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We determine the infinite volume coefficients of the perturbative expansions of the self-energies of

static sources in the fundamental and adjoint representations in SU(3) gluodynamics to order �20 in the

strong coupling parameter �. We use numerical stochastic perturbation theory, where we employ a new

second order integrator and twisted boundary conditions. The expansions are obtained in lattice

regularization with the Wilson action and two different discretizations of the covariant time derivative

within the Polyakov loop. Overall, we obtain four different perturbative series. For all of them the high

order coefficients display the factorial growth predicted by the conjectured renormalon picture, based

on the operator product expansion. This enables us to determine the normalization constants of the

leading infrared renormalons of heavy quark and heavy gluino pole masses and to translate these into

the modified minimal subtraction scheme (MS). We also estimate the four-loop �-function coefficient of

the lattice scheme.
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I. INTRODUCTION

Perturbative expansions in the coupling parameter
� of four-dimensional non-Abelian gauge theories,P1

n¼0 cn�nþ1, are expected to be asymptotic. The structure

of the operator product expansion (OPE) determines one
particular pattern of asymptotic divergence. This is usually
named a renormalon [1] or, more specifically, an infrared
renormalon. Its existence has not been proven. It could
only be tested in QCD by assuming the dominance of
�0-terms, which amounts to an effective Abelianization
of the theory, or in the two-dimensional OðNÞ model [2],
where it is suppressed by powers of 1=N. Moreover, the
possible nonexistence or irrelevance of renormalons in
quantum chromodynamics has been suggested in several
papers, see, e.g., Refs. [3,4] and references therein. This
has motivated dedicated high order perturbative expan-
sions of the plaquette, see, e.g., Refs. [5–8], in lattice
regularization, with conflicting conclusions. Powers as
high as �20 were achieved in the most recent simulation
[9]. However, the expected asymptotic behavior was
not seen. A confirmation of this ‘‘nonobservation’’ in the

infinite volume limit would significantly affect phenome-
nological analyses of data from high energy physics ex-
periments where renormalon physics plays a fundamental
role. This is certainly so in heavy quark physics, where
addressing the pole mass renormalon is compulsory for
almost any precise computation, such as for determinations

of the heavy quark masses in the MS scheme, the decay of
heavy hadrons, or heavy quarkonium physics.
Fortunately, in a recent letter, the existence of renorma-

lons in quantum gluodynamics has been unambiguously
established [10]. The quantities studied were the self-
energies of static sources in the fundamental and adjoint
representations. This analysis clearly identified the reasons
for the previous nondetection of the renormalon-associated
asymptotic behavior of the plaquette. In lattice regulariza-
tion with the Wilson action, renormalon dominance only
sets in at very high orders in n. In the case of the static self-
energy, an operator of dimension d ¼ 1, the renormalon
behavior was confirmed for n * 9. Therefore, for the pla-
quette and the associated gluon condensate, an operator of
dimension four, we expect n� 4� 9 to be necessary to
confirm the expected asymptotic behavior, an order that is
quite beyond those reached so far in simulations. On top of
this, it was shown that for presently reachable volumes the
proper incorporation of the leading finite size effects (FSE)
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is required to obtain the correct infinite volume limit,
something that had not been done previously either.
Finally, in Ref. [10] preliminary results for the normaliza-
tion of the renormalon were obtained, which turned out to
be perfectly consistent with expectations from continuum

computations in the MS scheme. In this article we provide
greater detail on these simulations and our analysis meth-
ods, present finalized results, and further extend this pre-
vious study.

This article is organized as follows. In Sec. II we review
numerical stochastic perturbation theory (NSPT), our
improvements on previously existing techniques, and the
specific aspects of the lattice computation relevant for our
case. In Sec. III we define our primary observable: the
self-energy of a static source, and detail the expected
asymptotic behavior of its perturbative expansion due to
the leading renormalon. In Sec. IV we define the Polyakov
loop, relate this to the static self-energy, and explain
how our primary data sets are obtained. In Sec. V we
present a theoretical study of the leading FSE and how
these will affect the signatures of renormalon dominance.
Subsequently, in Sec. VI, we investigate, mostly numeri-
cally, subleading FSE that may pollute our data and esti-
mate their systematics. In Sec. VII we determine the
infinite volume coefficients of the perturbative expansion,
study their renormalon structure, and extract universal

results in the lattice andMS schemes, before we conclude.

II. LATTICE IMPLEMENTATION

Below we discuss the simulation method and its imple-
mentation. After a brief introduction into NSPTwe detail a
new second order integrator, introduce twisted boundary
conditions and link smearing.

A. Stochastic quantization and NSPT

Stochastic quantization (SQ) [11] enables the calcula-
tion of expectation values in quantum field theories and
presents an alternative to, for instance, the path integral
formalism. In recent years, SQ was employed in several
studies within different fields of physics, ranging from the
quark-gluon plasma [12], even addressing the notorious
sign problem of QCD at nonvanishing baryon densities
[13,14], to quantum gravity [15]. SQ turns out to be
efficient also from the point of view of computer simula-
tions due to the absence of any global accept/reject step
thus allowing, in principle, for a fast update of the system
under consideration. The drawback is the requirement to
span a range of integration step sizes, to enable an extrapo-
lation to continuous stochastic time.

For simplicity, we assume a scalar field �ðxÞ depending
on spacetime x and dynamics governed by an action S½��.
The core of SQ, the Langevin equation, then reads

@�ðx; tÞ
@t

¼ � @S½��
@�ðx; tÞ � �ðx; tÞ; (1)

where t is the so-called stochastic time. The �ðx; tÞ is a
Gaussian noise variable with the properties

h�ðx; tÞi� ¼ 0;

h�ðx; tÞ�ðx0; t0Þi� ¼ 2�ðx� x0Þ�ðt� t0Þ:
(2)

The subscript ‘‘�’’ stands for an average over the noise.
Given a generic observable Að�Þ, it can be shown1 that the
time average

Að�Þ ¼ lim
T!þ1

1

T

Z T

0
dtAð�Þ (3)

coincides with the expectation value on the quantum
vacuum, i.e.,

Að�Þ ¼ 1

Z

Z
½d��Að�Þe�S½��; (4)

where Z is the partition function.
If the degrees of freedom of the system under con-

sideration are not scalar but obey a group structure, as it
is the case for lattice QCD, the above machinery has to be
modified accordingly (numerical stochastic perturbation
theory, NSPT [17,18]; for a review see Ref. [19]). In lattice
simulations, spacetime is discretized by introducing a four-
dimensional hypercube of N3

S � NT sites, where asymmet-

ric volumes NS � NT are legitimate. A peculiarity of
NSPT is that no mass gap can be generated in perturbation
theory. Hence the lattice spacing a is neither set nor
determined a posteriori, so any NSPT-related reference
to a is purely formal. For instance, the limit NS ! 1 can
either be interpreted as the infinite volume limit L ¼
aNS ! 1 at fixed a or as the continuum limit a! 0 at
fixed lattice extent L in physical units. Lattice sites n are
referenced by their spatial and temporal coordinates, ni 2
f0; . . . ; NS � 1g and n4 2 f0; . . . ; NT � 1g, respectively.
The gauge degrees of freedom AR

�ðxÞ in the continuum

are elements of the Lie Algebra of SU(3) in representation2

R. On the lattice these are implemented as compact link

variables UR
�ðnÞ � eiA

R
�½ðnþ1=2Þa� 2 SUð3Þ, connecting the

sites n and nþ �̂, where �̂ denotes a unit vector in
direction �.
The straightforward generalization of the Langevin

equation Eq. (1) to fundamental link variables reads

@

@t
U�ðn;tÞ¼�i

X
a

Ta½ra
n;�S½U�þ�a

�ðn;tÞ�U�ðn;tÞ; (5)

where S½U� is the gauge action and Ta, a ¼ 1; . . . ; 8 are the
traceless Hermitian generators of the SU(3) Lie algebra
with the normalization trðTaTbÞ ¼ 1

2�ab. We define the

derivative within Eq. (5) of a function fðUÞ with respect
to a Lie group variable U following Ref. [20]:

1For a proof in perturbation theory, see Ref. [16].
2Representation R has the dimension dR. Here we consider

two representations: the fundamental triplet (dR ¼ 3) and the
adjoint octet (dR ¼ 8).
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fðei
P

a
Ta!a

UÞ ¼ fðUÞ þX
a

!arafðUÞ þOð!2Þ; (6)

where !a are small real parameters.
Perturbative lattice simulations up to nmax loops become

possible by a formalweak coupling expansion of the gauge
fields. In the algebra and group this reads

A ¼ Að1Þ��1
2 þ Að2Þ��1 þ � � � þ Að2nmax Þ��nmax ;

U ¼ 1þUð1Þ��1
2 þUð2Þ��1 þ � � � þUð2nmax Þ��nmax :

(7)

Above, � denotes the lattice coupling and relates to the
strong coupling parameter as ��1 ¼ g2=6 ¼ ð2�=3Þ�.
Note that while the AðiÞ belong to the Lie algebra of

SU(3), the UðiÞ are no group elements. U however is, up

to terms of Oð��ðnmaxþ1ÞÞ, an SU(3) group element. By
Taylor expanding the exponent and logarithm of the two
series, respectively, one can conveniently switch between
algebra and group representations. Plugging the expansion
Eq. (7) into a discretized version of the stochastic differ-
ential equation Eq. (5), one finds that the noise directly acts

only on Uð1Þ while the evolution of higher orders is gov-
erned by a hierarchical system of ordinary differential
equations. In particular, the evolution of a given order

UðiÞ in stochastic time only depends on preceding orders
1; . . . ; i� 1 so that a truncation at finite nmax is possible.

The naive computational effort of NSPT scales like n2max

and the memory requirement like nmax , compared to a
factorial growth of the number of diagrams �nmax ! in
conventional perturbation theory. This makes high order
expansions feasible. On an absolute scale, computation time
of course becomes an issue for large lattice volumes or high
nmax , requiring optimizations of the NSPT algorithm. This
study would have exceeded our present computer resources
had we not used an improved numerical algorithm to evolve
the Langevin equation Eq. (5). Its advantageswere detailed in
Ref. [21]. Below we present the algorithm in detail.

B. The second-order integration scheme

The numerical integration of the Langevin equation
Eq. (5) requires the discretization of the stochastic time t,
introducing a time step � (t ¼ tm ¼ m� with integer m)
and a prescription for the t-derivative in Eq. (5). Revisiting
the scalar example, schematically the updating step for the
ith degree of freedom �i reads

3

�ðmþ1Þi ¼ �ðmÞi � fðmÞi ; (8)

where the bracketed superscript labels the evolution in
Langevin time t ¼ m� and fi is a force term. In the
simplest (Euler) integration scheme the force is given by

fðmÞi ¼ �riS
ðmÞ þ ffiffiffi

�
p

�ðmÞi ; (9)

with the functional derivative r defined in Eq. (6) for

gauge theories and �ðmÞi ¼ ffiffiffi
�
p

�ðn; t ¼ m�Þ.
Information on how the discretization changes the

equilibrium distribution relative to the continuous-time
expression of Eq. (4) can be drawn from the Fokker-
Planck equation. To work this out, we label the probability

distribution after mþ 1 updates as P ðmþ1Þð�Þ: by defining
Wð�0  �Þ as the probability of jumping from configura-
tion � to configuration �0, we obtain the equality

P ðmþ1Þð�0Þ ¼
Z
½d��Wð�0  �ÞP ðmÞð�Þ

¼
Z
½d��½d��Y

i

�ð�0i ��i þ fiÞP ðmÞð�Þ:

(10)

The above product extends over all degrees of freedom and
we have rewritten the probability of moving from � to �0
in terms of �-functions, involving the noise (that is implicit
in fi). After some algebra,4 one obtains

P ðmþ1Þð�Þ

¼P ðmÞð�ÞþX1
j¼1

1

j!
ri1 . . .rij½hfi1 . . .fiji�P ð�Þ�: (11)

We recall that P ðmþ1Þð�Þ ¼ P ðmÞð�Þ at equilibrium, insert
force terms into Eq. (11) and expand with respect to �. This
leads to the identity

0 ¼ rifri
�S½�� þ rigP ð�Þ; (12)

whose solution reads P ð�Þ / e� �S½�� with

�S½�� ¼ S½�� þ �S1½�� þ �2S2½�� þ � � � (13)

Within the above equation, S½�� is the original action of
Eq. (1). Thus, the correct equilibrium distribution and,
consequently, Eq. (5) is recovered in the limit �! 0. In
the Euler scheme, for example, �S½�� is given by

�S½��¼S½��þ�

4

X
i

ð2ririS½���riS½��riS½��ÞþOð�2Þ:

(14)

We detailed the formalism for a scalar field �. In the
case of non-Abelian SUðNcÞ gauge theory, the discretized
Langevin update reads5

3We have replaced the dependence on discretized spacetime
coordinates n by an index i for simplicity.

4Essentially, one represents each �-function as a Fourier
integral, Taylor-expands in the force term, expresses each power
of the expansion by suitable derivatives with respect to the �s
and integrates by parts.

