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We present physical results for a variety of light hadronic quantities obtained via a combined analysis of

three 2þ 1 flavour domain wall fermion ensemble sets. For two of our ensemble sets we used the Iwasaki

gauge action with � ¼ 2:13 (a�1 ¼ 1:75ð4Þ GeV) and � ¼ 2:25 (a�1 ¼ 2:31ð4Þ GeV) and lattice sizes of
243 � 64 and 323 � 64 respectively, with unitary pion masses in the range 293(5)–417(10) MeV. The

extent Ls for the 5th dimension of the domain wall fermion formulation is Ls ¼ 16 in these ensembles. In

this analysis we include a third ensemble set that makes use of the novel Iwasakiþ DSDR (dislocation

suppressing determinant ratio) gauge action at � ¼ 1:75 (a�1 ¼ 1:37ð1Þ GeV) with a lattice size of 323 �
64 and Ls ¼ 32 to reach down to partially-quenched pion masses as low as 143(1) MeVand a unitary pion

mass of 171(1) MeV, while retaining good chiral symmetry and topological tunneling. We demonstrate a

significant improvement in our control over the chiral extrapolation, resulting in much improved

continuum predictions for the above quantities. The main results of this analysis include the pion and

kaon decay constants, f� ¼ 127ð3Þstatð3Þsys MeV and fK ¼ 152ð3Þstatð2Þsys MeV respectively (fK=f� ¼
1:199ð12Þstatð14Þsys); the average up/down quark mass and the strange-quark mass in the MS-scheme at

3 GeV, mudðMS;3 GeVÞ ¼ 3:05ð8Þstatð6Þsys MeV and msðMS;3GeVÞ¼83:5ð1:7Þstatð1:1Þsys; the neutral

kaon mixing parameter in the MS-scheme at 3 GeV, BKðMS; 3 GeVÞ ¼ 0:535ð8Þstatð13Þsys, and in the

RGI scheme, B̂K ¼ 0:758ð11Þstatð19Þsys; and the Sommer scales r1 ¼ 0:323ð8Þstatð4Þsys fm and r0 ¼
0:480ð10Þstatð4Þsys (r1=r0 ¼ 0:673ð11Þstatð3Þsys). We also obtain values for the SU(2) chiral perturbation

theory effective couplings, �l3 ¼ 2:91ð23Þstatð7Þsys and �l4 ¼ 3:99ð16Þstatð9Þsys.
DOI: 10.1103/PhysRevD.87.094514 PACS numbers: 11.15.Ha, 12.15.Ff, 12.38.Gc, 12.39.Fe

I. INTRODUCTION

The RBC and UKQCD collaborations have recently
published continuum limit results [1,2] for a variety of
light hadronic quantities, including the pion and kaon
decay constants, quark masses and the neutral kaon mixing
parameter BK, determined using two ensemble sets of
2þ 1-flavor domain wall fermions (DWF) with the
Iwasaki gauge action at � ¼ 2:25 (corresponding to a
lattice spacing of a � 0:086 fm) and � ¼ 2:13 (a �
0:114 fm), with lattice sizes of 323 � 64 and 243 � 64
respectively and fifth-dimensional extents of Ls ¼ 16.
We refer to this as the ‘‘2010 analysis.’’ With precise
nonperturbative renormalization methods made possible
by the good chiral symmetry of the action, and a combined

chiral/continuum fit analysis to maximise the use of

the available data, our predictions were limited mainly

by the Oð5%Þ systematic error on the extrapolation from

the simulated 293ð5Þ MeV � m� � 417ð10Þ MeV pion

mass-range to the physical point. In order to address this

issue we must simulate with lighter quark masses, which

necessitates an increase in the physical lattice volume in

order to maintain small finite-volume corrections. As in-

creasing the number of lattice sites is very costly we must

use coarser lattices in order to perform the calculation with

the currently available resources. Aside from the larger

discretization errors, the only significant impact of simu-

lating with a coarser lattice is an increase in the size of the

residual mass mres, which parametrizes the explicit chiral
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symmetry breaking occurring due to the finite length of the

fifth dimension. mres gets larger due to the increased num-

ber of low-modes of the Wilson Dirac operator in the

infrared regime, that are likely caused by so-called

‘‘dislocations’’—localized instanton-like artifacts—in the

gauge fields. Configurations containing these low modes

may be suppressed in the path integral via the introduction

to the gauge action of an additional weighting factor

known as the dislocation suppressing determinant ratio

(DSDR) [3–6].
In this paper we present the ‘‘2012 analysis’’ of the RBC

and UKQCD collaborations’ � ¼ 1:75 323 � 64� 32
DWF ensembles that make use of the Iwasakiþ DSDR
gauge action to reach unitary pion masses as low as 171
(1) MeV and partially-quenched pion masses at a near-
physical value of 143(1) MeV. The results for the physical
quark masses and lattice spacings presented in this docu-
ment were used in our recent calculation of the �I ¼ 3=2
K ! �� amplitudes with physical kinematics [7].

Note that the pion masses in physical units quoted above
and in the abstract, as well as those given in the remainder
of this paper, were obtained by combining the data at the
simulated strange quark mass with the final lattice spacings
obtained in this analysis, and the error represents the
combined systematic and statistical uncertainty.

Throughout this document we make use of the shorthand
32ID to refer to the 323 � 64� 32 Iwasakiþ DSDR en-
semble set, and 32I and 24I for the 323 � 64� 16 and
243 � 64� 16 Iwasaki ensemble sets respectively. This
notation differs slightly from Ref. [7], where the Iwasakiþ
DSDR ensemble set was labelled 32IDSDR.

In this paper all dimensionful quantities are expressed in
lattice units unless other units are explicitly specified or
clarity is served by introducing explicit factors of the
lattice spacing a.

In Sec. II we provide further details on the
Iwasakiþ DSDR gauge action and present the simulation
parameters of our 32ID ensembles. In Sec. III we present
our results for the pseudoscalar masses and decay con-
stants, the Omega baryon mass (used to set the scale), the
Sommer scales r0 and r1 and also BK, measured on these
ensembles.

In the Symanzik effective action (up to and including
dimension-5 terms), explicit chiral symmetry breaking
effects manifest as a dimension-3 term closely related to
the residual mass, and a dimension-5 clover term. The
latter introduces OðaÞ discretization errors that make it
difficult to perform continuum extrapolations with tradi-
tional Wilson fermions. In the domain wall formulation
however, the clover term has a magnitude of Oða2mresÞ,
and can therefore be discounted in our simulations, where
amres is always on the order of 10�3 or smaller. (In
Appendix C we perform additional checks to ensure that
this assumption remains true for our Iwasakiþ DSDR
ensembles). Due to the excellent chiral symmetry, lattice

artifacts involving odd powers of the lattice spacing are
heavily suppressed and we gain automatic offshell OðaÞ
improvement. As a result, the leading discretization effects
appear at Oða2Þ, and the next-to-leading effects at Oða4Þ.
Note that higher order corrections to the Symanzik expan-
sion can lead to terms logarithmic in the lattice spacing that
can, in extreme circumstances, spoil the neat power-law
behavior we have described; in Appendix D we discuss this
possibility further, and conclude that, providing the range
of lattice spacings under consideration is not too large,
such corrections introduce systematic errors into our con-
tinuum extrapolation similar to those that result from the
neglected Oða4Þ terms and, for the 0.086–0.11 fm range of
lattice spacings considered here, can be expected to be of a
similar size. (At nonzero quark mass there can also arise
terms Oða2mqÞ, which can also be expected to be of a

similar size). In our analysis of the present DSDR en-
semble, we find the typical size of the Oða2Þ terms to be
&5%, hence we can expect the next-to-leading discretiza-
tion errors to be roughly Oð0:052Þ � 0:25%. These are an
order of magnitude smaller than the errors arising from the
chiral extrapolation and the nonperturbative renormaliza-
tion (where appropriate), and can therefore be safely
ignored. The only surviving dependence on the lattice
spacing is therefore a singleOða2Þ term for each measured
quantity. Of course this term depends on the lattice action,
but as all other parameters (the slopes with respect to the
quark masses) describing the quantity are common be-
tween the Iwasaki and Iwasakiþ DSDR actions, we can
easily obtain the a2 coefficients for the Iwasakiþ DSDR
action by comparing any single measured value on the
32ID ensemble set with the continuum limit obtained
from the Iwasaki ensembles. In practice we include the
Iwasakiþ DSDR ensembles in our simultaneous chiral/
continuum fitting framework, allowing these data to con-
strain the mass dependences close to the physical point,
substantially reducing the chiral extrapolation systematic
error on our continuum predictions, as well as allowing us
to obtain the a2 coefficients for the Iwasakiþ DSDR data.
In this framework, any remaining errors associated with the
leading, Oða2Þ effects are included in the statistical error.
Since we have only two ensembles with different values for
the lattice spacing that use the same lattice action, we can
only make a simple a2 ! 0 extrapolation to remove the
Oða2Þ artifacts. Remaining lattice artifacts of order a4 or
higher, or possible a2 ln ða2Þ effects, can only be estimated
from the size of the observed a2 effect and contribute small
systematic errors.
The chiral/continuum fitting framework is discussed in

more detail in Sec. IV. We use this procedure in Secs. V
through VIII to simultaneously fit the aforementioned
quantities over all three ensemble sets, from which we
obtain the lattice spacings and physical quark masses as
well as improved continuum predictions for the decay
constants, Sommer scales and BK.

R. ARTHUR et al. PHYSICAL REVIEW D 87, 094514 (2013)

094514-2



In closing this section we would like to emphasize the
importance of the discussion in the above paragraphs.
Aside from the Oða2Þ errors that are explicitly included
in our fit, the next largest discretization effects arise at
Oða4Þ. This level of control over the discretization effects
can be achieved, as we demonstrated in our 2010 analysis
and also in this document, using only two lattice spacings.
To resolve the Oð0:25%Þ next-to-leading effects would
require another lattice spacing (and likely a substantial
increase in statistics), which we do not deem a sensible
use of our resources in light of their expected size in
comparison to our other systematic errors. This is in con-
trast to other lattice formulations which do not have auto-
maticOðaÞ improvement, such as the Wilson approach, for
which not three but five lattice spacings are required for an
effect of this size to be measured.

II. SIMULATION DETAILS AND
ENSEMBLE PROPERTIES

We generated a set of domain wall fermion ensembles
using the Iwasakiþ DSDR gauge action, which allows for
simulations to be performed on coarser lattices while re-
taining good chiral symmetry and topological tunneling. In
this section we provide background on the DSDR term
followed by a list of simulation parameters and an analysis
of the integrated autocorrelation length and topological
charge evolution.

A. The DSDR term

The explicit breaking of chiral symmetry in the domain
wall fermion framework can be described by an additive
mass renormalization parameter referred to as mres, whose
magnitude is related to the eigenvalue density �ð�Þ of the
logarithm of the transfer matrix in the fifth-dimension,

Htransfer ¼ 2tanh�1

�
HW

2þDW

�
; (1)

that describes the propagation of quarks through the fifth
dimension, via the following relation [8]:

mres ¼ R4
Z 1

0
d��ð�Þe�Ls�: (2)

Here R is a (possibly eigenvalue-dependent) radius factor,
DW is the Wilson Dirac operator and HW ¼ �5DW is the
hermitian Wilson Dirac operator.

In the low-eigenvalue region the eigenmodes of Htransfer

and those of HW are necessarily identical. It has been
demonstrated [8–14] that the modes of the latter can be
divided into two regions, one containing only localized
eigenmodes with small eigenvalues and one containing
extended eigenmodes with large eigenvalues, separated
by a mobility edge �c. Picking out the dominant contribu-
tions above and below the mobility edge from Eq. (2), we
expect the following dependence of mres upon Ls:

mres ¼ R4
e�ð�cÞ e

��cLs

Ls

þ R4
l �ð0Þ

1

Ls

; (3)

where Re and Rl are the radius parameters for the extended
and local modes respectively. The exponentially-
decreasing contribution from the extended modes above
the mobility edge can be controlled by increasing Ls, with
a cost that rises at worst linearly. In our previous Iwasaki
simulations the magnitude of mres was dominated by the
term in �ð0Þ, the density of near-zero eigenmodes. These
modes are thought to be associated with localized and
short-lived dislocations or ‘‘tears’’ in the gauge fields,
which can cause changes in the field topology. As the
strong coupling limit is approached, the gauge fields be-
come more disordered and the density of near-zero modes
increases sharply. In order to maintain good chiral symme-
try properties at stronger coupling we must therefore seek
to suppress the near-zero modes. On the other hand we
must take care not to also remove the very-near-zero
eigenmodes that are required for topological tunneling to
occur during the gauge evolution.
The DSDR, or ‘‘auxiliary determinant’’ is applied to the

gauge action as a multiplicative weight of the form [3–6]

W ðM;"f; "bÞ

¼ det ½DWð�Mþ i"f�
5ÞyDWð�Mþ i"f�

5Þ�
det ½DWð�Mþ i"b�

5ÞyDWð�Mþ i"b�
5Þ�

¼ Y
i

�2
i þ "2f

�2
i þ "2b

; (4)

where "f and "b are tunable parameters with typical sizes

0< "2f � "2b < 1. With this weighting, the contribution of

a single eigenmode to the molecular dynamics force be-
comes a function of "f and "b of the form

F ið"f; "bÞ ¼ d

d�i

�
� log

�2
i þ "2f

�2
i þ "2b

�
; (5)

which when plotted against the eigenvalue has a peak and
tail which are independently tunable by varying the two
parameters. It is therefore possible to tune the force to
suppress near-zero eigenmodes while not completely sup-
pressing the essential very-near-zero modes.
Numerical studies [6] have demonstrated a reduction in

chiral symmetry breaking while retaining adequate topo-
logical tunneling through the use of this term. In
Appendix C we demonstrate the lack of observable explicit
chiral symmetry breaking effects on our Iwasakiþ DSDR
ensembles.

B. Simulation parameters

We generated DWF ensembles with the Shamir kernel
and the Iwasakiþ DSDR gauge action on a 323 � 64
lattice volume with Ls ¼ 32. We used a ‘‘domain wall
height’’ of M5 ¼ 1:8 and a gauge coupling of � ¼ 1:75,
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which as determined in Sec. V, corresponds to an inverse
lattice spacing of 1.37(1) GeV. The parameters of the
DSDR factor, "b ¼ 0:5 and "f ¼ 0:02, were chosen to

minimize the residual mass while still allowing a reason-
able rate of topological tunneling. We generated two en-
sembles with bare light-quark masses of ml ¼ 0:001 and
ml ¼ 0:0042, for which the corresponding unitary pion
masses are 171(1) and 246(2) MeV. In this document we
analyze �1400 and �1200 MD time units on these en-
sembles respectively (discarding 500 and 600 MD time
units respectively for thermalization). On each of the en-
sembles we simulated with a single strange-quark mass
close to the physical value and use reweighting to correct to
the true physical value in our fits a posteriori. Further
details of the number of reweighting steps and stochastic
samples are given in the following subsection.

C. Ensemble generation

In this section we provide a summary of the Monte Carlo
algorithms that were employed for the gauge evolution.
Further discussion of our algorithms, along with the full set
of parameters, can be found in Appendix A.

For the fermionic contribution to the evolution of the
ml ¼ 0:0042 ensemble we employed the ‘‘RHMC II’’
algorithm [15], in which the calculation of the strange-
quark determinant is broken into three factors and
evaluated using the rational approximation with equal
molecular dynamics time steps, and the determinant of
the two degenerate light-quarks was preconditioned by

the strange-quark determinant. With the notation DðmÞ ¼
Dy

DWFðM5; mÞDDWFðM5; mÞ for the Hermitian domain wall
operator and using RaðmÞ to represent the rational ap-
proximation to the ath power of D for mass m, the algo-
rithm can be written as

det

�
DðmsÞ12DðmlÞ

Dð1Þ32
�

¼ det

�
R1

2

�
DðmsÞ
Dð1Þ

��
� det

�
R1

2

�
DðmsÞ
Dð1Þ

��
� det

�
R1

2

�
DðmsÞ
Dð1Þ

��
� det

�
DðmlÞ
DðmsÞ

�
; (6)

where each determinant is estimated using independent
pseudofermion fields. We made use of an Omelyan inte-
grator with parameter � ¼ 0:22 during the evolution of
this ensemble.
For the lighter ml ¼ 0:001 ensemble, we were able to

achieve a significant speed-up [16] in evaluating the light-
quark contribution to the gauge field update using multiple
Hasenbusch mass splittings [16,17]. Here the determinant
is split into k steps (with k ¼ 6 in our case), each evaluated
using a shifted mass:

det

�
DðmlÞ
Dð1Þ

�
¼ Ykþ1

i¼1

det

�
Dðml þ�i�1Þ
Dðml þ�iÞ

�
; (7)

where 0 ¼ �0 <�1 � � ��kþ1 ¼ 1�ml. The inter-
mediate masses �iði ¼ 1 . . . kÞ can be continuously tuned,
enabling us to evaluate the individual determinants at a
reduced precision—10�6 residual as opposed to 10�8—
considerably reducing the computational cost. The strange-
quark determinants were again evaluated using the rational
approximation. We obtained a further increase in speed by
utilizing a force gradient integrator [16,18] in place of the
Omelyan integrator.
In Table I we give details of the molecular dynamics

time steps and the update ratios for each component of the
force, alongside the total MD time, the Metropolis accep-
tance and the values of the average plaquette and chiral
condensate on each ensemble.

