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We discuss the realization of a two Higgs doublets model in the framework of a six-dimensional gauge-

Higgs unification model with a simple Lie group GM. Two Higgs SUð2ÞL doublets can emerge at the low

energy effective theory, and the quartic coupling terms in the scalar potential, which are essential for the

electroweak symmetry breaking, are now GM gauge invariant and permissive. A realistic two Higgs

doublets model can possibly be obtained only when two of the root vectors associated with the would-be

Higgs doublets and the root vector for SUð2ÞL form an isosceles triangle with a vertex angle either of �=3,

�=2, or 2�=3. Moreover, depending on GM, the scalar potential of the resulting two Higgs doublets model

can admit only a few limited forms. The mass spectrum of the physical Higgs and the weak mixing angle

are briefly discussed.
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I. INTRODUCTION

In the gauge-Higgs unification (GHU) models, the
vector fields of gauge group GM � SUð2ÞL �Uð1ÞY
propagate in (4þ d)-dimensional spacetime. The gauge
components in the d compactified extra spatial dimensions
behave like scalar fields below the compactification scale
[1]. With properly chosen gauge symmetry and orbifolding
boundary conditions, an effective scalar SUð2ÞL doublet
can emerge at the low energy and play the role of the
Standard Model (SM) Higgs. Hence, we have no need
of introducing a fundamental scalar. Due to the higher
dimensional gauge symmetry, the d extra scalar fields are
massless. The spontaneous electroweak symmetry break-
ing (EWSB) in SM can be triggered by the quantum
corrections with the Wilson loop in the nonsimple con-
nected space [2]. The notorious gauge hierarchy problem
associated with a fundamental Higgs boson can be thus
alleviated. For instance, a Higgs doublet could arise from a
five-dimensional SUð3Þ electroweak gauge theory on the
S1=Z2 orbifold [3]. However, for d ¼ 1, the quartic cou-
pling term in the scalar potential must be generated by
some symmetry-breaking quantum corrections for it
vanishes at tree level as well. When d � 2, the quartic
coupling terms in the scalar potential, which arise from

the square of field strength, are gauge invariant by
construction. Moreover, it is possible to generate multi-
scalars at the low energy [4].
In this paper, we focus on the realization of two

Higgs doublets model (2HDM) in six-dimensional GHU
models, bearing in mind that (1) 2HDM predicts � �
M2

W=ðM2
Zcos

2�WÞ ¼ 1 after EWSB at tree level, and

(2) d ¼ 2 is the minimal requirement to yield two Higgs
[not limited to SUð2ÞL doublets]. We shall exhaust all
possible simple Lie groups for GM and examine the result-
ing quartic coupling terms of the Higgs potential, denoted
as V4, which is now completely determined by group
theory at tree evel. It is a delightful surprise to us that V4

can admit only a few forms for all possible Lie groups. Our
key finding is that, to successfully generate a 2HDM at low
energy, only the root vectors of GM associated with the
would-be Higgs doublets and the root vector for SUð2ÞL
form an isosceles triangle with vertex angle either of �=3,
�=2, or 2�=3. Moreover, V4 solely depends on the vertex
angle. Our result is summarized in Table II. On the other
hand, the quadratic terms of the Higgs potential, denoted as
V2, are assumed to be generated by some symmetry-
breaking mechanism and they cannot be fixed by the gauge
symmetry. However, by using the physical Higgs mass
spectrum, one can parametrize V2 phenomenologically
and bypass the question of their origin. Finally, it is a
well-known difficulty to construct a GHU model with the
weak mixing sin 2�W close to 1=4 at tree level [5,6]. In the
phenomenology section, we discuss two possible remedies,
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by including either the brane kinetic term (BKT) [7,8] or
an extra Uð1Þ factor, to address this problem and the
consequent modification to the Higgs mass spectrum.