5The index i now contains both spacetime position n and
direction �.
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Uðmþ1Þi ¼ e
�iP

a

Tafai
UðmÞi ; (15)

where the force term in the Euler scheme is given by the
analogue of Eq. (9):

fai ¼ �ra
i S½U� þ

ffiffiffi
�
p

�a
i : (16)

With the group derivative defined as in Eq. (6) the above
procedure can be repeated for non-Abelian degrees of
freedom, again leading to a Fokker-Planck equation. The
only difference lies in the fact that group derivatives do not
commute. More precisely, in the continuum

½ra
x;�;rb

y;	� ¼ �fabcrc�xy��	; (17)

where fabc are the structure constants of the Lie algebra.
Obviously, this has a nontrivial impact on the equilibrium
distribution �S½U� at � > 0. For instance, plugging Eq. (16)
into the Fokker-Planck equation, we obtain

�S½U� ¼
�
1þ �CA

4

�
S½U� þ �

4

X
i;a

ð2ra
ira

i S½U�

� ra
i S½U�ra

i S½U�Þ þOð�2Þ; (18)

where CA ¼ Nc is the quadratic Casimir invariant of the
adjoint representation of SUðNcÞ.

From Eqs. (14) and (18) it is evident that numerical
simulations with different values of � are necessary
to extrapolate to continuous stochastic time �! 0 and
to recover Eq. (5) and the continuum distribution.
Simulations at small � obviously are more costly and it is
tempting to keep � as large as possible. However, for large
time steps corrections to the leading linear dependence will
become sizable and extrapolations to � ¼ 0 less controlled.

A reduction in computer time while maintaining a safe
�! 0 extrapolation becomes possible by employing
higher-order integration schemes. To our knowledge,
Runge-Kutta schemes exist up to the third order for
Abelian theories [22,23] (the general solution to the
Fokker-Planck equation is known), and up to the second
order in � for non-Abelian SUðNcÞ theories [24,25]. In the
latter case, only one variant of the general solution is
published, namely the two-step algorithm

U0i ¼ e�i
P

a
Tað�ra

i S½U�þ
ffiffi
�
p

�a
i ÞUðmÞi ; (19)

Uðmþ1Þi ¼ e�i
P

a
Tað12�ra

i S½U�þ1
2�ra

i S½U0�þ
CA
6 �

2ra
i S½U0�þ

ffiffi
�
p

�a
i ÞUðmÞi ;

(20)

where S½U� and S½U0� stand for the action computed using

the fields UðmÞ and U0, respectively. We refer to this
second-order integrator as the ‘‘BF scheme’’ [24,25].
Note that the evolution cannot be factorized into sweeps

involving single link updates: both U0i and Uðmþ1Þi have to
be computed for all links i, prior to the replacement of the

original field UðmÞi . In particular, in the second step both

S½U� and S½U0� are needed. This requires three copies to
be kept in memory concurrently of 2nmax þ 1 orders of
complex three by three matrices for each lattice link.
Below we derive the general solution and provide an

optimized alternative to Eqs. (19) and (20) which not only
saves matrix additions but also reduces the memory
requirements. The general ansatz for the second-order
algorithm reads

U0i ¼ ei
P

a
Taðk1�ra

i S½U�þk2
ffiffi
�
p

�a
i ÞUðmÞi ; (21)

Uðmþ1Þi

¼e�i
P

a
Taðk3�ra

i S½U�þk4�ra
i S½U0�þk5CA�

2ra
i S½U0�þk6

ffiffi
�
p

�a
i ÞUðmÞi :

(22)

Plugging the force term of Eq. (22) into the Fokker-Planck
equation and Taylor-expanding the derivative of S½U0�,
after some algebra some constraints are obtained: at
Oð�0Þ the non-Abelian analogue of Eq. (13) yields

k3 ¼ 1� k4; k26 ¼ 1; (23)

in order to recover the correct �! 0 distribution, while the
elimination of terms proportional to � (using k3 ¼ 1� k4)
results in

k1 ¼ 1� 4k4 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k4ð2k4 � 1Þp

2k4
; (24)

k2 ¼ �2k4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k4ð2k4 � 1Þp

2k4k6
; (25)

k5 ¼ �1þ 6k4 � 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k4ð2k4 � 1Þp

12
; (26)

where k4 and k6 ¼ �1 can be chosen freely. The BF
scheme is recovered setting k4 ¼ 1

2 ¼ k3, k6 ¼ 1.

The choice k4 ¼ k6 ¼ 1, however, further simplifies the
algorithm:

U0i ¼ ei
P

a
Tað�3þ2

ffiffi
2
p

2 �ra
i S½U��2� ffiffi

2
p
2

ffiffi
�
p

�a
i ÞUðmÞi ; (27)

Uðmþ1Þi ¼e�i
P

a
Tað�ra

i S½U0�þ
ð5�3 ffiffi2p ÞCA

12 �2ra
i S½U0�þ

ffiffi
�
p

�a
i ÞUðmÞi : (28)

The gain of this variant is twofold: besides saving a matrix
addition when computing the force term of Eq. (28) instead
of Eq. (20), there is no need to store (or to recompute)
riS½U�. After the intermediate step the original fields
(and/or Si½U�) can be overwritten, reducing the memory
requirement by one third.
We tested the integrator defined through Eqs. (27) and

(28) within NSPT: due to the need to rescale the time step
� � �=� (for details see, e.g., Ref. [19]), after inserting
the perturbative expansion into the discretized Langevin
equation, it turns out that the contribution proportional to
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CA in the force term of Eq. (28) only affects the two-loop
level and beyond.

In Tables I and II we compare one- and two-loop
plaquette coefficients p0 and p1, defined through

hUhi ¼ 1� p0�
�1 � p1�

�2 � � � � (29)

These were computed using the new second-order
algorithm, diagrammatic lattice perturbation theory, the
Euler integrator and the BF scheme for different symmetric
volumes N4 with periodic boundary conditions (PBC). For
the Euler integrator, the fit function employed in the
extrapolation is constant plus linear while for the second-
order schemes the ansatz is constant plus quadratic
(in the latter case, we checked that the coefficients of
terms linear in � indeed vanish within errors when using
a linear plus quadratic fit function). In all the cases we find
agreement between the methods within two standard
deviations.

Figures 1 and 2 illustrate the finite-� plaquette results for
the three integrators: while all sets extrapolate to the same
limit within error bars, the ones corresponding to the new
second-order scheme are clearly much flatter than the
others. In particular, the �2-dependence of the new
second-order integrator is greatly reduced compared to
the BF scheme of Eqs. (19) and (20). Note that we allowed
for cubic terms in the curves drawn for the second order
integrators. We will see in Sec. IV below that for the
observables of interest in this work, extrapolations in �2

are so flat that in most cases a nontrivial slope cannot be
resolved within statistical errors.

C. Twisted boundary conditions

Instead of PBC, one can also impose twisted boundary
conditions (TBC) [26–29]

U�ðnþ NS	̂Þ ¼ �	U�ðnÞ�y	; (30)

U�ðn� NS	̂Þ ¼ �y	U�ðnÞ�	; (31)

where the links that pierce a lattice boundary of a twisted
(spatial) direction 	̂ are multiplied by so-called twist ma-
trices �	 that must satisfy

���	 ¼ z�	��; (32)

TABLE II. Comparison on N4 lattices between diagrammatic
lattice perturbation theory (DLPT) and NSPT results for the
two-loop coefficient p1 of the plaquette.

N DLPT Euler 2nd-order BF New 2nd-order

4 1.20370366 1.2020(15) 1.2005(17) 1.2012(17)

6 1.21730787 1.2173 (7) 1.2166 (8) 1.2180 (8)

8 1.21965482 1.2203 (4) 1.2178 (7) 1.2199 (6)

10 1.22031414 1.2203 (3) 1.2204 (4) 1.2212 (6)

12 1.22055751 1.2208 (2) 1.2200 (3) 1.2204 (2)

TABLE I. Comparison on N4 lattices between analytical and
NSPT results for the one-loop coefficient p0 of the plaquette:
The �-values used in the extrapolations range from 0.04 to 0.07.
The analytical result is given by 2ð1� N�4Þ.
N Analytical Euler 2nd-order BF New 2nd-order

4 1.9921875 1.9931 (6) 1.9922 (9) 1.9924 (7)

6 1.9984568 1.9985 (3) 1.9987 (3) 1.9986 (3)

8 1.9995117 1.9997 (2) 1.9992 (3) 1.9996 (3)

10 1.9998000 1.9996 (1) 2.0001 (2) 2.0001 (2)

12 1.9999035 1.9998 (1) 1.9999 (1) 1.9998 (1)

 1.98

 1.99

 2.00

 2.01

 2.02

 2.03

 2.04

 0  0.002  0.004  0.006  0.008  0.010

p 0

ε2

Euler
new

BF

FIG. 1 (color online). The one-loop plaquette coefficient p0 vs
�2 for N4 ¼ 104: Euler integrator, BF scheme and the new
second order integrator.

p 1

ε2

 1.21

 1.22

 1.23

 1.24

 1.25

 0  0.002  0.004  0.006  0.008  0.010

BF
new

Euler

FIG. 2 (color online). The two-loop plaquette coefficient p1 vs
�2 for N4 ¼ 104: Euler integrator, BF scheme and the new
second order integrator.
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�3
	 ¼ ð�1ÞN�11: (33)

Here z 2 f1; ei2�=31; ei4�=31g is an element of the center of
SU(3). The condition Eq. (32) guarantees that the value of
the transported link U�ðnþ NS�̂þ NS	̂Þ is independent
of the order with which two twisted boundaries �, 	 are
transversed. Gauge transformations �ðnÞ, which rotate the
link variables according to

U�ðnÞ� �ðnÞU�ðnÞ�yðnþ �̂Þ (34)

must obey the same TBC Eq. (30).
The measure as well as Wilson loops without net

winding numbers across boundaries (such as the elemen-
tary plaquette within the action) are invariant under the
transformation

U�ðnÞ ! zU�ðnÞ; 8 n 2 fn:n � �̂ ¼ constg: (35)

TBC rely on this center symmetry of the SU(3) gauge
action and measure, and can be implemented for the link
update either by multiplying the plaquettes in corners of
twisted hyperplanes with suitable center elements, or by
imposing Eq. (30) with an explicit choice of �	. We
implemented the latter using

�1 ¼
0 1 0

0 0 1

1 0 0

0
BB@

1
CCA; �2 ¼


	 0 0

0 1 0

0 0 


0
BB@

1
CCA;

�3 ¼ �2�
2
1 ¼

0 0 
	

1 0 0

0 
 0

0
BB@

1
CCA;

(36)

where 
 ¼ e2i�=3, 
	 ¼ 1=
 . This choice is arbitrary up to
global unitary transformations: as long as Eq. (32) is
satisfied, the resulting physical amplitudes will not depend
on the explicit choice of�	. As the subscripts indicate, we
impose the twist for all spatial directions. Twists in two
directions have a nontrivial effect too, while twisting only
one direction can be absorbed into a redefinition of the link
variables. The effect of twist is twofold: TBC eliminate
zero modes which otherwise require an explicit subtraction
[19]. Furthermore, at least at low orders in perturbation
theory, TBC reduce finite size effects as the possible gluon
momenta are restricted to integer multiples [28] of

p	 ¼
8<
:

2�
3N	

; 	 ¼ twisted direction;

2�
N	

; 	 ¼ periodic direction:
(37)

This means that gluon momenta in twisted spatial
directions reach values as low as 2�=ð3NSÞ, compared to
2�=NS in periodic directions. So, roughly speaking, the
modes in a twisted direction behave as if the corresponding
lattice extent was 3NS instead of NS. We refer to the cases
of twists applied to two and three directions as TBCxy and
TBCxyz, respectively.

The effect of TBC is noticeable in particular on small
lattice volumes, as Table III illustrates for the average
plaquette. The two- and three-loop TBCxy and TBCxyz
data obtained on 44 volumes are close to the infinite
volume (as well as to 324 PBC) results at two and three
loops. This clearly is not the case for 44 PBC data. Note
that both analytical one-loop TBC coefficients happen to
be volume-independent on symmetric lattices, due to can-
cellations between different plaquette orientations.
The situation is different for the Polyakov loop L defined

in Eq. (63) below. First of all, for this observable it matters
whether it is obtained in an untwisted or a twisted direc-
tion. We calculate L in untwisted directions, for which no
modification is necessary with respect to PBC, and extract
the static energy �m via Eqs. (64) and (65). As it was
shown in Ref. [33] for this observable, TBC significantly
reduce FSE, resulting in a much flatter extrapolation to-
wards infinite volume. If this flatness at low orders was
taken as the only criterion, TBCxy would be the boundary
condition of choice. However, it turns out that TBCxy has a
drawback compared to TBCxyz: in nonperturbative simu-
lations only the latter prevents tunneling between different
Z(3) phases while TBCxy merely leads to a reduction
compared to PBC [34]. As a consequence, small volume
TBCxy simulations were found to fluctuate more and to
return noisier signals than their TBCxyz counterparts.
Regarding the statistical fluctuations we made a similar
observation, even though tunneling between Z(3) sectors is

not an issue in our NSPT simulations since Uð0Þ ¼ 1.
Figure 3 shows stochastic time histories obtained on 164

volumes at fixed � ¼ 0:05 for TBCxy and TBCxyz of the
one-loop and 12-loop coefficients of the Polyakov loop.
While the trajectories of the one-loop coefficient L0 show a
similar behavior for TBCxy as for TBCxyz, we observe
a peak in the twelve loop L11 TBCxy measurement history,
which is symptomatic for TBCxy simulations. The en-
hanced numerical stability and smaller fluctuations, in
particular at large orders of expansions, motivated us to
choose TBCxyz for this work. A better understanding of
the origin of these differences between TBCxy and
TBCxyz would be desirable.