D. Ensemble properties

In Fig. 1 we plot the Monte Carlo evolution of the
plaquette, topological charge and the light-quark pseudo-
scalar density. Wemeasured the topological charge directly
using ‘‘cloverleaf’’ estimates of the field strength tensor,
with 1� 1, 1� 2, 2� 2, 1� 3 and 3� 3 Wilson loops
calculated on APE-smeared gauge fields (with 60 smearing
steps) and combined using the ‘‘5li’’ (five-loop improved)
combination [19] which eliminates the Oða2Þ and Oða4Þ
terms at tree-level. We show histograms of the topological
charge distribution in Fig. 2.
Figure 3 contains plots of the integrated autocorrela-

tion time for various quantities on the ml ¼ 0:001 and

TABLE I. Simulation parameters for the 32ID ensembles. Here the fifth column contains a gross summary of the algorithm, giving
the ratio of gauge field updates (NG) to the number of DSDR updates (NDSDR) to the number of updates of the fermion force (Nferm).
For the heavier ensemble, the fermion component is divided into the rational approximation for the strange-quark determinant and the
light quark determinant; the former is updated twice as often as the latter. On the lighter ensemble the strange-quark determinant and
the Hasenbusch-preconditioned light-quark determinant are not nested but instead are evaluated independently and their force
contributions combined linearly. The molecular dynamics time step for the top-level integrator and the number of steps per trajectory
(Nsteps) is given in the fourth column. The quantity �ðMDÞ is the length of the ensemble used for the analyzes in this document,

measured in molecular dynamics time units.

ms ml ~ms= ~ml �t� Nsteps NG:NDSDR:Nferm �ðMDÞ Acceptance hPi h �c c ðmlÞi

0.045
0.0042 7.8 1=8� 8 64:8:ð2:1Þ 1176 70% 0.512198(3) 0.001579(5)

0.001 16.5 1=9� 9 12:6:1 1432 73% 0.512230(3) 0.001202(3)
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ml ¼ 0:0042 ensembles as a function of the cut on the
upper bound of the integral, �cut:

�intð�cutÞ ¼ 1

2
þ X�cut

�¼1

Cð�Þ; (8)

where

Cð�Þ ¼
�ðYðtÞ � �YÞðYðtþ�Þ � �YÞ

�2

�
t

(9)

for a quantity Y, where �Y is the expectation value over the
ensemble,�2 its variance, and� is the molecular dynamics
time separation between measurements. The average in the
second equation is performed over the set of pairs of
configurations separated by � MD time units. In order to

correctly estimate the errors on the integrated autocorrela-
tion time, we investigated two strategies:
(1) At each fixed � we formed a bootstrap distribution

to estimate the error on the mean h. . .it in Eq. (9).
Prior to performing the bootstrap resampling, we
binned the set of measurements ðYðtÞ � �YÞ�
ðYðtþ�Þ � �YÞ over neighboring configurations
(indexed here by t). The bin size was successively
increased until the errors stopped growing, which
we found to be at bin sizes of 25 and 20 on theml ¼
0:001 and ml ¼ 0:0042 ensembles respectively. The
error on �int was obtained from the bootstrap sum
over Cð�Þ according to Eq. (8). This method closely
resembles the standard strategy for binning equiva-
lent quantities over a set of correlated measurements
under a bootstrap.
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FIG. 1. Monte Carlo evolution of the average plaquette (top), topological charge (middle), and light-quark pseudoscalar density
(bottom) on the ml ¼ 0:001 (left) and ml ¼ 0:0042 (right) ensembles.
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FIG. 2. Topological charge distributions for the ml ¼ 0:001 (left) and ml ¼ 0:0042 (right) ensembles.
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(2) We took the full set of measurements YðtÞ over the
ensemble and formed blocks by averaging over
neighboring configurations. We then measured the
correlations between these blocks, taking the center-
point of each block as the associated MD time. This
has the effect of averaging over short-range corre-
lations, exposing those with longer range, but also
results in changes to the central value of �int at fixed
�cut as the bin size is increased, as at each bin size
we are measuring a different quantity. We chose the
optimal bin size to be the point where further in-
creases resulted in statistically consistent central
values. This strategy was used in our 2010 analysis
for estimating the autocorrelation length of the two
Iwasaki ensemble sets.

The aforementioned figure contains plots for both of
these strategies. We see that they give consistent results.

The integrated autocorrelation time for the majority of
the quantities we looked at appears to lie between 5 and
10 MD time units. However, as is typically the case, the
topological charge (and of course the pseudoscalar con-
densate) display considerably larger autocorrelation
lengths, around 25 MD time units on the ligher ensemble
and 15 on the heavier ensemble, reflecting their sensitivity
to the underlying global gauge field topology. The larger
autocorrelation length suggests a lower topological tunnel-
ing rate for our lighter ensemble. However we emphasize
that these autocorrelation times are considerably shorter
than those of the Iwasaki lattices, which were estimated to
be Oð80Þ MD time units [1] from the topological charge
measurements.
For the simulation parameters and properties of the 32I

and 24I Iwasaki ensemble sets we refer to reader to
Ref. [1].
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FIG. 3 (color online). The integrated autocorrelation time is shown for the average plaquette, topological charge, the chiral
condensate and pseudoscalar density for the light and heavy quark species (labelled ‘‘l’’ and ‘‘h’’ respectively), and the pseudoscalar
two-point function at t ¼ 20, as a function of the upper bound on the integral �cut, using data from the ml ¼ 0:001 (top) and ml ¼
0:0042 (bottom) ensembles. For those plots on the left we estimated the errors by binning the set of correlations between measurements
at fixed MD time separation (the first strategy discussed in the text), and in those on the right we block over the data and measure the
correlation between blocks (the second strategy). We chose bin sizes of 25 and 20 on the lighter and heavier ensembles respectively.
The pseudoscalar two-point function was only measured every 8 MD time units, hence for both methods we bin these data with a bin
size of 24 MD time units. In the right-hand plots the data have been shifted slightly for clarity.
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E. Reweighting the strange quark

We make use of reweighting in the strange sea-quark
mass to obtain the mass dependence of our data, and hence
interpolate to the physical value, without incurring the
expense of simulating with additional masses. The re-
weighting factor wi for a particular reweighted mass mrw

h

and configuration i is determined by measuring the degree
to which that configuration, as sampled from the un-
reweighted path integral, contributes to the path integral
with the reweighted mass; in practice this involves the
calculation of the ratio of Dirac-matrix determinants with
the reweighted and simulated masses respectively. The
expectation value of an observable O with the shifted
strange-quark mass is then obtained by first measuring on
the original, unreweighted configurations, then applying
the reweighting factors:

hOimrw
h
¼ hwOimsim

h

hwimsim
h

: (10)

The determinants are stochastically evaluated using several
Gaussian sampled vectors and the weight factor obtained
from the average over these samples. This procedure was
used in the 2010 analysis, and more details can be found
in Ref [1].

We performed measurements over incremental
steps from the simulated mass of 0.045 up to 0.052. We
previously found that the number of stochastic samples
required for a reliable estimate of the weighting factor is
dependent upon the size of the mass increments, with
smaller increments requiring less samples. As a result,
we use two stochastic samples and small increments of
�mh ¼ 0:00025—the same parameters as were used for
the 24I ensembles.

The reweighting procedure naturally reduces the effec-
tive number of configurations Neff in each ensemble set. In
Ref. [1] we showed that a reliable estimate of this quantity
can be determined via the following expression:

Neff ¼ ðPi wiÞ2P
w2

i

: (11)

A value of unity indicates that the measurement is entirely
dominated by a single configuration, whereas Neff is equal
to the original number of configurations Nconf when there
are no fluctuation in the weighting factors. In Sec. V we

measure the physical strange quark mass to be mphys
h ¼

0:0467ð6Þ, which is close to the simulated value. At the
nearest reweighted mass-step to the physical mass, that
with mh ¼ 0:0465, we find Neff ¼ 133 (Nconf ¼ 180) and
Neff ¼ 119 (Nconf ¼ 148) on the ml ¼ 0:001 and ml ¼
0:0042 ensembles respectively, suggesting that reweight-
ing to the physical strange-quark mass will result in only a
10%–15% increase in the statistical errors on these ensem-
bles. This is of a similar magnitude to the increase sug-
gested by the values of Neff on the 32I ensembles, which

are given in Ref. [1]. On the 24I ensembles we require a
slightly larger extrapolation to reach the physical value,
hence the reweighting introduces larger increases of
25%–35%.

III. RESULTS FROM THE 323

DWFþ ID ENSEMBLES

In this section we present the results of fitting to a
number of observables on the 32ID ensembles. We per-
formed measurements on 180 configurations on the ml ¼
0:001 ensemble and 148 on the ml ¼ 0:0042 ensemble,
with each configuration separated by 8 MD time units. The
analysis in the previous section suggests an autocorrelation
length of �25 on the ml ¼ 0:001 ensemble and �7 on the
ml ¼ 0:0042 ensemble, which can be overcome by binning
the data before performing the fits. We shifted the gauge
fields in the time-direction by 16 lattice spacings relative to
the previous configuration prior to measuring the quark
propagators. This has the effect of reducing the correlation
between successive measurements, suggesting that binning
the data may not be necessary. However, this does not
apply to the measurements of the Sommer scales r0 and
r1, which are formed usingWilson loops with origins on all
lattice sites. In order to remain consistent, we decided to
bin the data for all of our quantities over 4 successive
measurements (32 MD time units) on both ensembles;
although this is larger than the measured autocorrelation
length, it matches the periodicity of the quark propagator
measurements, and is therefore a more natural choice. We
found no statistically significant dependence on the bin
size in any of our measured error values, hence the choice
of bin size has little effect on the final results of this
analysis.
The pseudoscalar meson two-point correlation functions

were calculated in the same manner as those on the 32I
ensembles, namely using Coulomb gauge-fixed wall
source propagators originating at the lattice time boundary
t ¼ 0 with both periodic (p) and antiperiodic (a) boundary
conditions in the temporal direction. Taking the pþ a
combination of propagators to form each leg of the corre-
lation function projects out the component travelling for-
wards in time. Likewise, the p� a combination projects
out the degenerate backwards-propagating state. The cor-
relation functions formed using these combinations of
propagators have a temporal periodicity of double the usual
length, which results in a significant reduction in round-
the-world propagation. The Omega baryon correlation
functions were calculated separately using box-sources
with a spatial volume of 153 lattice sites and with one
corner at the spatial origin. These were placed on time-
slices t ¼ 0 and 32, and antiperiodic boundary conditions
were used for the propagators. As mentioned above, the
gauge fields were shifted in time by 16 units with respect to
the previous configuration prior to performing all of these
measurements.
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For each quantity we tabulate the results of fitting to the
time-dependence of the corresponding correlation func-
tions measured at the simulated strange-quark mass, and
we present example effective mass plots demonstrating
the quality of our data. We also provide tables of data
corrected to the physical strange-quark mass of ms ¼
0:0467ð6Þ determined in Sec. V, using the NLO ChPT
with finite-volume corrections parametrization for the
mass dependence.

A. The residual mass

The residual mass at a nonzero (partially-quenched)
quark mass mx may be determined via the following ratio:

m0
resðmxÞ ¼

h0jJa5qj�i
h0jJa5 j�i

; (12)

where Ja5q is the pseudoscalar density at the midpoint of the

fifth dimension, and Ja5 is the physical pseudoscalar density
constructed from the surface fields. The prime superscript
is used to differentiate this quantity from the residual mass
in the two-flavor chiral limit, mres ¼ m0

resðmx ¼ ml ¼ 0Þ.
We averaged the data at t and T � t (we refer to this as
folding the data), where T is the lattice temporal extent,

and fit over the time range 6–32 on both ensembles,
obtaining the values given in Table II. Note that on the
lighter ensemble, the nonunitary values were determined
on a reduced data set of 92 configurations; these data were
not used in the later analysis but are presented here for
completeness. We obtained mres by extrapolating the uni-
tary light-quark mass to the chiral limit at each reweighted
strange quark mass. As discussed in Refs. [15,20], defining
the residual mass as this limit guarantees that the pion mass
will vanish in the limit mf þmres ! 0 up to subpercent

corrections of order dm0
resðmfÞ=dmf �mres. A plot of the

chiral extrapolation at the simulated strange-quark mass is
shown in Fig. 4. Owing to the minor strange-quark mass
dependence of this quantity evident in the right panel of
Fig. 4, and the small separation between the simulated and
physical strange quark masses, the value of mres at the
physical strange quark mass is not measurably different
from that at the simulated value of 0.001842(7).

B. Pseudoscalar masses

We calculated a series of pseudoscalar meson two-point
functions of the form:

C s1s2
O1O2

ðtÞ ¼ h0jOs1
1 ðtÞOs2

2 ð0Þj0i: (13)

Here the subscripts index the interpolating operators and
the superscripts denote the operator smearing (wall W or
local L) at the sink and source respectively. In the follow-
ing we refer to these by the shorthandO1O

s1s2
2 , for example

using AALW to denote the axial-axial correlator with wall
source and point sink. The pseudoscalar masses were
determined via a combined fit to the following five corre-
lation functions: PPLW , APLW and AALW , PPWW and
APWL. The correlation functions exhibit the following
time dependence:

TABLE II. m0
res on the 32ID ensemble set at the simulated

strange-quark mass.

ml

mx 0.001 0.0042

0.0001 0.0018447(60) 0.0018888(48)

0.001 0.0018510(43) 0.0018889(47)

0.0042 0.0018269(58) 0.0018735(48)

0.008 0.0018025(57) 0.0018500(48)

0.035 0.0016939(44) 0.0017356(39)

0.045 0.0016739(39) 0.0017141(37)

0.055 0.0016619(36) 0.0017014(35)

FIG. 4 (color online). The chiral extrapolation of m0
res over the unitary data points at the simulated strange-quark mass, with mres in

the chiral limit denoted by the brown square point (left); and the strange-quark mass dependence of mres in the chiral limit (right).

R. ARTHUR et al. PHYSICAL REVIEW D 87, 094514 (2013)

094514-8



C s1s2
O1O2

ðtÞ ¼ h0jOs1
1 j�ih�jOs2

2 j0i
2mxyV

½e�mxyt 	 e�mxyð2Nt�tÞ�;
(14)

where the sign in the square brackets is þ for the PP and
AA correlators and� for the AP correlators. We denote the
amplitudes as

N s1s2
O1O2


 h0jOs1
1 j�ih�jOs2

2 j0i
2mxyV

: (15)

Taking full advantage of the doubled time-extent of the

lattice, we performed our fits over the time range 8–63 on

both ensembles, obtaining the masses listed in Table IV.

The values at the (unitary) physical strange-quark mass are

given in Tables V and VI for the light-light (pion-like) and

strange-light (kaon-like) quark mass combinations respec-

tively. In Figs. 5 and 6 we show example effective mass

plots for the data at the simulated strange-quark mass on

the ml ¼ 0:001 ensemble.

FIG. 5 (color online). Effective unitary pion masses on the ml ¼ 0:001 ensemble from the PP LW correlator (top left), PP WW
correlator (top right), AP LW correlator (center left), AP WW (center right) and AA LW correlator (bottom). Note the different vertical
scale for the WW correlators. The horizontal bands represent the result for the mass from a simultaneous fit.
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C. Pseudoscalar decay constants

The pseudoscalar decay constants fxy were calculated

from the two-point function amplitudes via the following
equation:

fxy ¼ ZA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

mxyV

N LW2

AP

N WW
PP

s
: (16)

Here ZA relates the local four-dimensional axial current
Aa
�—formed with the domain wall surface fields—to the

Symanzik-improved axial current ASa
� , and thus renormal-

izes the local current into the continuum normalization.

