=FC41, where A0 and m1 get large while m0, m2, m3,

and tan� remain fixed. This can happen since C2 > 0 but
~C11
3 is negative. The second possibility is HB=FC42, where

A0 and m2 get large while m0, m1, m3, and tan� remain

fixed. This can happen when C2 > 0 but ~C22
3 is negative.

We note that HB=FC312 does not materialize since ~C11
3 and

~C22
3 are both negative. Similarly, HB=FC43 does not occur

since C2 and ~C33
3 are both positive. Further, while in

principle HB=FC203 can occur when C1 < 0 and ~C33
3 is

positive, the numerical sizes do not favor the appearance of

this branch. Thus, as shown in the figures in Appendix B,
~Caa
3 satisfy j ~C11

3 j � j ~C22
3 j � j ~C33

3 j, where each step is

roughly a factor of 10. Thus, in practice the focal curve

HB=FC203 does not materialize. Further, for any value of

tan�, the coefficient C1 begins positive, and for tan� & 5
it never becomes negative (for Q & 10 TeV). Because of

the above, additional possibilities such as HB=FC312, etc.,
are not realized.
For NuSUGRAwe give a numerical illustration of some

of the focal curves in Fig. 4. The left panel of the top row in
Fig. 4 gives an analysis of the FC1 in the m0 � A0 plane.

FIG. 4 (color online). Top left panel: Exhibition of the focal curve HB/FC1 of Table II with nonuniversalities in the gaugino sector.
Here and in the right panel, tan� ¼ 45 with � ¼ ð0:465� 0:035Þ TeV. The plot shows that nonuniversalities in the gaugino sector do
not affect the asymptotic behavior of A0=m0, which is unchanged from the mSUGRA case. Top right panel: Exhibition of the effect of
nonuniversalities on focal curves FC2. The analysis shows that the nonuniversalites have a very significant effect of FC2-type focal
curves. The asymptotic form of the FC2 curves with nonuniversalities fits well with the result of Eq. (21). Bottom panels show the
three varieties of FC2 curves. Bottom left panel: An exhibition of the focal curve HB=FC203 in the m0 �m3 plane when m1 ¼
m3 ¼ m1=2 ¼ 2 TeV and A0 ¼ 1:5 TeV. Bottom middle panel: A display of the focal curve HB=FC202 in the m0 �m2 plane when

m1 ¼ m3 ¼ m1=2 ¼ 2 TeV and A0 ¼ 1:5 TeV. Bottom right panel: An exhibition of the focal curve HB=FC323 in the m2 �m3 plane

when m1 ¼ m1=2 ¼ 2 TeV, m0 ¼ 1 TeV and jA0=m0j< 0:1. The model points are colored by the � value in units of TeV.

FIG. 5 (color online). Exhibition of HB (red), EB (blue),
and FP (green) parameter points for NuSUGRA using the inputs
given in Sec. II. All parameter points satisfy the general
constraints along with a 2� constraint on the Higgs boson
mass. As in the supergravity unified models with universal
boundary conditions, here, too, one finds that most of the
allowed parameter space lies on the HB branch while EB and
FP regions are highly depleted.
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Here, one finds that m0 and A0 can get as large as 10 TeV
while � lies in the range ð0:465� 0:035Þ TeV when
tan� ¼ 45 and m1=2 ¼ 0:5 TeV. We note that the ratio

A0=m0 asymptotes to the same value irrespective of the
nonuniversalities. A similar analysis for FC2 is given in
the right panel of Fig. 4 in them0 �m1=2 plane for tan� ¼
45. Again, a variety of nonuniversalities are discussed. One
finds that whilem0 andm1=2 can get very large, i.e., as large

as 10 TeV form0 and 5 TeV form1=2, one still has a small�,

i.e., a� range ð0:465� 0:035Þ TeV. An analysis for FC3 is
given in the three panels of the bottom row in Fig. 4. The
left panel gives a display of the focal curve FC302 in the
m0 �m2 plane for the case when tan� ¼ 45, A0 ¼
1:5 TeV, m1=2 ¼ 2 TeV, and �1 ¼ 0 ¼ �3, and �2 lies in

