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We verify that SUðNÞTC � SUð3ÞL � Uð1ÞX models, where the gauge symmetry breaking is totally

dynamical and promoted by the non-Abelian technicolor group and the strong Abelian interactions, are

quite constrained by the LHC data. The theory contains a T quark self-energy involving the mixing

between the neutral gauge bosons, which introduces the coupling between the light and heavy composite

scalar bosons of the model. We determine the lightest scalar boson mass for these models from an

effective action for composite operators, assuming details about the dynamics of the strong interaction

theories. Comparing the value of this mass with the ATLAS and CMS observation of a new boson with a

mass M� � 125 GeV and considering the lower bound determined by the LHC Collaboration on the

heavy neutral gauge boson ðZ0Þ present in these models, we can establish constraints on the possible

models. For example, if SUðNÞTC � SUð2ÞTC, with technifermions in the fundamental representation, the

model barely survives the confrontation with the LHC data.

DOI: 10.1103/PhysRevD.87.095004 PACS numbers: 12.60.Nz, 12.60.Rc

I. INTRODUCTION

The Standard Model (SM) of electroweak interactions is
in excellent agreement with the experimental data and has
explained many features of particle physics throughout the
years. Despite its success there are some points in the
model, for instance, the enormous range of masses between
the lightest and heaviest fermions and other peculiarities,
that could be better explained at a deeper level assuming
the introduction of new fields or symmetries.

Recently the ATLAS and CMS collaborations reported
the observation of a new boson with a mass M� �
125 GeV which is suspected to be the SM Higgs boson.
The current data on this boson diphoton event rate exhibit
a signal strength about 1.5–2 times larger than the one
expected for the Standard Model Higgs boson. There are
already many SM extensions trying to explain this possible
enhancement of the �� decay. In particular, the increase of
this decay rate is natural in the context of a 3-3-1 model
[1,2] and its alternative version with exotic leptons [3], due
to the presence of an extra charged vector boson and a
doubly charged one as discussed in Ref. [4].

This class of models predicts interesting new physics at
the TeV scale [5] and addresses some fundamental ques-
tions that cannot be explained in the framework of the
Standard Model [6,7]. These models also contain a set
of fundamental scalar bosons, with many parameters and
clearly suffering from the problems of naturalness and
hierarchy [8,9]. However, in Refs. [10,11] it was suggested
that the gauge symmetry breaking in some versions of the
3-3-1 model [3] could be promoted dynamically, because
at the scale of a few TeVs the Uð1ÞX coupling constant
becomes strong and the exotic quark T that appears in the
model forms a condensate breaking SUð3ÞL �Uð1ÞX to the

SM electroweak symmetry. This is a very interesting fea-
ture and peculiar to this class of models. Unfortunately the
SM gauge symmetry still remains intact, and the nice
characteristics of the model could be missed with the
introduction of an elementary scalar field in order to break
the electroweak gauge symmetry, leading to an unpleasant
system of composite and elementary fields responsible for
the gauge symmetry breaking.
In Ref. [12] the full realization of the dynamical

symmetry breaking of an SUð3ÞL �Uð1ÞX extension of
the SM [3] was explored. This was accomplished assum-
ing the gauge symmetry SUð2ÞTC � SUð3ÞL �Uð1ÞX,
where the electroweak symmetry is broken dynamically
by a technifermion condensate generated by the SUð2ÞTC
technicolor (TC) gauge group; i.e., besides the exotic T
quark condensate and respective composite scalar, we now
have another composite scalar boson formed by SUð2ÞTC
technifermions. This symmetry breaking also occurs when
we exchange the SUð2ÞTC group by the SUðNÞTC group,
as well as when we deal with different technifermion
representations [13].
In 3-3-1 models where the gauge symmetry breaking is

promoted by elementary scalar fields, the many parameters
in the scalar potential can be variated in a large range
leaving space to scape, up to now, to the LHC experimental
constraints. However, in the case where the gauge symme-
try breaking is totally dynamical, once we describe the
possible dynamics of the theory, we may already have
some limitation on the possible models. The study of
possible constraints in this class of models is the main
motivation of this work. We compute the effective poten-
tial for composite operators of a class of 3-3-1 models
where the gauge symmetry is dynamically broken, with
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the main purpose of determining the composite scalar
masses. If, for instance, we consider SUðNÞTC�SUð2ÞTC,
we verify that it is quite difficult to generate a scalar boson
mass of 125 GeV, assuming that it is a composite scalar that
has been observed at the LHC, obeying, at the same time,
the lower limit on the Z0.