The indices a and� correspond to the flavor and Euclidean

direction respectively.
For domain wall fermions, a partially-conserved five-

dimensional axial current Aa
� can also be defined, which

is related to the Symanzik improved current by a different
renormalization coefficient ZA. Prior to the 2010 analysis,
it was typically assumed that the difference between ZA
and unity was negligible, hence ZA was assumed equal to

FIG. 6 (color online). Effective unitary kaon masses on the ml ¼ 0:001 ensemble from the PP LW correlator (top left), PP WW
correlator (top right), AP LW correlator (center left), AP WW (center right) and AA LW correlator (bottom). Note the different vertical
scale for the WW correlators. The horizontal bands represent the result for the mass from a simultaneous fit.
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ZA=ZA. This can be obtained using the improved ratio [21]
of the partially-conserved five-dimensional (5D) axial cur-
rent matrix element hA4ðtÞPð0Þi to the local axial current
matrix element hA4ðtÞPð0Þi. As discussed in Ref. [22], the
assumption that ZA ¼ 1 is only true up to termsOðamresÞ,
leading to an additional Oð1%Þ systematic error in our
earlier results.

However, in Refs. [20,22] it was shown that ZA is
approximately equal to ZV—the ratio of the Symanzik-
improved vector current VSa

� to the local vector current

Va
�—with their difference of orderm2

res. Since the ratio ZV
of the conserved 5D domain wall vector current V a

� to its

Symanzik-improved current V Sa
� is unity up to terms

Oða2Þ, this led to the observation that ZA can be deter-
mined much more accurately via the ratio of the local and
5D vector currents, ZV=ZV , calculated using the following
expression:

ZV

ZV
¼

P
3
i¼1

P
~x V

a
i ð ~x; tÞVa

i ð~0; 0ÞP
3
i¼1

P
~x V

a
i ð ~x; tÞVa

i ð~0; 0Þ
(17)

in the limit t � a. We calculated ZV=ZV on 192 and 93
configurations of the ml ¼ 0:001 and 0.0042 ensembles
respectively, and fit to folded data over the time intervals
8–12 and 7–17. Figure 7 shows ZV=ZV ðmx ¼ ml ¼ 0:001Þ
as a function of time, illustrating the quality of our data. In
the same figure we also show the chiral extrapolation of the

results toml ¼ �mres. In Table III we give the fit results on
both ensembles and the chirally extrapolated values. For
completeness we also calculate the ratio ZA=ZA using the
aforementioned ratio [21], fitting over the time interval
5–30 to folded data. The values of this quantity on each
ensemble and in the chiral limit are also given in Table III,
and we show an example correlation function in Fig. 7
alongside a plot of the chiral extrapolation to ml ¼ �mres.
The value of ZA=ZA at the physical strange-quark mass is
indistinguishable from the value at the simulated mass.
Currently we have not measured ZV=ZV on reweighted

configurations, however the lack of measurable strange-
quark mass dependence of ZA=ZA suggests this will not
have any effect on our conclusions.
We calculated the normalized decay constants using the

above ratios. The values at the simulated strange-quark
mass are listed in the second column of Table IV, and the
pion-like and kaon-like decay constants at the physical
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FIG. 7 (color online). ZV=ZV (top left) and ZA=ZA (top right) as a function of time, calculated with unitary quarks on the ml ¼
0:001 ensemble. The bottom figure shows the chiral extrapolation of ZV=ZV and ZA=ZA. In these plots the ratios have been
abbreviated to ZV and ZA.

TABLE III. Results for ZA=ZA and ZV=ZV at the simulated
strange-quark mass.

mq ZA=ZA ZV=ZV

0.0042 0.68901(9) 0.6637(46)

0.001 0.68828(15) 0.6685(36)

�mres 0.68778(34) 0.6728(80)
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strange-quark mass are given in the second columns of
Tables V and VI respectively. For these quantities, the
statistical uncertainty on ZV=ZV is considerably larger
than that of the bare decay constant. For example, the
bare unitary value on the ml ¼ 0:001 ensemble has a
0.3% error compared to 1.2% on the normalized quantity.

The error on ZA=ZA is much smaller, and if used to
normalise the bare decay constants has virtually no effect
on the relative error. However we chose to continue
using ZV=ZV to normalize the decay constants in order
to eliminate the systematic error associated with using the
axial currents.

TABLE IV. Pseudoscalar massesmxy (ml) and decay constants fxy (ml) on the 32ID ensembles
at the simulated strange-quark mass (mh ¼ 0:045).

mx my mxyð0:001Þ mxyð0:0042Þ fxyð0:001Þ fxyð0:0042Þ
0.055 0.055 0.5463(2) 0.5476(2) 0.1354(16) 0.1363(16)

0.045 0.055 0.5207(2) 0.5220(2) 0.1324(16) 0.1334(16)

0.035 0.055 0.4941(2) 0.4954(2) 0.1291(16) 0.1302(16)

0.008 0.055 0.4159(3) 0.4174(3) 0.1183(14) 0.1200(15)

0.0042 0.055 0.4041(4) 0.4055(4) 0.1164(14) 0.1184(15)

0.001 0.055 0.3942(6) 0.3955(6) 0.1151(14) 0.1173(15)

0.0001 0.055 0.3915(7) 0.3928(7) 0.1149(14) 0.1173(15)

0.045 0.045 0.4940(2) 0.4953(2) 0.1294(16) 0.1305(16)

0.035 0.045 0.4662(2) 0.4675(2) 0.1262(15) 0.1274(15)

0.008 0.045 0.3831(3) 0.3846(3) 0.1156(14) 0.1174(14)

0.0042 0.045 0.3703(3) 0.3718(4) 0.1137(14) 0.1158(14)

0.001 0.045 0.3594(5) 0.3610(5) 0.1123(14) 0.1148(14)

0.0001 0.045 0.3564(6) 0.3581(6) 0.1121(14) 0.1147(15)

0.035 0.035 0.4368(2) 0.4381(2) 0.1231(15) 0.1243(15)

0.008 0.035 0.3476(3) 0.3491(3) 0.1126(14) 0.1144(14)

0.0042 0.035 0.3334(3) 0.3350(3) 0.1107(13) 0.1129(14)

0.001 0.035 0.3212(4) 0.3230(4) 0.1092(13) 0.1118(14)

0.0001 0.035 0.3178(5) 0.3197(5) 0.1090(13) 0.1118(14)

0.008 0.008 0.2273(2) 0.2287(3) 0.1024(12) 0.1044(13)

0.0042 0.008 0.2048(2) 0.2063(3) 0.1005(12) 0.1028(13)

0.001 0.008 0.1839(2) 0.1854(3) 0.0988(12) 0.1015(12)

0.0001 0.008 0.1775(2) 0.1791(3) 0.0984(12) 0.1013(13)

0.0042 0.0042 0.1795(2) 0.1810(2) 0.0986(12) 0.1011(12)

0.001 0.0042 0.1549(2) 0.1564(2) 0.0969(12) 0.0997(12)

0.0001 0.0042 0.1472(2) 0.1487(3) 0.0964(12) 0.0994(12)

0.001 0.001 0.1250(2) 0.1265(2) 0.0950(12) 0.0981(12)

0.0001 0.001 0.1151(2) 0.1167(3) 0.0944(12) 0.0977(12)

0.0001 0.0001 0.1042(2) 0.1058(3) 0.0938(12) 0.0973(12)

TABLE V. Pion masses mxy (ml) and decay constants fxy (ml) on the 32ID ensembles at the
physical strange-quark mass (mh ¼ 0:0467ð6Þ).
mx my mxyð0:001Þ mxyð0:0042Þ fxyð0:001Þ fxyð0:0042Þ
0.008 0.008 0.2272(2) 0.2286(3) 0.1027(12) 0.1048(13)

0.0042 0.008 0.2048(2) 0.2063(3) 0.1008(12) 0.1031(13)

0.001 0.008 0.1838(2) 0.1854(3) 0.0991(12) 0.1018(13)

0.0001 0.008 0.1775(2) 0.1791(3) 0.0987(12) 0.1016(13)

0.0042 0.0042 0.1794(2) 0.1809(3) 0.0989(12) 0.1014(12)

0.001 0.0042 0.1548(2) 0.1563(3) 0.0972(12) 0.1000(12)

0.0001 0.0042 0.1471(2) 0.1486(3) 0.0967(12) 0.0997(12)

0.001 0.001 0.1249(2) 0.1265(3) 0.0953(12) 0.0984(12)

0.0001 0.001 0.1151(2) 0.1166(3) 0.0947(12) 0.0981(12)

0.0001 0.0001 0.1042(2) 0.1058(3) 0.0941(12) 0.0976(12)
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D. Omega baryon mass

We determined the Omega baryon masses using box-
source propagators with antiperiodic boundary conditions.
In order to improve our statistics we averaged the degen-
erate upper and lower spin-components of the correlation
functions prior to fitting. Our fits were performed over the
interval t ¼ 3–10 on both ensembles, giving the values
listed in Table VII. In Fig. 8 we show the effective mass
of the Omega baryon on the ml ¼ 0:001 ensemble with
mh ¼ mx ¼ 0:045, demonstrating the quality of our data.

E. Neutral kaon mixing parameter

The neutral-kaon mixing parameter Bxy was obtained by

fitting the time dependence of the following correlation
function to a constant:

Blat
K ðtÞ ¼ hK0ðt1ÞjOVVþAAðtÞj �K0ðt2Þi

8
3 hK0ðt1ÞjA0ðtÞihA0ðtÞj �K0ðt2Þi

; (18)

where OVVþAA is the �S ¼ 2 four-quark operator respon-
sible for the mixing. This operator is inserted at all times t
between t1 and t2. We form the forwards-propagating K0

state using the pþ a combination of propagators, and the
backwards-propagating �K0 state using the p� a combina-
tion; in effect this sets t1 ¼ 0 and t2 ¼ 64 and reduces the
round-the-world effects associated with the kaons propa-
gating through the temporal boundaries. We performed our
fits over the time interval 8–56, giving the values listed in
Table VIII. We show an example matrix element in Fig. 8
and list the values of Bxy at the physical strange-quark mass

in Table IX. Note that BK is a renormalization-scheme
dependent quantity and must therefore be renormalized
into a common scheme prior to being included in our
simultaneous fits; this is discussed in more detail in
Sec. VII.

F. The Sommer scales

Finally, we obtain the Sommer scales r0 and r1 using
Wilson loops formed from products of time-directed gauge
links, for which closure is not required due to Coloumb
gauge-fixing. The time dependence of the Wilson loop
Wðr; tÞ was fit from t ¼ 3 to 8 for each value of the spatial
separation r, and the resulting potential VðrÞ then fit over
the range r ¼ 2:00–9 to the Cornell potential [23]

VðrÞ ¼ V0 � 	

r
þ �r; (19)

where V0, 	 and � are constants. The Sommer scales are
determined directly from the potential:

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ai � 	

�

s
; (20)

TABLE VI. Kaon masses mxh (ml) and decay constants fxh
(ml) on the 32ID ensembles at the physical strange-quark mass
(mh ¼ 0:0467ð6Þ).
mx mxhð0:001Þ mxhð0:0042Þ fxhð0:001Þ fxhð0:0042Þ
0.008 0.3890(20) 0.3903(21) 0.1161(14) 0.1178(15)

0.0042 0.3762(21) 0.3777(22) 0.1143(14) 0.1163(15)

0.001 0.3653(21) 0.3669(23) 0.1128(14) 0.1153(15)

0.0001 0.3624(21) 0.3640(23) 0.1126(14) 0.1153(15)

TABLE VII. Omega baryon masses on the 32ID ensembles at
the simulated strange quark mass mh ¼ 0:045 (first three rows)
and at the physical strange quark mass (fourth row).

my mh m�ð0:001Þ m�ð0:0042Þ
0.055 0.045 1.2641(34) 1.2735(36)

0.045 0.045 1.2130(37) 1.2220(41)

0.035 0.045 1.1608(42) 1.1695(48)

0.0467(6) 0.0467(6) 1.2248(77) 1.2326(55)

FIG. 8 (color online). The left panel displays the fit to the� baryon mass with valence strange mass mx ¼ 0:045 on the ml ¼ 0:001,
mh ¼ 0:045 ensemble on the 32ID lattice, showing the quality of the fit with our box source. The right panel shows the Bxy matrix

element with mx ¼ my ¼ 0:001 as a function of time on the same ensemble.
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where A0 ¼ 1:65 and A1 ¼ 1:00 for r0 and r1 respectively.
In Fig. 9 we show an example of the effective potential
VeffðtÞ at r ¼ 2:45 on the ml ¼ 0:001 ensemble and
the resulting fit to the potential VðrÞ using the Cornell
form. In Table X we give the values of r1 and r0, as well
as their ratios, at the simulated and physical strange-quark
masses.

IV. SIMULTANEOUS CHIRAL/CONTINUUM
FITTING PROCEDURE

In order to extrapolate to the continuum limit and
physical quark masses we perform a simultaneous global
fit over our three ensemble sets. In this section we detail the
fitting procedure and the subsequent chiral/continuum
extrapolation. In addition we discuss the differences
between this analysis and the 2010 analysis [1,2] of the
243 and 323 DWFþ I ensembles.

A. Global fits and scaling

For a given choice of lattice action and a given bare
coupling �, 2þ 1 flavor lattice QCD has two free parame-
ters: the relevant couplings representing the quark masses.
For 2þ 1 flavor QCD these are the average up/down quark
mass amu=d and the strange quark mass ms, expressed in

lattice units. We can picture taking the continuum limit of
the discretized theory as gradually taking � ! 1 while
following a curve of amu=dð�Þ and amsð�Þ that fixes the
continuum physics to that of the real world; this curve is
known as a scaling trajectory. Experimental inputs are
used to determine the lattice spacing and physical quark
masses for each bare coupling, and this imposes a con-
straint on each point on this scaling trajectory. (Our stan-
dard choice is to require thatm�,m�=m� andmK=m� take
their physical values). This in turn allows us to constrain
the continuum limit we determine to be the physical point.
We can relate two points ðaml; amh; �Þ and

ða0m0
l; a

0m0
h; �

0Þ that lie on a particular scaling trajectory

via two scaling parameters Zl and Zh, defined as [1]

Zfð�;�0Þ ¼ 1

Rað�;�0Þ
a ~mf

a0 ~m0
f

; (21)

where f 2 fl; hg. Here

TABLE VIII. The partially-quenched neutral kaon mixing
parameter Bxy (ml) on the 32ID ensembles at the simulated

strange-quark mass (mh ¼ 0:045).

mx my Bxyð0:001Þ Bxyð0:0042Þ
0.008 0.055 0.645(2) 0.645(2)

0.0042 0.055 0.643(4) 0.645(4)

0.001 0.055 0.650(16) 0.665(16)

0.0001 0.055 0.665(28) 0.689(28)

0.008 0.045 0.629(2) 0.628(1)

0.0042 0.045 0.626(3) 0.625(3)

0.001 0.045 0.630(10) 0.632(10)

0.0001 0.045 0.639(17) 0.644(18)

0.008 0.035 0.610(1) 0.609(1)

0.0042 0.035 0.605(2) 0.604(2)

0.001 0.035 0.606(6) 0.602(6)

0.0001 0.035 0.610(10) 0.605(10)

TABLE IX. The partially-quenched neutral kaon mixing
parameter mxh (ml) on the 32ID ensembles at the physical
strange-quark mass (mh ¼ 0:0467ð6Þ).
mx Bxhð0:001Þ Bxhð0:0042Þ
0.008 0.632(2) 0.631(2)

0.0042 0.630(4) 0.628(3)

0.001 0.638(11) 0.635(11)

0.0001 0.651(17) 0.649(19)

FIG. 9 (color online). The left panel shows the effective potential of the Wilson loops with a spatial extent of r ¼ 2:45 on the
ml ¼ 0:001 ensemble at the simulated strange-quark mass, overlaid by the fit to the range t ¼ 3–8. The right panel shows the static
inter-quark potential VðrÞ on this ensemble, again at the simulated strange-quark mass, as a function of the spatial extent of the Wilson
loops, overlaid by the fit to the Cornell form over the range r ¼ 2:00–9:00.
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Rað�;�0Þ ¼ að�Þ
a0ð�0Þ (22)

is the ratio of lattice spacings and ~mf ¼ mf þmres, where

mres is the residual mass of domain wall QCD. In practice,
we define our scaling parameters using the � ¼ 2:25 (32I)
ensemble as a reference; we refer to this as the primary
ensemble set, on which Zl, Zh and Ra are unity by defini-
tion. We may interpret our matching of quark masses to the
bare masses on our primary ensemble set as a convenient, if
inelegant, intermediate renormalization scheme, for which
the regularization involves an explicit choice of lattice
action and bare coupling, and whose values are determined
by the hadronic inputs. The renormalization scale in this
scheme is the scale at which the bare mass is defined: the
inverse lattice spacing of the primary ensemble. The re-
normalized masses are then

~mr0
l ¼ ZlRa½a0 ~m0

l�=a; (23)

~mr0
h ¼ ZhRa½a0 ~m0

h�=a; (24)

where unprimed quantities are defined on the primary
ensemble set and primed quantities on some other en-
semble set, and a0 is related to a via a0 ¼ R�1

a a.
Considering only the unitary observables for simplicity,

any observable Q is a function of the bare quark masses
and the bare coupling. We take this asQða0 ~m0

l; a
0 ~m0

h; �
0Þ, at

coupling and quark masses differing from the primary
ensemble set. This can equally be expressed as a function
of the renormalized quark masses and the lattice spacing as

Qða0 ~m0
l; a

0 ~m0
h; �

0Þ ¼ fð ~mr0
l ; ~m

r0
h ; a

02Þ: (25)

The function f depends on the lattice action and on the
choice of physical quantities used to determine the scaling
trajectory. Since among these input parameters is a quan-
tity with a physical scale (in our case the �� mass), we
choose to view the function as depending on this scale so
its arguments can be expressed in physical units. The
function itself will have a continuum limit as � and �0
become large.