TABLE III. Plaquette coefficients. 44 PBC: DLPT (first two
orders) and NSPT (remaining orders [30]). 44 TBCxy and
TBCxyz: DLPT (first order) and NSPT (remaining orders). 324

PBC: DLPT (first two orders) and NSPT (Oð��3Þ [19]). Infinite
volume: DLPT from Ref. [31], using the lattice integrals of
Ref. [32]. For all NSPT data, the �! 0 extrapolation was
carried out.

Order 44 PBC 44 TBCxy 44 TBCxyz 324 PBC 14

��1 1.9921875 2 2 1.9999981 2

��2 1.2037037 1.2184(5) 1.2200(3) 1.2207904 1.2279575

��3 2.887(3) 2.955(2) 2.957(2) 2.957(3) 2.9605(1)

��4 �9:05ð1Þ �9:41ð1Þ �9:40ð1Þ
��5 �32:49ð6Þ �34:51ð9Þ �34:34ð5Þ
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D. Link smearing

The lattice discretization of observables and action is not
unique. For instance one can construct Wilson loops and
Polyakov loops, replacing the link variables U�ðnÞ by fat

or ‘‘smeared’’ links. In the context of a lattice determina-
tion of static potentials and of static-light meson masses
this was for instance done in Ref. [35], to reduce the self-
energy, enabling an improved signal to noise ratio at large
Euclidean times. As long as the smearing is an ultralocal
procedure, defined on the scale of a few lattice spacings,
making this replacement in a Polyakov loop corresponds to
a different choice of discretization of the static action.
Smearing is sometimes also used within the definition of
fermionic actions, see, e.g., Refs. [36–38].

Several smearing methods are available, one of which is
known as analytic or ‘‘stout’’ smearing [39]. Stout links are
automatically elements of the SU(3) group, without a
numerically delicate projection into the group. Therefore,
implementing stout smearing within a perturbative expan-
sion is straightforward. Stout smeared links are obtained by
the replacement

U�ðnÞ� Ustout
� ðnÞ ¼ exp ðiQ�ðnÞÞU�ðnÞ; (38)

where Q�ðnÞ is Hermitian and traceless and hence in the

algebra by design:

Q�ðnÞ ¼ i

2

�
Ry�ðnÞ � R�ðnÞ � 1

3
trðRy�ðnÞ � R�ðnÞÞ1

�
;

(39)

R�ðnÞ ¼ C�ðnÞUy�ðnÞ; (40)

C�ðnÞ ¼
X
	��

��	ðU	ðnÞU�ðnþ 	̂ÞUy	 ðnþ �̂Þ

þUy	 ðn� 	̂ÞU�ðn� 	̂ÞU	ðn� 	̂þ �̂ÞÞ: (41)

Note that within the sum of staples C�ðnÞ, surrounding the
link U�ðnÞ, the sum convention is not implied and ��	 are

weights that can be set at will. In our case, we choose
�i	 ¼ 0 and �4i 
 � ¼ 1=6 otherwise. The value of the
weight was chosen to minimize the one-loop static self-
energy after one smearing iteration. We remark that this is
not necessarily the best possible choice, e.g., in a non-
perturbative setting. We apply only one smearing step to
keep the static action local.

III. SELF-ENERGY OFA STATIC SOURCE

In this section we introduce our conventions, relate self-
energies of static sources to heavy quark and heavy gluino
pole masses, and discuss the expected renormalon structure.
The triplet and octet self-energies are defined as the

lowest energy eigenvalues of the effective Hamilton
operator in temporal gauge of the sector of Hilbert space
of gauge triplet and octet states with respect to gauge
transformations, applied to a fixed position. It is impossible
to obtain the continuum limit for these self-energies
(irrespectively of the representation), as these will diverge
linearly with the ultraviolet cutoff.6 Therefore, the value of
the static self-energy depends on the chosen regulator. Yet,
any hard-cutoff regularization scheme is suitable for the
following discussion. In this article we use lattice regulari-
zation and write the self-energies in the fundamental and
adjoint representation in the following way:

�m ¼ 1

a

X1
n¼0

cð3;�Þn �nþ1ð1=aÞ ðfundamentalÞ;

�m~g ¼ 1

a

X1
n¼0

c
ð8;�Þ
n �nþ1ð1=aÞ ðadjointÞ;

(42)

where a�1, the inverse lattice spacing, provides the ultra-
violet cutoff. The coefficients cn depend on the details of
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FIG. 3 (color online). Stochastic time series of one-loop (L0, left) and 12-loop (L11, right) Polyakov loop coefficients for TBCxyz
(blue) and TBCxy (red) on 164 lattices for � ¼ 0:05.

6In dimensional regularization this object is exactly zero, since
the ultraviolet and infrared divergences (infrared and ultraviolet
renormalons) are regulated by the same factorization scale and
their sum vanishes.

PERTURBATIVE EXPANSION OF THE ENERGY OF . . . PHYSICAL REVIEW D 87, 094517 (2013)

094517-7



the regularization, i.e., on the action used and the specific
definition of the static propagator. We only consider the
Wilson action [40] but we explore two different definitions
of the static propagator, with smeared (� ¼ 1=6) and with
the original (� ¼ 0) temporal links. We label this depen-
dence with a generic � 2 f0; 1=6g; see Sec. II D above.

One may suspect that the dependence on the regulator
might turn this object uninteresting from the theoretical
point of view. This is actually not the case since, for large
n, cn becomes regulator independent, universal and equal
to rn=	, the nþ 1 order coefficient of the perturbative
expansion of the pole mass

mOS ¼ mMSð	Þ þ
X1
n¼0

rn�
nþ1
s ð	Þ; (43)

up to O½exp ð�1=nÞ�-terms (due to subleading renorma-
lons). On an intuitive level this is clear, as the static energy
and pole mass share exactly the same infrared behavior
(up to Oð1=mÞ corrections), which should cancel in the
difference.

The asymptotic behavior of rn can be determined
assuming that the perturbative series is asymptotic and
the validity of the OPE. The running of �ð	Þ is governed
by the �-function

�ð�Þ ¼ d�

d ln	

¼ �2�
�
�0

�

4�
þ �1

�
�

4�

�
2 þ �2

�
�

4�

�
3 þ � � �

�
;

(44)

where in our normalization

�0 ¼ 11; �1 ¼ 102; �MS
2 ¼ 2857

2
;

�latt
2 ¼ �6299:8999ð6Þ:

(45)

From �2 onwards the coefficients depend on the scheme.

While �MS
3 is known [41], in the lattice scheme only �latt

2

has been computed [32,42,43]. For convenience we define
the constants

b ¼ �1

2�2
0

; (46)

s1 ¼ �2
1 � �0�2

4b�4
0

; (47)

s2¼�4
1þ4�3

0�1�2�2�0�
2
1�2þ�2

0ð�2�3
1þ�2

2Þ�2�4
0�3

32bðb�1Þ�8
0

;

(48)

where only b is scheme-independent. In a given scheme,
the � parameter is defined as

� ¼ lim
	!1	e

�
h
b ln

�
�0
4�

�
þ
R

�ð	Þ d�0
�ð�0 Þ

i

¼ 	e
� 2�

�0�ð	Þ
�
�0�ð	Þ
4�

��b
�

�
1þ s1b

�0�ð	Þ
2�

þ s2bðb� 1Þ
�
�0�ð	Þ
2�

�
2 þ � � �

�
;

(49)

and we use �QCD ��MS synonymously with the size of a

typical nonperturbative binding energy.
A simple scheme- and scale-independent observable is

the B meson mass. In the heavy quark limit this can be
decomposed into the b-quark pole mass mOS and the
remaining energy from the light quark and gluon dynamics
�B ¼ cB�QCD:

mB ¼ mOS þ�B þO
�

1

mOS

�
: (50)

This relates to the fundamental representation. For the
adjoint representation we can think of a heavy gluino
attached to gluons:

m ~G ¼ m~g;OS þ�H þO
�

1

m~g;OS

�
; (51)

where �H denotes the dynamical contribution of the
gluons (and sea quarks) to the gluinonium mass. For both
representations the uncertainty of the perturbative series of
the pole mass will be of Oð�QCDÞ, the next term in the

OPE, since only the sum of the pole mass and the binding
energy has a physical meaning. This ambiguity results in
the successive contributions rn�

nþ1 to decrease for small
orders n down to a minimum at n0 � 1=ðjadj�Þ, where
ad ¼ �0=ð2�dÞ with d ¼ 1. After this order the series
starts to diverge, so one neglects the higher order contri-
butions and estimates the error by the size of this minimum
term, rn0�

n0þ1 � exp ½�1=ðad�Þ� ��QCD=m. If the per-

turbative expansion has an ambiguity of order �n
QCD then

d ¼ n. To quantify this behavior it is convenient to con-
sider the Borel transform of the above perturbative series

mOS ¼ mMS þ
Z 1
0

dte�t=�sB½mOS�ðtÞ;

B½mOS�ðtÞ 

X1
n¼0

rn
tn

n!
:

(52)

The behavior of the expansion Eq. (43) at large orders
is dictated by the closest singularity to the origin of its
Borel transform, which, for the pole mass, is located at

t ¼ 2�=�0, i.e., at u ¼ 1=2, defining u ¼ �0t
4� . More pre-

cisely, the behavior of the Borel transform near the closest
singularity at the origin reads

BALI et al. PHYSICAL REVIEW D 87, 094517 (2013)

094517-8



B½mOS�ðtðuÞÞ ¼ Nm	
1

ð1� 2uÞ1þb ð1þ s1ð1� 2uÞ
þ s2ð1� 2uÞ2 þ � � �Þ þ ðanalytictermÞ;

(53)

where by analytic term we mean contributions that
are expected to be analytic up to the next renormalon
(u ¼ 1). This dictates the behavior of the perturbative
expansion at large orders to be

rn ¼n!1Nm	

�
�0

2�

�
n �ðnþ 1þ bÞ

�ð1þ bÞ
�

�
1þ b

ðnþ bÞ s1þ
bðb� 1Þ

ðnþ bÞðnþ b� 1Þ s2þ � � �
�
:

(54)

This expression can be obtained from the procedure
employed in Ref. [44]. The s1-term was computed in
Ref. [44], and the s2-term in Refs. [45,46].

As we mentioned, the large-n behavior of c
ð3;�Þ
n is the

same as that of rn up toOðe�1=nÞ-terms (due to subleading
renormalons). Therefore, using the same scheme for the
expansion parameter �, we obtain

c
ð3;�Þ
n ¼n!1Nm

�
�0

2�

�
n�ðnþ 1þ bÞ

�ð1þ bÞ
�

�
1þ b

ðnþ bÞ s1þ
bðb� 1Þ

ðnþ bÞðnþ b� 1Þ s2þ �� �
�
:

(55)

Note that all the dependence on the regularization details
(and in particular on �) vanishes. The normalization con-
stant Nm also determines the strength of the renormalon of
the singlet static potential, through the relation

2Nm þ NVs
¼ 0; (56)

since these contributions cancel from the energy EðrÞ ¼
2mþ VsðrÞ [47–49].

For adjoint sources we have

c
ð8;�Þ
n ¼n!1Nm~g

�
�0

2�

�
n�ðnþ 1þ bÞ

�ð1þ bÞ
�

�
1þ b

ðnþ bÞ s1þ
bðb� 1Þ

ðnþ bÞðnþ b� 1Þ s2þ �� �
�
:

(57)

Again, the dependence on the regularization details
(e.g., on �) vanishes, however, the octet normalization is
different: Nm~g

� Nm. Eq. (57) corresponds to the renorma-

lon of gluelump masses (actually Nm~g
¼ �N�, where N�

is the strength of the gluelump renormalon associated to
�H) and can be related to the pole mass and adjoint static
potential renormalons through the relation

2Nm þ NV0
þ N� ¼ 0; (58)

since the energy EðrÞ ¼ 2mþ VoðrÞ þ�H is renormalon
free [50].
To eliminate the unknown normalization constants, we

may consider ratios. In a strict 1=n expansion we have7

cð3;�Þn

cð3;�Þn�1

1

n
¼ cð8;�Þn

cð8;�Þn�1

1

n

¼ �0

2�

�
1þb

n
�bs1

n2
þ 1

n3
½b2s21þbðb�1Þðs1�2s2Þ�

þO
�
1

n4

�	
: (59)

This expression holds in any representation. It is also
independent of the renormalization scheme used for �.
Keep in mind though that the explicit expression does
depend on the scheme, starting from �2. Here we will
mainly use �latt, where s2 is unknown and �2 ¼ �latt

2 , but
we will also consider the behavior of the perturbative series

in the MS scheme.
Assuming that the coefficients are dominated by the

renormalon behavior, we can determine the order n0 þ 1
that corresponds to the minimal term within the pole mass
perturbative series. Minimizing rn�

nþ1 results in

ðn0 þ bÞ�0�

2�
¼ exp

�
� 1

2ðn0 þ bÞ þO
�

1

ðn0 þ bÞ2
�	
:

(60)

This yields the minimal term

rn0�
n0þ1ð	Þ ¼ 21�b�

�ð1þ bÞ

ffiffiffiffiffiffiffiffiffiffi
�ð	Þ
�0

s
Nm�½1þOð�Þ�: (61)

While it is evident to most readers, we wish to empha-
size that the perturbative series that defines the pole mass
cannot be resummed (not even in a Borel way). Therefore,
it does not exist in a mathematical sense and no rigorous
numerical value or error can be assigned to this object. The
most one could do is to define a pole mass to a given (finite)

order N þ 1, mðNÞOS 

P

N
n¼0 rn�

nþ1, which will then

depend on N. By taking N � n0 we minimize this depen-
dence.8 One can then estimate the uncertainty of the sum to
be (see, for instance, the discussion in Ref. [51])

ffiffiffiffiffi
n0
p jrn0 j�n0þ1ð	Þ ¼ 23=2�b�3=2

�ð1þ bÞ
jNmj�
�0

: (62)

Note that this object is scheme and scale independent (to
the 1=n-precision that we employed in the derivation)
because, even though the normalizations Nm and Nm~g

depend on the scheme, the products Nm� and Nm~g
� are

scheme-independent.