the range ð�1; 1Þ. One finds that � lies in the narrow range
ð0:465� 0:035Þ TeV. A very similar analysis in the
m0 �m3 plane is given in the middle panel in Fig. 4, where
�1 ¼ 0 ¼ �2 and �3 lies in the range ð�1; 1Þwhile all other
parameters are as in the left panel. This is the focal curve
FC303. Finally, the right panel gives an analysis of the FC323

in the m2 �m3 plane for the case when m0 ¼ 1 TeV,
m1=2 ¼ 2 TeV, tan� ¼ 45, and �0 ¼ 0, �2 ¼ ð�1; 1Þ,
and �3 ¼ ð�1; 1Þ. Here, again, one finds that � lies in
the range ð0:465� 0:0350Þ TeV while m2, m3 get large.
From a convolution of the focal curves, one can generate
focal surfaces on which more than two soft parameters can
vary while � remains fixed.
In Fig. 5 we display the nature of radiative breaking

of the electroweak symmetry for all the model points within
the allowed ranges of the parameter space for NuSUGRA.
The points in red are those that lie on the HB, the points in
blue lie on the EB, and the points in green lie in the FP
region as defined by Eqs. (6) and (7). As in the mSUGRA
case, here, too, one finds that most of the parameter points
lie on the HB, and only a small fraction lie on the EB and
FP. In Fig. 6 we give an analysis of the sensitivity of the
proton lifetime to the Higgs boson mass for NuSUGRA. As
in the mSUGRA case, here, too, one finds that the proton
lifetime is very sensitive to the Higgs boson mass with the
proton lifetime changing by over 2 orders of magnitudewith
a shift in the Higgs boson mass in the range of 5–10 GeV. In
Fig. 7 an analysis of the proton lifetime for the mode p !
��Kþ is given over the allowed parameter space of
NuSUGRA within the assumed limits. The figure shows
the dispersion in the proton lifetime as all the parameter
points are varied but does show the general trend that the
p ! ��Kþ lifetime increases with a larger SUSY scale.

V. NATURALNESS

The criteria used for quantifying what is naturalness are
rather subjective, and various variants abound see, e.g.,
Refs. [16,24,72–83]. Here, we discuss the fine-tuning
within a GUT framework including both radiative breaking

115 120 125 130
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FIG. 6 (color online). An exhibition of the dependence of the
proton lifetime for the decay mode p ! ��Kþ as a function of the
Higgs boson mass for NuSUGRA. Parameters for the curves
labelled 1–3 in the legend are as follows. Curve 1: m1¼
4230GeV, m2¼843GeV, m3 ¼ 3285 GeV, A0¼�27545GeV,
and tan� ¼ 5:3 whilem0 varies andM

eff
H3
=MG ¼ 50 here and for

other curves. Curve 2: m1 ¼ 4794 GeV, m2 ¼ 3837 GeV, m3 ¼
3856 GeV, A0=m0 ¼ 0:842, and tan� ¼ 7:0 while m0 and A0

vary. Curve 3: m1 ¼ 3894 GeV, m2 ¼ 1056 GeV, m3 ¼
2345 GeV, A0=m0 ¼ 2:199, and tan� ¼ 55:2 while m0 and A0

vary. As for the case of the supergravity unified models with
universal boundary conditions, here, too, one finds that the proton
lifetime is a very sensitive function of the Higgs boson mass.
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FIG. 7 (color online). Left panel: The proton lifetime shown as blue squares over the allowed parameter space in NuSUGRA models,
which pass the general constraints along with a 2� constraint for the Higgs boson mass as discussed in the text when Meff

H3
=MG ¼ 10.

Middle panel: Same as the left panel except that Meff
H3
=MG ¼ 25. Right panel: Same as the left panel except that Meff

H3
=MG ¼ 50. The

current experimental lower limit on the proton lifetime is shown as a black horizontal line. The analysis given here is consistent with
the Higgs boson mass within a 2� range.
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of the electroweak symmetry and proton stability. First,
we discuss fine-tuning for radiative breaking of the
electroweak symmetry, which is governed by the breaking
condition Eq. (1). If one views M2

Z as arising from the
cancellation between the�2 term and the remainder on the
right-hand side, it leads to a fine-tuning [24]:

F ’ 4�2

M2
Z

: (22)

An alternate criteria for fine-tuning is given by the condi-
tion [72] F0

a ¼ ða=fðaÞÞf0ðaÞ, where a is the sensitive
parameter on which the function fðaÞ depends. Using
fðaÞ ¼ M2