Consider a double expansion in quark masses and in
lattice spacing around our primary ensemble

fð ~mr0
l ; ~m

r0
h ; a

02Þ ¼ fð ~ml; ~mh; a
2Þ þ @f

@ ~mr0
l

ð ~mr0
l � ~mlÞ

þ @f

@ ~mr0
h

ð ~mr0
h � ~mhÞ þ @f

@a02
ða02 � a2Þ:

þOð ~m2
f; a

2 ~mf; a
4Þ; (26)

where the partial derivatives are evaluated at Ra ¼ Zl ¼
Zh ¼ 1.
If f is a quantity used to determine the scaling trajectory

then we necessarily constrain that @f
@a02 ¼ 0 at the match

point. In this paper we introduce a new DSDR term to the

effective gauge action. To this order only the term @f
@a02

depends on the lattice action. We can therefore determine
the parameters of f for a given parametrization, accurate to
this order, via a fit to a set of points over multiple ensem-
bles, and including the two different gauge actions. Even
though there is only a single lattice spacing with the DSDR
gauge action, it will usefully contribute to a universality
constrained global fit by significantly constraining the
mass dependent terms in a global parametrization of
fð ~ml; ~mh; a

2Þ.
For the purposes of matching ensemble sets with differ-

ent lattice spacing we ignore terms of higher order in 
ml,

mh and in a2. Since we allow Zh for masses in the region
of the strange quark to differ from Zl for masses in the
region of the up/down quarks, in this matching context we
may consider small variations in the quark masses only.
We can also see immediately that if we instead use a

nearby reference point ðaml; amh; �Þ ! ða½ml þ�l�;
a½mh þ �h�; �Þ, the ratios Zf and Ra change only by terms

Oðað�Þ2 � a0ð�0Þ2Þ with coefficients that are functions of
the mass differences�f that vanish as�f ! 0. This means

that there is an allowed range overwhich Zl and Zh may be
simply taken as a constant. Higher order terms in quark
masses are, of course, subsequently introduced in our
global chiral-continuum fits, and we introduce Zh and Zl

as free fit parameters multiplying quark masses in the
allowed range. In practice we even find Zl � Zh; were
the matching and primary ensemble sets taken sufficiently
close to the continuum limit, such that lattice artifacts were
small and mh � 1=a, then we would necessarily find
Zl ¼ Zh. The matching scheme can therefore be consid-
ered mass-independent as the mass dependence of the
renormalization factors drops out when the renormaliza-
tion scale becomes large.
In the following subsection we discuss our strategy for

determining the scaling parameters Zl, Zh and Ra.

B. Determination of the scaling parameters

In our analysis [1] of the 243 and 323 DWFþ I ensem-
bles, we determined Ra, Zl and Zh by matching our lattice
data at an unphysical light and heavy quark mass within the
range of available data on the two simulations. The match-
ing was performed by first choosing a suitable match point

TABLE X. The Sommer scales r0 and r1 and their ratio on the
32ID ensembles at the simulated strange quark massmh ¼ 0:045
(first and third rows) and at the physical strange quark mass
(second and fourth row).

ml mh r0 r1 r1=r0

0.0042
0.045 3.2732(63) 2.1208(97) 0.6479(36)

0.0467(6) 3.2616(75) 2.1270(105) 0.6521(37)

0.001
0.045 3.2977(62) 2.1346(98) 0.6473(34)

0.0467(6) 3.2959(73) 2.1401(100) 0.6493(37)
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on one of the ensemble sets (labelled M) which can, but
does not necessarily have to be, the primary ensemble. On
every other ensemble set e (in the 2010 analysis only the
24I ensemble set remained), two dimensionless ratios,
Rl ¼ mll=mhhh and Rh ¼ mlh=mhhh, were linearly interpo-
lated in the unitary light and heavy quark masses until their
values matched those measured at the match point on
ensemble M. Here mll, mlh and mhhh are respectively the
pion, kaon and Omega baryon masses measured at unphys-
ical light (l) and strange (h) quark masses. The match point
was chosen to minimize the distance of interpolation re-
quired on the ensemble sets e. This procedure provides a
pair of equivalent masses (in lattice units), ða ~mlÞe and
ða ~mhÞe, for each ensemble set. Using these masses we
determined Zl and Zh using Eq. (21), calculating Ra from
the ratio of the Omega baryon masses at the match point:

Ze
f ¼ 1

Re
a

ða ~mfÞ1
ða ~mfÞe ; Re

a ¼ a1

ae
¼ m1

hhhð ~m1
l ; ~m

1
hÞ

me
hhhð ~me

l ; ~m
e
hÞ
; (27)

where f 2 fl; hg.
The above procedure defines the scaling parameters

such that mll, mlh and mhhh scale perfectly up to terms
Oðma2Þ within the allowed region around the match point.
Note that this choice is not unique; we could for instance
use the pion and kaon decay constants, fll and flh, and the
Sommer scale r0, and match r0fll and r0flh. Ra can then be
determined from the ratio of r0 measured at the match
point on each ensemble set. In this case r0, fll and flh
would have no Oða2Þ dependence instead. In Ref. [1] we
demonstrated that this produces results that are completely
consistent.

The benefit of this fixed trajectory method is that it
enables the separation of the matching from the complex-
ities of the subsequent global fits. However, in our com-
bined analysis of the DWFþ I and DWFþ ID ensemble
sets, we find that, apart from the lightest partially-
quenched point, the range of light quark masses on the
24I ensemble set does not overlap with that on the 32ID
ensemble set (cf. Fig. 11). As a result, matching the 24I and
32ID ensemble sets to the 32I primary ensemble set at a

single point would require a long extrapolation beyond the
unitary mass range. In addition, the use of independent
linear interpolations on each ensemble set is more vulner-
able to statistical fluctuations than if we were to fit over all
data simultaneously. As a result we choose the alternate
generic scalingmethod [1], in which Ra, Zl and Zh are left
as free parameters which are determined, alongside the
low-energy constants, in a global fit of m�, mK and m�

over all ensemble sets. Here the three conditions that define
the scaling trajectory are imposed by omitting scaling
terms up to Oðma2Þ from the fit forms describing these
quantities, and the values of the ratios are selected as those
that minimize the global �2. In Ref. [1] we demonstrated
that this approach gives consistent results with the fixed
trajectory approach.
Prior to discussing our fit ansätze, it is illustrative to

compare the ratios of various dimensionless quantities
between the 32I and 32ID ensemble sets at a particular
match point, using the scaling parameters determined later
in Sec. V. This allows us to visualize the magnitude of the
scaling corrections for each quantity. Choosing ½aml�32I ¼
0:004 and the physical strange-quark mass ½amh�32I ¼
0:0263ð10Þ as a match point, we used the scaling parame-
ters listed in Table XIII (combining the statistical error
with the systematic errors determined using the procedure
given in Sec. VB) to determine the corresponding point
on the 32ID ensemble as ½aml�32ID ¼ 0:0066ð3Þ and
½amh�32I ¼ 0:0467ð6Þ. We then performed linear fits to a
range of quantities over each ensemble set independently
and interpolated each to the corresponding match point
quark masses. In Fig. 10 we plot the ratio of a number of
dimensionless combinations of these quantities between
the two ensemble sets. It is immediately apparent that the
scaling parameters do indeed fix m�, mK and m� to scale
between the two ensemble sets, and the errors on the ratios
of these quantities are indicative of the size of higher order
corrections—in a fixed trajectory matching at this point
those errors would be zero by definition.
Considering combinations ofm�,mK andm� with other

quantities that retain a scale dependence, and for the
purpose of making a crude estimate ignoring the small
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FIG. 10 (color online). Ratios of various dimensionless combinations of observables between the 32I and 32ID ensemble sets. The
combination of physical quantities is given above or below the corresponding point. A ratio of unity indicates perfect scaling between
the two ensemble sets.
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discretization error on the 32I measurements, we can use
this plot to read off the rough size of the discretization error
for the measurements on the 32ID ensemble set: we esti-
mate Oð3%–5%Þ discretization terms for fll and flh,
Oð1%–2%Þ for r0, and then a slightly larger Oð5%–7%Þ
contribution for r1.

As an aid to the reader, we also use the aforementioned
scaling parameters to place all of the simulated quark
masses on a common scale, and draw a line to indicate
the physical point as determined in Sec. V. These plots are
shown in Fig. 11.

C. Chiral/continuum fitting strategy

The chiral/continuum fit forms are obtained via a joint
expansion in a2 and ~mf. As in Ref. [1] we consider both an

NLO expansion around the SU(2) chiral limit using
partially-quenched chiral perturbation theory (PQChPT)
and also a leading-order analytic expansion about an un-
physical light-quark mass. Including finite-volume effects
in the ChPT, this provides three fit ansätze, which we label
‘‘analytic,’’ ‘‘ChPT’’ and ‘‘ChPTFV,’’ where the latter two
refer to the chiral perturbation theory forms without and
with finite-volume corrections respectively. For each an-
satz we expand the heavy-quark mass dependence to linear
order in the vicinity of the physical strange-quark mass. We
use a power-counting schemewhereby terms of order ~mfa

2

and higher are neglected. This truncation leaves only a
single a2 term arising from the expansion of the leading

order parameter. For example, the analytic form for the
pion decay constant fll in physical units is as follows:

fll ¼ Cf�
0 ð1þ Cf�

a a2Þ þ Cf�
1 ðmR

v �mR
l0Þ

þ Cf�
2 ðmR

l �mR
l0Þ þ Cf�

3 ðmR
h �mR

h0Þ; (28)

where the superscript R indicates a renormalized physical
quark mass (in a general scheme), and mR

l0 and m
R
h0 are the

expansion points for the light and heavy quark masses
respectively. In our power counting scheme, a term in the
lattice spacing arises only in the expansion of the leading

term Cf�
0 . It is important to note that the a2 coefficients

parametrizing the lattice artifacts will differ between the
Iwasaki and Iwasakiþ DSDR gauge actions, therefore for
the remainder of this work we label these coefficients with
a superscript denoting the lattice action.
As discussed in Ref. [1], the scaling parameters Ze

l and

Ze
h that relate the quark masses between the ensemble e and

the primary ensemble set can be thought of as ‘‘renormal-
ization coefficients,’’ removing the ultraviolet divergence
and converting the masses into a mass-independent
‘‘matching scheme’’ defined with lattice regularization at
� ¼ 2:25. It is therefore unnecessary to renormalize the
input quark masses into a continuum renormalization

scheme such as MS prior to performing the fits; we need
only convert the input masses into the matching scheme.
The predictions for the physical up/down and strange quark

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
m(32I)

32I

24I

32ID

0.018 0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034
m(32I)

32I

24I

32ID

FIG. 11 (color online). Simulated quark masses on each of our three ensemble sets brought into a common normalization with the
bare quark masses on our 32I ensemble set using the scaling factors determined in Sec. V. The top panel shows the light quark mass
regime and the bottom panel the heavy quark mass regime. Circular points are used to mark the unitary masses and square points the
partially-quenched masses. The physical up/down and strange quark masses are marked with dashed lines.
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masses can be converted into a more conventional scheme
a posteriori; this is performed in Sec. VI.

In the 2010 analysis, we performed our fits to quantities
in physical units. However this required us to continually
update the lattice spacings and physical quark masses
based on the results of the fit, iterating until convergence.
For this analysis we instead fit to quantities in lattice units,
which removes the need to repeat the global fit multiple
times. However, for clarity, we continue to quote our fit
forms in dimensionful units; the correctly normalized ver-
sions in lattice units for an ensemble e can easily be
obtained by inserting powers of ae where appropriate
to make the measurement and input quark masses dimen-
sionless; applying factors of Ze

l and Ze
h as before to bring

the quark masses into the normalization of the primary
ensemble; substituting ae with a1=Re

a; and finally setting
a1 to unity.

In the matching scheme the analytic fit form for fll on
the primary ensemble 1 becomes:

f1ll ¼ Cf�
0 ð1þ Cf�;Að1Þ

a ½a1�2Þ þ Cf�
1 ~m1

v þ Cf�
2 ~m1

l

þ Cf�
3 ð ~m1

h �mh0Þ; (29)

where ~mv ¼ 1
2 ð ~mx þ ~myÞ and we have taken advantage of

the linearity of the expression to absorb any terms in ~m0
l

into the leading coefficient. Here the superscript Að1Þ
denotes the gauge action of the primary ensemble: for
our choice of primary ensemble this is the Iwasaki action,
labelled I. The fit form describing fll on any other en-
semble can then be obtained by applying Eq. (25) to the
above and replacing the a2 coefficient with that appropriate
to the particular action.

Before continuing, it is illustrative to discuss how the a2

coefficients for the Iwasakiþ DSDR gauge action can be
determined without having multiple lattice spacings with
this action. Let us imagine that we have performed a global
fit over the 24I and 32I ensembles as in Ref. [1], and have

thus determined the coefficients Cf�
0 through Cf�

3 and the

Iwasaki scaling coefficient Cf�;I
a . We then perform a fixed

trajectory matching between the 32I and 32ID ensemble
sets, providing us with Z32ID

l , Z32ID
h and R32ID

a . The fit form

describing fll on the 32ID ensemble now has only one

unknown coefficient, namelyCf�;ID
a , which can be obtained

by comparing any single simulated data point with the
predicted value or by fitting over several points. In practice
we would like the 32ID data to contribute to the determi-
nation of the coefficients, thus we perform a combined fit

to all three ensemble sets and allowCf�;ID
a to be determined

by minimizing the global �2.
Recall that our choice of scaling trajectory defines the

pion, kaon and Omega baryon masses to have no lattice
spacing dependence up to terms Oðma2Þ arising from the
match-point dependence of Zl, Zh and Ra. These terms are
neglected by our power counting, hence the fit forms for
these quantities contain no discretization terms. For

example, the form for the Omega baryon with the analytic
ansatz is

mhhh¼Cm�

0 þCm�

1 ~mlþCm�

2 ð ~my�mh0ÞþCm�

3 ð ~mh�mh0Þ:
(30)

The remaining analytic and ChPT fit forms can be found
in Sec. V-B of Ref. [1]. Note that as we now measure the
strange-quark dependence in the global fit rather than
linearly interpolating to the physical strange mass prior
to fitting, we include additional parameters for the heavy
valence-quark dependence (where appropriate) and the
heavy sea-quark dependence, in this order. For the analytic
fit forms these coefficients are labelled following the ex-
isting sequence, for example the heavy valence and sea
quark dependences of mhhh are C

m�

2 and Cm�

3 respectively.

For the ChPT fit forms we label the parameters cQ;my
and

cQ;mh
for the valence and sea dependence of the quantity Q

respectively.
We perform our fits with the strange-quark mass expan-

sion point mh0 set initially to the un-reweighted strange
sea-quark mass on the 323 DWFþ I ensemble set. This is
then corrected to the physical strange quark mass
a posteriori; with our power counting this requires only a
redefinition of the leading order coefficient (e.g., Cm�

0 ). For

the ChPT forms we must also adjust the LECs in order to
absorb the effect of adjusting the chiral scale �� to the

conventional 1 GeV once the lattice scale has been
determined.
Once the fits have been performed, we determine the

physical up/down and strange quark masses (normalized to
the units of the 32I primary ensemble) by numerically
adjusting the quark masses in our fit functions such that
m�=m� and mK=m� match their physical values in the
continuum limit. Here, as in Ref. [1], we use m� ¼
135 MeV, mK ¼ 495:7 MeV and m� ¼ 1672:45 MeV.
The primary lattice spacing can then be extracted by
dividing the predicted continuum value for m� in lattice
units by its physical value. Using these results and the
values of Ra, Zl and Zh found by fitting the data, the lattice
spacings and physical quark masses for the other ensemble
sets can be determined; we discuss this in more detail
in Sec. VI.

