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Left-right symmetric models (LRSM) are extensions of the standard model by an enlarged gauge group

SUð2ÞL � SUð2ÞR �Uð1ÞB�L; where automatic inclusion of right-handed fermions as SUð2ÞR doublets

guarantees a natural seesaw origin of neutrino masses. Apart from the extended gauge symmetry, LRSM

also has a built-in global discrete symmetry, called D-parity, which ensures equal gauge couplings for left

and right sectors. Motivated by the fact that global symmetries are expected to be explicitly broken by

theories of quantum gravity, here we study the effects of such gravity, or Planck scale physics, on neutrino

masses and mixings by introducing explict D-parity breaking, Planck-scale-suppressed, higher-

dimensional operators. Although such Planck-scale-suppressd operators have dimensions of at least six

in generic LRSM, dimension five operators can also arise in the presence of additional scalar fields, which

can be naturally accommodated within SOð10Þ grand unified theory multiplets. We show that such

corrections can give rise to significant changes in the predictions for neutrino mixing parameters

compared to the ones predicted by tree-level seesaw formula if the left-right symmetry breaking scale

is lower than 1014 GeV.
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I. INTRODUCTION

Left-right symmetric models (LRSM) [1] have been one
of the most well-motivated extensions of the standard
model (SM) and studied in great detail over the last few
decades. Apart from explaining the origin of parity break-
ing in weak interactions spontaneously, LRSM can also
explain the origin of tiny neutrino masses [2] naturally via
a seesaw mechanism [3,4] without reference to very high
scale physics such as grand unified theories (GUT).
Supersymmetric versions of such models have several
other motivations like protecting the scalar sector from
quadratic divergences, providing a natural dark matter
candidate among others. However, as studied previously
in [5,6], generic supersymmetric left-right models are
tightly constrained from consistent cosmology as well as
successful gauge coupling unification point of view, and in
quite a few cases these models do not give rise to success-
ful unification and consistent cosmology simultaneously.
Recently, nonsupersymmetric versions of LRSM were
studied in the context of gauge coupling unification and
consistent cosmology [7]. It was shown that minimal ver-
sions of LRSM cannot give rise to unification and consis-
tent cosmology simultaneously, but suitable extensions of
these models can give rise to both of these desired proper-
ties and at the same time allow the possibility of a low scale
gauge symmetry.

Spontaneous breaking of exact discrete symmetries like
parity (which we shall denote as D-parity hereafter) has
cosmological implications, it leads to frustrated phase
transitions, leaving behind a network of domain walls
(DW). These domain walls, if not removed, will be in

conflict with the observed Universe [8,9]. It was pointed
out [10,11] that Planck-scale-suppressed nonrenormaliz-
able operators can be a source of domain wall instability.
The main theme of this was to assume exact parity sym-
metry at tree level and introduce explicit parity breaking
terms of higher order. As pointed out in [10], any generic
theories of quantum gravity should not respect global
symmetries, whether discrete or continuous. Without
worrying about the details of such symmetry breaking
mechanisms, our purpose is to study the effects of such
terms which arise only in the form of higher-dimensional
operators. The role of such higher dimensional operators in
destabilizing domain walls was studied in [5,7]. Here we
intend to study the effects of such operators on the neutrino
sector, namely the neutrino mixing parameters. We find
that in generic LRSM, such operators which affect neutrino
parameters can have dimension of at least six without
significantly affecting the neutrino masses and mixings.
However, in the presence of additional scalar fields,
dimension five operators can arise and significantly affect
the neutrino masses and mixings. In particular, we incor-
porate the presence of a gauge singlet scalar field, which
can naturally fit inside several SOð10Þ GUT representa-
tions. As discussed in [7], such singlet extension of
minimal LRSM also leads to domain wall disappearance,
which is not possible in the minimal versions. Here we
study the effect of such higher-dimensional operators on
neutrino mixing parameters and find that the corrections
can be very significant if the left- right symmetry breaking
scale is below 1014 GeV.
This paper is organized as follows. In Sec. II we

discuss minimal LRSM with Higgs triplets and discuss
how tiny neutrino mass arises in this model. In Sec. III
we discuss the possible higher-dimensional and explicit*dborah@tezu.ernet.in
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parity breaking operators, which can affect neutrino
masses. Then in Sec. IV, we present our numerical analysis
of the effects of higher- dimensional operators on neutrino
mixing parameters, and finally we conclude in Sec. V.