The composite scalar system of these 3-3-1 models has a
mixing related to the Z and Z0 mixing, which is present in
the exotic T quark self-energy. This mixing will appear in
the calculation of the effective potential for composite
operators [14], which, when minimized, supply the physi-
cal scalar masses, and it is important to know its amount
because the scalar masses may be modified by this effect.
There are other possible contributions to this mixing, that
would appear in an extended theory necessary to explain
the fermion masses, whose spectrum has no explanation
in any dynamical symmetry breaking model up to now.
However, these corrections are expected to be small com-
pared to the ones that we discuss here, and it will become
clear that already at this level some versions of these
models may be excluded by the recent LHC data.

The distribution of our paper is the following: In Sec. II
we present the main aspects of the SUðNTCÞ � SUð3ÞL �
Uð1ÞX models. In Sec. III we discuss the mixing of the
neutral gauge boson system and its relation to the T quark
dynamical mass and present the self-energies that will be
used in the effective action calculation. The mixing in the T
quark self-energy will be responsible for the coupling
between the composite scalars ð�T;�Þ, associated, respec-
tively, with the breaking of symmetries SUð3ÞL �Uð1ÞX
and SUð2ÞL �Uð1ÞY in the effective potential. Section IV
contains the calculation of the effective action, and in
Sec. V we compute numerically the scalar boson masses
for different TC groups. Finally, in Sec. VI we draw our
conclusions.

II. SUðNÞTC � SUð3ÞL � Uð1ÞX MODELS

Below we describe the main features of the models,
which are similar to those proposed in Ref. [12]; the
fermionic content has the following form:

Q3L ¼
t

b

T

0
BB@

1
CCA

L

� ð1; 3; 2=3Þ; tR � ð1; 1; 2=3Þ;

bR � ð1; 1;�1=3Þ; TR � ð1; 1; 5=3Þ;

Q�L ¼
D

u

d

0
BB@

1
CCA

�L

� ð1; 3�;�1=3Þ; u�R � ð1; 1; 2=3Þ;

d�R � ð1; 1;�1=3Þ; D�R � ð1; 1;�4=3Þ; (1)

where � ¼ 1, 2 is the family index and we represent the
third quark family by Q3L. In these expressions ð1; 3; XÞ,
ð1; 3�; XÞ or ð1; 1; XÞ denote the transformation properties
under SUðNTCÞ � SUð3ÞL �Uð1ÞX and X is the corre-
sponding Uð1ÞX charge. The leptonic sector includes,
besides the conventional charged leptons and their respec-
tive neutrinos, the charged heavy leptons Ea [3].

laL ¼
�a

la

Ea

0
BB@

1
CCA

L

� ð1; 3; 0Þ; (2)

where a ¼ 1, 2, 3 is the family index and laL transforms as
triplets under SUð3ÞL. Moreover, we have to add the
corresponding right-handed components, laR � ð1; 1;�1Þ
and EaR � ð1; 1;þ1Þ.
The fermionic content associated with the TC sector has

the form

�1L ¼
U1

D1

U0

0
BB@

1
CCA

L

� ðNTC; 3; 1=2Þ; U1R � ðNTC; 1; 1=2Þ; D1R � ðNTC; 1;�1=2Þ; U0
R � ðNTC; 1; 3=2Þ;

�2L ¼
D0

U2

D2

0
BB@

1
CCA

L

� ðNTC; 3
�;�1=2Þ; U2R � ðNTC; 1; 1=2Þ; D2R � ðNTC; 1;�1=2Þ; D0

R � ðNTC; 1;�3=2Þ;