V. FIT RESULTS AND SYSTEMATIC ERROR
DETERMINATION

Following the 2010 analysis strategy, we split the chiral/
continuum fits into three parts. In the first part, to which
this section is dedicated, we performed simultaneous fits to
m�,mK,m�, f� and fK over the three ensemble sets, from
which we determined the physical quark masses (in match-
ing scheme normalization), the lattice spacings and the
scaling parameters, along with predictions for the physical
pseudoscalar decay constants. The second set of fits were
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performed to BK and the third to the Sommer scales r0
and r1; these are documented in Secs. VII and VIII re-
spectively. We also separate out the discussion of the
determination of the physical quark masses in the

MS-scheme into Sec. VI.

A. Fit results

In the 2010 analysis we did not attempt to correct for
finite-volume effects in our analytic fits, as the magnitude
of the changewas small with respect to the systematic error
arising from the chiral extrapolation. However on the 32ID
ensemble set we have data reaching down almost to the
physical point, hence we might expect that the chiral
systematic error will be reduced and that the finite-volume
error may begin to dominate (as we discuss below, this
does indeed seem to be the case). As a result, in anticipa-
tion of our later discussion, we perform our analytic fits to
data corrected using ChPT to the infinite-volume limit.
Although we do not have multiple volumes from which
to measure the size of the correction directly, we expect
that the finite-volume terms in NLO chiral perturbation
theory will provide a somewhat reliable estimate now that
we are so deep in the chiral regime; we therefore estimate
the finite-volume correction for each simulated data point
as the fractional difference between the ChPTFV fit value
for that point with and without the finite-volume terms
applied. The analytic fits presented in this section are all
performed to the finite-volume corrected data. Note that
despite the near-physical pion masses on our 32ID ensem-
bles, the smallest m�L is roughly 3.3, which is in fact
larger than the value of 3.1 obtained for the lightest pion
on the 32I ensembles, due to the greater physical volume of
the 32ID lattice. As a result we do not expect our new data
involving lighter quark masses to further enhance the
finite-volume errors.

In order to prevent accidental correlations between
independent data from influencing the fit, while retaining
the correlations between data measured on the same en-
semble, we make use of the superjackknife technique to
propagate the errors through our fits. A superjackknife
distribution for a measurement is essentially a collection
of independent jackknife distributions, each containing the
fluctuations from a particular ensemble. As for the standard
jackknife, any procedure, such as a fit or binary operation,
is performed sequentially to each jackknife sample in all
distributions. The total error on the superjackknife is ob-
tained by evaluating the errors on each of its component
jackknife distributions and adding these in quadrature. This
technique was also used for our 2010 analysis.

As discussed in the previous section, our use of the
strange-quark mass reweighting in the chiral/continuum
fits differs from the 2010 strategy. Previously, each quan-
tity was independently interpolated to the physical strange-
quark mass prior to fitting; after the fit the values were
updated to the new mass and the fit repeated, with this

process iterated until convergence. We now constrain the
heavy sea-quark dependence of each quantity to be the
same on all ensemble sets and include multiple reweighted
data points in the fit. As the number of reweighted masses
differs between the ensemble sets, and considering that
there are likely to be strong correlations between the
reweighted data points, we might worry that the �2 con-
tributions of the data on the ensemble sets with more
reweighted masses will be incorrectly enhanced in our
uncorrelated fits. In order to avoid this we used only four
reweighted strange-quark masses on each ensemble set,
spread uniformly across the range.
Upon performing the fits, we discovered significant (up

to 4�) tensions between the fits and the pion and kaon data
on the 32ID ensembles at the upper end of the reweighted
mass range. However, the upper limit of this mass range
(mh ¼ 0:052) is considerably larger than the physical
strange quark mass of�0:047, which is actually very close
to the directly simulated mass of mh ¼ 0:045. From the
effective number of configurations calculated in Sec. II, we
estimated that reweighting to the physical strange quark
mass introduces a 10%–15% increase in our statistical
errors. As we go further from the simulated point we
expect the accuracy of the reweighting procedure to further
decrease due to the reduced overlap of the reweighted path
integral and the original. At mh ¼ 0:052 we found that the
effective number of configurations was reduced to only 15
on the lighter ensemble (down from 180) and 24 on the
heavier (down from 148). This suggests that the measure-
ments at the far end of the reweighting range are dominated
by only a very small number of configurations and are
therefore unreliable. As a result, the tension we observed
between the fits and the data at the upper end of the
reweighting range is likely to be an artifact of the reweight-
ing procedure. With this in mind, we repeated the fits again
using four reweighted masses this time spread only over
the range beginning at the simulated strange quark mass
and ending at the estimated physical strange quark mass. In
doing so we found that the tension disappeared.
The inclusion of the 32ID ensembles greatly enhances

the mass range over which our fits are performed. This
should reduce the systematic error on the extrapolation to
the physical light quark mass, and also allows us to con-
sider removing some of the heavier ensembles from the
Iwasaki data sets which may lie near the limits of con-
vergence of NLO chiral perturbation theory. We removed
the 24I ml ¼ 0:01 ensemble and the 32I ml ¼ 0:008 en-
semble, as well as the partially-quenched data points on the
lighter ensembles containing quarks with these masses. In
performing this cut, we restrict our fits to pion masses
smaller than 350 MeV, where previously the upper bound
was 420 MeV. This amounts to a �30% reduction in the
largest unitary light-quark mass. Note that this is not a
straight cut on the partially-quenched pion mass as the
elimination of these heavy ensembles also removes a
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number of partially-quenched pions containing these now
‘‘heavy’’ quarks ranging down to �230 MeV.

With the cut data set we were able to obtain excellent fits
using the ChPT and ChPTFV ansätze. For the analytic
ansatz we again found excellent fits to the decay constants
as well as mK and m�, but for the pion mass we found a
number of outlying data points on the 32ID ensembles that
deviated from the fit by up to 4�, with the typical size of
the deviation being Oð2%Þ. These deviations appear to
occur due to nonlinearities in the light data. The fact that
no corresponding deviations appear for the ChPT fits sug-
gests that these nonlinearities are consistent with the NLO
chiral logarithms. However, the discrepancies are also of
the size expected for NLO terms in the Taylor expansion
that are beyond the range of our power counting, hence we
cannot draw any strong conclusions about their nature
within our modest range of masses. As the linear ansatz
must be locally correct around the physical point, we
sought to reduce these discrepancies by further lowering
the cut for these fits, first by eliminating the 32I ml ¼
0:006 ensemble, then by systematically removing the
data corresponding to the heaviest partially-quenched
pions. The limit to which this bound can be pushed in
our analysis is dictated by the stability of the fits and the
necessity to retain some data on the remaining 24I en-
semble such that the a2 coefficients of the decay constants
can be determined; the latter implies that a 240MeV bound
is the lowest that we can currently reach. In practice we
reached a similar level of agreement between the analytic
fits and the data as found in the ChPT fits by lowering the
bound to 260 MeV. Although this removes a large amount
of data, we found that the fit remained very stable and that
the effect of the cut on the values and precision of the fit
parameters and predictions was surprisingly small; the
typical change was of the order of a few percent, with
the only large, statistically significant change being a 15%
increase in the valence light-quark dependence of f�. With
this in mind, we chose the 260 MeV cut for our analytic

fits. The mass combinations of the data points remaining
after performing this cut are listed in Table XI.
As a side note, we also repeated the ChPT and ChPTFV

fits to the full data set, for which the upper bound on the
pion mass is 420 MeV. We found that, even over this large
range, the NLO SU(2) ChPT fits were able to describe all
of our data with only a few points on the 32ID ensembles
deviating by between 2 and 3�.
In Table XII we list the results for the inverse lattice

spacings and quark masses obtained using each fit ansatz,

alongside the associated uncorrelated �2=dof. The results

are completely consistent, which suggests that the extrapo-

lation to the physical quark masses is under control. A

similar degree of consistency can be seen between the fit

parameters (where applicable) given in Table XIII. Here, as

mentioned in the previous section, we have adjusted the

chiral scale �� of the ChPT LECs to the conventional

1 GeV. In Figs. 12 and 13 we overlay our simulated data

for m� and f� on the 32ID ensembles with the ChPTFV

and analytic fit curves respectively, and in Fig. 14 we

present similar plots for mK and fK overlaid with the

ChPTFV fit curves. We list the individual predictions for

f�, fK and their ratio at the simulated lattice spacings and

the continuum limit in Table XIV. In Fig. 15 we plot the

chiral extrapolations of f� and m� overlaying the data

corrected to the continuum limit. (Note that the Omega

baryon mass data requires no correction due our choice of

scaling trajectory).
The uncorrelated �2=dof are all less than unity, suggest-

ing that the fits are behaving. In order to demonstrate the
quality of the fits in greater detail, we present histograms of
the deviation of the fit from the data in units of the
statistical error in Fig. 16.
In the remainder of this section, we discuss how we

combine the results of our fits into predictions for f� and
fK and final results for the lattice spacings and physical
quark masses (in the matching scheme).

TABLE XI. Sea and valence quark masses of the data included in the analytic fit with a 260 MeV cut on the pion mass. The third and
fourth columns give the set of partially-quenched valence quark masses; the mass combinations of light-light quantities (m� and f�)
are found by combining each choice of mx with each choice of my from the appropriate columns, with the exception of the ½mx;my� ¼
½0:0042; 0:008� points on the 32I ensemble set, for which the partially-quenched pion masses are above the cut. For heavy-light data
ðmK; fKÞ the light valence-quarks are chosen from the fmxg column, and the heavy valence-quarks from the full set of simulated heavy-
quark values. For m� and the Sommer scales, all data are included on those ensembles not marked with a dash (–).

Ensemble set ml fmxg fmyg

32I

0.008 – –

0.006 – –

0.004 0.002 0.002, 0.004

24I
0.01 – –

0.005 0.001 0.001

32ID
0.0042 0.0001, 0.001, 0.0042 0.0001, 0.001, 0.0042, 0.008

�
ðexcl½0:0042; 0:008�Þ

0.001 0.0001, 0.001, 0.0042 0.0001, 0.001, 0.0042, 0.008
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B. Combining results and estimating systematic errors

Prior to discussing our method of estimating the system-
atic error contributions arising from the chiral extrapola-
tion and finite-volume effects, it may be appropriate to
detail two of the contributions that we neglect in our final
predictions: those arising from the explicit chiral symmetry
breaking due to simulating with finite Ls, and those from
the truncation of the combined Symanzik-chiral expansion
that we discussed in the previous section. We have ad-
dressed the explicit chiral symmetry breaking at leading
order by additively renormalizing the quark masses in
our fit forms with mres. However, up to operators of
dimension-6, the chiral symmetry breaking also introduces
a dimension-5 clover term that potentially introduces
Oða�QCDÞ discretization errors; we discuss this issue in

Appendix C and conclude that this can be neglected in our
calculations. We may therefore treat our domain wall
simulations as OðaÞ-improved, which allows us to also
neglect higher-order terms involving the lattice spacing
raised to an odd power, e.g., Oða3�3

QCDÞ terms.

Regarding the truncation of the Symanzik-chiral expan-
sion, we stated in the previous section that we ignore terms
Oðmqa

2�QCDÞ �Oðm2
�a

2Þ and higher. These include

terms of magnitude Oða4�4
QCDÞ, Oðm4

��
�4
QCDÞ,

Oðmresm
2
��

�3
QCDÞ, Oðmresa

2�QCDÞ, etc. These are expected
to be on the scale of a fraction of a percent or less,
considerably smaller than the percent-scale chiral and
finite-volume errors in our calculation. For example we
find that our Oða2�2

QCDÞ terms are typically � 3%, from

which we can estimate the Oða4�4
QCDÞ error as ð0:03Þ2 �

0:1%. There are also effects arising from higher-order
terms in the Symanzik expansion that are typically ignored
in lattice calculations: The coefficients of a2 in the expan-
sion are themselves dependent on the lattice spacing
through loop corrections, giving rise to terms like 	sðaÞ�
lnða�QCDÞa2. We discuss these in detail in Appendix D

and conclude that they can be expected to be of a similar
magnitude to theOða4�4

QCDÞ errors for our range of lattice

spacings. We now proceed to the discussion of the finite-
volume and chiral extrapolation errors.
The method of combining the results obtained using our

three chiral ansätze into a final prediction was discussed at
length in Ref. [1]. The main issues were first deciding
which result or combination of results to use for the central
value and second deciding how to estimate the systematic
errors arising from finite-volume corrections and the ex-
trapolation to the physical quark masses. The discussion
was focussed on the predicted decay constants as they are
known to high precision. We observed that our predicted
value for f� from the ChPTFV fit was 7(2)% too low, and 4
(2)% in the analytic case, where the quoted errors are
obtained from the statistical error on the result. Smaller
discrepancies were also found in the kaon decay constants.
We concluded that these are of the size expected for NNLO
terms in the chiral expansion, as obtained by squaring the
difference between our data and f—the leading order term
in the ChPT chiral expansion. Noting that both the analytic
fits and ChPTFV fits appeared to describe our data equally
well, we decided to average the two results and take their
full difference as our estimate for the chiral extrapolation
systematic. We estimated the size of the finite-volume
systematic error from the full difference of the ChPTFV
and ChPT results.
Now that we have data ranging down almost to the

physical point, we are able to revisit the issue of estimating
the systematic errors. We first note that the differences
between the ChPTFV and analytic results for f� and fK
are now very small, smaller in fact than the formerly sub-
dominant finite-volume contributions estimated from the
difference between the ChPT and ChPTFV results. By
comparing the above results with those obtained by fitting
to all available data we observed that this reduction is
mainly due to our removal of the data corresponding to
heavier pion masses from the fits.
As discussed in the previous section, we performed our

analytic fits to finite-volume corrected data in anticipation
of the increased importance of these effects on our results.

TABLE XII. The �2=dof, unrenormalized physical quark masses in bare lattice units (without
mres included) and the values of the inverse lattice spacing a�1 obtained by fitting to data with
m� � 350 for the ChPT and ChPTFV fits, and m� � 260 MeV for the analytic fit.

Analytic ChPT ChPTFV

�2=dofð32IWÞ 0.279(64) 0.191(55) 0.221(57)

amlð32IÞ 0.000320(42) 0.000307(34) 0.000308(35)

amsð32IÞ 0.02660(98) 0.02650(85) 0.02627(89)

a�1ð32IÞ 2.295(40) GeV 2.302(35) GeV 2.310(37) GeV

amlð24IÞ �0:001754ð83Þ �0:001757ð75Þ �0:001749ð78Þ
amsð24IÞ 0.0337(18) 0.0338(13) 0.0336(13)

a�1ð24IÞ 1.743(43) GeV 1.743(30) GeV 1.747(31) GeV

amlð32IDÞ �0:000090ð34Þ �0:000096ð21Þ �0:000090ð22Þ
amsð32IDÞ 0.04667(76) 0.04674(60) 0.04671(61)

a�1ð32IDÞ 1.372(10) GeV 1.371(8) GeV 1.371(8) GeV
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Here we investigate how large an effect the finite-volume
corrections have on the analytic fits by repeating the latter
with uncorrected data. The resulting fit parameters and
predictions are compared to the original fits in Table XV.
In the table we also provide the superjackknife ratios of the
fit results with and without finite-volume corrections. We
notice that in taking the ratio, many of the correlated
fluctuations cancel, exposing underlying changes that
were formerly masked by the statistical error. We observe
that in many cases the deviation of the ratio from unity is
statistically significant but is only Oð2%Þ or less; these

changes are of the order expected for higher-order (mass-
squared or a2m) effects that are beyond the range of our
power counting, hence we cannot draw any conclusions
from these results. The only quantities that change signifi-
cantly are the slopes of f�, fK and m� with respect to the
light-quark masses; this behavior is expected as the finite-
volume corrections will be larger in the light quark-mass
regime, in which the physical length scales are greater. We
observe a 1.7 MeV upwards shift in the continuum predic-
tion for f�, which is consistent with the 2.4MeV difference
between the ChPT and ChPTFV results.

TABLE XIII. The fit parameters of each of our chiral ansatzë obtained by fitting to data with m� < 350 MeV for the ChPT and
ChPTFV fits, and m� � 260 MeV for the analytic fit. The parameters are given in GeVn for the appropriate power of n, and with the
heavy quark mass expansion point adjusted to the physical strange quark mass. We have ordered the table such that the equivalent
parameters of the ChPT and analytic fits lie on the same line. The coefficients of the chiral logarithms have also been adjusted so that
they are defined at the conventional chiral scale �� ¼ 1 GeV.