II. GROUP THEORYANALYSIS

Following [6], we adopt the standard convention for the

Lie group that ½Hi;Hj� ¼ 0, ½ ~H; E�� ¼ ~�E�, ½E�; E��� ¼
~� � ~H, and ½E�; E�� ¼ N�;�E�þ�. Here, H and E� are the

Cartan and root generators of GM, respectively. The struc-
ture constant, N�;�, is given by N

2
�;� ¼ nðmþ 1Þð ~� � ~�Þ=2

[9]. Moreover, we take the following normalization for H
and E: trHiHj ¼ �ij, trE�E� ¼ ��þ�;0, and trE�Hi ¼ 0.

The two extra compactified spatial coordinates, x5 and x6,
can be conveniently described by a complex coordinate

z ¼ ðx5 þ ix6Þ= ffiffiffi
2

p
and its conjugate �z. Accordingly, we

work with Az � ðA5 � iA6Þ=
ffiffiffi
2

p
, the associated gauge field

components in z, where Az ¼ Aa
zT

a and Ta is the group
generator.

By imposing the proper orbifolding boundary conditions,
the remaining zero modes of Az, the would-be scalars, are
the gauge components associated with the unbroken group
generators E�;� while their four-dimensional (4D) gauge

components possess no zero modes. Unless further stated,
the notation Az is recycled to collectively signify these zero
modes which carry one mass dimension:

Az ¼ 1

2
huE� þ 1

2
hdE� þ 1

2
h0uE�� þ 1

2
h0dE��: (1)

And two would-be Higgs doublets can be built up in the
following way:

H1 ¼ 1ffiffiffi
2

p h0u
h0d

 !
; H2 ¼ 1ffiffiffi

2
p �hd

hu

 !
: (2)

The SM SUð2ÞL and Uð1ÞY groups must be embedded
into GM. If the root vector of the would-be SM SUð2ÞL
is denoted as ~�, the corresponding generators read

J0 ¼ 1
j ~�j2 ~� � ~H, Jþ ¼

ffiffi
2

p
j ~�jE�, and J� ¼ ðJþÞy. The would-

be hypercharge generator Y has to be a linear combination

of Cartan generators and denoted as ~y � ~H. Since the SM
group is SUð2ÞL �Uð1ÞY , hence ~y � ~� ¼ 0. The SM gauge
bosons correspond to the zero modes of the gauge fields
associated with these generators given as

A�¼Wþ
�E�þW�

�E��þW0
� ~� � ~HþB� ~y � ~H: (3)

In [5], the phenomenologically viable embedding of the
SM electroweak groups into GM has been studied, where
the normalization of ~y is fixed such that the SM Higgs
doublet carries a hypercharge 1=2 (Q ¼ T3 þ Y). The
root vectors ~� and ~y we adopt from [5] are listed in
the first two columns in Table II. From the commutators
of E�;�, one has

~�þ ~� ¼ ~� or ð ~�� ~� ¼ ~�Þ: (4)

Since hu and hd transform into each other within one
SUð2ÞL doublet, the magnitudes of the two root vectors

should be the same, j ~�j ¼ j ~�j. The same requirement
applies to the pair of h0u and h0d. From Eq. (4), the three

root vectors, ~�, ~�, and ~� form an isosceles triangle lying
on a plane in the root space. A trivial geometrical relation
follows that

j ~�j sin �
2
¼ j ~�j

2
; (5)

where � is an angle between ~� and ~�. For a simple Lie
group, � can take only three possible values: either �=3,
�=2, or 2�=3. Hence, the original group theory problem
of embedding the 2HDM in the GHU model with gauge
symmetry GM is now equivalent to looking for the
existence of any equilateral, right isosceles, or obtuse
isosceles triangles in the root diagram of GM.
Once the root ~� is given, one only needs to look up the

corresponding Dynkin diagram and find out which simple
root is adjacent to ~�. Next, one looks for the special
isosceles triangle in the two-dimensional space spanned
by the two simple roots. In Table I, we list all possible
realizations of 2HDM by employing Eqs. (4) and (5) in
various Lie groups. Note that all groups, except G2 and F4,
have only one possible angle between the two root vectors
for the would-be Higgs doublets.
We illustrate the finding by four rank-2 groups, A2, B2,

C2, andG2, which can be diagrammatically summarized in
the self-explanatory Fig. 1. Here, the triangles formed by

the corresponding root vectors, ~�, ~�, and ~�, are high-
lighted by color shades. Note that there are two distinct
isosceles triangles that can be drawn with ~� in the root
diagram for G2. Therefore, there are four possible forms
for V4 (two reds, two yellows, red with yellow on one side,
and red with yellow on the opposite sides) in the G2-based
GHU model. Since the root ~� for SM SUð2ÞL is always at
the end of the Dynkin diagram, the analysis for GM with a
rank higher than two is no more complicated than those
displayed in Fig. 1.