(3)

where 1 and 2 label the first and second techniquark
families; U0 and D0 can be considered as exotic techni-
quarks making an analogy with quarks T andD that appear
in the ordinary fermionic content of the model. The model
is anomaly-free if we have equal numbers of triplets and
antitriplets, counting the color of SUð3Þc. Therefore, in
order to make the model anomaly-free two of the three
quark generations transform as 3�, and the third quark

family and the three lepton generations transform as 3. It
is easy to check that all gauge anomalies cancel out in this
model; in the TC sector the triangular anomaly cancels
between the two generations of technifermions. In the
present version of the model the technifermions are sin-
glets of SUð3Þc.
As pointed out in Refs. [10,11], one interesting feature

of the versions [1–3] of 3-3-1 models is the following
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relationship among the coupling constants g and g0 asso-
ciated with the gauge group SUð3ÞL �Uð1ÞX,

t2 � �0

�
¼ �X

�
¼ sin 2�Wð�Þ

1� 4sin 2�Wð�Þ ; (4)

where � ¼ g2=4�, �0 ¼ g02=4�, and �W is the electro-
weak mixing angle. According to the discussion presented
in [10,11], it is precisely this feature of the model that
allows the gauge symmetry breaking of this version of the
SUð3ÞL �Uð1ÞX model to the SM symmetry, because at
the scale of a few TeVs the Uð1ÞX coupling constant
becomes strong as we approach the peak existent in
Eq. (4). Therefore, in the model described in this section
the exotic quark T will form a condensate breaking
SUð3ÞL �Uð1ÞX to the electroweak gauge symmetry, while
the SM gauge symmetry will be broken dynamically by a
technifermion condensate.

In order to compute the effective action generated for the
composite scalar bosons resulting from the two symmetry
breaking stages, in the next section we discuss the T quark
self-energy, which is related to the mixing between the
standard model neutral gauge boson Z with the Z0 boson.

III. THE (Z0-Z) MIXING AND SELF-ENERGIES

In the models that we consider here, there is a mixing
between the Standard Model neutral gauge boson Z with
the Z0 boson; the mass eigenstates are [15]

Z1 ¼ Z cos�� Z0 sin �; (5)

Z2 ¼ Z0 cos �þ Z sin �; (6)

where the mixing angle (�) is given by [15]

tan� ¼ M2
Z �M2

Z1

M2
Z2

�M2
Z

: (7)

In this case (Z1) represents the SM neutral boson and (Z2)
corresponds to the additional 3-3-1 heavy neutral boson.
Therefore, assuming this mixing we can write in the
Euclidean space the following linearized gap equation
[�Tðp2Þ] for the T quark:

�Tðp2Þ ¼ a cos�
Z

dk2k2
�Tðk2Þ

½k2 þ�2
X�

1

½ðp� kÞ2 þM2
Z0 �

þ a sin �
Z

dk2k2
�Tðk2Þ

½k2 þ�2
X�

1

½ðp� kÞ2 þM2
Z�
;

(8)

where

a ¼ 3g2XXLXR

16�2
:

�X is the energy scale where the Uð1ÞX interaction
becomes sufficiently strong to break dynamically the
SUð3ÞL �Uð1ÞX to SUð2ÞL �Uð1ÞY , g2X is the Uð1ÞX

coupling constant, and XL and XR are, respectively,
Uð1ÞX charges attributed to the chiral components of the
exotic quark T.
Besides the condensate and composite states (scalar and

pseudoscalar) associated with Eq. (8), we have similar
entities due to the SUðNÞTC group condensation at the
scale �TC, generated by a nontrivial technifermion self-
energy [�2

TCðp2Þ]. As discussed in Ref. [12] the technifer-

mion multiplets�1 and�2 described in Eq. (3) lead to the
formation of composite scalar bosons (�1 and �2) that are
equivalent to the set of fundamental scalar fields, � and 	
[1,3], so, in order to obtain a structure of the scalar poten-
tial similar the one described in [1,3], we will assume that

� ¼ �1 þ�2ffiffiffi
2

p : (9)

This normalization results from the fact that f2� / �2

[as we shall describe in Eq. (29)], and from this it is
possible to verify that

�2 ¼ �2
1 þ�2

2; (10)

once f2� ¼ f2�1
þ f2�2

, and h�1i ¼ h�2i, typical of the two
technifermion generations of Eq. (3). The f�i

are the

technipion decay constants that can be computed through
the linearized Pagels and Stokar relation [16]

f2� � NTC

4�2

Z dp2p2�2
TCðp2Þ

ðp2 þ�2
TCÞ2

; (11)

whereas the pseudoscalar decay constant associated with
T quark self-energy, �Tðp2Þ will be written as