Parameter ChPT ChPTFV Parameter Analytic

ZI
l 0.983(14) 0.981(14) 0.992(21)

ZID
l 0.929(15) 0.930(15) 0.936(16)

ZI
h 0.9730(94) 0.9719(95) 0.976(14)

ZID
h 0.939(13) 0.935(13) 0.940(14)

RI
a 0.7571(65) 0.7562(66) 0.7595(90)

RID
a 0.5955(72) 0.5934(76) 0.5976(74)

B 4.174(83) 4.148(86) Cm�

0 0.00043(23)

Lð2Þ
8 0.000616(22) 0.000610(23) Cm�

1 7.70(16)

Lð2Þ
6 �0:000131ð69Þ �0:000159ð72Þ Cm�

2 0.173(40)

cm�;mh
�2:1ð2:5Þ �2:5ð2:5Þ Cm�

3 �0:041ð26Þ
f 0.1167(31) 0.1196(31) Cf�

0 0.1221(30)

cIf �0:021ð70Þ �0:031ð68Þ Cf�;I
a �0:064ð88Þ

cIDf 0.040(45) 0.014(43) Cf�;ID
a 0.030(47)

Lð2Þ
5 0.000560(51) 0.000524(51) Cf�

1 1.054(32)

Lð2Þ
4 �0:00014ð13Þ �0:00020ð14Þ Cf�

2 0.88(16)

cf�;mh
0.422(90) 0.484(89) Cf�

3 0.120(49)

mðKÞ 0.2365(77) 0.2364(80) CmK

0 0.2364(88)

�2 0.01907(77) 0.02028(76) CmK

1 3.637(99)

�1 0.00220(75) 0.00233(80) CmK

2 0.47(20)

cmK;my
3.811(61) 3.828(64) CmK

3 3.802(71)

cmK;mh
0.033(43) 0.031(43) CmK

4 0.001(64)

fðKÞ 0.1466(36) 0.1484(37) CfK
0 0.1500(35)

cI
fðKÞ �0:034ð57Þ �0:040ð57Þ CfK;I

a �0:075ð69Þ
cID
fðKÞ 0.020(38) 0.008(38) CfK;ID

a 0.013(38)

�4 0.00622(22) 0.00601(22) CfK
1 0.349(44)

�3 �0:0034ð19Þ �0:0032ð20Þ CfK
2 0.76(19)

cfK;my
0.2917(42) 0.2923(42) CfK

3 0.2967(64)

cfK;mh
0.118(40) 0.118(40) CfK

4 0.144(57)

mð�Þ 1.6659(100) 1.666(11) Cm�

0 1.6657(99)

cm�;ml
2.9(1.2) 3.1(1.2) Cm�

1 3.0(1.8)

cm�;mv
5.439(58) 5.462(63) Cm�

2 5.441(65)

cm�;mh
0.74(29) 0.87(31) Cm�

3 0.35(39)
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Although we now correct for the finite-volume using
NLO chiral perturbation theory, we note that resummation
techniques [24] may lead to somewhat larger estimates of
the finite-volume effects. As we lack the ability to repeat
our calculations on a larger volume, we choose to continue
to include a conservative finite-volume systematic error in
our final results, obtained, as before, from the full differ-
ence of the ChPTFV and ChPT results.

In the previous section we demonstrated that the
ChPTFV fit forms describe our data reliably over a con-
siderably larger range of pion masses than the linear an-
satz. For the final predictions given in the following
sections we therefore take the ChPTFV results for our
central values and use the analytic ansatz only to estimate
the chiral systematic. However, we continue to find it
surprising that a linear ansatz appears capable of describ-
ing QCD at the 1% level from the 260 MeV pion-mass
regime down to the physical point, and at the 2% level if
that range is extended to 350 MeV.

In some cases we observed that the superjackknife errors
on the differences between results obtained using the three
parametrizations were larger than the differences between
the central values. In these cases we chose to be conserva-
tive and took the statistical error on the difference for our
estimate of the systematic error.

C. Global fit predictions

Applying the procedure detailed above, we present our
predictions for the pion and kaon decay constants:

f� ¼ 127:1ð2:7Þð0:9Þð2:5Þ MeV; (31)

fK ¼ 152:4ð3:0Þð0:7Þð1:5Þ MeV; (32)

fK=f� ¼ 1:1991ð116Þð69Þð116Þ: (33)

Here the errors are statistical, chiral and finite-volume
respectively. Note that by restricting the ChPTFV fit to
m� < 350 MeV rather than m� < 420 MeV used in the
2010 analysis (a 30% cut in the light quark mass), we
obtain a value for f� that is now consistent with the known
physical value, justifying our assertion that the previously
observed deviation was mainly due to the influence of
higher order terms in the chiral expansion.
For the inverse lattice spacings we obtain

a�1ð32IÞ ¼ 2:310ð37Þð17Þð9Þ GeV; (34)

a�1ð24IÞ ¼ 1:747ð31Þð24Þð4Þ GeV; (35)

a�1ð32IDÞ ¼ 1:3709ð84Þð56Þð3Þ GeV: (36)

For comparison, in the 2010 analysis we obtained
a�1ð32IÞ ¼ 2:282ð28Þð1Þð1Þ GeV and a�1ð24IÞ ¼
1:730ð25Þð1Þð0Þ GeV by fitting only to the Iwasaki data.
These results are statistically consistent, although we find a
considerable enhancement in the systematic errors. Upon
detailed investigation we determined that these differences
arise almost entirely because the scaling factors Zl, Zh and
Ra are now allowed to vary between the fits (generic
scaling), as opposed being fixed to the values obtained at
some unphysical mass point (fixed trajectory) as in the
2010 analysis: In the fixed trajectory case the prediction
for the physical Omega baryon mass, which we use to set
the overall scale, can vary only through the values of the
physical light and strange quark masses, whereas in the
generic scaling case the scaling parameters are those that
contribute to the minimzation of the global �2, and can
thus introduce larger variations in the predicted Omega
mass. This does not, however, suggest that generic scaling
is worse than the fixed trajectory approach, as the shifts in
the scaling parameters between the three ansätze in the
former approach would simply be absorbed elsewhere in
the latter, increasing the systematic error on some other
quantities.
Using the NLO SU(2) ChPT fits we can obtain values for

the effective couplings �l3 and �l4. For the ChPTFV and
ChPT fits on their own, we find

�l3 ¼ 2:91ð23Þ; �l4 ¼ 3:99ð16Þ ðChPTFVÞ
�l3 ¼ 2:98ð22Þ; �l4 ¼ 3:90ð16Þ ðChPTÞ:

(37)

As before we take the ChPTFV result for our central value.
Although we cannot obtain a chiral extrapolation error
without a corresponding analytic fit result, we can continue
to estimate a finite-volume error from the difference be-
tween the two ChPT results. Therefore, our final values for
the effective couplings are as follows:

�l3 ¼ 2:91ð23Þð7Þ; �l4 ¼ 3:99ð16Þð9Þ; (38)

where the errors are statistical and finite-volume respec-
tively. In the 2010 analysis (applying the same procedure to

TABLE XIV. Predictions for f� (top left) and fK (top right) in
GeV as well as their ratio (bottom) for each global fit ansatz at
each simulated lattice spacing and in the continuum limit ob-
tained by fitting to data with m� � 350 for the ChPT and
ChPTFV fits, and m� � 260 MeV for the analytic fit.

Analytic ChPT ChPTFV

f32IW� 0.1249(21) 0.1242(22) 0.1264(22)

f24IW� 0.1238(28) 0.1238(25) 0.1258(26)

f32ID� 0.1284(18) 0.1273(18) 0.1280(18)

fcontinuum� 0.1264(28) 0.1247(27) 0.1271(27)

f32IWK 0.1502(23) 0.1499(23) 0.1512(24)

f24IWK 0.1485(30) 0.1491(26) 0.1503(27)

f32IDK 0.1536(21) 0.1526(21) 0.1531(21)

fcontinuumK 0.1525(28) 0.1509(29) 0.1524(30)

ðfK=f�Þ32IW 1.202(12) 1.207(9) 1.197(9)

ðfK=f�Þ24IW 1.199(18) 1.205(11) 1.195(11)

ðfK=f�Þ32ID 1.196(4) 1.199(4) 1.196(4)

ðfK=f�Þcontinuum 1.206(14) 1.211(12) 1.199(12)
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obtain the finite-volume error), we found �l3 ¼ 2:57ð18Þ�
ð25Þ and �l4 ¼ 3:83ð9Þð7Þ. Comparing to our fits without the
reduced pion mass cuts, we determined that the inflation of
the statistical error and the rises in the central values over
the 2010 analysis results derive mostly from the lowering
of the cut from 420 to 350 MeV. However the values for �l3
and �l4 agree more closely in our current analysis even
without the reduced cut, suggesting that the inclusion of
the 32ID ensembles has some stabilizing influence upon
the fit. For comparison, the FLAG working group obtained

[25] an estimate of �l3 ¼ 3:2ð8Þ, which was chosen to cover
a large number of independent lattice results for this quan-
tity, among which there are some discrepancies between
the values. Our result is entirely consistent with this esti-
mate. For �l4, the inconsistencies between the results were
considered too large to make a meaningful estimate. For
both of these quantities, recent results include 2þ 1f
determinations by the MILC collaboration [26,27] and
our 2010 analysis paper [1], and a 2þ 1þ 1f determina-
tion by the ETM collaboration [28].

FIG. 12 (color online). Global fits obtained using NLO SU(2) chiral perturbation theory with finite-volume corrections for the pion
mass (top) and f� (bottom) on the 32ID ensembles. Here the left-hand plot of each pair show the data at the simulated strange-quarkmass
and the corresponding fit curves on theml ¼ 0:001 ensemble, and the right-hand plots those on theml ¼ 0:0042 ensemble. The plots of
the pion mass have m2

�=ð ~mx þ ~myÞ on the ordinate axis, a quantity used traditionally to emphasize the chiral curvature of the data.
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Finally, we give our predictions for the physical quark
masses on the primary ensemble set:

~m udð32IÞ ¼ 2:243ð46Þð24Þð10Þ MeV;

~msð32IÞ ¼ 62:2ð1:1Þð0:5Þð0:3Þ MeV:
(39)

In the 2010 analysis we obtained ~mudð32IÞ ¼ 2:355ð81Þ�
ð79Þð42Þ and ~msð32IÞ ¼ 63:7ð9Þð1Þð1Þ. These numbers are
again consistent, although here it appears that the enhanced
control over the chiral extrapolation afforded by the 32ID
ensembles has decreased the statistical error on the average
up/down quark mass in spite of our exclusion of a large
number of data points. We also observe a vastly improved
chiral extrapolation systematic and a substantially reduced
finite-volume error on this quantity. In the next section we

discuss how these masses are renormalized into the MS
scheme.

VI. PHYSICAL RESULTS FOR THE LIGHT- AND
HEAVY-QUARK MASSES

In the previous section we determined the physical quark
masses in lattice units in the matching scheme defined in
Sec. V. In this section we discuss how we convert these into

the conventional MS-scheme.

A. Nonperturbative renormalization
for the quark masses

We cannot simulate with a noninteger number of
dimensions, hence we must match our lattice results to
perturbation theory in order to quote a result in the

MS-scheme. Rather than matching using lattice perturba-
tion theory, which is often poorly convergent, we obtain the

renormalization coefficients ZMS
m nonperturbatively at each

lattice spacing via several intermediate renormalization
schemes—the so-called RI/SMOM schemes—that are

FIG. 13 (color online). Global fits using the analytic ansatz with finite-volume corrected data for the pion mass (top) and f� (bottom)
on the 32ID ensembles. Here the left-hand plot of each pair show the data at the simulated strange-quark mass and the corresponding fit
curves on the ml ¼ 0:001 ensemble, and the right-hand plots those on the ml ¼ 0:0042 ensemble. The plots of the pion mass have
m2

�=ð ~mx þ ~myÞ on the ordinate axis, a quantity used traditionally to emphasize the chiral curvature of the data. The circular points are

those included in the fit, and the diamond points those excluded by the cut on data with m� � 260 MeV.
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variants of the Rome-Southampton RI/MOM scheme. In
these schemes the renormalization coefficients are calcu-
lated by fixing the values of appropriate amputated vertex
functions, constructed using quark propagators on Landau-
gauge fixed configurations, at a renormalization scale de-
fined by the quark momenta. These schemes are defined
without reference to a particular regularization, hence they
can easily be formulated in continuum perturbation theory
with dimensional regularization, and the matching coeffi-

cients between them and theMS scheme can be determined
without reference to the lattice regularization. The match-
ing is performed at a sufficiently high energy scale to be
within the perturbative regime.

We have shown [1] that renormalizing at 3 GeV rather

than the conventional 2 GeV results in a significant im-

provement in the contribution to the systematic error from

the truncation of the perturbative series. The quark masses

in Ref. [1] were calculated at the 2 GeV scale; in this

analysis we update the procedure to use the higher scale,

and use twisted boundary conditions to gain better control

of the discretization effects on the off-shell amplitudes

entering the renormalization [29]. The RI=SMOM ! MS

matching coefficients at one-loop [30] and two-loops are
known [31,32].
For the lattice calculation of the RI/SMOM renormal-

ization coefficients, we are constrained in our choice of
renormalization scale only by the desire to avoid large
discretization and finite-volume effects. Therefore for a
lattice of spatial extent L and lattice spacing a, we must
choose a scale � in the window:

L�2 � �2 � ð�=aÞ2: (40)

However, if we wish to match to the MS scheme, this
window is further constrained to the typically much
smaller regime in which both the discretization and non-
perturbative effects are small:

�2
QCD � �2 � ð�=aÞ2: (41)

This is known as the Rome-Southampton window [33].
For the 32I and 24I lattices, with a�1 � 2:3 and 1.75 GeV
respectively, our target of 3 GeV is accessible directly
within this window. However, for the 32ID lattice,
with a�1 � 1:37 GeV, we cannot calculate the lattice
renormalization conditions in the perturbative regime

FIG. 14 (color online). Global fits obtained using NLO SU(2) chiral perturbation theory with finite-volume corrections for the square
of the kaon mass (left) and fK (right) on the 32ID ensembles.
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without incurring large discretization errors. The 32ID
renormalization factors are not needed for the analysis of
the quark masses in this section (see below), but this is an
issue for BK; we discuss this further in Sec. VII.

The need to calculate the RI/SMOM coefficients within
the perturbative regime can be circumvented via the use of
off-shell step-scaling functions [29,34] determined through
a continuum extrapolation of the scale dependence (with a
fixed lattice action)—in this limit the dependence on the
action disappears and the scale dependence becomes uni-
versal. Similar step-scaling functions were used in our
recent analysis of the K ! �� �I ¼ 3=2 amplitudes [7].
In that analysis, performed only on the 32ID ensemble set,
we used the following strategy:

(1) We evaluated the Z-factors (or the matrix of
Z-factors in the case of operator-mixing) at a low
energy scale �0 on the 32ID lattice and computed
the relevant renormalized matrix elements. The
scale �0 was chosen within the region given
in Eq. (40), in which the finite-volume and dis-
cretization effects are small. In practice we chose
�0 � 1:1 GeV.

(2) We computed the scale evolution between �0 �
1:1 GeV and � ¼ 3 GeV of these operators on the
finer Iwasaki (IW) lattices, upon which the high
scale lies within the usual Rome-Southampton win-
dow. At finite lattice spacing aIW, if Z

Sð�; aIWÞ is
the renormalization factor of the operator under

FIG. 15 (color online). The chiral extrapolation of the pion decay constant (left) and Omega baryon mass (right) using the analytic
and ChPTFV ansätze. Overlaying these curves we have plotted the unitary data extrapolated to the continuum limit using the a2

dependence of our fit forms. The lighter-shaded points were corrected using the analytic fit form, and the darker points by
the ChPTFV form. Here the circular points are those included in the fit, and the diamond points are those excluded by the cuts at
350 MeV (ChPTFV) and 260 MeV (analytic). The upper and lower square points show the continuum predictions obtained using
the ChPTFV and analytic ansätze respectively. Note that for f�, the analytic fit does not include any unitary data points on the
32I and 24I ensembles as they lie above the pion mass cut (cf. Table XI). Note also that the physical limit of the �� mass
shows no statistical errors and agrees precisely with its physical value because it is this quantity that we use to determine the
lattice scale.