III. HIGGS POTENTIAL AND WEAK MIXING

The scalar quartic coupling terms in 2HDM arise
from the six-dimensional gauge field strength square,

g24Dtr½AZ; A
y
Z�2,

TABLE I. Vertex angles, isosceles triangles, and candidate
simple Lie groups for the possible realizations of 2HDM.

� ~�; ~� j ~�j Candidate groups Type of triangle

60� j ~�j An, Dn, G2, F4, E6;7;8 equilateral

90� j ~�jffiffi
2

p Bn, Cn, F4 right isosceles

120� j ~�jffiffi
3

p G2 obtuse isosceles
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V4 ¼ g24D
~�2

4
fðjhdj2 � jh0uj2Þ2 þ ðjhuj2 þ jh0dj2Þ2

þ 2ð ~N2
��;� þ 1Þðjhuj2jhdj2 þ jh0uj2jh0dj2Þ

þ 2ð ~N2
�;� � cos �Þðjhdj2jh0dj2 þ jhuj2jh0uj2Þ

þ 2ð ~N2
��;� þ ~N2

�;�Þðhdh	uh0uh0	d þ h	dhuh
0	
u h

0
dÞg; (6)

where ~N2
�;� � N2

�;�=
~�2
. Also, Eqs. (4) and (5) and the

relations N�;� ¼ �N�;� ¼ �N��;�� have been used to

arrive in the above expression. Unsurprisingly, the

resulting Higgs potential is completely determined by the
gauge group GM for a given root vector ~� for SM SUð2ÞL.
Equation (6) can be written in a much more compact

form as

V4ðH1; H2Þ ¼ 1

2
	ðjH1j2 � jH2j2Þ2 þ 1

2
N	jHy

1H2j2; (7)

where 	 ¼ j ~�j2g24D and N is an integer depending on the
groupGM, as shown in Table II. In Eq. (7),H1 andH2 have
the desired hypercharge, either Y ¼ 1=2 or Y ¼ �1=2.
Geometrically speaking, two identical or the mirror pair
root triangles are adopted for the two would-be Higgs
doublets. The cross coupling between H1 and H2,

1
2N	,

can be calculated from the ladder chain of root vectors. For
G2 and F4, there are two possible root triangles that can be
adopted for 2HDM. For each realization, ~y has to be
normalized accordingly, thus two possible N’s for G2 and
F4. Although the origins are totally different, Eq. (7) is
accidentally identical to the D-term Higgs potential in the
minimal supersymmetric SM (MSSM) if one substitutes
1
2	 ) g2þg02

8 and 1
2N	 ) g2

4 . It is thus expected that the

2HDM in GHU and the MSSM share a similar physical
Higgs mass spectrum.
Among all the Lie groups, the G2-based GHU models

have the richest 2HDM phenomenology. In addition to the
quartic coupling terms given in Eq. (7), the 2HDM based
on G2 can have two extra possible forms for V4:

V4ðH1;H2Þ
¼1

2
	

�
1

3
ðHy

1H1Þ2þðHy
2H2Þ2þN1ðHy

1H1ÞðHy
2H2Þ

þN2ðHy
1


aH2ÞðHy
2


aH1Þ
�
; (8)

where ðN1; N2Þ is either (�2,þ1) (as discussed in [10]) or
(þ4,�2), corresponding to the yellow and red triangles in

TABLE II. The candidate simple Lie groups, based on which the six-dimensional GHU model is phenomenologically viable [5],
their root vectors ~� and ~y for SUð2ÞL and Uð1ÞY , respectively, and all other relevant numbers; see text. Here, �k is the kth simple root
labeled by the Dynkin diagram, and ~�k is the rescaled kth fundamental weights such that ~�i � ~�j ¼ �ij. Note that the SM quark

representation cannot be accommodated in the GHU models based on the Cn or Dn groups [5]. However, Cn and Dn are listed here for
the sake of comparison and completeness.