F2
� � 1

4�2

Z dp2p2�2
Tðp2Þ

ðp2 þ�2
XÞ2

: (12)

To compute the effective potential for composite opera-
tors [14] we need to know the self-energies of the strongly
interacting fermions: the T quark and the fermions with
SUðNÞTC charges. Equation (8) has two possible solutions,
and in the program developed in Refs. [17,18] it was
verified that the solution falling slowly with the momentum
is the dominating one if suitable new interactions are
assumed to be relevant at the scale of the (UV) cutoff. In
this case the gauge boson mass integrals receive significant
contributions from a very large range of loop momenta, and
the SM gauge boson masses MW and MZ turn out to be of
similar magnitude when compared to the top quark mass.
This is exactly the situation that we have in the approach
proposed to promote the gauge symmetry breaking of
SUð3ÞL �Uð1ÞX to the electroweak symmetry, where at
the scale of a few TeVs the Uð1ÞX coupling constant
becomes strong as we approach the peak existent in
Eq. (4). In Ref. [10], after the numerical calculation of
MT , it was found that the magnitudes ofMZ0 andMT are the
same order. Therefore, considering the above comments we
will assume that the solution of Eq. (8) is given by
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�Tðp2Þ � �0
Tðp2Þ

�
1� hð!Þ ln

�
p2

�2
X

�
tan�

�
; (13)

and it is the one that will be used for the T quark self-energy
to determine the effective potential (�T). To write Eq. (13)
we define the following quantities:

�0
Tðp2Þ ¼ �X

�
p2

�2
X

��ð1�!
2 Þ
;

where ! ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4A

p
, A ¼ a cos�, and

hð!Þ ¼
�
1� 1

!
þ A

!

�
: (14)

In the case of fermions with SUðNÞTC charges the self-
energy will be given by

�TCðp2Þ ��TC½1þ bg2 ln ðp2=�2
TCÞ���; (15)

where �TC is the SUðNÞTC characteristic scale of mass
generation,

� ¼ 3c=16�2b (16)

and c ¼ 1
2 ½C2ðR1Þ þ C2ðR2Þ � C2ðR3Þ� where C2ðRiÞ are

the Casimir operators for fermions in the representations
R1 and R2 that condense in the representation R3, b ¼
ð11N � 2NfÞ=48�2 for the SUðNÞTC group with Nf fla-

vors, and g2TC is the coupling constant for which we assume

the expression

g2TCðk2Þ ¼
1

b ln ½ðk2 þ 4m2
gÞ=�2� ; (17)

where mg is an infrared dynamical gauge boson mass,

whose phenomenologically preferred value is mg � 2�

[19,20], and we will set � ¼ �TC. Note that, using the
above coupling constant, we are assuming that non-
Abelian gauge theories generate dynamical masses for
their gauge bosons [19,21]. As a consequence, it is ex-
pected that confinement should be necessary to generate
nontrivial fermionic self-energies [22,23], and the expres-
sion for the self-energy is the one of Eq. (15), as discussed
at length in Ref. [24]. The main features of Eq. (15) are that
it causes the decoupling of heavier degrees of freedom in
models where there is an interaction connecting different
fermionic families [24], it leads to the deepest minimum of
energy, with a vacuum expectation value proportional to
1=g2 [25–27], it is the only self-energy able to naturally
explain fermion masses as heavy as the top quark [28], and
it is the unique possible form of solution that may generate
a light composite scalar boson [29,30].

In the self-energies that we discussed above the charac-
teristic scales �X and �TC have not been determined up to
now. However, they should be constrained by the value
of the SUð3ÞL �Uð1ÞX gauge boson masses. In order to do
so we notice that, for MZ0 	 MZ, it is possible to show
that [15]

tan � � 1

2
ffiffiffi
3

p
t2

M2
Z

M2
Z0
: (18)

Assuming the result described in Ref. [12] we obtain the
masses

M2
Z ¼ g2

4
ðf2�1

þ f2�2
Þ
�
1þ 4t2

1þ 3t2

�
¼ g2

4
f2�

�
1þ 4t2

1þ 3t2

�
; (19)