7This equation corrects a mistake in Ref. [10].
8In practice one would round N ¼ intðn0Þ, giving a slightly

different value.
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IV. THE POLYAKOV LOOP

We obtain the coefficients cn from the temporal
Polyakov loop on hypercubic lattices. We investigate vol-
umes of NT lattice points in the time direction and spatial
extents of NS points. We choose PBC in time and TBC in
all spatial directions (TBCxyz, see Sec. II C), eliminating
zero modes and improving the numerical stability. For test
purposes, we have performed additional simulations with
PBC in all spatial directions toOð�32Þ for a 43 � 8 volume
and to lower orders for the specific volumes listed in the
second row of Table IV.

The Polyakov loop is defined as

LðRÞðNS;NTÞ ¼ 1

N3
S

X
n

1

dR
tr

" YNT�1

n4¼0
UR

4 ðnÞ
#
; (63)

where UR
�ðnÞ � eiA

R
�½ðnþ1=2Þa� 2 SUð3Þ denotes a gauge

link in representation R, connecting the sites n and
nþ �̂, ni 2 f0; . . . ; NS � 1g, n4 2 f0; . . . ; NT � 1g. We
implement triplet and octet representations R of dimen-
sions dR ¼ 3 and 8. The link U4ðnÞ appears within the
covariant derivative of the static action �cD4c , acting in

the following way on a scalar lattice field fðnÞ: D4fðnÞ ¼
½U4ðnÞfðnþ 4̂Þ �Uy4 ðn� 4̂Þfðn� 4̂Þ�=ð2aÞ. This discre-

tization is not unique and we may substitute U4 by another
gauge covariant connection. We use singly stout-smeared
[39] covariant transporters (smearing parameter � ¼ 1=6,
see Sec. II D) instead of U4ðnÞ as a second, alternative
choice, to verify the universality of our findings.

We perturbatively expand the logarithm of the Polyakov
loop

PðR;�ÞðNS;NTÞ ¼ � ln hLðR;�ÞðNS;NTÞi
aNT

¼ X1
n¼0

c
ðR;�Þ
n ðNS;NTÞ�nþ1; (64)

in order to obtain the static triplet and octet self-energies in
the infinite volume limit:

�m ¼ lim
NS;NT!1

Pð3;�ÞðNS;NTÞ;
�m~g ¼ lim

NS;NT!1
Pð8;�ÞðNS;NTÞ;

(65)

where [see Eq. (42)]

cðR;�Þn ¼ lim
NS;NT!1

cðR;�Þn ðNS;NTÞ: (66)

The primary objects that we compute are the coefficients
cnðNS;NTÞ. The sets of cnðNS;NTÞ obtained on dif-
ferent geometries are statistically independent of one
another. However, for a given volume, different orders
n will be correlated. In computations of ratios
cnðNS;NTÞ=cn�1ðNS;NTÞ, as well as in fits, we take these
correlations into account. NSPT enables us to calculate the
coefficients directly, i.e., that neither the lattice spacing nor
the strong coupling parameter � enter the simulation. We
have realized a large variety of TBC geometries, listed in
Table IV, in addition to the PBC test runs. Each coefficient
cn depends on NS and NT but also on the time step � of the
Langevin evolution (see below). In this paper we employ
the variant of the Langevin algorithm introduced in
Ref. [21] and explained in Sec. II B, which only quadrati-
cally depends on �. The time series were analyzed follow-
ing Ref. [52], allowing us to process either single runs or to
evaluate sets of ‘‘farmed out’’ Monte Carlo branches.
Special care was taken to ensure that every individual
history for each order was sufficiently long relative to the
respective autocorrelation time to guarantee a safe error
analysis. Branches that failed this test were removed from
the data analysis.
Very high statistics runs were performed up to Oð�3Þ

and Oð�4Þ, to check if the coefficients of logs extracted
from the data are in agreement with our theoretical expec-
tations, to detect signs of ultrasoft ln ðNT=NSÞ-terms (see
Secs. V and VI below), and to compare with results from
diagrammatic perturbation theory.
The bulk of data are obtained up to Oð�12Þ and Oð�20Þ.

We have kept the Langevin time between two successive
measurements fixed, adjusting nupd � 56=� where nupd is

the number of updates performed in between two measure-
ments. For the �12 and �20 runs between 35000 and 80000
measurements were taken, corresponding (for � ¼ 0:050)
to 4� 107–9� 107 updates. The integrated autocorrela-
tion times increase with the order of the expansion and with
the lattice volume. For instance, the integrated autocorre-
lation time of c0 varied from 2.4 (64) to 15 (164), while that
of c11 from 9 to 30, in units of nupd. For our highest order

coefficient c19 we found the values �int � 18 and 29 for
113 � 16 and 124 lattices respectively. Since the � ¼ 0:050
measurements are separated by 1120 Langevin updates,

TABLE IV. The NSðNTÞ values of the PBC and TBC runs. The different geometries are
grouped in terms of the orders of the respective expansions Oð�nmaxþ1Þ.

Oð�3Þ Oð�4Þ Oð�12Þ Oð�20Þ
PBC 4 (4) 8 (8,10,12,14)

TBC 5 (5,6,7,8,10) 4 (5,6,7,8,10,12,16,20,24) 6 (6,8,10,12,16) 7 (7,8)

8 (12,16) 8 (8,10), 9 (12)

10 (8,12,16,20) 10 (10), 11 (16)

12 (16,20) 16 (12,16,20) 12 (12), 14(14)
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our largest �int ¼ 30 value corresponds to more than 33000
such updates, still leaving us with a few hundred effec-
tively statistically independent measurements.

Quadratic extrapolations in the Langevin time step to
� ¼ 0 on a 164 lattice (based on 6 �-values) and on a 64

lattice (4 �-values) were performed up to Oð�12Þ. The 164
extrapolation, normalized to the value obtained at � ¼ 0:05
(103�2 ¼ 2:5) is shown for the unsmeared triplet coeffi-

cients cð3;0Þn ð16; 16Þ in Fig. 4, up to n ¼ 11. A similar
picture arises for the 64 volume: within two standard

deviations the extrapolated values are all found to agree
with the results obtained at � ¼ 0:05. We remark that for
both volumes the fit functions are quite flat, with very small
slopes in �2. The same was observed for the smeared and
the octet coefficients. Based on this experience, the re-
maining volumes are only simulated for � ¼ 0:05.
However, the time step scaling was only tested within
certain errors that are similar in size as (and in some cases
larger than) the statistical errors obtained for the various
geometries. We obtain a relative systematic error for each
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FIG. 4 (color online). Time step extrapolations of ratios cð3;0Þn ð16; 16; �Þ=cð3;0Þn ð16; 16; 0:05Þ (blue symbols) for � 2
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order by adding the statistical error of the extrapolation and
the difference of the extrapolated value from unity in
quadrature. For the other geometries this (multiplied by
the � ¼ 0:05 coefficient) is then added in quadrature to the
respective statistical error. For orders larger than nþ 1 ¼
12, we linearly extrapolate in n the systematics found for
orders nþ 1 � 12, to obtain an estimate. This procedure is
performed not only for the coefficients themselves but also
for ratios of coefficients. While the systematic time step
error is assumed to be uncorrelated, we keep track of the
correlation between the statistical part of the errors for
different orders n, obtained on the same volume.

V. FINITE SIZE EFFECTS FOR NT ! 1
The finite size effects of PðNS;NTÞ [Eq. (64)] are well

suited to a theoretical analysis in the limit NT ! 1
(actually NT � NS for most of the geometries that we
simulate). In this limit the self-energy of a static source
in a finite spatial volume is obtained9:

�mðNSÞ ¼ lim
NT!1

PðNS;NTÞ and

cnðNSÞ ¼ lim
NT!1

cnðNS;NTÞ:
(67)

For large NS, we write

cnðNSÞ ¼ cn � fnðNSÞ
NS

þO
�
1

N2
S

�
: (68)

The Oð1=NSÞ correction originates from interactions

with mirror images at distances aNS,
ffiffiffi
2
p

aNS,
ffiffiffi
3
p

aNS,
2aNS, . . . , see also Ref. [34]. This effectively produces a
static potential between charges separated at distances
aNS, but without self-energies (the self-energies are
included in �m). As illustrated in Fig. 5, the scale of
such interactions is of order aNS and one may write10

�mðNSÞ ¼ �m� 1

aNS

X1
n¼0

fn�
nþ1ððaNSÞ�1Þ þO

�
1

N2
S

�
:

(69)

Therefore, the coefficient fnðNSÞ is a polynomial of
ln ðNSÞ:

fnðNSÞ ¼
Xn
i¼0

fðiÞn ln iðNSÞ; (70)

where fð0Þn ¼ fn and the coefficients fðiÞn for i > 0
are entirely determined by fm with m< n and �j

[see Eq. (44)], with j � n� 1. For instance,

f1ðNSÞ ¼ f1 þ f0
�0

2�
ln ðNSÞ; (71)

f2ðNSÞ ¼ f2 þ
�
2f1

�0

2�
þ f0

�1

8�2

�
ln ðNSÞ

þ f0

�
�0

2�

�
2
ln 2ðNSÞ; (72)

and so on.
Starting at Oð�4Þ, one may expect additional Oð1=NSÞ

finite size terms. These would arise from infrared singu-
larities of certain types of diagrams. The source of these
infrared singularities is similar to the one that results in
infrared divergences of the static potential [53] starting at
Oð�4Þ. In that case these are due to the static triplet and
antitriplet sources, which can arrange themselves into a
singlet or into an octet representation at short distances in
the pNRQCD [54] multipole expansion, giving rise to
terms like �4

s ln ðaNS�IRÞ=ðaNSÞ. In our case, pairs of
triplet static sources can be arranged into antitriplet and
sextet representations with their mixing mediated through
gluons. At higher orders different representations can arise,
as several mirror images will interact. Nevertheless, in the
limit NT ! 1 in a finite spatial volume, we do not expect
these ultrasoft logarithms to show up. The reason is that
aNS, besides being the typical momentum transfer between
the mirror images, is also the infrared cutoff of the gluon
momenta so that only logarithmic terms � ln ðNS=NSÞ can
appear. Indeed we do not detect any indication of these logs
in our numerical data.
Equation (69) can be interpreted in terms of renorma-

lons. The fact that we can link theOð1=NSÞ-term to a static
potential leads to the expectation that the high order be-
haviors of fn and cn are dominated by one and the very
same renormalon. This can, e.g., be illustrated considering
the leading dressed gluon propagator DðkÞ / 1=k2, where
k4 ¼ 0. With the (formal) ultraviolet cutoff 1=a and an
infrared cutoff 1=ðaNSÞ this can be written as (ignoring
lattice corrections),

P /
Z 1=a

1=ðaNSÞ
dkk2DðkÞ � 1

a

X
n

cn�
nþ1ða�1Þ

� 1

aNS

X
n

cn�
nþ1ððaNSÞ�1Þ; (73)

after perturbatively expanding DðkÞ. When re-expressing
�ððaNSÞ�1Þ in terms of �ða�1Þ we may consider two
situations:
(a) NS > en. In this limit the last term of Eq. (73) is

exponentially suppressed in n and the renormalon
can directly be obtained from a large order expan-
sion of aP in powers of �.

(b) NS < en. The last term of Eq. (73) is important and
the renormalon cancels order-by-order in n. It is
easy to visualize the importance of this term in the
large-�0 limit (see the discussion in Ref. [55]).

9The discussion in this section applies to any representation
and to smeared and unsmeared Polyakov loops.
10There are some qualifications to this statement that we will
detail below.
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In this limit one obtains

�

�
1

aNS

�
¼ X

n�0

ln nðNSÞ
n!

�
d�

d ln a

�
n

� ¼large �0
X
n�0

�
�0

2�

�
n
ln nðNSÞ�nþ1ða�1Þ;

(74)

and therefore the large-n behaviors of cn and

fðiÞn ðNSÞ read
cn’Nm

�
�0

2�

�
n
n!; fðiÞn ðNSÞ’Nm

�
�0

2�

�
nn!

i!
: (75)

This results in the logarithms of Eq. (70) to
exponentiate and to cancel the 1=NS suppression.
Therefore, at large n, the fn=NS terms become
numerically as important as the cn-terms so that

cn � fnðNSÞ
NS

’ Nm

�
�0

2�

�
n
n!

�
�
1� elnNS

NS

þ 1

NS

X1
i¼nþ1

1

i!
ln iNS

�

¼ 1

NS

Nm

�
�0

2�

�
n
n!

X1
i¼nþ1

1

i!
ln iðNSÞ:

(76)

Note that the renormalon (n! behavior) actually
cancels in the difference and that the infinite sum
above is a convergent series (NS minus a finite sum).