Z and the sensitive parameter as m2
Hu
, one finds

another fine-tuning measure:

F0 ’ 2jm2
Hu
j

M2
Z

: (23)

We will use both F and F0 in the analysis for comparison.
For proton decay we will use a measure of fine-tuning
defined by

Fpd ¼ 4� 1033 yr

�ðp ! ��KþÞyr : (24)

This measure gives the amount of fine-tuning needed in the
theory parameters to enhance the lifetime so that the
theoretical prediction is brought just above the current
experimental lower limit. If we use the very crude

 

 

0 5 10 15 20 25 30
10

0

10
1

10
2

10
3

FIG. 8 (color online). A display of the fine-tuning as defined by Eqs. (22)–(25) vs the scalar mass m0 when Meff
H3
=MG ¼ 50.

The upper two panels are for mSUGRA, and the middle two panels are for the NuSUGRA case. The left panels are when we use the
fine-tuning of Eq. (22), and the right panels are when we use the fine-tuning of Eq. (23) for the electroweak sector. The red points are
the fine-tuning values for the REWSB sector, the blue points for �ðp ! ��KþÞ, and the black points are the averages of the red and the
blue points. In the bottom panel, the combined fine-tuning as a function of m0 is given for mSUGRA (sold line) and for NuSUGRA
(dashed line). Here, we have taken the average of the left and right panels and drawn smooth curves showing the rapid decrease of the
fine-tunings as m0 increases.
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approximation on the proton lifetime, i.e., �ðp ! ��KþÞ ’
C 
 ðm~	�=m2

~qM
eff
H3
Þ�2, and use m2

~q or m	� as the sensitive

parameters, we have F0
m	� ¼F0

m2
~q

¼2Fpd. Thus, the two

ways of defining the fine-tuning differ only by a small
numerical factor. It is also useful to define a composite fine-
tuning by the geometric mean of the individual ones, i.e.,

F ¼
�Yn
i¼i

Fi

�1
n
: (25)

Here, our view point is similar to that of Ref. [82] (for a
related work, see Ref. [84]). For our case n ¼ 2 consisting
of the fine-tuning in the radiative electroweak symmetry
breaking sector and the fine-tuning needed to control pro-
ton decay from dimension-five operators. An analysis
of the fine-tunings as a function of m0 is given in Fig. 8,
where the upper panels give the analysis for the case
of mSUGRA, the middle panels give the analysis for
NuSUGRA, the left panels give the analysis using
Eq. (22), and the right panels give the analysis using
Eq. (23). The red points are the fine-tunings for radiative
electroweak symmetry breaking. The blue points give the
fine-tuning needed in the theory prediction of �ðp ! ��KþÞ
to bring the lifetime prediction just above the experimental
lower limit, and the black points correspond to the com-
posite fine-tuning as defined by Eq. (25). One finds that
typically there is a preference for larger values of m0 for
the combined fine-tuning including fine-tuning from the
electroweak sector and the fine -tuning needed from proton
stability. This result is more explicitly exhibited in the
bottom panel of Fig. 8, which shows fine-tuning prefers
regions of larger m0 when the electroweak symmetry
breaking and proton stability criteria are combined.
A similar conclusion was arrived at in the work of
Ref. [82], which combined the electroweak symmetry
breaking, FCNC, and CP-violation criteria.

VI. CONCLUSIONS

The high mass of the Higgs boson discovered recently
requires a large loop correction to its mass, which points to
the possibility that the overall weak scale of supersymme-
try may lie in the several TeV region and could even be as
large as tens of TeV. If the scalar masses are that large, they
would help resolve one of the serious problems of super-
symmetric grand unification related to proton decay. Thus,
proton decay from lepton- and baryon-number violating
dimension-five operators often leads to proton lifetimes
which fall below the current experimental limits. In this
work we show that the proton lifetime is a very sensitive
function of the Higgs boson mass in a unified theory. Thus,
a few GeV upward shift in the Higgs boson can result in
orders of magnitude suppression of the proton decay from
baryon- and lepton-number violating dimension-five op-
erators and a corresponding enhancement of the proton
lifetime. The analysis is first done for the mSUGRA model