M2
Z0 ¼ g2

4
F2
�

�
4

3
þ 4t2

�
: (20)

With these masses and Eq. (18), we can write Eq. (13) in
the form

�Tðp2Þ � �0
Tðp2Þ

�
1þ Að!Þ f

2
�

F2
�

ln

�
p2

�2
X

��
; (21)

where for SUðNÞTC

Að!Þ ¼ �
ffiffiffi
3

p
NTC

16t2
ð1þ 4t2Þ
ð1þ 3t2Þ2 hð!Þ:

The f� decay constant is related to the SM vacuum expec-
tation value (vev) through

f2� ¼ ðf2�1
þ f2�2

Þ ¼ v2 ¼ 4M2
W

g2
¼ ð246 GeVÞ2; (22)

and in the case of T quark self-energy, since there is no
evidence of the Z0 boson, we just assume F� �Oð�XÞ �
OðTeVÞ. Equations (15) and (21) are the main ingredients
to compute the effective action for the model described
in Sec. II.

IV. THE EFFECTIVE ACTION FOR
COMPOSITE SCALAR BOSONS OF

THE SUðNTCÞ � SUð3ÞL � Uð1ÞX MODEL

The effective potential for composite operators [14]
is a function of the Green’s functions of the theory; in
particular, it can be written as a function of the complete
fermion (S) and gauge boson (D) propagators as

VðS;DÞ¼�i
Z d4p

ð2�Þ4 TrðlnS
�1
0 S�S�1

0 Sþ1ÞþV2ðS;DÞ;
(23)

where S0 (and D0) stands for the bare fermion (gauge
boson) propagator and V2ðS;DÞ is the sum of all two-
particle irreducible vacuum diagrams. The physically
meaningful quantity that we must compute is the vacuum
energy density given by

�V ¼ VðS;DÞ � VðS0; D0Þ; (24)

where we are subtracting the symmetric part of the poten-
tial from the potential that admits condensation in the
scalar channel, which is denoted by VðS0; D0Þ and is a
function of the perturbative propagators (S0 and D0).
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The vacuum energy density, if we remove all indices and
integrations, can be written as [14,25]

�V ¼ �iTrðln S�1
0 S� S�1

0 Sþ 1Þ þ iTr�ðS� S0Þ

þ 1

2
iTrð�S�S� �S0�S0ÞD: (25)

The self-energies described by Eqs. (15) and (21) enter into
the definition of S.

How the effective action for composite scalar bosons
emerges from Eq. (25) in the case of a dynamically broken
gauge theory including the kinetic term has been detailed
by Cornwall and Shellard [31], and is also discussed in
Refs. [25,32]. Here we will skip lengthy details and follow
closely the work of Ref. [32], where it was shown that the
effective action generated for a TC model could be written
in the following way:

�TC¼
Z
d4x

�
1

2ZTC

@��@���
4TC

4
�4�
6TC

6
�6�




�
:

(26)

The effective scalar field �ðxÞ acts like a dynamical
effective scalar field with anomalous dimension 2� and
is related to the bilinear self-energy�ðk; pÞ / �ðkÞ�ðpÞ; it
is seen as a variational parameter, and the kinetic term for
our effective theory is obtained by inserting �ðkÞ into the
effective action and expanding around k ¼ 0 [25,31,32].
In the above equation

ZTC � 4�2�ð2�� 1Þ
NTCNf

(27)

and


4TC ¼ NTCNf

4�2

�
1

�ð4�� 1Þ þ
1

2

�


6TC ¼ �NTCNf

4�2

�
1

�2
TC

�
:

(28)

In these expressions, � ¼ bg2TC, Nf denotes the number of

technifermions; � has been defined in Eq. (16) and is
calculated for the respective TC representations.

In Eq. (26) a term proportional to �2 does not appear
because we assume that the self-energies are exact solu-
tions of the linearized gap equations [14]; also, odd terms
in� do not appear because we do not have current fermion
masses. The constant ZTC arises when the contribution of
the kinetic term is included in the calculation of the effec-
tive action [25,31,32], and this acts as a normalization
constant. This contribution is important in our calculation
because it will give the correct normalization of the effec-
tive fields, � and �T , as discussed in Refs. [25,31,32].