Group � y tan �W ~N2��;�
~N2
�;� ��;� N

A: SUð3lÞ �1 ~�2=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3l=ð3l� 2Þp

1=2 0 60� 1

B: SOð2nþ 1Þ �1 ~�2=6
ffiffiffi
3

p
1 1 90� 4

C: USpð2nÞ �n ~�n�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðn� 1Þp

1 1 90� 4

D: SOð2nÞ �1, �n; n�1 ~�2=2, ~�n�2=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðn� 1Þp

1=2 0 60� 1

G2 �1 ~�2=2, ~�2=6
ffiffiffiffiffiffiffiffi
1=3

p
,

ffiffiffi
3

p
1=2, 3=2 0, 2 60�, 120� 1, 7

F4 �1 ~�2=2, ~�2=6
ffiffiffiffiffiffiffiffi
1=3

p
,

ffiffiffi
3

p
1=2, 1 0, 1 60�, 90� 1, 4

E6 �1;5 ~�2;3=2
ffiffiffiffiffiffiffiffi
3=5

p
1=2 0 60� 1

E7 �1;7 ~�2;3=6
ffiffiffi
3

p
,
ffiffiffiffiffiffiffiffi
3=2

p
1=2 0 60� 1

E8 �1;8 ~�2;3=6
ffiffiffiffiffiffiffiffi
9=7

p
,
ffiffiffiffiffiffiffiffi
3=5

p
1=2 0 60� 1

FIG. 1 (color online). Root diagrams, Dynkin diagrams, and
corresponding triangles of A2 (left upper), B2 (right upper), C2

(left bottom), and G2 (right bottom) where yellow, purple, and
red triangles represent the equilateral, right isosceles, and obtuse
isosceles triangles, respectively.
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Fig. 1 on the opposite sides or on the same side, respec-
tively. For G2, ~y aligns with the medians of two possible
root triangles. Hence, only one of the two Higgs doublets
can acquire the desired hypercharge. In Eq. (8), H1ðH2Þ
carries hypercharge 1=2ð3=2Þ. Therefore, only H1 is
responsible for the EWSB, and H2 is not the canonical
Higgs doublet with jYj ¼ 1=2. We note in passing that
since the two possible root triangles of F4 lie on different
planes, a not so interesting V4 with ðN1; N2Þ ¼ ð0; 0Þ can
emerge.

As mentioned in the Introduction, the Higgs quadratic
couplings in the GHU model must be generated radiatively
by some symmetry-breaking mechanism [11]. The result-
ing quadratic couplings are highly model dependent.
Here, we take a bottom-up approach and treat all quadratic
couplings as phenomenological parameters. Then the full
SUð2Þ invariant scalar potential of 2HDM reads

V ¼ m2
1jH1j2 þm2

2jH2j2 �m2
12ðHy

1H2 þHy
2H1Þ þ V4:

(9)

Based on this, a textbook EWSB analysis can be performed
straightforwardly. We denote the vacuum expected values

as hH0
1i ¼ v1 and hH0

1i ¼ v2 with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

2

q

 246 GeV,

and tan� ¼ v2=v1. The masses of CP odd pseudoscalar
A0 and charged Higgs Hþ are given by M2

A0
¼

m2
12= sin� cos� and M2

Hþ ¼ M2
A0

� 1
4N	v2, respectively.

Similar toMSSM, the tree-level mass of the lightest neutral

Higgs has an upper bound, Mh �
ffiffiffiffiffiffiffiffiffi
	v2

p
ð
ffiffiffiffiffiffiffiffiffiffiffi
7	v2

p
=2Þ for

N ¼ 1 and 4 (N ¼ 7), which may cause a phenomenologi-
cal problem. However, just like in MSSM, there are many
heavy degrees of freedom beyond SM in the GHU model.
Similar to the positive �Mh due to the stop loops in the
MSSM [12], it is well known that the inclusion of all the
radiative corrections from either the bulk fields and their
Kaluza-Klein excitations, the brane-localized fields, or the
brane kinematic terms could largely enhance Mh from
the above tree-level prediction [11]. However, a general
discussion on this issue is still lacking. Such a model-
independent discussion on the radiative corrections to Mh

is beyond the scope of the present paper; here we just
assume that a careful consideration which includes the
radiative corrections to V4 can rescue the lightest neutral
Higgs mass problem as in MSSM. The investigation along
this line will be presented elsewhere [13].