II. NEUTRINO MASS IN LRSM

The fermion content of minimal LRSM is

QL ¼ uL

dL

 !
�
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1

3
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;
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Similarly, the Higgs content of the minimal LRSM is
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where the numbers in brackets correspond to the quantum
numbers with respect to the gauge group SUð3Þc �
SUð2ÞL � SUð2ÞR �Uð1ÞB�L. In the symmetry breaking
pattern, the scalar �R acquires a vacuum expectation value
(vev) to break the gauge symmetry of LRSM into that of
the standard model and then to Uð1Þ of electromagnetism
by the vev of Higgs bidoublet �,

SUð2ÞL � SUð2ÞR �Uð1ÞB�Lh�Ri
!

SUð2ÞL
�Uð1ÞYh�i

!
Uð1Þem:

The relevant Yukawa couplings which lead to small
nonzero neutrino mass are given by

LII
� ¼ yij‘iL�‘jR þ y0ij‘iL ~�‘jR þ H:c:

þ fijð‘TiRCi�2�R‘jR þ ðR $ LÞÞ þ H:c:; (1)

where ~� ¼ �2�
��2. In the above Yukawa Lagrangian, the

indices i, j ¼ 1, 2, 3 correspond to the three families of
fermions. The Majorana Yukawa couplings f are the same
for both left- and right-handed neutrinos because of
left-right symmetry. These couplings f give rise to the
Majorana mass terms of both left-handed and right-handed
neutrinos after the triplet Higgs fields�L;R acquire nonzero

vev. These mass terms appear in the seesaw formula as
discussed below. The resulting seesaw formula in this
minimal model can be written as

mLL ¼ mII
LL þmI

LL; (2)

where the usual type I seesaw formula is given by the
expression

mI
LL ¼ �mLRM

�1
RRm

T
LR: (3)

Here mLR is the Dirac neutrino mass matrix defined as
mLR ¼ yijh�i. It should be noted that the Yukawa cou-

plings yij in the definition of Dirac neutrino mass matrix

are not the same as the ones introduced in the Yukawa
Lagrangian (1), but the ones obtained at the electroweak
scale after renormalization group evolution (RGE) effects
are taken into account from the scale of left-right symme-
try breaking down to the electroweak scale. Such RGE
effects on neutrino parameters for type I and type II seesaw
models have been studied in [12,13], respectively.
However, in our present work we do not attempt to perform
a systematic RGE study of neutrino parameters in LRSM.
To simplify our analysis, we assume that the RGE effects
on the neutrino Yukawa couplings from the left-right
symmetry scale to the electroweak scale do not diminish
the effects of higher-dimensional Planck-scale-suppressed
operators on neutrino mass in LRSM (as we discuss in the
next section).
In LRSM with Higgs triplets, MRR can be expressed as

MRR ¼ vRfR with vR being the vev of the right-handed
triplet Higgs field �R, imparting Majorana masses to the
right-handed neutrinos and fR being the corresponding
Yukawa coupling. The first term mII

LL in Eq. (2) is due to
the vev of SUð2ÞL Higgs triplet. Thus, mII

LL ¼ fLvL and
MRR ¼ fRvR, where vL;R denote the vev’s and fL;R are

symmetric 3� 3 matrices. The left-right symmetry de-
mands fR ¼ fL ¼ f. The induced vev for the left-handed
triplet vL can be shown for generic LRSM to be

vL ¼ �
M2

W

vR

withMW � 80:4 GeV being the weak boson mass such that

jvLj � MW � jvRj:
In general � is a function of various couplings in the scalar
potential of generic LRSM, and without any fine-tuning �
is expected to be of the order unity (�� 1). The seesaw
formula in Eq. (2) can now be expressed as

mLL ¼ �ðMW=vRÞ2MRR �mLRM
�1
RRm

T
LR: (4)

III. HIGHER-DIMENSIONAL
OPERATORS IN LRSM

In the minimal LRSM discussed above, the next-to-
leading-order terms contributing to neutrino masses can
be written as
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L NR ¼ fgL‘
T
iRCi�2�R‘jR

�y
R�R

M2
Pl

þ R $ L; (5)

where MPl � 1019 GeV is the Planck scale. Here fgL �

fgR, and hence D-parity, is explicitly broken with the

introduction of the higher-dimensional operators above.
Now, using the tree-level Yukawa terms (1) as well as
the higher-dimensional operators (5), the right-handed
neutrino mass matrix can be written as