In terms of these fields we can also write the decay con-
stants for the TC and T fermions as

f2� ¼ NTC

4�2

�2

�

1

ð2�� 1Þ ; (29)

while for the self-energy, �0
Tðp2Þ, we obtain the following

relation,

F2
� ¼ �2

T

4�2

1

2a
; (30)

and in this case h�Ti ’ �X.
We can now present the contribution to the effective

action due to the composite scalar boson formed by the
strong interaction of the exotic T quark. Below we show
the �4

T and �6
T terms of the effective potential �T and the

corrections ��T assuming the mixture in Eq. (13) and the
comments leading to Eq. (21):

�T ¼
Z

d4x

�
1

2ZT

@��T@
��T � 
4T

4
�4

T � 
6T

6
�6

T

� �
4T

4
�2

T�
2 � �
6T

6
�4

T�
2 � 
 
 


�
; (31)

where we identify

ZT � 8�2a; 
4T � 1

4�2

�
1

4a
þ 1

4

�
;


6T � � 1

4�2

1

�2
X

; �
4T ¼ a�
4

�2

�
1

4a
þ 1

4

�
;

(32)

�
6T ¼ ��
4

4�2

24a2

1þ 2a

1

�2
X

;

�
4 ¼
ffiffiffi
3

p
NTC

16�t2

�
1

ð2�� 1Þð1� 2aÞ
� ð1þ 4t2Þ
ð1þ 3t2Þ2 :

(33)

In these expressions we assume the existence of just
one exotic quark that condenses in the most attractive
channel [33].
In order to reproduce a standard scalar effective field

theory we introduce in our effective Lagrangian the nor-
malized fields

�ðxÞ ¼ Z�1=2
TC �ðxÞ; (34)

�TðxÞ ¼ Z�1=2
T �TðxÞ: (35)

Now, considering Eq. (9), where we see that the field �
actually represents two fields (�1 and �2), and adding
Eq. (26) to Eq. (31) we can write down the full effective
action in terms of the normalized fields �T and �ðxÞ
(composed of �1 and �2):
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�ð�T;�Þ¼
Z
d4x

�
1

2
@��1@

��1þ1

2
@��2@

��2þ1

2
@��T@

��T�

R
4T

4
�4

T�

RðaÞ
4TC

4
�4

1�

RðaÞ
4TC

4
�4

2�

RðaÞ
4TC

4
�2

1�
2
2

�
RðaÞ
4TC

4
�2

2�
2
1�


RðbÞ
4TC

4
�2

T�
2
1�


RðbÞ
4TC

4
�2

T�
2
2�


R
6T

6
�6

T�

RðaÞ
6TC

4
�6

1�

RðaÞ
6TC

4
�6

2�

RðaÞ
6TC

4
�2

1�
4
2�


RðaÞ
6TC

4
�2

2�
4
1

�
RðaÞ
6TC

4
�2

1�
2
2�

2
1�


RðaÞ
6TC

4
�2

2�
2
1�

2
2�


RðbÞ
6TC

4
�4

T�
2
1�


RðbÞ
6TC

4
�4

T�
2
2�


RðbÞ
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; (36)

where the normalized couplings for the composite fields, �T , �1, and �2, are given, respectively, by


R
4T

¼ Z2
T

4�2

�
1

4a
þ 1

4

�
; 
RðaÞ

4TC
¼ NTCNfZ

2
TC

4�2

�
1

�ð4�� 1Þ þ
1

2

�
; 
RðbÞ

4TC
¼ a�
4ZTZTC

�2

�
1

4a
þ 1

4

�
;


R
6T

¼ � Z3
T

4�2

1

�2
X

; 
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¼ �NTCNfZ
3
TC

4�2

1

�2
TC

; 
RðbÞ
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¼ ��
4Z
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TZTC

�2

6a2

1þ 2a

1

�2
X

:

(37)

V. THE 125 GEV SCALAR BOSON
AND THE EFFECTIVE ACTION FOR

THE SUðNTCÞ � SUð3ÞL � Uð1ÞX MODEL

To compute the scalar masses from the effective
Lagrangian described in Eq. (36) we use

M2
�i

¼ @2�ð�T;�Þ
@�2

i

���������i¼�imin

; (38)

where i ¼ 1, 2, and (1, 2) label the first and second
techniquark families. After neglecting terms of higher
order when substituting the minimum value in the poten-
tial, we obtain