and then extended to NuSUGRA. Here, we also analyze
the allowed parameter space in terms of on which branch of
the radiative breaking of the electroweak symmetry the
parameters lie, i.e., whether on the ellipsoidal branch, the
hyperbolic branch, or the focal point region. The analysis
presented in this work shows that, under the current
experimental constraints including those from the large
electron-positron collider, Tevatron, LHC, FCNC, and
Planck data [85], one finds that most of the parameter
points of mSUGRA and of NuSUGRA models lie on the
hyperbolic branch with only a very small fraction lying on
the ellipsoidal branch or in the focal point region. We also
discuss issues of naturalness and fine-tuning and show that
the composite fine-tuning including fine-tuning from the
electroweak sector and from the stability of the proton
points to high scalar masses. However, some of the gaugi-
nos can be light with their masses mostly limited by their
lower experimental limits. These include the light char-
gino, the lightest neutralino, the second-lightest neutralino,
and the gluino. These should be accessible with increased
energy and luminosity at the next round of experiment at
the LHC. Regarding proton decay discovery of the super-
symmetric mode, p ! ��Kþ is overdue, and this mode
continues to be the most likely candidate to be discovered
first in the next generation of proton decay experiments.
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APPENDIX A: THE RELATION OF C1ðQÞ TO mH2

Here, we establish the relation between the C1ðQÞ and
mH2

. The RG evolution connects mH2
, and on the third-

generation masses mU and mQ, and one has

d

dt

m2
H2

m2
U

m2
Q

2
6664

3
7775 ¼ �Yt

3 3 3

2 2 2

1 1 1

2
664

3
775

m2
H2

m2
U

m2
Q

2
6664

3
7775� YtA

2
t

3

2

1

2
664

3
775

þ
3~�2m

2
2 þ ~�1m

2
1

16
3 ~�3m

2
3 þ 16

9 ~�1m
2
1

16
3 ~�3m

2
3 þ 3~�2m

2
2 þ 1

9 ~�1m
2
1

2
6664

3
7775: (A1)

Here, Yt ¼ h2t =ð4�2Þ where ht is the top Yukawa cou-
pling and At is the trilinear coupling in the top sector. The
above equations with universal boundary conditions at the
GUT scale allow a homogeneous solution satisfying [31]
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�m2
H2

�m2
U

�m2
Q

2
6664

3
7775 ¼ m2

0

2

3JðtÞ � 1

2JðtÞ
JðtÞ þ 1

2
664

3
775; (A2)

where J is an integration factor defined by

JðtÞ � exp

�
�6

Z t

0
Ytðt0Þdt0

�
: (A3)

As Q ! MG, one has JðtÞ ! 1, and the universality of the
masses is recovered at the GUT scale. In Ref. [32] a
connection was established between C1ðQÞ and �mH2

,

which we now illustrate. Thus, YðtÞ at the one-loop level
satisfies the equation

dYt

dt
¼

�
16

3
~�3 þ 3~�3 þ 13

9
~�1

�
Yt � 6Y2

t ; (A4)

and one finds

YtðtÞ ¼ Yð0ÞEðtÞ
1þ 6Yð0ÞFðtÞ ; (A5)

where FðtÞ and EðtÞ are defined after Eq. (4). It is then easy
to see that JðtÞ ¼ D0ðtÞ, where D0ðtÞ is defined by Eq. (4).
Thus, �m2

H2
takes the form

� �m2
H2

� �m2
H2

m2
0

¼ 1

2
ð3D0 � 1Þ; (A6)

and C1 can be expressed in terms of � �m2
H2

C1 ¼ 1

tan 2�� 1
ð1� � �m2

H2
tan 2�Þ ’ �� �m2

H2
: (A7)

C1 ¼ 0 was defined as the focal point in Ref. [32]. At the
focal point,�2 essentially becomes independent ofm0. For
tan� � 1, C1 ’ �� �m2

H2
, and the vanishing of C1 implies

the vanishing of � �m2
H2

which is defined to be the focus

point. Thus, the focal point defined by C1 ¼ 0 is just the
boundary point between the EB defined by C1 > 0 and HB
defined by C1 < 0. For the NuSUGRA models, all solu-
tions in which some of the soft parameters can get large
while �2 remains fixed lie on the HB. This can happen
when some of the Ci other than C1 turn negative, as
discussed in Appendix B below.