In present-day numerical simulations, including ours,
NS < en, and the term fnðNSÞ=NS needs to be taken into
account, in combination with cn. A similar phenomenon
was numerically observed for the static singlet energy
EðrÞ ¼ 2mþ VðrÞ [50,56]. This teaches us that to correctly
identify the renormalon structure of �m, it is compulsory to
incorporate the 1=NS corrections. So far, in studies of high
order perturbative expansions of the plaquette the corre-
sponding finite size terms have been neglected. As we will
see, our fits indeed yield fn ’ cn for large n, in clear
support of the renormalon dominance picture.

In the NT ! 1 limit, and up to Oð1=N2
SÞ effects, the fit

function for cnðNSÞ depends on cn, fn and the �-function
coefficients �i with i < n. In the lattice scheme only �0,
�1 and �2 are known. The effects of higher �j start at

Oð�5Þ. One may try to fit these, together with the cn and fn
but their contribution cannot be resolved by the present
precision of the data. This produces some uncertainty in
our parametrization that we will add to the error. The
reason we can neglect higher �j in a controlled way is

because the associated uncertainty quickly becomes neg-
ligible at high orders, once the behavior of the coefficients
fn starts to be governed by the d ¼ 1 renormalon. This
statement can be quantified, since we know the large-n

behavior of the fðjÞn . Let us first consider the large-�0 limit.
Assuming renormalon dominance for the coefficients fn,
we would have [see Eqs. (75) and (76)]

fnðNSÞ ¼ Nm

�
�0

2�

�
n
n!

Xn
i¼0

1

i!
ln iðNSÞ: (77)

Note that terms containing higher powers of ln ðNSÞ
(with i & n) are suppressed by factors �1=n! and can be
neglected at large n. Therefore, for large n, the n! factorial
overcomes the large logs. This suppression also holds
beyond the large-�0 limit.11 However, we may worry about
terms with small powers of ln ðNSÞ [i� 1 in Eq. (77)]. In
this case there is no factorial suppression, but the inclusion
of �1 and �2 can still be done in a controlled way.
Including the running associated to �1 produces 1=n
suppressed corrections to Eq. (75) while �2 results in
1=n2 suppression and so on. For instance in the case of

fð1Þn we have

fð1Þn ¼ Nm	

�
�0

2�

�
n �ðnþ 1þ bÞ

�ð1þ bÞ
�

�
1þ b

ðnþ bÞ
n� 1

ðn� 1þ bÞ þOð1=n2Þ
�
: (78)

FIG. 5 (color online). Self-interactions with replicas producing 1=L ¼ 1=ðaNSÞ Coulomb terms.

11In any case, for any given n > 3, the coefficients
fðnÞ;ðn�1Þ;ðn�2Þn are completely determined by the renormalization
group analysis and the coefficients f1, f2 and f3.
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To check this assumption and to justify the truncation at �2

we have performed separate fits including �j for j � 0, 1

and 2 (see Sec. VII).
Finally, note that the validity of the above discussion is

unaffected by any renormalon (or other singularity) related
to the �-function coefficients, as this would correspond to
a higher dimension, i.e., u > 1=2 (if it existed at all).

VI. 1=NT- AND SUBLEADING
1=NS-CORRECTIONS

While most of our geometries satisfy NT � NS, the NT

dependence may still be sizable and cannot completely be
neglected a priori. This may necessitate a combined ex-
pansion in powers of 1=NS and 1=NT . The leading order
(LO) correction in 1=NS has been discussed in the previous
section. Incorporating finite 1=NT effects does not affect
the renormalon structure nor the main conclusions of that
section. The only subtlety that we need to revisit are the
ultrasoft effects. In principle, a dependence on NT may
appear, starting at Oð�4Þ. Nevertheless, only in the limit
NT  NS do we expect large logs of the type ln ðNS=NTÞ,
as in this limit 1=ðaNTÞ may act as the infrared regulator.
Still our geometries are far off this limit. One may consider
an interpolating phenomenological function like
ln ½NS=ðNT þ NSÞ� between the NT  NS and NS  NT

limits, yet the data do not seem to require these terms. We
also stress that these terms are subleading from the renor-
malon point of view (d ¼ 3). Therefore, in our final fit
function we will not introduce them.

We now study possible power-suppressed 1=NT effects.
First, we consider the low orders in perturbation theory. At
Oð�Þ the fit function with finite (but large) NT can be
obtained with DLPT. No dependence on NT is found.
This is also confirmed by our explicit computation of c0
with NSPT. We illustrate this for NS ¼ 4 in Fig. 6.

A similar picture applies to the other values of NS. The
leading terms in 1=NS can also be determined using DLPT.
Writing

cð3;0Þ0 ðNS;NTÞ ¼ cð3;0Þ0 ðNSÞ

¼ cð3;0Þ0 � fð3;0Þ0

NS

� vð3;0Þ0

N3
S

þO
�
1

N4
S

�
; (79)

we obtain for unsmeared coefficients and TBCxyz bound-
ary conditions

cð3;0Þ0;DLPT ¼ 2:1172743570834807985970 . . . ; (80)

fð3;0Þ0;DLPT ¼ 0:76962563284ð2Þ; (81)

vð3;0Þ0;DLPT ¼ 0:14932ð3Þ: (82)

Note that DLPT predicts the absence of an Oð1=N2
SÞ term

at this order. The above result also applies to the adjoint

source, substituting c
ð8;�Þ
0 ðNS;NTÞ ¼ CA=CFc

ð3;�Þ
0 ðNS;NTÞ,

where CA=CF ¼ 2N2
c=ðN2

c � 1Þ ¼ 9=4. We remark that f0
and v0 depend on the boundary conditions, whereas c0
does not.

As we already mentioned, the finite volume cð3;0Þ0 ðNSÞ ¼
cð3;0Þ0 ðNS;NTÞ depend on the boundary conditions. It has

previously been computed with PBC, originally in
Ref. [57], where intermediate semianalytic expressions
can be found, and in Refs. [33,34] where also TBCxyz
and TBCxy boundary conditions were analyzed. No time
dependence was found in either case. This absence of a
time dependence at Oð�Þ fits with the spectral picture.
The infinite volume coefficient was most precisely com-
puted in Ref. [58]. Our determination of c0 agrees with the
previous results.
At Oð�2Þ we start to encounter a dependence on NT .

DLPT also gives us information on the coefficient
c1ðNS;NTÞ. In this case we have only computed the infinite
volume limit for the unsmeared coefficient using the code
of Ref. [59] in DLPT:

cð3;0Þ1;DLPT ¼ CF=CAc
ð8;0Þ
1;DLPT ¼ 11:1425ð25Þ: (83)

cð3;0Þ1 has been computed previously in a less controlled

way using finite Wilson loops [60], resulting in the value

cð3;0Þ1 ¼ 11:152. In Ref. [33] agreement with this value was
reported. Beyond Oð�2Þ there exist no DLPT results.
Next, we address NSPT data for n � 1. We wish to

understand the NT dependence for NT > NS. For this
analysis the simulations to Oð�4Þ at NS ¼ 4 up to the
very high NT ¼ 24 turn out to be particularly useful. The
results are shown in Fig. 7. Note that in these cases the error
bars are dominated by the finite Langevin timestep system-
atics. The n ¼ 1, 2, 3 results all show the same qualitative
behavior. For NT � 10 the data are constant within errors,
and linear fits result in slopes that are compatible with zero

 1.918

 1.920

 1.922

 1.924

 1.926

 0  0.05  0.10  0.15  0.20

c 0(3
,0

) (4
,N

T
)

1/NT

FIG. 6 (color online). cð3;0Þ0 ð4; NTÞ as a function of 1=NT com-
pared to a linear fit. The linear term is clearly zero within errors.

The fit gives cð3;0Þ0 ð4Þ ¼ 1:9221ð20Þ, to be compared to 1.92253

from DLPT, Eqs. (79)–(82).
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within two standard deviations. For NT smaller than 10 we
start to see a bending in 1=NT , which we parametrize by a
1=Nd

T function. Large powers of d are favored by the fit.
The specific power is difficult to determine. We find a
1=N5

T fit to best describe the data, though only marginally
better than a 1=N3

T fit. Linear 1=NT fits, however, are
unsatisfactory as we can see in Fig. 7. We can compare

the cð3;0Þ1;2;3ð4;1Þ-values obtained averaging NT > 10 data vs

performing 1=N3
T fits: 9:142� 0:012 vs 9:147� 0:010,

63:08� 0:13 vs 63:16� 0:10 and 508:3� 1:5 vs 509:7�
1:0. Indeed, within our present accuracy, the large-NT data
are in agreement with the extrapolation. The same also
holds for the smeared and octet data sets.

We found 1=N5
T and 1=N

3
T fits to also work well for other

NS-values (though in these cases we have less data points
and therefore less conclusive results). Irrespectively of the
power d, we observe the coefficient of the 1=Nd

T-term
to increase roughly linearly with NS. From this phenome-
nological analysis we conclude that the 1=NT effects
effectively count as NS=N

3
T � 1=N2

T . Moreover, we find
the coefficients of these terms to be numerically small. In
order to confirm this phenomenological counting, we have
also explored the region NT � NS=2 for n ¼ 1 using the
PBC DLPT formulae of Ref. [57] that only apply to
NT < NS. In this case for very large volumes (NS � 32),

we indeed found a ðaþ bNSÞ=N3
T parametrization to

work well; see Fig. 8. This means that the 1=NT

effects are clearly subleading, compared to the 1=NS

effects that we incorporate in our fit and also subleading
relative to the unknown 1=NS effects starting at Oð�5Þ,
due to �3.
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FIG. 7 (color online). cð3;0Þ1;2;3ð4; NTÞ as a function of 1=NT , in comparison to a constant plus linear fit, a constant plus cubic fit, and a
constant fitted only to the NT > 10 points.
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FIG. 8 (color online). cð3;0Þ1 ðNS; NTÞ from DLPT obtained on
volumes with PBC. The fitted curves are constant plus cubic
(1=N3

T).
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While these analyses strongly indicate that the 1=NT

effects decay rapidly with NT , the specific functional
form is not exactly known. Therefore, our analysis strategy
will be to take NT � max ðNS; 11Þ so that the 1=NT effects
can safely be neglected. In this way we loose data and
statistics but avoid any bias from assuming a particular
functional form. To estimate the cutoff systematics we then
vary NT and also consider different trial fit functions. We
discuss this issue further in the next section.

Subleading effects of Oð1=N2
SÞ would be obscured by

the unknown (logarithmically modulated) 1=NS effects
from higher �-function coefficients. Therefore, we will
not consider these.

We conclude with a discussion of lattice artifacts.
Formally, we may introduce an anisotropy at � as. In
this case the lattice action, that is invariant under time or
parity reversal, agrees with the continuum action up to
Oða2t ; a2sÞ-terms. The temporal and spatial lattice extents
in physical units are given by atNT and asNS, respectively,
so that the only dimensionless combinations consistent
with the leading order lattice artifacts are a2t =ðatNTÞ2 ¼
1=N2

T and 1=N2
S. Therefore, within perturbation theory,

where we cannot dynamically generate additional scales,
the LO lattice artifacts are indistinguishable from
Oð1=N2

T; 1=N
2
SÞ finite size effects which, as discussed

above, are beyond our present level of precision.

VII. SIMULATION RESULTS

In this section we obtain the infinite volume coefficients
of the expansions of four different self-energies: for fun-
damental and adjoint sources and using static actions with
smeared and unsmeared time derivatives. We compare
their large order behavior with theoretical expectations,
and determine the leading renormalon normalizations Nm

and Nm~g
. We then convert the results into the MS scheme,

using different methods, and estimate �latt
3 .

A. Infinite volume coefficients

Below we determine the infinite volume coefficients

c
ðR;�Þ
n defined in Eq. (42). Our default fit function for

c
ðR;�Þ
n ðNS;NTÞ [see Eq. (64)] is defined in Eqs. (68)–(70),

and depends on the fit parameters c
ðR;�Þ
n and f

ðR;�Þ
j with

j � n. This last dependence introduces a correlation be-
tween different n-valued coefficients, which we take into
account by simultaneously fitting12 all cnðNS;NTÞ to data
up to a given orderOð�nmaxþ1Þ. By default nmax þ 1 ¼ 20.
As a sanity check, we have also fitted each order n inde-
pendently with two fit parameters cn and fn, keeping the
fj-values that were obtained at previous orders j < n fixed.

Since this iterative method does not take account of all

correlations, the resulting statistical errors and 2-values
are not reliable. Nevertheless, these fits yield similar cen-
tral values, illustrating that the low order coefficients are
only mildly affected by higher order data. In the following
we will only use the results of the global fits.
To ensure that 1=NT effects can be neglected we restrict

our fits toNT � max ðNS; 	TÞwith 	T ¼ 11. In addition we
restrict NS � 	S, varying 	S to explore the validity range
of Eq. (68). Our ‘‘thermometer’’ for this will be to obtain

acceptable 2=NDF-values and good agreement with cð3;0Þ1

and cð8;0Þ1 from DLPT, Eq. (83). We find that including

small volumes improves the quality of the fits: the values

of cðR;0Þ1 tend towards the expectations, and 2=NDF, as well

as the errors, are reduced. We illustrate this behavior in
Table V. We have observed the same behavior for different
values of 	T around 11, and also for the octet and/or
smeared perturbative series. Therefore, our default setting
will be 	S ¼ 4.
The leading parametrical uncertainty stems from the

unknown 1=NS effects associated to higher order terms in
the�-function:�3,�4 etc., which will start affecting the fit
at orders nþ 1 � 5. As long as all singularities of the
lattice �-function in the Borel plane are further away
than u ¼ d=2 ¼ 1=2 from the origin (which is the case),
these higher �i coefficients will not affect the leading
renormalon behavior. Nevertheless, there can be an
impact at intermediate orders. To study this, for each

cðR;�Þn ðNS;NTÞ we perform three different fits, setting �1 ¼
�2 ¼ 0 (�0), setting only �2 ¼ 0 (�0;1), and using all the

known coefficients (�0;1;2). The resulting cð3;0Þn are dis-

played in Table VI of the Appendix. The results between
the �0 and �0;1 fits start to deviate from each other

significantly at n ¼ 4 while �0;1;2 becomes statistically

distinguishable from �0;1 starting around n ¼ 9. At

n ¼ 19 there is a 25% variance between the �0 and
�0;1;2-fits. The convergence pattern is sign alternating.