M2
�i

� 2
RðaÞ
4TC

0
@
RðaÞ

4TC


RðaÞ
6TC

1
Aþ 2
RðbÞ

4TC

0
@
RðbÞ

4TC


RðbÞ
6TC

1
A: (39)

Assuming the above equation, with couplings 
RðaÞ
4TC

,


RðaÞ
6TC

, 
RðbÞ
4TC

, and 
RðbÞ
6TC

defined by Eq. (37), we finally can

make a scan in the parameter space ½�TC ��X� limiting
the Higgs mass to the range 120 GeV<MH < 130 GeV,
in order to exclude possible candidates for TCmodels. Note
that for this purpose we assume that ATLAS and CMS are
indeed observing a new scalar boson with a mass M� �
125 GeV, and we consider also the strong limit on the Z0
mass announced by these collaborations [34].

The extra Z0 boson is predicted in many extensions of
the Standard Model at the TeV mass scale, as in the
Sequential Standard Model ðZssmÞ [35], with SM-like cou-
plings. With LHC data at (

ffiffiffi
s

p ¼ 8 TeV), recently the
ATLAS and CMS collaborations placed strong constraints
on the mass of these particles [34]. These constraints
depend on the knowledge of the coupling of this boson
with SM fermions. In the case of the Zssm model with
SM-like couplings, the Z0 mass can be excluded below
2.49 TeV. This limit can also be taken as a lower limit on
the Z0 mass of the models discussed here. In this particular
case, if MZ0 > 2:49 TeV the energy scale �X should be

limited to �X > 1:1 TeV. In Fig. 1 we present the allowed
region of parameters for the SUð2ÞTC, SUð3ÞTC and
SUð4ÞTC cases, with a scalar composite ‘‘Higgs’’ mass
range 120 GeV<MH < 130 GeV. The solid black line
corresponds to the lower limit on �X, and from this figure
we verify that if SUðNÞTC � SUð2ÞTC the model barely
survives the confrontation with the LHC data.
There are possible corrections to the scalar mass values

that we discussed here. As pointed out recently in Ref. [36]
radiative corrections induced by the effective scalar
coupling to the top quark may decrease the scalar mass.
These corrections give a contribution to the scalar mass
with a negative signal typical of fermion loops, allowing a
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FIG. 1 (color online). The region of parameters, �TC and �X,
for a composite scalar mass range 120 GeV<MH < 130 GeV
in the case of SUð2ÞTC, SUð3ÞTC, and SUð4ÞTC TC groups. The
left triangle (region in red) corresponds to SUð2ÞTC. The inter-
mediate parallelogram (blue region) to SUð3ÞTC, and the one in
the right side (yellow region) to SUð4ÞTC. In this figure we
assume Nf ¼ 6 for all groups. The solid line corresponds to

the lower limit on �X (i.e., MZ0 ).
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lighter scalar and possibly alleviating the mixing with the
heavier scalar boson. They are not easy to compute at
a fundamental level once there is a form factor in the
effective coupling that is difficult to determine and may
decrease the amount of this contribution. On the other
hand, it is quite possible that the lighter scalar boson would
also mix with other scalar states of the TC sector, as scalar
techniglueballs, as well as the scalar mass, may receive
contributions from technipion loops, which increase the
scalar mass, implying a small overall effect. However, it is
interesting to note that if the LHC provides new data, with
even a small improvement in the lower bound on the Z0
mass, the type of models discussed here may be in trouble.
This is because it will be quite difficult to generate a
composite scalar system in which the scalars mix among
themselves and, at the same time, give very different
masses to the Z and Z0 bosons.