FIG. 16 (color online). Histograms of the deviation of the fit from the data for each quantity on each of the three ensemble sets (32I
top, 24I middle and 32ID bottom) with the analytic (left) and ChPTFV (right) ansätze.
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consideration in a (lattice) scheme S, the corre-
sponding scale evolution is given by

�Sð�;�0; aIWÞ ¼ ZSð�; aIWÞðZSð�0; aIWÞÞ�1:

(42)

The result was extrapolated to the continuum limit,
giving the universal running in this energy range for
this given scheme S:

�Sð�;�0Þ ¼ lim
aIW!0

�Sð�;�0; aIWÞ: (43)

(3) We multiplied the Z-factors obtained in step 1 at the
scale �0 by the continuum nonperturbative running
obtained in step 2 to obtain the desired Z-factors at

3 GeV. We then converted these to the MS scheme
using one-loop perturbation theory [35].

TABLE XV. A comparison of the results of analytic fits to the simulated data and the data corrected to the infinite volume using the
ChPTFV fit forms. The quantity in the fourth column is the jackknife ratio of the results, R, and the quantity in the fifth column is the
statistical significance of the deviation of this ratio from unity.

Quantity Original data FV corrected data Ratio R jR� 1j=�
�2=dof 0.219(54) 0.274(65) 1.254(33) 7.672

ml 0.002230(58) 0.002259(58) 1.01293(53) 24.379

mh 0.0627(12) 0.0626(12) 0.99857(31) 4.603

Zlð24IÞ 0.996(22) 0.992(21) 0.99619(41) 9.377

Zlð32IDÞ 0.927(16) 0.936(16) 1.00932(42) 22.131

Zhð24IÞ 0.975(14) 0.976(14) 1.00073(20) 3.580

Zhð32IDÞ 0.942(14) 0.940(14) 0.99876(29) 4.366

Rað24IÞ 0.7595(91) 0.7595(90) 1.00004(17) 0.218

Rað32IDÞ 0.5977(75) 0.5976(74) 0.99980(22) 0.911

a�1ð32IÞ 2.295(40) 2.295(40) 1.00025(24) 1.032

a�1ð24IÞ 1.743(43) 1.743(43) 1.00029(41) 0.710

a�1ð32IDÞ 1.372(10) 1.372(10) 1.000048(21) 2.282

f� 0.1247(27) 0.1264(28) 1.01359(72) 18.879

fK 0.1515(28) 0.1525(28) 1.00627(31) 19.916

fK=f� 1.213(12) 1.202(12) 0.99143(36) 24.076

Cm�

0 �0:00011ð16Þ �0:00014ð16Þ 1.28(51) 0.563

Cm�

1 3.378(30) 3.355(30) 0.99334(28) 24.172

Cm�

2 0.084(18) 0.075(18) 0.892(20) 5.490

Cm�

3 �0:016ð11Þ �0:018ð11Þ 1.084(74) 1.146

Cf�
0 0.0539(13) 0.0547(13) 1.01534(81) 18.970

Cf�;I
a �0:013ð17Þ �0:012ð17Þ 0.91(13) 0.702

Cf�;ID
a 0.0093(91) 0.0057(89) 0.61(38) 1.032

Cf�
1 1.121(32) 1.054(32) 0.9404(21) 28.102

Cf�
2 0.94(16) 0.88(16) 0.9414(88) 6.662

Cf�
3 0.120(48) 0.120(49) 1.001(10) 0.110

CmK

0 0.06589(63) 0.06597(62) 1.00113(11) 10.556

CmK

1 1.600(30) 1.585(30) 0.99058(37) 25.545

CmK

2 0.208(86) 0.206(85) 0.99130(46) 18.716

CmK

3 1.6544(97) 1.6561(97) 1.00101(11) 9.208

CmK

4 �0:000ð28Þ 0.000(28) 0(1500) 0.009

CfK
0 0.0705(14) 0.0710(14) 1.00633(32) 19.911

CfK;I
a �0:014ð13Þ �0:014ð13Þ 1.011(22) 0.510

CfK;ID
a 0.0041(73) 0.0024(72) 0.60(76) 0.529

CfK
1 0.378(44) 0.349(44) 0.9246(84) 9.007

CfK
2 0.77(20) 0.76(19) 0.9793(31) 6.752

CfK
3 0.2965(65) 0.2967(64) 1.00060(22) 2.749

CfK
4 0.144(57) 0.144(57) 0.9982(45) 0.395

Cm�

0 0.7992(100) 0.7994(99) 1.00023(11) 2.056

Cm�

1 3.0(1.8) 3.0(1.8) 0.9937(29) 2.158

Cm�

2 5.436(65) 5.441(65) 1.00093(22) 4.281

Cm�

3 0.35(39) 0.35(39) 1.013(29) 0.454
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Further details of the renormalization strategy used in
the aforementioned analysis can be found in Ref. [36].

It is conceptually cleaner to divide our determination of

theMS-scheme quark masses in a similar way to the above,
separating the calculation of the nonperturbative renormal-
ization coefficients and their subsequent continuum ex-
trapolation from the perturbative matching stage. We
therefore first calculate the RI/SMOM coefficients at a
low energy scale �0 and then calculate the step-scaling
functions from this scale to 3 GeV. As discussed in
Sec. VII, the choice �0 ¼ 1:4 GeV is optimal for the BK

analysis—we use this scale in the quark-mass analysis for
consistency. Providing the jackknife/bootstrap errors are
propagated correctly, the value of ZS

mð3 GeVÞ obtained
after applying the step-scaling function to the 1.4 GeV
result will be exactly the same as if we had performed
the continuum extrapolation directly at 3 GeV, due to the
fact that the step-scaling functions are calculated using the
same data.

1. Determination of the lattice
renormalization coefficients

Before presenting the results of our analysis, we
summarize our measurement strategy, highlighting several
important improvements over the original RI/MOM
methods.

The original RI/MOM scheme, defined in Ref. [33], was
shown [37] to suffer from greatly enhanced chiral symme-
try breaking errors. These were found to occur due to the
use of so-called exceptional kinematics, for which the
vertex has channels along which the momentum transfer
is zero; these allow quark and gluon loops with momenta
below the spontaneous chiral symmetry breaking scale to
exist even when the external momenta are moderately
hard. The persistence of nonperturbative effects at high
energy gives rise to large uncertainties in the perturbative
matching. In order to avoid this problem we follow the
2010 analysis procedure in using nonexceptional ‘‘sym-
metric’’ kinematics [37] for which no exceptional channels
exist. With these kinematics the nonperturbative effects fall
off much faster as the virtuality is increased.

The quark mass renormalization coefficient Zm, which is
taken in product with the bare quark mass to obtain the
renormalized quantity, is determined from the flavor non-
singlet scalar and pseudoscalar vertex renormalization co-
efficients, ZS and ZP respectively, via the relation
Zm ¼ 1=ZS ¼ 1=ZP. The equivalence of ZS and ZP is
not exact if the chiral symmetry is broken; this occurs
due to the low-energy spontaneous chiral symmetry break-
ing of QCD and to a much lesser degree from finite-Ls

effects. With nonexceptional kinematics, the former van-
ishes as 1=p6 [38], and is therefore small at the 3 GeV scale

at which we perturbatively convert to the MS-scheme. In
Ref. [38] and during the present analysis we found that the

effect of the difference between ZS and ZP on our finalMS

scheme quark masses was considerably smaller than the
error associated with the truncation of the perturbative
series; as a result we do not need to include a systematic
error for this effect. For the central values we arbitrarily
chose to take the average of the scalar and pseudoscalar
renormalization factors to determine Zm, as was performed
in Ref. [38].
The scalar and pseudoscalar vertex functions �S and

�P were constructed at all sink locations of two quark
propagators with momenta p1 and p2. The symmetric
kinematics require that the momenta are chosen such that
p2
1 ¼ p2

2 ¼ ðp1 � p2Þ2 ¼ q2 ¼ ��2 for a renormaliza-
tion scale�. As before we used volume momentum source
propagators as these have been shown [2] to significantly
reduce the statistical error on the NPR coefficients.
The renormalization conditions for the scalar and pseu-

doscalar vertex functions, applied at the scale � in the

three-flavor chiral limit, are: ZS

Zq
�S ¼ 1 and ZP

Zq
�P ¼ 1,

where

�S ¼ZS

Zq

1

12
tr½�S � I�; �P ¼ 1

12
tr½�P ��5�: (44)

Here I is the identity matrix and Zq is the wave-function

renormalization factor. Zm in the nonexceptional schemes
is thus calculated as

ZmZq ¼ 1

2
ð�S þ�PÞ: (45)

The wave-function renormalization factor is determined
from the renormalization condition on the vector current:
ZV

Zq
�V ¼ 1, where

�V ¼ 1

12
tr½�V�

� ��� (46)

for the vector bilinear vertex �V�
. With symmetric kine-

matics, the momentum transfer q2 is nonzero, hence we
have two choices for the projection matrix ��, namely

��=4 and q̂q̂�=q̂
2; these define two different renormaliza-

tion schemes which we label RI=SMOM��
and RI/SMOM

respectively. Here we have used q̂� ¼ sin ðq�Þ following
Ref. [1]. In the remainder of this work we refer to the two
schemes collectively as the ‘‘SMOM schemes.’’
In the above, the vector renormalization coefficient ZV is

identical to the factor relating the four-dimensional vector
current to the corresponding Symanzik current. In Sec. III
we discussed how this quantity can be calculated indepen-
dently using the ratio of the local four-dimensional and
conserved five-dimensional vector currents. (The values
for this quantity on the Iwasaki ensemble sets were deter-
mined in Ref. [1]). As ZV is known, we can combine its

measurement with the ratio ZV

Zq
, obtained from the vector-

vertex renormalization condition, in order to determine Zq.

DOMAIN WALL QCD WITH NEAR-PHYSICAL PIONS PHYSICAL REVIEW D 87, 094514 (2013)

094514-29



In principle a separate measurement of Zq could be

obtained using the axial-vector vertex. As was the case

for the scalar and pseudoscalar vertex functions, this mea-

surement can differ from that calculated via the vector

vertex due to the residual effects of the low-energy sponta-

neous chiral symmetry breaking and small finite-Ls ef-

fects. However, in Refs. [1,2] we found that the effect of

the difference between the vector and axial-vector vertex

functions on our final result is again negligable compared

to the perturbative truncation error.
As mentioned above, the renormalization conditions are

applied in the three-flavor chiral limit. In practice we

generate data on each ensemble with quark masses set

equal to the dynamical light-quark mass; the chiral ex-

trapolation is then performed using a linear fit over the

unitary light-quark mass-dependence. The vertex functions

are flavor-independent, hence this extrapolation also takes

the valence strange-quark, but not the sea strange-quark, to

the chiral limit. As we have only a single simulated dy-

namical strange-quark mass and reweight over only a short

range, we cannot reliably take this final mass to the chiral

limit. In Refs. [1,2] we estimated the effect of not taking

the strange sea-quark to zero using the slope of the unitary

light-quark extrapolation, reduced by a factor of two to

obtain the contribution of a single flavor. For the RI/MOM

scheme, the two-flavor mass-dependence was found to be

significant, resulting in a large systematic effect compa-

rable in size to the truncation systematic. However, for the

RI/SMOM schemes we found a very benign mass-

dependence that was statistically indistinguishable from

zero. Note that this estimate is highly conservative as the

slope is likely dominated by the valence mass dependence;

this suggests that we can ignore this systematic effect in

our present analysis, for which we use only the nonexcep-

tional schemes.
In Ref. [1] we calculated the renormalization factors

over a range of momentum scales. The scales at which
we could perform our lattice measurements were limited
by the need to form a symmetric momentum configuration
with spatial momentum components that are discretized in
units of 2�=L by the periodic boundary conditions. The
resulting momentum configurations were typically distinct
under the hypercubic group, hence the measurements were
susceptible to lattice artifacts that vary under Oð4Þ rota-
tions. These induced a scatter in the data, breaking the
expected smooth scale dependence; as a result we were
forced to artificially inflate our errors by a factor offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=dof

p
, taken from a straight-line fit to the data. In

Ref. [29] we showed that the scatter can be eliminated
entirely using twisted boundary conditions to induce quark
momenta with a fixed direction; the remaining lattice
artifacts can be removed by a continuum extrapolation.
This approach was used for the renormalization of BK in
the second of the 2010 analysis papers [2]. In the current

analysis we also adopt this technique for the quark mass
renormalization.

2. Perturbative matching to the MS scheme

The conversion factors CRI=SMOM!MS
m between the

RI/SMOM and MS schemes were first computed at
one loop in Ref. [30] and the two-loop corrections for
both RI/SMOM and RI=SMOM��

are known from

Refs. [31,32]. Regarding our notation, we write the running
of the renormalized quark mass (in a given scheme S)
between the scale �0 and � in the form

mSð�Þ ¼ mSð�0Þ exp
�Z asð�Þ

asð�0Þ
dx

�S
mðxÞ
�ðxÞ

�
; (47)

where, following [39], we use as ¼ ð	s=�Þ. We expand
the anomalous dimension �S

m and the�-function (dropping
the superscript S for clarity)

�S
mðasÞ ¼ ��ð0Þas �

X
i�1

�ðiÞ
S aiþ1

s ; (48)

�ðasÞ ¼ �X
i�0

�ia
iþ2
s ; (49)

where we have made explicit the fact that �ð0Þ is scheme-
independent [we do not discuss here the scheme depen-
dence of 	s, which cancels in Eq. (47)]. We can then
express the result of Eq. (47) with the help of

exp

�Z asð�Þ

asð�0Þ
dx

�S
mðxÞ
�ðxÞ

�
¼ cSð�Þ

cSð�0Þ
; (50)

where

cSð�Þ ¼ asð�Þ�
ð0Þ
�0

�
1þ

�
�ð1Þ
S

�0

� �1�
ð0Þ

�2
0

�
asð�Þ þOða2sÞ

�
:

(51)

Still following [39], we then define the renormalization-
group-invariant (RGI) mass m̂ by

m̂ ¼ lim
�!1m

Sð�Þasð�Þ��ð0Þ
�0 : (52)

Using Eqs. (47) and (51), this gives

m̂ ¼ mSð�0Þ
cSð�0Þ

8 �0: (53)

In particular, since m̂ is renormalization group invariant,
we can use the ratio of c’s to change scheme: for example,
the conversion factor between a scheme S1 and a scheme
S2 at the scale � is given by

CS1!S2
m ð�Þ ¼ cS2ð�Þ

cS1ð�Þ : (54)

The RGI mass is obtained from mSð�Þ using Eq. (53),
which implies that
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CS!RGI
m ð�Þ ¼ 1

cSð�Þ : (55)

With some simple linear algebra we are able to convert the
numerical results of Ref. [30] to our conventions and
evaluate Eq. (51).

Finally, to obtain 	s at 3 GeV in the three-flavor theory,
we used the four-loop running of Refs. [40,41] and took
	sðmZÞ ¼ 0:1184 [42] as an initial condition. We ran
this quantity down to the charmmass, changing the number
of flavors when crossing each threshold, obtaining
	sð3 GeVÞ ¼ 0:2454.

Putting everything together, we found

1

cRI=SMOMð3GeVÞ¼3:1052ð1�0:0825�0:0066þOða3sÞÞ

¼2:8283; (56)

1

cRI=SMOM�� ð3 GeVÞ
¼ 3:1052ð1� 0:1086� 0:0147þOða3sÞÞ
¼ 2:7223; (57)

1

cMSð3 GeVÞ
¼ 3:1052ð1� 0:0699� 0:0035þOða3sÞÞ

¼ 2:8773: (58)

Combining these we obtained for the conversion factors:

CRI=SMOM!MS
m ð3 GeVÞ ¼ cMSðasð3 GeVÞÞ

cRI=SMOMð3 GeVÞ ¼ 0:9830;

(59)

C
RI=SMOM��!MS
m ð3 GeVÞ ¼ cMSðasð3 GeVÞÞ

cRI=SMOM�� ð3 GeVÞ
¼ 0:9462; (60)

which are correct to order a3s .
With the four-loop anomalous dimension of Ref. [39],

we obtain

CMS!RGI
m ð3 GeVÞ ¼ 3:1052ð1� 0:0699� 0:0035

� 0:0001þOða4sÞÞ
¼ 2:8769: (61)

For completeness we apply the same procedure at a
renormalization scale of � ¼ 2 GeV (using 	sð2 GeVÞ ¼
0:2960):

1

cRI=SMOMð2 GeVÞ ¼ 2:5452þOða3sÞ; (62)

1

cRI=SMOM�� ð2 GeVÞ ¼ 2:4218þOða3sÞ; (63)

1

cMSð2 GeVÞ ¼ 2:6017þOða3sÞ; (64)

which are again quoted to Oða3sÞ. Thus we find
CRI=SMOM!MS
m ð2 GeVÞ ¼ 0:9783; (65)

C
RI=SMOM��!MS
m ð2 GeVÞ ¼ 0:9309; (66)

CMS!RGI
m ð2 GeVÞ ¼ 2:6012; (67)

where, as before, the SMOM to MS conversion factors are
correct up to terms Oða3sÞ, whereas the RGI conversion
factor is true up to termsOða4sÞ by virtue of using the four-
loop anomalous dimension. As expected, these numbers
are in very nice agreement with the ones given in Ref. [31].
We close this paragraph with a remark about the defini-

tion of the RGI quantities: Our convention is such that, at
the first order of perturbation theory, the conversion to the
RGI quark mass is given by

CA!RGI
m ð�Þ ¼ ð	sð�Þ=�Þ�4=ð11�2nf=3Þ: (68)

This convention differs from the one used for BK, where 	s

is not divided by �:

CA!RGI
BK

ð�Þ ¼ ð	sð�ÞÞ�2=ð11�2nf=3Þ: (69)

(Here the difference between the anomalous dimensions of
the quark mass and BK accounts for the factor of two in the
exponent between the two expressions). Although the dif-
ference in conventions is rather unfortunate, we adopt them
in order to match those commonly used in the literature.