MRR ¼ fvR þ fgR
v3
R

M2
Pl

:

The first term on the right-hand side of Eq. (2) takes the
form

mII
LL ¼ fvL þ fgL

v3
L

M2
Pl

) mII
LL

¼ �ðMW=vRÞ2
�
fvR þ fgL

v2
LvR

M2
Pl

�
) mII

LL

¼ �ðMW=vRÞ2
�
MRR þ fgL

v2
LvR

M2
Pl

� fgR
v3
R

M2
Pl

�
:

Thus there arise two additional terms in the seesaw formula
after the higher-dimensional operators are taken into ac-
count. These two terms are proportional to v2

L=ðvRM
2
PlÞ

and vR=M
2
Pl, respectively. We check that neither of these

two correction terms can change the predictions of neu-
trino parameters from the ones predicted by the tree-level
seesaw formula (4). This is obviously because of the 1=M2

Pl

suppression in both the terms, which is almost negligible
compared to the tree-level neutrino mass terms.

Now, let us consider the presence of an additional gauge
singlet field � in LRSM. Since a singlet like �ð1; 1; 1; 0Þ
can naturally fit inside several SOð10Þ representations,
we assume the vev of this singlet field to be of order
h�i �MGUT � 1016 GeV. In the presence of such a field,
the nonleading terms contributing to neutrino masses can
be of dimension five as follows:

L NR ¼ fgL‘
T
iRCi�2�R‘jR

�

MPl

þ R $ L: (6)

Using the same analysis as in the case of minimal LRSM,
here MRR is found to be

MRR ¼ fvR þ fgR
h�ivR

MPl

:

The type II seesaw term mII
LL becomes

mII
LL ¼ �ðMW=vRÞ2

�
fvR þ fgL

h�ivR

MPl

�
) mII

LL

¼ �ðMW=vRÞ2
�
MRR þ ðfgL � fgRÞ h�ivR

MPl

�
:

Without losing any generality, we assume (fgL � fgR)

to be a Hermitian matrix of order one multiplied by a

numerical factor fg, which decides the overall strength of

the corrected term. In the next section, we study the
variation of neutrino mixing parameters as a function of
this numerical factor fg.

IV. NUMERICAL ANALYSIS

The latest global fit values for 3� range of neutrino
oscillation parameters [14] are as follows:

�m2
21 ¼ ð7:00–8:09Þ � 10�5 eV2

�m2
31ðNHÞ ¼ ð2:27–2:69Þ � 10�3 eV2

�m2
23ðIHÞ ¼ ð2:24–2:65Þ � 10�3 eV2

sin 2�12 ¼ 0:27–0:34 sin 2�23 ¼ 0:34–0:67

sin 2�13 ¼ 0:016–0:030;

(7)

where NH and IH refer to normal and inverted hierarchy,
respectively. Unlike the tight constraints on the above
parameters, the global fit 3� range for the value of Dirac
CP phase �CP extends over the entire 0–2� range. For
illustrative purposes, here we take its value to be 300
degrees (same as the central value given in [14]).
For the purpose of our numerical analysis, we first fit the

neutrino mass matrix mLL using the best fit global parame-
ters mentioned above. For both normal and inverted hier-
archical neutrino mass patterns, we consider extremal
Majorana phases such that the mass eigenvalues are either
ðm1; m2; m3Þ or ðm1;�m2; m3Þ denoted by (þþþ ) and
(þ�þ ) respectively. We follow the same approach for
numerical analysis as in [15], where the variation of neu-
trino mixing parameters with respect to the dimensionless
parameter � in the seesaw formula (4) was studied in
detail.
After parametrizing the neutrino mass matrix for the

tree-level seesaw formula (4) using the global fit neutrino
data, we introduce the correction term (6) to the seesaw
formula. As discussed above, this correction term is of the
form

mcorr
LL ¼ �ðMW=vRÞ2ðfgL � fgRÞ h�ivR

MPl

:

Here we assume ðfgL � fgRÞ ¼ fgOð1Þ, where Oð1Þ is a
Hermitian matrix of order one.
We then vary the dimensionless parameter fg from 10�5

to 1 and see the variations of neutrino mixing parameters.
The results are shown in Figs. 1–9, for three different
values of left-right symmetry breaking scales, vR ¼ 1010,
1012, 1014 GeV, and both normal and inverted hierarchies
as well as both types of extremal Majorana phases. As seen
from the figures, the changes in the neutrino mixing pa-
rameters from the best-fit values (corresponding to fg ¼ 0

in our case) become more and more significant as we go
from vR ¼ 1014 GeV to vR ¼ 1010 GeV. In particular, for
vR ¼ 1014 GeV, almost all the neutrino parameters lie
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vR = 1010 GeV
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FIG. 1 (color online). Variations of �m2
21 and �m2

31ðNHÞ, �m2
23ðIHÞ as a function of fg for vR ¼ 1010 GeV.
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FIG. 2 (color online). Variations of �m2
21 and �m2

31ðNHÞ, �m2
23ðIHÞ as a function of fg for vR ¼ 1012 GeV.
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vR = 1010 GeV
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FIG. 4 (color online). Variations of sin 2�12 and sin 2�23 as a function of fg for vR ¼ 1010 GeV.
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FIG. 3 (color online). Variations of �m2
21 and �m2

31ðNHÞ, �m2
23ðIHÞ as a function of fg for vR ¼ 1014 GeV.
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vR = 1012 GeV
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FIG. 5 (color online). Variations of sin 2�12 and sin 2�23 as a function of fg for vR ¼ 1012 GeV.
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FIG. 6 (color online). Variations of sin 2�12 and sin 2�23 as a function of fg for vR ¼ 1014 GeV.
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vR = 1010 GeV
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FIG. 7 (color online). Variations of sin 2�13 and sin 2�CP as a function of fg for vR ¼ 1010 GeV.
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FIG. 8 (color online). Variations of sin 2�13 and sin 2�CP as a function of fg for vR ¼ 1012 GeV.
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within the 3� allowed range for all possible values of fg.

Only �m2
21 goes outside the 3� range for fg > 0:1 for all

the models and �13 deviates from the allowed range for
fg > 0:35 for IHðþ þþÞ model. For vR ¼ 1012 GeV, the

mass squared differences lie within the allowed range only
when fg < 0:01, whereas for vR ¼ 1010 GeV, they lie

outside the 3� range for the entire range of fg parameters

under study. Similarly, the mixing angles are also found to
lie within the allowed range only for some small range of
parameter space for lower values of vR.

V. RESULTS AND CONCLUSION

We have studied the effects of higher-dimensional
Planck-scale-suppressed operators on neutrino masses
and mixings in left-right symmetric extension of standard
models. These higher-dimensional correction terms arise
due to the fact that no theory of quantum gravity respects
global symmetries, whether continuous or discrete. Since
left-right symmetric models have a built-in discrete global
symmetry called D-parity, it is generic to introduce explicit
D-parity breaking terms suppressed by the scale of gravity
or the Planck scale. We have shown that in the minimal
LRSM, the order of such higher-dimensional operators has
dimension of at least six and hence is too small to affect
neutrino masses and mixing. We then incorporate the
presence of an additional gauge singlet scalar field, which

allows dimension five Planck-suppressed operators to
contribute to the neutrino mass matrix. Such a gauge
singlet field can be naturally fit within several SOð10Þ
GUTmultiplets. As discussed in our earlier work [7], these
singlet scalar fields play a nontrivial role in destabilizing
domain walls that arise in these models as a result of
spontaneous D-parity breaking.
Sticking to the issue of neutrino mass alone in the

present work, we then fit the tree-level neutrino mass
matrix to the global best-fit neutrino data. After doing
this, we introduce the higher-dimensional operators and
see the variations in the neutrino mixing parameters with
the changes in the overall coupling strength of these op-
erators. We consider both normal and inverted hierarchies
and two extremal Majorana phases in our work. Doing this
exercise for three different left-right symmetry breaking
scales, namely 1014, 1012, 1010 GeV, we show that the
effects of these operators can be very significant for those
models with left-right symmetry breaking scale below
1014 GeV. It should be noted that the purpose of our
study is not to rule out or disfavor any particular model,
but to emphasize the fact that fitting the tree-level seesaw
formula with neutrino data is not enough in these models.
The higher-dimensional opearators that violate D-parity
explicitly can give rise to sizable contributions and hence
must be taken into account in generic left-right symmetric
models.

vR = 1014 GeV
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FIG. 9 (color online). Variations of sin 2�13 and sin 2�CP as a function of fg for vR ¼ 1014 GeV.
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