The picture is similar for the smeared and the octet results.
We will take the difference between the �0;1 and �0;1;2

results as an estimate of the error from subleading terms in
the�-expansion. This is our dominant source of systematic
error, by far exceeding, e.g., our statistical errors.

TABLE V. 2=NDF, cð3;0Þ1 and cð3;0Þ19 for different values of
	S � NS (NT � max ðNS; 11Þ). The n ¼ 0 values were fixed to
the DLPT result. Otherwise the 2=NDF-values come out even
smaller: 1.570, 1.322, 1.209 and 1.152 respectively, whereas
the coefficients barely change. The DLPT expectation is

cð3;0Þ1 ¼ 11:1425ð25Þ.
	S 9 7 6 4

2=NDF 1.701 1.431 1.309 1.263

cð3;0Þ1 11.120(33) 11.124(25) 11.122(17) 11.136(11)

cð3;0Þ19 =1023 3.919(73) 3.995(55) 4.108(36) 4.118(36)

12All the global fits to the cnðNS;NTÞ data have been double
checked by two different program implementations using both
Maple and Mathematica.
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We remark that switching off the running altogether (�i ¼
0) yields a bad 2=NDF ¼ 3:167 (with n ¼ 0 fixed from

DLPT) and a value of cð3;0Þ1 that is by about 20 standard

deviations away from the DLPT result. Once the running is
introduced into the parametrization of the finite size ef-
fects, these quickly and unavoidably (see Sec. V) grow in
size, resulting in large cancellations with the coefficients
cn. We illustrate the importance of this effect in Fig. 9,
where we compare the fitted parametrization to the un-
smeared triplet data on cnðNSÞ=cn � 1 for various n
(this also illustrates the quality of the fit). Note that the
curvatures, i.e., the deviations from straight lines, are due
to the renormalization group running of the 1=NS coeffi-
cients. The data clearly show the expected curvature. To
illustrate this better, we enlarge the n ¼ 9 curve in Fig. 10.

Next, we estimate the error associated to the NT-range
dependence that we have not accounted for in our fits. Our
data run over a large variety of lattice volumes with differ-
ent NT-values. Our cutoff NT � 11 eliminates a significant
fraction of lattice geometries. However, we can still benefit
from these discarded volumes, as they allow us to estimate
the systematics associated with our choice of cutoff. We
follow two strategies: (i) we vary the cutoff 	T . We display
	T ¼ 9 results in Table VII. Reducing the cutoff increases
the 2=NDF-values, since the 1=NT curvature is not built
into our parametrization. Other than this there is good
agreement with our 	T ¼ 11 �0;1;2 fits of Table VI.

(ii) We introduce a NT-dependent term into the fit function
in the following way13:

cnðNS;NTÞ ¼ cn � fnðNSÞ
NS

þ vnðNSÞ
Nd

T

; (84)

and fit to all our volumes (	T ¼ 5). We have explored
different values of d and different parametrizations of
vnðNSÞ. In Sec. VI the low n vnðNSÞ coefficients were
found to increase with NS. Global fits also favor this
behavior. Therefore, we consider two fit functions:
(ii.a) vnðNSÞ=Nd

T where we construct vnðNSÞ in analogy
to the fnðNSÞ-term, using the renormalization group run-
ning of previous orders with just one new fit parameter

vn ¼ vð0Þn at each order. (ii.b) ~vnNS=N
d
T , assuming a linear

dependence of this term on NS. We now vary d. We take
d ¼ 2 for the (ii.a) fit, as we obtain a good 2=NDF-value
and agreement with c1;DLPT within one standard deviation.

Varying d increases 2=NDF and deteriorates this agree-
ment. We take d ¼ 3 for the (ii.b) fit, as it yields a good
2=NDF-value and also perfect agreement with c1;DLPT.
d ¼ 2 results in a difference between the fitted value of
c1 and c1;DLPT of several standard deviations, while d ¼ 4
and d ¼ 5 reduce the quality of the global fit in terms of
the 2-values.
The 1=NT effects are much less constrained by theoreti-

cal arguments than the 1=NS effects. This could have
resulted in a substantial increase of the number of fit
parameters necessary to obtain acceptable 2=NDF-values.
Fortunately, theNT-dependence of the data is much smaller
than the NS-dependence. We find it remarkable that, with
just one additional parameter per order, we can accommo-
date the complete NT dependence down to NT ¼ 5.
Note that fitting without such an NT-term to all volumes
(	T ¼ 5, 	S) we obtain an unacceptable 2=NDF ¼ 3:923,
whereas both choices (ii.a and ii.b) yield good reduced
2-values, see Table VII. Ansatz (ii.b) gives results in
perfect agreement with our 	T ¼ 11 strategy, while ansatz
(ii.a) agrees within 1.5 standard deviations. In both cases we
fixed the n ¼ 0 terms from DLPT. We notice that the
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FIG. 9 (color online). cð3;0Þn ðNSÞ=cð3;0Þn � 1 for n 2
f0; 1; 2; 3; 4; 5; 7; 9; 11; 15g (top to bottom). For each value of
NS we have plotted the data point with the maximum value of
NT . The error bars are invisible on the scale of the figure.
The curves represent the global fit. For n ¼ 0 the DLPT pre-

diction �ð1=NSÞfð3;0Þ0;DLPT=c
ð3;0Þ
0;DLPT of Eqs. (80) and (81) is shown

(straight line).
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FIG. 10 (color online). Zoom of Fig. 9 for n ¼ 9.

13In Ref. [10] we employed a different parametrization of the
NT-dependence. The fit yielded similar results to those found
here but using two extra parameters per order.
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coefficients vn and ~vn are small in size and tend to vanish
for large n, relative to the divergent cn and fn.

In spite of this success, we opt for the more conservative
strategy of discarding data with NT < NS or NT < 11,
since our 1=NT-fit ansätze are phenomenological and not
fully understood theoretically. For the errors associated to
the NT-cut, we take the differences between the first
columns of Tables VI and VII, as this choice is com-
pletely unbiased regarding the functional form of the
NT-dependence. We stress that the by far most dominant
systematics are the unknownN�1S ln iðNSÞ terms. Therefore,

alternative estimates of the 1=NT effect would only mar-
ginally affect the final errors.

We have completed the exploration of potential sources
of systematic uncertainties. The other perturbative series
(smeared, octet and octet smeared) were analyzed analo-
gously, with similar conclusions and precision. In particu-
lar similar 2-values were obtained. The only exception
was the octet case, for which we obtained a somewhat
reduced precision and the 2-values were smaller by fac-
tors of approximately two. This could be traced to some
geometries where the individual errors turned out much
bigger. This effect then propagated into the final data set.

We list the final numbers for all the infinite volume

coefficients cðR;�Þn in Table VIII. The central values are
taken from the first column of Table VI. The quoted errors
result from summing statistical and theoretical uncertain-
ties in quadrature. Schematically, we have at each order n

�final ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

stat þ �2
� þ �2

T

q
; (85)

where �� is the difference between the first and second

columns of Table VI, and �T is the difference between
the first columns of Tables VI and VII. We find �� �
�T; �stat, so that the dominant error comes from logarith-
mic N�1S ln iðNSÞ-corrections, due to our lack of knowledge
of �latt

3 etc. In comparison to these unknown 1=NS-terms

and the 1=Nd
T corrections addressed above, 1=N2

S effects

are negligible.
In Table VIII we have chosen to multiply the octet

coefficients by factors CF=CA. In this normalization these
will agree with the triplet coefficients for n ¼ 0 and n ¼ 1
but at higher orders in general they will differ by
1=N2

c-terms. Within our uncertainties, however, we are
unable to resolve these differences.

Our NSPT value cð3;0Þ1 ¼ 11:136ð11Þ is in good agree-

ment with the DLPT expectation Eq. (83). cð3;0Þ2 was calcu-

lated previously by two groups. One group determined the
static energy, singling out the residual mass of the potential
using large Wilson loops. Employing NSPT they obtained

cð3;0Þ2 ¼ 86:2ð0:6Þð1:0Þ [61]. The second group fitted a pol-

ynomial in � to results of nonperturbative simulations of
the Polyakov loop at various large values of the inverse

lattice coupling �. They obtained cð3;0Þ2 ¼ 86:6ð5Þ [34].
Our result cð3;0Þ2 ¼ 86:10ð13Þ confirms these studies, while

results for n > 2 were not known previously, e.g., cð3;0Þ3 ¼
794:5ð1:6Þ.
The same analysis also yields the 1=NS correction

coefficients f
ðR;�Þ
n , where we determine the systematic error

in the same way as for the c
ðR;�Þ
n . We display the results

in Table IX.
For large orders the perturbative expansion should be

dominated by infrared physics, whereas different smear-
ings correspond to different regularizations of the high
energy behavior of the Polyakov loop. Therefore, we ex-
pect the smeared and unsmeared coefficients to converge to
the same values for large n. This is indeed the case for the
coefficients cn and fn of both the triplet and octet repre-
sentations. Actually, the differences between smeared and
unsmeared coefficients vanish quite rapidly, around n ¼ 6
for the cn and already at n ¼ 1 for the fn. Indeed, all
smeared and unsmeared values of fn are equal within
errors for both representations. This is to be expected, as
the coefficients fn are related to finite size effects and know
nothing about the specific regularization prescription for
the ultraviolet behavior of the Polyakov loop. It is tempting
to consider global fits, constraining the smeared and un-
smeared fn values to be equal, to increase the accuracy of
the results. However, to avoid any bias we will not explore
this possibility in this article.
We now move on to determinate the infinite volume

cn=cn�1-ratios. These are obtained from the same fits,
since we have also computed the correlation matrix.
Actually, we find strong correlations both of the statistical
and systematic errors between consecutive expansion
coefficients. Due to these correlations, the infinite volume
cn=cn�1-ratios can be determined more precisely than the
coefficients themselves. The results are displayed in
Table X. Up to n ¼ 11 the errors increase. For higher
orders this tendency is reversed, since the relative impact
of the�2-value (and hence also of the unknown�-function
coefficients) diminishes and so do the effects of finite
NT-corrections.
As a cross-check we have also determined the coeffi-

cients cn by a direct fit to the ratio data

cn
cn�1

ðNS;NTÞjlatt

¼ cn � fnðNSÞ=NS½þvnðNSÞ=Nd
T�

cn�1 � fn�1ðNSÞ=NS½þvn�1ðNSÞ=Nd
T�
; (86)

using the fðR;0Þ0;DLPT-value for the nonsmeared case and

fðR;1=6Þ0;DLPT, obtained in the previous fit, for the smeared case.

For the central values and error estimates we proceed in the
same way as we did before. Doing this, overall consistent
results and errors for the individual coefficients are found
(with slightly bigger 2-values). The only exception is the
unsmeared octet case, where the problems of stability that
we already encountered for the cn data become magnified
in the ratios, further reducing the precision. Subsequent
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cn-values are statistically correlated and direct fits to the
ratio data take these correlations into account. We obtain
similar errors and central values as in the previous analysis.
This indicates that the statistical correlations of the lattice
data do not significantly affect the errors of the infinite
volume coefficients, which are dominated by the system-
atics. As another related cross-check, we have computed
the infinite volume cn=cn�1 ratios using the ratio data with
fit parameters cn=cn�1, fn [and vn or ~vn, see the discussion
after Eq. (84)], proceeding analogously as above. From this
we obtain very similar results to those quoted in Table X.

Finally, we remark that at the very high orders domi-
nated by the renormalon behavior, TBC cannot and do not
reduce finite volume effects, relative to PBC. However, the
vn- and, at low orders, the fn-values are significantly
reduced, considerably increasing the robustness of the
cn- and fn-determinations at intermediate and large orders.
The effect is twofold. First, the impact of different para-
metrizations and of the low-NT cutoff value on the
1=NT-extrapolation is reduced. Second, the low-order fn
times �3 and higher unknown �-function coefficients that
contribute to the N�1S ln iðNSÞ-terms are smaller. Therefore,

the uncertainty due to the lack of knowledge of �i, i � 3,
becomes reduced at intermediate orders [for large n these
effects will be small anyhow due to the renormalon domi-
nance, see the discussion around Eq. (77)].

B. Renormalon dominance and the determination
of Nm and Nm ~g

In the following we investigate whether the large-n
behavior of the four different sets of cn and fn complies
with the renormalon expectation and determine the triplet
and octet normalizations Nm and Nm~g

.