APPENDIX B: ANALYSIS OF C0s FOR MODELS
WITH NONUNIVERSALITIES IN

THE GAUGINO SECTOR

The presence of nonuniversalities in the gaugino sector
affects the coefficients Ci, and in this appendix we give a
computation for these by inclusion of nonuniversalities in
the SUð3ÞC, SUð2ÞL, and Uð1Þ gaugino sectors. We begin
with the radiative electroweak symmetry breaking with
the inclusion of nonuniversalities in the gaugino sector.
We have

�2 ¼ ðm2
H1

�m2
H2

tan�2Þ
ðtan�2 � 1Þ � 1

2
M2

Z þ ��2; (B1)

with

m2
H1

¼ m2
0 þ

�
3

10
~f1 þ 3

2
~f2

�
; (B2)

m2
H2

¼ ~eðtÞ þ A0
~fðtÞ þm2

0hðtÞ � A2
0kðtÞ; (B3)

and ~fiðtÞ is defined by ~fiðtÞ ¼ Zf
i m

2
i , where

Zf
i ¼

1

�i

�
1� 1

ð1þ �itÞ2
�
~�ið0Þ: (B4)

It is useful to introduce a column vector ~mT ¼ ðm1; m2; m3Þ
and a matrix MmH1

such that m2
H1

¼ ~mT 
MmH1

 ~m ¼

ðMmH1
Þijmimj where MH1

is given by

MmH1
¼

3
10Z

f
1 0 0

0 3
2Z

f
2 0

0 0 0

0
BBB@

1
CCCA: (B5)

Thus, we have

m2
H1

¼ m2
0 þ ðMmH1

Þijmimj: (B6)

The above exhibits the gaugino mass dependence of m2
H1

explicitly. Now let us look at m2
H2

given by Eq. (B3) and

write it in a form which exhibits the gaugino mass depen-
dence explicitly. Now m2

H1
contains the functions ~eðtÞ and

~fðtÞ, which are given as

~e ¼ 3

2

� ~G1 þ Y0
~G2

DðtÞ þ ð ~H2 þ 6Y0
~H4Þ2

3DðtÞ2 þ ~H8

�
;

~f ¼ � 6Y0
~H3ðtÞ

DðtÞ2 ;

(B7)

where ~HiðtÞ are defined by

~H2 ¼ 13

15
~h1ðtÞ þ 3~h2ðtÞ þ 16

3
~h3ðtÞ;

~H3 ¼
Z t

0
Eðt0Þ ~H2ðt0Þdt0;

(B8)

~H4 ¼ FðtÞ ~H2ðtÞ � ~H3ðtÞ;
~H5 ¼

�
� 22

15
~f1ðtÞ þ 6~f2ðtÞ � 16

3
~f3ðtÞ

�
;

(B9)

~H6 ¼
Z t

0
Eðt0Þ ~H2ðt0Þ2dt0;

~H8 ¼ ~�G

�
� 8

3
~f1ðtÞ þ ~f2ðtÞ � 1

3
~f3ðtÞ

�
;

(B10)

and ~hi are defined by ~hi � Zh
i mi with
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Zh
i ¼

t

1þ �it
~�ið0Þ: (B11)

~H2ðtÞ then takes the form

~H2 � ~M ~H2

 ~m; (B12)

where ~M ~H2
is a row vector

~M ~H2
¼

�
13

15
Zh
1 ; 3Z

h
2 ;
16

3
Zh
3

�
: (B13)

Similarly, we may write all the M ~Hi
ðtÞ in matrix or vector

forms so that ~H3¼ ~M ~H3

 ~m, ~H4 ¼ ~M ~H4


 ~m, ~H5¼ ~mT 
M ~H5



~m, ~H6¼ð ~M ~H8

 ~mÞ2. ~H8 ¼ ~mT 
M ~H8


 ~m, where the matri-

ces ~M ~H3
, etc., are given by

~M ~H3
¼

Z t

0
Eðt0Þ ~M ~H2

ðt0Þdt0;

~M ~H4
¼ ~M ~H2

ðtÞ
Z t

0
Eðt0Þdt0 �

Z t

0

~M ~H2
ðt0ÞEðt0Þdt0;

M ~H5
¼

� 22
15Z

f
1 0 0

0 6Zh
2 0

0 0 � 16
3 Z

h
3

0
BBB@

1
CCCA;

M ~H8
¼

� 1
3Z

f
1 0 0

0 Zh
2 0

0 0 � 8
3Z

h
3

0
BBB@

1
CCCA;

(B14)