In order to complement the analysis, in Fig. 2 we show
the interval of parameters in the SUð3ÞTC case assuming
Nf ¼ 8 andNf ¼ 10. As can be noticed in Fig. 2, the range

of values that the parameters �TC and �X can assume
decreases when the number of technifermions is increased.
The Nf dependence on the kinetic term is important; it is

transferred to the 
0
6s couplings and results in a decrease of

the scalar mass.
We can write Eq. (39) in the following approximate form,

M�i
/ �1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2�� 1Þ

q
�TC þ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2�� 1Þ

q
�X; (40)

where �1 and �2 are constants. The increase of the number

of fermions implies an increase of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2�� 1Þp

; then, to

keep the interval to the Higgs mass 120 GeV<MH <
130 GeV, we observe a decrease in the area ½�TC ��X�
in the parameter space. This effect is the same as appears in
the normalization of the Bethe-Salpeter wave function
discussed in Ref. [29].
In Fig. 3 we show the interval of parameters in the

SUð2ÞTC case assuming Nf ¼ 7 (in green), and again we

verify that the SUð2ÞTC case with this number of fermions
can be ruled out, in confrontation with the LHC data.

VI. CONCLUSIONS

In this work we computed an effective action for the
composite scalar boson system,�T ,�1 and�2, formed by
the fermions and technifermions Q3,�1 and�2 described
in Eqs. (1) and (3). We include in this calculation the
kinetic term of the effective theory. This term is important
because it provides a normalization factor for the effective
scalar boson Lagrangian. The effective Lagrangian is then
normalized in order to reproduce a standard scalar effective
field theory, leading to a nontrivial set of scalar self-
couplings. From this Lagrangian we can determine the
scalar boson masses of the theory.
To compute the effective action for the model described

in Sec. II, we first determined the correction to the T quark
self-energy that results from the mixing between the stan-
dard model neutral gauge boson Z with the Z0 boson. We
show that this correction is responsible for introducing the
coupling between the composite scalars, �T and �1;2,

associated, respectively, with the T quark and with the
technifermions. In Sec. III we discussed the self-energies
used to compute the effective potential ð�TÞ, where we
assumed that the interaction Uð1ÞX plays a role analogous
to the ultraviolet dynamical symmetry breaking program
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FIG. 2 (color online). The region of parameters, �TC and �X,
for a composite scalar mass range 120 GeV<MH < 130 GeV
in the SUð3ÞTC case. In this figure the parallelogram in the right
side (blue region) corresponds to Nf ¼ 6, the intermediate

triangle (light blue region) toNf ¼ 8 and the smaller left triangle

(magenta) to Nf ¼ 10.
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FIG. 3 (color online). The region of parameters, �TC and �X,
for a composite scalar mass range 120 GeV<MH < 130 GeV
in the SUð2ÞTC case. The small triangle in the left corner (green
region) corresponds to the lower limit on �X.
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proposed in Refs. [17,18]. We also assumed a TC self-
energy that decays slowly with the momentum whose
origin is due to the introduction of confinement in the
gap equation, as discussed in Ref. [24], that is typical of
the gauged Nambu-Jona-Lasinio type of models, where the
anomalous dimension is �m � 2. Note that it is hardly
possible to generate light scalar composite bosons without
this particular choice [29,30]. We finally determined an
effective scalar boson Lagrangian, and from it we obtained
the scalar boson masses associated with these models.

As already discussed in the Introduction, the models that
we consider here are interesting due to the particular form
of their anomaly cancellation and due to the fact that they
have a naturally strong Abelian theory at the TeV scale,
capable of producing a dynamical symmetry breaking of
the model to the SM symmetry, whereas the SM gauge
symmetry is broken by a TC condensate. Within this class
of models we can also explain the larger decay rate of the
125 GeV boson into photons that is observed by the LHC
experimental groups [37], caused by the presence of extra
charged vector bosons ðVþ; UþþÞ [4]. The only ingredients
of our calculation are the self-energies of the strongly
interacting theories. From these we can compute the scalar

masses and the neutral gauge boson masses. Assuming that
the 125 GeV observed at the LHC is a scalar boson and
using the lower limit in the Z0 mass, we compare the
experimental results with the mass values that we obtained
for these quantities. We verified that the models are
strongly constrained, showing that it is rather difficult to
have light scalar composites and at the same time generate
masses for neutral gauge bosons where one of them (the Z0)
is quite heavy. It is possible that in models with the
presence of fundamental scalar bosons such a difficulty is
not present due to the many parameters that can be adjusted
in the scalar potential; however, in this case, we may also
foresee that this adjustment may lead to unnatural values of
the coupling constants, unless some discrete symmetries
are introduced by hand in order to avoid undesirable terms
in the scalar potential.
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