In Fig. 11 we compare the cn=ðncn�1Þ-ratios summa-
rized in Table X to Eq. (59) at different orders in the 1=n
expansion. The LO and NLO expectations are scheme
independent, whereas the NNLO expression depends on
the scheme through �latt

2 . For n * 8 the ratios clearly
converge to Eq. (59), and they are within the right ball
park of the NNLO prediction, as Fig. 11 illustrates. This is
so irrespectively of the representation and smearing,
confirming the existence of the renormalon at d ¼ 1. For
completeness, we also plot the NNNLO Oð1=n3Þ expecta-
tion, using the �latt

3 estimate of Eq. (103).

The renormalon picture predicts that cn ’ fn for large n.
This equality is achieved with a high degree of accuracy
from n ¼ 9 onwards in all four cases (compare Tables VIII
and IX). For the values of NS we explore, the renormalon
picture also predicts a strong cancellation between cn and
fnðNSÞ=NS for large n. We obtain this behavior, which we
show in Fig. 9, with an excellent fit to the data (see, for
instance, Fig. 10, which is already at an order where
renormalon dominance has set in).

For each representation R we have four different

sequences: cðR;0Þn , cðR;1=6Þn , fðR;0Þn and fðR;1=6Þn that we may

use to determine the normalizations Nm (R ¼ 3) and Nm~g

(R ¼ 8). To obtain the normalizations we divide the large n
expectations Eqs. (55) and (57) for the triplet and octet
representations by the coefficients obtained in Tables VIII
and IX, respectively. We truncate the equations at
Oð1=ðnþ bÞÞ precision (NNLO), since resolving the
Oð1=ðnþ bÞ2Þ correction term requires the knowledge of
�latt

3 . For large n these ratios should tend to constants,

allowing us to extract Nm and Nm~g
. This is depicted in

Figs. 12 and 13 for triplet and octet sources, respectively.

We use the n ¼ 19 coefficients cðR;0Þ19 and cðR;1=6Þ19 , and their

associated errors, to obtain the normalizations (recalling
that Nm~g

¼ �N�)

Nlatt
m ð� ¼ 0Þ ¼ 19:1ð15Þ;

CF=CAN
latt
m~g
ð� ¼ 0Þ ¼ 18:5ð16Þ;

(87)

Nlatt
m ð� ¼ 1=6Þ ¼ 18:9ð15Þ;

CF=CAN
latt
m~g
ð� ¼ 1=6Þ ¼ 18:9ð15Þ:

(88)

The errors are much bigger than the differences between
the four possible determinations: with or without smearing,
using c19 or using f19. This is not too surprising since these
parameters are obtained from one and the same global fit to
the same data and hence highly correlated. Moreover, the
errors are dominated by the systematics of varying the
subleading terms of the finite volume fit function. We
obtain our final result by averaging the above central
values, with errors that accommodate both the original
error bars:

Nlatt
m ¼ 19:0� 1:6; CF=CAN

latt
m~g
¼ 18:7� 1:8: (89)
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FIG. 11 (color online). The ratios cn=ðncn�1Þ for the smeared
and unsmeared, triplet and octet fundamental static self-energies,
compared to the prediction Eq. (59) for the LO, next-to-leading
order (NLO), NNLO and NNNLO of the 1=n expansion. For
clarity, the data sets are slightly shifted horizontally by different
off-sets.
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These numbers are included as error bands into Figs. 12
and 13, respectively. The bands contain all values of the
n � 8 coefficients, lending credibility to our normalization
estimates. Note that, on general grounds, we would expect
the ratio N ~m=Nm to differ from the Casimir scaling factor
CA=CF by an Oð1=N2

cÞ-term, which naively amounts to
10%, roughly the level of our accuracy. We discuss this
issue further in the next subsection.

As a cross-check we also estimate the normalization
from the Borel transform of the static energy perturbative
series

BðNÞ½�m�ðtðuÞÞ ¼ XN
n¼0

cn
n!

�
4�

�0

u

�
n
; (90)

using the function

DðNÞm ðuÞ ¼
XN
n¼0

DðnÞm un ¼ ð1� 2uÞ1þbBðNÞ½�m�ðtðuÞÞ

¼ Nm

1

a
ð1þ c1ð1� 2uÞ þ c2ð1� 2uÞ2 þ � � �Þ

þ ð1� 2uÞ1þbðanalytic termÞ; (91)

as it was first done in Ref. [45] for the pole mass, using

ideas developed in Refs. [62,63]. DðNÞm ðuÞ is singular but
bounded at the first IR renormalon. Therefore, we
can estimate Nm from the first coefficients of the series in
u, using

NðNÞm
1

a
¼ DðNÞm ðu ¼ 1=2Þ: (92)

We plot the predictions for different orders N in Fig. 14.
The error is propagated from the error of the coefficient.
Within one standard deviation the result is consistent with
Eq. (89) (error band), though less precise.
Finally, we show in Fig. 15 the divergent behavior of the

perturbative expansion of the pole mass, Eq. (43). We use

the fact that rn ¼ 	cð3;0Þn for large n and the coefficients
listed in Table VIII. We compute

rn
�latt

�nþ1ð	Þ ¼ cn�
nþ1ð	Þ exp

�
2�

�0�ð	Þ
��
�0�ð	Þ
4�

�
b

þ � � � ; (93)

where we truncate Eq. (49) at two-loop order. In Fig. 15 we
plot Eq. (93) times

ffiffiffiffiffi
n0
p

[see Eq. (62)] as a function of n for

� � 0:096, 0.072, 0.057, 0.044 and 0.036. These values are
chosen so that the minimal term in the two-loop approxi-
mation of Eq. (60) corresponds to n0 ¼ 5, 7, 9, 12 and 15,
respectively. In terms of the inverse lattice coupling pa-
rameter � ¼ 3=ð2��Þ this covers the range 4:97 & � &
13:32. Orders n0 ¼ 6, 7 (� � 5:8, 6.6) are typical for
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FIG. 13 (color online). Nm~g
¼ �N�, determined via Eq. (57),

truncated at NNLO, from the coefficients cð8;0Þn , cð8;1=6Þn , fð8;0Þn and

fð8;1=6Þn . The horizontal band is our final result quoted in Eq. (89).
To enable comparison with Fig. 12, we multiply Nm~g
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cð3;0Þn , n � N, using Eq. (92). The error band corresponds to the
result Eq. (89).
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present-day nonperturbative lattice simulations, with
inverse lattice spacings 1:5 GeV & a�1 & 5:2 GeV [58],
while the n0 ¼ 5 value is in the strong coupling regime.
As expected, the contributions to the sum decrease
monotonously down to an order ��n0þ1, before starting
to diverge exponentially. The horizontal error band corre-
sponds to the uncertainty, estimated in Eq. (62), of the sum
truncated at order n0

ffiffiffiffiffi
n0
p jrn0 j

�latt

�n0þ1ð	Þ ¼ 23=2�b�3=2

�0�ð1þ bÞ jNmj � 1:206jNmj;
(94)

where we used the value Nm ¼ 19:0� 1:6 [Eq. (89)].
Using �latt � 8:2 MeV [64], this horizontal line corre-
sponds to about 190 MeV. The data are very consistent
with expectations, the only difference being that at the
largest coupling (lowest scale 	) the order of the minimal
term is somewhat lower than expected (n0 ¼ 3, 4 instead
of n0 ¼ 5). We obtain very similar results from the
smeared and the octet data.

At smaller �, i.e., at higher 	, the minimal term
cn0�

n0þ1ð	Þ is numerically smaller than at lower scales.

However, this is compensated for by the linear divergence
of rn ¼ 	cn, resulting in a similar overall uncertainty. The
only difference is that to achieve this accuracy, at higher
scales one has to expand to higher orders.

C. Conversion to the MS scheme and
determination of �latt

3

The results of the infinite volume coefficients c
ðR;�Þ
n , Nm

and Nm~g
presented above have been obtained in the

(Wilson) lattice scheme. Translating a coefficient cðR;�Þn to

a different scheme would require the knowledge of the
conversion to order�nþ1. This is completely beyond reach.

For the case of MS, the conversion

�MSð�Þ ¼ �lattð�Þð1þ d1�lattð�Þ þ d2�
2
lattð�Þ

þ d3�
3
lattð�Þ þOð�4

lattÞÞ (95)

is known to two loops with [32,65,66] d1 ¼
5:88359144663707ð1Þ and [32,42,43] d2 ¼ 43:4073028ð2Þ.
Fortunately, only d1 is needed to determine the ratio of

�-parameters, and NMS
m and NMS

m~g
, since (exactly)

NMS
m;m~g

¼ Nlatt
m;m~g

�latt=�MS; where

�MS ¼ e
2�d1
�0 �latt � 28:809338139488�latt:

(96)

This yields the numerical values

NMS
m ¼ 0:660ð56Þ;

CF=CAN
MS
m~g
¼ �CF=CAN

MS
� ¼ 0:649ð62Þ:

(97)

Other combinations of interest are [see Eqs. (56) and (58)]

NMS
Vs
¼ �1:32ð11Þ; NMS

Vo
¼ 0:14ð18Þ: (98)

These results can be compared to previous determinations

from continuum computations in the MS scheme
[50,56,67,68]. The agreement is remarkably good, which is
highly nontrivial given the factor ’ 29 between the values of
Nm andN� in both schemes, due to the big difference between
the �MS- and �latt-parameters, i.e., the large value of d1.

Moreover, in the MS scheme the normalization was deter-
mined from the first few terms of the perturbative series only,
while in the lattice scheme n � 9 was required. As expected,
the onset of the renormalon dominated behavior depends on
the scheme. Nowadays, several diagrammatic continuum per-
turbation theory computations in heavy quark physics have
reached a level of precisionwhere they become sensitive to the
leading renormalon. We remark that there has always been

some doubt about the reliability of determinations ofNMS
m and

NMS
� from just very feworders of perturbation theory.Wehave

now provided an entirely independent determination of these
objects based on many orders of the expansion that can
systematically be improved upon. Our quenched result pre-
sented here goes beyond the present state-of-the-art. An analo-
gous un-quenched determination could give similarly precise

values for NMS
m and NMS

� , with direct consequences to heavy

quark physics, e.g., if using the RS scheme [45].
To further support our conclusions, we convert the

cnðNS;NTÞ lattice coefficients, and their ratios, into the

MS scheme. As we have already mentioned, we can only
exactly perform this conversion up to n ¼ 2. For n > 2 the

MS coefficients and ratios will depend on the approxima-
tion used. If the renormalon picture is correct, the large-n
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FIG. 15 (color online). Eq. (93) times
ffiffiffiffiffi
n0
p

, for five different
values of the lattice scheme coupling constant �, ranging from
�ð	Þ � 0:096 (n0 ¼ 5) to �ð	Þ � 0:036 (n0 ¼ 15). The error
band corresponds to the estimate of Eq. (62), where we have
used the value Nm ¼ 19:0� 1:6 [Eq. (89)].
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ratios should be dominated by the renormalon behavior and

all ‘‘MS-like’’ conversions should yield similar results.
However, coefficients and ratios at intermediate orders
will depend on the approximation used. We consider two

different MS-like conversion schemes:

(a) MSa

�lattð�Þ ¼ �MSð�Þ
� 1

1þ d1�MSð�Þ þ ðd2 � d21Þ�2
MS
ð�Þ ;

(99)

(b) MSb

�lattð�Þ ¼ �MSð�Þð1� d1�MSð�Þ
þ ð2d21 � d2Þ�2

MS
ð�ÞÞ: (100)

We suspect the schemeMSa to be superior, since the trans-
lation of 1=� rather than of � from one scheme to another
generates a renormalization group-like resummation.

Our statistical data analysis [52] allows for the
direct evaluation of derived/secondary observables. The
expansion of the logarithm of the Polyakov loop is
the most obvious secondary observable and produces the
coefficients cnðNS;NTÞ, but we can also intertwine the
logarithm with other functions, such as the change from

the lattice to a MS-like scheme. We do so using Eqs. (99)

and (100). In addition, we employ DLPT to obtain cð3;0Þ
1;MS
¼

CF=CAc
ð8;0Þ
1;MS
¼ �1:3147ð25Þ, whereas the first coefficient

c0 is scheme independent.

In Fig. 16 we show our determination of cð3;0Þn =ðncð3;0Þn�1Þ
using the two MS-like conversions (a) and (b). We only
display the statistical errors associated to the fit. We have

not performed a complete error analysis, as the MS-like
conversions introduce unknown systematics. As antici-

pated, both MS-like schemes converge to the renormalon
expectation. Actually, leaving aside systematic errors, it

converges to the MS NNLO expectation rather than the

lattice one. For the more stable MSa scheme, renormalon
dominance sets in already at orders n� 5, 6, significantly
earlier than in the lattice scheme.

Following the analysis of the Sec. VII B, we can
determine the normalization of the renormalon from the
coefficient c19, obtaining the estimates

NMSa
m ’ 0:51; NMSb

m ’ 1:53; (101)

to be compared to the correct value NMS
m ¼ 0:66ð6Þ of

Eq. (97). Of course, due to the mismatch at intermediate
orders, these numbers are not trustworthy. However, con-
sidering the Oð1022Þ size of c19, the numbers certainly are

within the right ball park. As expected, the scheme MSa is
superior, both in terms of an earlier onset of the asymptotic
behavior and the extracted value of the normalization

NMSa
m ’ NMS

m . A similar picture is obtained for all the other
sequences except for the unsmeared octet. In this latter
case the data become too noisy to obtain stable results.