M ~H6
¼

Z t

0
ð ~M ~H2

ðt0ÞÞTð ~M ~H2
ðt0ÞÞEðt0Þdt0 (B15)

Similarly, ~FiðtÞ defined by

~F2 ¼ 8

15
~f1þ 8

3
~f2; (B16)

~F3 ¼ FðtÞ ~F2ðtÞ �
Z t

0
Eðt0Þ ~F2ðt0Þdt0; (B17)

~F4 ¼
Z t

0
Eðt0Þ ~H5ðt0Þdt0 (B18)

can also be written in matrix forms so that ~F2�
ðM ~F2

Þijmimj, ~F3�ðM ~F3
Þijmimj, ~F4 � ðM ~F4

Þijmimj, with

M ~Fi
defined by

M ~F2
ðtÞ ¼

8
15Z

f
1 0 0

0 0 0

0 0 8
3Z

f
3

0
BB@

1
CCA; (B19)

M ~F3
ðtÞ ¼ FðtÞM ~F2

ðtÞ �
Z t

0
Eðt0ÞM ~F2

ðt0Þdt0;

M ~F4
ðtÞ ¼

Z t

0
Eðt0ÞM ~H5

ðt0Þdt0: (B20)

We repeat the same procedure for functions ~Gi

defined by

0 2 4 6 8 10
−0.1

−0.05

0

0.05

0.1

0.15

0 2 4 6 8 10
0.1

0.105

0.11

0.115

0.12

0.125

FIG. 9 (color online). The upper panels: RG evolution of C1ðQÞ and C2ðQÞ as a function of the renormalization group scale Q at
different tan�. Left panel: C1ðQÞ at tan� ¼ 5, 6, 10, and 45. Right panel: C2ðQÞ at tan� ¼ 5, 6, 10, and 45. It is seen that C1ðQÞ turns
negative as the scale Q increases while C2ðQÞ remains positive. It is also seen that C1ðQÞ is very sensitive to tan� while C2 is very
insensitive to tan�. The lower panels: An exhibition of ~Cii

3 at different tan�. Left panel: ~C11
3 at tan� ¼ 5, 6, 10, and 45. Middle panel:

~C22
3 at tan� ¼ 5, 6, 10, and 45. Right panel: ~C33

3 at tan� ¼ 5, 6, 10, and 45. It is seen that ~C11
3 and ~C22

3 are negative, which allows the
possibility of new focal curves as discussed in the text.
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~G1 ¼ ~F2ðtÞ � 1

3
~H2ðtÞ2;

~G2 ¼ 6 ~F3ðtÞ � ~F4ðtÞ � 4 ~H2ðtÞ ~H4ðtÞ
þ 2FðtÞ ~H2ðtÞ2 � 2 ~H6ðtÞ; (B21)

which could also been written as, ~G1ðtÞ �
ðM ~G1

Þijmimj; ~G2ðtÞ � ðM ~G2
Þijmimj, with M ~Gi

defined by

M ~G1
ðtÞ ¼ M ~F2

� 1

3
ð ~M ~H2

ÞT 
 ~M ~H2
; (B22)

M ~G2
ðtÞ ¼ 6M ~F3

�M ~F4
� 4ð ~M ~H2

ÞT 
 ~M ~H4

þ 2Fð ~M ~H2
ÞT 
 ~M ~H2

� 2M ~H6
: (B23)

We return now to ~eðtÞ and ~fðtÞ and write these in the

matrix form so that ~eðtÞ � ðM~eÞijmimj, and ~fðtÞ �
ð ~M ~fÞimi with

M~e ¼ 3

2DðtÞ2 ð3DðtÞ½M ~G1
þY0M ~G2

	þ 1

3
½ ~M ~H2

þ 6Y0
~M ~H4

	2

þDðtÞ2M ~H8
Þ;

~M ~f ¼�6Y0
~M ~H3

DðtÞ2 : (B24)

Using the above we can write m2
H2

in the form

m2
H2

¼ ðM~eÞijmimj þ A0ð ~M ~fÞimi þm2
0hðtÞ � A2

0kðtÞ:
(B25)

Thus, using Eqs. (B6) and (B25) in Eq. (B1), we finally
have the radiative electroweak symmetry breaking equa-
tion for nonuniversalities as given in Eq. (16).
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