Finally, we address the weak mixing angle problem in
GHU which is independent of d. Adding the BKT to the
GHU model is one of the remedies to obtain a realistic
sin 2�W close to the experimental value. We use the follow-
ing BKT which involves gauge zero modes on the brane
only:

LB:K ¼ � 1

4

Z
d4xdx5dx6�ðx5Þ�ðx6Þ

� ½c1ðFð0Þa
�� Þ2 þ c2ðFð0Þb

�� Þ2�; (10)

where the superscript (0) represents the zero mode, c1, c2
are free parameters with mass dimension -2, and a, b are
the group indices for SM SUð2ÞL and Uð1ÞY , respectively.
The 4D effective gauge couplings are modified:

gi4D ! gi4Dffiffiffiffiffi
Zi

p ; with Zi ¼ 1þ ci
Z2
0

; ði ¼ 1 or 2Þ;
(11)

where Z2
0 is the volume of the two extra dimensions. As a

result, the weak mixing angle becomes

tan �W !
ffiffiffiffiffiffi
Z1

Z2

s
tan�W: (12)

From the experimental value tan �W ¼ 0:5356 [14], the
ratio of Z1=Z2 can be fixed for a given GM. Moreover,
the upper bound of the lightest neutral Higgs mass gets a
factor of

ffiffiffiffiffiffi
Z1

p
enhancement and this problem can be

alleviated as well.
Adding an additionalUð1Þ0 gauge group is an alternative

to obtain a realistic weak mixing angle in the GHU model.
The mixing between SM Uð1ÞY and Uð1Þ0 leads to an
effective Z2 � 1 (with Z1 ¼ 1) as in the previous case.
The extra Uð1Þ factor introduces a new electrically neutral
gauge boson whose mass shall be arranged to be the order
of the compactification scale. The original tan�W for each
group without Uð1Þ0 can be found in Table II. Note that to
obtain the realistic �W , SUð3Þ, SOð2nþ 1Þ,G2, F4, and E7

require the largest Z2 among all the groups.
Before concluding, we remark on the new scalar boson

recently observed near 126 GeV with the diphoton excess
at the Large Hadron Collider [15,16]. Although most of its
physical properties seem to be consistent with the elemen-
tary Higgs boson in the SM, the diphoton excess may
indicate the existence of new physics beyond the SM. As
discussed, Mh 
 126 GeV could be easily accommodated
in a realistic 2HDM in the GHU models with some con-
struction dependent extensions. We note in passing that the
diphoton excess, if it persists, could also be explained in
this GHU framework for there are many charged heavy
degrees of freedom.
In summary, we perform a general group theory analysis

on the realization of 2HDM in the GHU model with a six-
dimensional gauge GM symmetry, where GM is a simple
Lie group. We showed that a 2HDM at low energy can
possibly be made if the three root vectors associated with
the would-be Higgs doublets and the SM SUð2ÞL form
isosceles triangles with a vertex angle either of �=3,
�=2, or 2�=3. The quartic coupling terms in the 4D
effective 2HDM potential are completely determined by
the group GM at tree level. Only a few potential forms can
be admitted for all possible Lie groups, as shown in
Table II. Moreover, which form to be admitted depends
solely on the vertex angle. We observed that, among all
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possible Lie groups, the 2HDM based on the GHU model
with theG2 gauge symmetry has the richest structure in the
Higgs potential. We discuss the mass spectrum of physical
Higgs bosons and two possible remedies to obtain a real-
istic weak mixing angle in GHU models as well. Finally,
we briefly comment on how to accommodate the recently
observed 
126 GeV scalar boson at the Large Hadron
Collider in this GHU framework.
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