Since we know �MS
3 [41], we can go one order higher in

1=n in the prediction for the ratios and coefficients of the

MS-like schemes. Incorporating the running to this higher
order into the fit function produces very small shifts of the
predicted ratios and coefficients. This confirms that intro-
ducing consecutive orders of the �-function into the fit
leads to a convergent parametrization of the cn coefficients
and associated ratios.
The previous fits indicate that the asymptotic behavior of

the ratios is not very sensitive to their values at intermedi-
ate orders. However, the normalization Nm is, as the value
of a high order coefficient cn, obtained from a global fit
will, through the running of the 1=NS finite size effect, also
depend on n-intermediate orders. This is also so if one tries
to obtain the coefficients cn through the ratios. The reason
is that these are determined from the relation cn ¼
c0�

n
j¼1

cj
cj�1

, which is sensitive to the intermediate values

of
cj
cj�1

. In spite of these caveats the results are encouraging

and perfectly compatible with expectations.
We expect that the renormalon dominance of the static

energy expansion sets in at much lower orders in the MS
scheme than in the lattice scheme. This is supported by the
consistency of our Nm-determination with continuum esti-
mates that are based on only a few orders. Also the earlier

onset of the asymptotics in the MS-like schemes is coher-
ent with this assumption. We can turn this argument around
to estimate d3 [cf. Eq. (95)] and �latt

3 , assuming that
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FIG. 16 (color online). The ratio cð3;0Þn =ðncð3;0Þn�1Þ in the lattice
and MS-like schemes, compared to the prediction Eq. (59).
NNLO and NNNLO refer to the respective MS scheme
expectations.
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c3;MS ’ NMS
m

�
�0

2�

�
3 �ð4þ bÞ
�ð1þ bÞ

�
�
1þ b

ð3þ bÞ s1 þ
bðb� 1Þ

ð3þ bÞð2þ bÞ s2 þ � � �
�
:

(102)

Using our central value cð3;0Þ3;latt ¼ 794:5, we obtain

d3 ’ 365; �latt
3 ’ �1:7� 106: (103)

Equation (102) introduces a systematic error that is
difficult to estimate. Nevertheless, we have checked that
the value of d3 varies at the few per mille level when

considering the uncertainties ofNm, c
ð3;0Þ
3;latt, or when truncat-

ing Eq. (102) at a lower order in 1=n. This translates into
variations at the level of a few per cent for �latt

3 . We have

also checked that introducing this estimate of �latt
3 in our fit

function of Sec. VII A yields a convergent pattern
(in the number of �-coefficients included) for cn and
cn=ðncn�1Þ. In this case cn=ðncn�1Þ converges to Eq. (59)
with NNNLO precision. The fit produces a somewhat
smaller value of Nm that agrees within one standard devia-
tion with the result stated in Eq. (89).

VIII. CONCLUSIONS

We have determined the infinite volume coefficients of
the perturbative expansions of the self-energies of static
sources in the fundamental and adjoint representations to
Oð�20Þ in gluodynamics. We have employed lattice regu-
larization with the Wilson action and two different discre-
tizations of the covariant time derivative of the Polyakov
loop. The computation was performed using NSPT. Overall,
we have obtained the infinite volume coefficients of four
different perturbative series, which we show in Table VIII.
At high orders all series display the factorial growth pre-
dicted by the conjectured renormalon picture based on the
operator product expansion. This can also nicely be seen
from the normalized ratios of subsequent coefficients
cn=ðncn�1Þ, which converge to Eq. (59) for large n, as
can be read off from Table X. The coefficients that govern
spatial finite size effects, fn, also grow factorially, as pre-
dicted by the renormalon dominance picture, see Table IX.

Furthermore, we have determined the normalization
constant of the first infrared renormalon of a heavy quark
pole mass and of the gluelump mass:

Nlatt
m ¼ 19:0� 1:6; CF=CAN

latt
� ¼ �18:7� 1:8;

(104)

NMS
m ¼ 0:660� 0:056;

CF=CAN
MS
� ¼ �0:649� 0:062:

(105)

We stress that the Nm-value is more than ten standard devia-
tions different from zero, proving, with this significance, the

existence of the d ¼ 1 renormalon in gluodynamics. We also
find it remarkable that we can obtain a result in a continuum
scheme directly (and exactly) from a computation in lattice
regularization, with no error in the conversion.
The above numbers are in agreement, within errors, with

determinations from continuum-like computations, but
they have been obtained using completely independent
methods. In particular, for the first time, it was possible
to follow the factorial growth of the coefficients over many
orders, from around �9 up to �20, vastly increasing the
credibility of the prediction. The results of this article can
be used to predict higher order terms of the heavy quark
pole mass, of the static singlet and hybrid potentials and of
the heavy gluino pole mass (gluelump) expansions.
Unfortunately, at present, for the latter we do not have
sufficient precision to discriminate Casimir scaling viola-
tion effects, suppressed by 1=N2

c in the number of colors.
Our precision is mainly limited by our knowledge of the

fit function, and in particular of �latt
3 . We have been able to

estimate its value, �latt
3 ’ �1:7� 106, assuming that the

renormalon dominance in the MS scheme sets in around
Oð�4Þ. However, an independent precise determination
would further decrease the errors of the infinite volume
coefficients and of the normalizations Nm and Nm~g

.

Performing simulations on larger lattice volumes would
also be desirable, to further improve the control of finite
size effects. However, the statistical noise increases sub-
stantially with the length of the Polyakov loop NT and we
find simulations to become unstable for asymmetries
NS � NT . This behavior deserves further study.
While the addition of a small number of quark flavors

will neither affect any of the qualitative conclusions pre-
sented here nor the renormalon structure of the theory, a
similar unquenched analysis would be very important. This
would provide a reliable, independent determination of

NMS
m , including the effect of light flavors, with major

impact on renormalon analyses in heavy quark physics
and, in particular, enabling more accurate determinations
of the heavy quark masses, including that of the top quark.
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APPENDIX

See Tables VI, VII, VIII, IX, and X for full details.
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TABLE VI. Fit of cð3;0Þn with different approximations to the �-function. cð3;0Þ0 and fð3;0Þ0 were
fixed to the DLPT result. Leaving these parameters free slightly decreases the 2=NDF-values to
1.111, 1.152, 1.177 respectively, without significant changes in any of the fit parameters.

�0;1;2 �0;1 �0

2=NDF 1.263 1.290 1.218

c1=10 1.1136(11) 1.1136(11) 1.1136(11)

c2=10 8.610(13) 8.610(13) 8.597(13)

c3=10
2 7.945(14) 7.951(14) 7.914(14)

c4=10
3 8.215(26) 8.232(26) 8.156(26)

c5=10
4 9.322(40) 9.361(40) 9.203(40)

c6=10
6 1.1533(61) 1.1619(61) 1.1292(61)

c7=10
7 1.5576(96) 1.5760(96) 1.5067(94)

c8=10
8 2.304(16) 2.345(16) 2.194(15)

c9=10
9 3.747(27) 3.837(27) 3.499(25)

c10=10
10 6.702(49) 6.913(50) 6.121(46)

c11=10
12 1.3160(98) 1.367(10) 1.1740(89)

c12=10
13 2.809(24) 2.939(24) 2.446(21)

c13=10
14 6.513(56) 6.855(58) 5.537(51)

c14=10
16 1.628(14) 1.723(15) 1.353(13)

c15=10
17 4.363(38) 4.641(40) 3.546(33)

c16=10
19 1.247(11) 1.332(11) 0.9925(92)

c17=10
20 3.785(33) 4.059(35) 2.953(28)

c18=10
22 1.215(11) 1.308(11) 0.930(09)

c19=10
23 4.118(36) 4.446(38) 3.094(29)

TABLE VII. Determination of cð3;0Þn using the methods (i), (ii.a), and (ii.b) explained around
Eq. (84) of Sec. VII A. The first column is the result of a fit with two parameters per order
[Eq. (68)] to the NT � max ðNS; 9Þ geometries. The analogous NT � max ðNS; 11Þ results are
displayed in the first column of Table VI. The second and third columns are from fits of Eq. (84)
to all volumes, with one extra fit parameter per order: in the second column we set d ¼ 2 and
obtain vnðNSÞ from the renormalization group running using �0, �1, �2 and results from

previous orders vð0Þn�1 etc. In the last column we set d ¼ 3 and vnðNSÞ ¼ ~vnNS.

	T ¼ 9 vnðNSÞ=N2
T ~vnNS=N

3
T

2=NDF 1.666 0.940 1.033

c1=10 1.1133(10) 1.11360(89) 1.11442(89)

c2=10 8.607(12) 8.612(10) 8.619(10)

c3=10
2 7.940(12) 7.944(10) 7.947(10)

c4=10
3 8.201(24) 8.233(22) 8.231(22)

c5=10
4 9.305(37) 9.361(34) 9.340(35)

c6=10
6 1.1512(56) 1.1606(52) 1.1551(53)

c7=10
7 1.5549(88) 1.5706(81) 1.5589(83)

c8=10
8 2.301(14) 2.328(13) 2.305(13)

c9=10
9 3.742(24) 3.791(23) 3.745(23)

c10=10
10 6.695(45) 6.790(41) 6.695(43)

c11=10
12 1.3144(89) 1.3341(82) 1.3137(85)

c12=10
13 2.812(20) 2.850(19) 2.805(19)

c13=10
14 6.526(48) 6.607(44) 6.490(45)

c14=10
16 1.632(12) 1.652(11) 1.620(11)

c15=10
17 4.375(33) 4.426(30) 4.340(31)

c16=10
19 1.2506(94) 1.2650(85) 1.2401(88)

c17=10
20 3.796(28) 3.839(26) 3.764(27)

c18=10
22 1.2192(92) 1.2331(83) 1.2087(86)

c19=10
23 4.130(31) 4.177(28) 4.094(29)
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TABLE VIII. The infinite volume coefficients c
ðR;�Þ
n , including all systematic errors. The

unsmeared c0-values are fixed using DLPT.

cð3;0Þn cð3;1=6Þn cð8;0Þn CF=CA cð8;1=6Þn CF=CA

c0 2.117274357 0.72181(99) 2.117274357 0.72181(99)

c1 11.136(11) 6.385(10) 11.140(12) 6.387(10)

c2=10 8.610(13) 8.124(12) 8.587(14) 8.129(12)

c3=10
2 7.945(16) 7.670(13) 7.917(20) 7.682(15)

c4=10
3 8.215(34) 8.017(33) 8.197(42) 8.017(36)

c5=10
4 9.322(59) 9.160(59) 9.295(76) 9.139(64)

c6=10
6 1.153(11) 1.138(11) 1.144(13) 1.134(12)

c7=10
7 1.558(21) 1.541(22) 1.533(25) 1.535(22)

c8=10
8 2.304(43) 2.284(45) 2.254(51) 2.275(45)

c9=10
9 3.747(95) 3.717(97) 3.64(11) 3.703(98)

c10=10
10 6.70(22) 6.65(22) 6.49(25) 6.63(22)

c11=10
12 1.316(52) 1.306(53) 1.269(59) 1.303(53)

c12=10
13 2.81(13) 2.79(13) 2.71(14) 2.78(13)

c13=10
14 6.51(35) 6.46(35) 6.29(37) 6.45(35)

c14=10
16 1.628(96) 1.613(97) 1.57(10) 1.614(97)

c15=10
17 4.36(28) 4.32(28) 4.22(29) 4.33(28)

c16=10
19 1.247(86) 1.235(86) 1.206(89) 1.236(86)

c17=10
20 3.78(28) 3.75(28) 3.66(28) 3.75(28)

c18=10
22 1.215(93) 1.204(94) 1.176(95) 1.205(94)

c19=10
23 4.12(33) 4.08(33) 3.99(34) 4.08(33)

TABLE IX. The 1=NS correction coefficients f
ðR;�Þ
n , including all systematic errors. The

unsmeared f0-values are fixed using DLPT.

fð3;0Þn fð3;1=6Þn fð8;0Þn CF=CA fð8;1=6Þn CF=CA

f0 0.7696256328 0.7810(59) 0.7696256328 0.7810(69)

f1 6.075(78) 6.046(58) 6.124(87) 6.063(68)

f2=10 5.628(91) 5.644(62) 5.60(11) 5.691(78)

f3=10
2 5.87(11) 5.858(76) 6.00(18) 5.946(91)

f4=10
3 6.33(22) 6.29(17) 6.57(40) 6.26(23)

f5=10
4 7.73(35) 7.71(26) 7.67(66) 7.78(42)

f6=10
5 9.86(53) 9.80(42) 9.68(99) 9.79(69)

f7=10
7 1.388(81) 1.378(71) 1.35(15) 1.38(11)

f8=10
8 2.12(12) 2.11(12) 2.06(22) 2.10(17)

f9=10
9 3.54(20) 3.52(20) 3.40(37) 3.51(27)

f10=10
10 6.49(33) 6.44(34) 6.23(67) 6.44(43)

f11=10
12 1.296(64) 1.286(66) 1.24(13) 1.286(74)

f12=10
13 2.68(19) 2.64(18) 2.65(33) 2.65(21)

f13=10
14 6.70(54) 6.68(52) 6.36(90) 6.66(57)

f14=10
16 1.58(14) 1.56(14) 1.55(22) 1.57(15)

f15=10
17 4.41(34) 4.37(33) 4.24(47) 4.37(35)

f16=10
19 1.241(92) 1.230(91) 1.20(11) 1.231(94)

f17=10
20 3.79(28) 3.75(28) 3.67(30) 3.76(28)

f18=10
22 1.215(94) 1.204(94) 1.176(97) 1.205(94)

f19=10
23 4.12(33) 4.08(33) 3.99(34) 4.08(33)
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