3. Calculation of Zm in the RI/SMOM schemes

We calculated the RI/SMOM and RI=SMOM��
bilinear

vertex functions on each ensemble of the Iwasaki lattices,
using quark propagators with the (twisted) momenta given
in the first two blocks of Table XVI (as explained below,
the 32ID renormalization factors are not needed). These
were then linearly extrapolated to the two-flavor chiral
limit. We plot the scale dependence of the resulting
chiral-limit renormalization factors in Fig. 17; here we
clearly see the smooth scale dependence arising from the
use of twisted boundary conditions.
In order to obtain the values at 1.4 GeV we performed an

interpolation over several data points in the region sur-
rounding the 1.4 GeV renormalization scale. Using the
lattice spacings from Sec. V we find the corresponding
values of ðapÞ2 to be 0.367 and 0.642 on the 32I and 24I
lattices respectively. In this region of Fig. 17 we see a
nonlinear scale dependence arising from the (supressed)
poles and the renormalization group running, hence we
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cannot perform our interpolation using a simple linear
function. Upon experimenting with several different non-
linear forms, we found that the following parametrization:

Zm½ðapÞ2� ¼ C0 þ C1=ðapÞ2 þ C2ðapÞ2 (70)

fit the data well and was stable when the number of points
was increased. We present the results of interpolating to
� ¼ 1:4 GeV in Table XVII. In order to later obtain the
step-scaling factors, we repeated the above with a 3.0 GeV
renormalization scale; these results are also given in the
table. Note that the error quoted for the results in this table
contains only the statistical contributions from the ampu-
tated vertex functions; the fluctuations arising from the
statistical and systematic uncertainties on the lattice spac-
ings and ZV are discussed below.

4. Renormalization of the continuum quark masses

The physical quark masses determined in Sec. V are
quoted in the ‘‘matching scheme,’’ whereas the renormal-
ization factors above act upon the bare physical quark
masses. Therefore in order to obtain the quark masses in

either the MS scheme or one of the Rome-Southampton
schemes, we must first convert the matching scheme
masses into bare masses using Eq. (27).
The matching scheme is a noncontinuum (due to its

explicit cutoff dependence), mass-independent scheme in
which a bare quark mass in physical units that is deter-
mined at a coupling � is renormalized by fixing its value to
that obtained on a 323 � 64� 16 domain wall lattice with
the Iwasaki gauge action at � ¼ 2:25:

mmatch
f ¼ Zmatchðmf;�Þmfð�Þ: (71)

As discussed in Sec. IV, the renormalization factor
Zmatchðmf;�Þ at finite lattice-spacing is only weakly de-

pendent upon the mass, hence we require just two factors:
one to renormalize heavy quarks near the physical strange
quark mass, and one to renormalize the light quarks. We
labelled these Zhð�Þ and Zlð�Þ respectively, and calculated
their values on the 24I and 32ID lattices as part of our
global fits in Sec. V (the values on the 32I ensemble are
unity by definition).
Given the values of mmatch

u=d and mmatch
s , we can obtain

quark masses renormalized in one of our intermediate
RI/SMOM schemes S at a given � using the nonperturba-
tive renormalization factors calculated above via the fol-
lowing ratios:

mS
u=dð�Þ ¼ mmatch

u=d � ZS
mð�Þ=Zlð�Þ and

mS
s ð�Þ ¼ mmatch

s � ZS
mð�Þ=Zhð�Þ: (72)

These quantities still retain lattice artifacts which must be
removed via a continuum extrapolation. Since, by defini-
tion, Zh and Zl absorb the coupling dependence of the
quark masses, we need only extrapolate the ratios
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FIG. 17 (color online). Zm in the two SMOM schemes at a range of scales on the 24I (left) and 32I (right) ensemble sets.

TABLE XVI. Nonexceptional momenta and twist angles used
for the evaluation of amputated twisted Green’s functions in our
NPR analyzes. The momenta here are listed in ðx; y; z; tÞ order.
The integer Fourier mode numbers fnig are related to the lattice
momenta via api ¼ ni2�

Li
. The momentum added by the twist is

determined by the twist angle � giving api ¼ ð2niþ�Þ�
Li

. The

twists that are not multiples of 1
8 are chosen to match specific

momenta on a larger volume lattice that will be described in a
forthcoming publication.

24I p1 p2 �
ð�2; 0; 2; 0Þ (0, 2, 2, 0) f�0:45136; 0:732g
ð�3; 0; 3; 0Þ (0, 3, 3, 0) 3

16n: n ¼ f�2; 1 . . . ; 12g
ð�4; 0; 4; 0Þ (0, 4, 4, 0) 3

2

32I p1 p2 �
ð�2; 0; 2; 0Þ (0, 2, 2, 0) f�0:413; 0:783g
ð�3; 0; 3; 0Þ (0, 3, 3, 0) 1

4

ð�4; 0; 4; 0Þ (0, 4, 4, 0) f� 3
4 ;

3
8g

ð�5; 0; 5; 0Þ (0, 5, 5, 0) f� 5
8 ;

3
8g

32ID p1 p2 �
ð�3; 0; 3; 0Þ (0, 3, 3, 0) f0:0g
ð�4; 0; 4; 0Þ (0, 4, 4, 0) 1

2 n: n ¼ f�1; 0; 1; 2g
ð�5; 0; 5; 0Þ (0, 5, 5, 0) 1

2n: n ¼ f�1; 0g
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ZS
mlð�Þ ¼ ZS

mð�Þ=Zlð�Þ and ZS
mhð�Þ ¼ ZS

mð�Þ=Zhð�Þ:
(73)

For this we assume a linear dependence on a2, neglecting
the higher order effects. Note that we cannot include the
values of Zm calculated on the 32ID lattice in this extrapo-
lation due to this lattice having a different gauge action,
and hence a different scale dependence, than the 24I and
32I lattices. As a result we have not analyzed this quantity
in the present analysis.

In order to correctly propagate the statistical errors and
the chiral/finite-volume errors on the various quantities we
use the superjackknife procedure as before and repeated
the analysis using Zl, Zh, the lattice spacings and the quark
masses calculated using each of the three chiral ansätze
separately, taking the differences between these results at
the final stage to determine the systematic errors in the
usual way. In practice, the determination of the renormal-
ization coefficients was performed using bootstrap resam-
pling and used only the final results for the lattice spacings
in determining the renormalization scale. In order to ensure
that the systematic and statistical errors were correctly

propagated we devised a procedure for generating suitable
‘‘super-jackknife’’ distributions from these; this procedure
is given in Appendix B.

We performed the continuum extrapolation of ZS;A
ml ð� ¼

1:4 GeVÞ and ZS;A
mh ð� ¼ 1:4 GeVÞ for each choice of

scheme S and chiral ansatz A, obtaining the values listed
in Table XVIII. In the table and below we add a superscript
‘‘c’’ to denote continuum quantities. An example of the
continuum extrapolation is shown in Fig. 18.
The step-scaling factors �S;Að3 GeV; 1:4 GeVÞ were

then determined via a continuum extrapolation over the
Iwasaki lattices of the ratio � of renormalization coeffi-
cients at 3 and 1.4 GeV [cf. Eq. (43)]. This was repeated for
each scheme and chiral ansatz, giving the values also listed
in Table XVIII. We then applied the step-scaling factors to
Zc
ml and Z

c
mh at the 1.4 GeV scale to obtain the correspond-

ing values at 3 GeV; these are again listed in Table XVIII.
Note that there is a quite considerable cancellation between
the statistical fluctuations on the step-scaling factors and
the 1.4 GeV renormalization coefficients; this cancellation
is necessary to reproduce the smaller statistical errors on
the 3 GeV factors and justifies the use of superjackknife

TABLE XVIII. The factors Zc
ml and Zc

mh used to convert our matching-scheme physical quark masses into each intermediate NPR
scheme at 1.4 and 3.0 GeV, and the step-scaling factors used to run between those scales. We also list the MS renormalization factors
with � ¼ 3:0 GeV, obtained by applying the perturbative conversion from each of the intermediate RI/SMOM schemes. The
superscript ‘‘c’’ on the renormalization factors is used to indicate that these are continuum quantities. The right-most columns
correspond to the three choices of chiral ansatz used to obtain the lattice spacings used for the scale-setting and continuum
extrapolations.

Ansatz A
Quantity Scheme S Scale(s) � ChPTFV ChPT Analytic

Zc
ml

SMOM

1.4 GeV

1.735(36) 1.735(36) 1.752(51)

SMOM�� 1.918(39) 1.917(39) 1.935(55)

Zc
mh

SMOM 1.712(27) 1.711(27) 1.712(34)

SMOM�� 1.893(29) 1.890(29) 1.890(37)

�
SMOM

1:4 ! 3:0 GeV
0.797(8) 0.798(8) 0.799(8)

SMOM�� 0.755(7) 0.756(7) 0.758(7)

Zc
ml

SMOM

3.0 GeV

1.383(27) 1.385(27) 1.401(40)

SMOM�� 1.449(28) 1.450(28) 1.466(42)

MS (via SMOM) 1.360(26) 1.361(26) 1.377(40)

MS (via SMOM�� ) 1.371(26) 1.372(26) 1.387(40)

Zc
mh

SMOM 1.365(18) 1.365(18) 1.368(25)

SMOM�� 1.429(18) 1.429(18) 1.432(26)

MS (via SMOM) 1.341(17) 1.342(17) 1.345(25)

MS (via SMOM�� ) 1.352(17) 1.353(17) 1.355(25)

TABLE XVII. Renormalization factors in the intermediate RI/SMOM scheme S at the scale
�. Here the quoted error contains only the statistical contributions from the amputated vertex
functions, not the fluctuations from the uncertainties on the lattice spacings and ZV .

32I 24I

RI/SMOM RI=SMOM��
RI/SMOM RI=SMOM��

ZS
mð� ¼ 1:4 GeVÞ 1.7782(62) 1.9612(52) 1.7763(43) 1.9558(36)

ZS
mð� ¼ 3:0 GeVÞ 1.4414(5) 1.5183(2) 1.4579(2) 1.5419(2)
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error propagation. (Similar results might be obtained using
bootstrap resampling for all quantities, with a consistent
number of bootstrap samples, although this risks accidental
cancellation between ostensibly uncorrelated fluctuations).

5. MS-scheme renormalization factors
and systematic errors

Applying the perturbative conversion factors to Zc
ml and

Zc
mh at 3 GeV, we finally obtain the MS renormalization

coefficients for the quark masses determined in Sec. V. We
list the values in Table XVIII. All that remains prior to

obtaining the MS quark masses is to decide which inter-
mediate scheme to use for the renormalization and to
analyze the systematic errors.

In the 2010 analysis we decided that the most reliable

MS renormalization coefficients were obtained using the
SMOM�� intermediate scheme. This was based on the fact

that this scheme showed a considerably smaller scatter
from Oð4Þ-symmetry breaking lattice artifacts than the
SMOM scheme. However, now that the scatter has been
eliminated through the use of twisted boundary conditions,
we base our choice of ‘‘best’’ scheme on the size of the

error in the matching of the intermediate scheme to MS,
which we estimate from the size of the two-loop terms in
Eq. (60). We see that the SMOM-scheme conversion fac-
tors appear to converge faster than those in the
SMOM��-scheme, with a two-loop term roughly 75%

smaller. As a result we adopt the SMOM scheme for our
final numbers.

We expect the main contribution to the systematic error
to be associated with the truncation of the perturbative

expansion of the MS scheme-change factors. In Ref. [1]
we discussed two suitable methods for estimating this
error: The first is to use the size of the two-loop term in
the perturbative conversion and the second to take the full

difference between theMS coefficients calculated at 3 GeV
using our two intermediate SMOM schemes. For the 2010
analysis, the most conservative estimate was obtained from

the size of the two-loop term; however, now that we have
adopted the RI/SMOM scheme for our final result we find
that the 0.4% two-loop contribution is smaller than the
0.8% difference between the results obtained via the
SMOM and SMOM�� intermediate schemes. We therefore

use the latter as our estimate of the truncation error.
In Sec. VIA 1 we detailed several additional sources of

error in our renormalization procedure that arise from
nonperturbative effects; specifically, we highlighted the
effects of the low-energy spontaneous chiral symmetry
breaking and those associated with the dynamical strange
sea-quark mass-scale. There are also likely to be additional
effects at the �QCD scale that were not considered.

Although we concluded that the nonperturbative effects
at the 3 GeV matching scale are negligible compared to
the truncation error on our final results, it is illustrative to
consider at what point they enter into our calculations. The
RI/(S)MOM schemes are actually defined in the limit
�2 � �2

QCD, at which the behavior is purely perturbative.

The momentum schemes that we actually implement on
our lattice can be therefore be regarded as different
schemes that take into account the nonperturbative behav-
ior. We therefore consider the aforementioned errors not as
properties of the numerical renormalization factors, but
rather as additional errors on the perturbative conversion

to the MS-scheme, arising from the fact that the scheme-
change factors are calculated using a slightly different
scheme than the numerical results.
There are two final sources of systematic error on the

renormalization conditions—those arising from the chiral
extrapolation and finite-volume errors on the lattice spac-
ings used in the scale-setting and the continuum extrapo-
lation. In the previous section, we repeated the analysis
using the lattice spacings obtained from our global fits with
the three different chiral ansätze. We can therefore estimate
these errors using the procedure discussed in Sec. VB,
namely estimating the chiral systematic error as the larger
of two values, the first being the difference in central values
between the results obtained using the ChPTFV and

FIG. 18 (color online). The continuum extrapolations of Zml (left) and Zmh (right) in the RI/SMOM at 1.4 GeV.
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analytic parametrizations, and the second the superjack-
knife error on this difference. The same procedure is
applied to the ChPTFV and ChPT results to estimate the
finite-volume error. We take the central value and statisti-
cal error from the ChPTFV ansatz.

The final values for the quark mass renormalization
factors are

Zc
mlðMS; 3 GeVÞ ¼ 1:360ð26Þð22Þð2Þð11Þ;

Zc
mhðMS; 3 GeVÞ ¼ 1:341ð17Þð15Þð1Þð11Þ:

(74)

Here the errors are due to statistical, chiral, finite-volume
and truncation effects.

B. Results for the physical quark masses

Multiplying Zml and Zmh by the physical quark masses
in the matching scheme, we obtain

mudðMS; 3 GeVÞ ¼ 3:05ð8Þð6Þð1Þð2Þ MeV;

msðMS; 3 GeVÞ ¼ 83:5ð1:7Þð0:8Þð0:4Þð0:7Þ MeV;

(75)

where the errors are statistical, chiral, finite-volume and
from the perturbative matching. The quark masses ob-

tained in our 2010 analysis were quoted in the MS scheme
at 2 GeV. In order to facilitate a comparison between
these and our new results we must therefore convert to a
common scheme; for this we use the Renormalization-
Group invariant (RGI) scheme, for which the conversion

factors from MS are given in Eqs. (67) and (61) for 2 and
3 GeV respectively. Applying the latter to the results above
we find

m̂ud ¼ 8:78ð24Þð17Þð3Þð7Þ MeV;

m̂s ¼ 240:1ð4:8Þð2:4Þð1:2Þð2:0Þ MeV;

(76)

where the hat is used to label the RGI values. In the 2010
analysis we obtained

m̂ud ¼ 9:34ð34Þð31Þð16Þð21Þ MeV;

m̂s ¼ 250:2ð3:9Þð0:5Þð0:3Þð5:5Þ MeV:
(77)

Our new result appears to be consistent with that of the
2010 analysis, but has a renormalization systematic error
that is over a factor of two smaller by virtue of performing

the matching to the MS scheme at 3 GeV, rather than
2 GeV, at which the perturbation theory is more reliable.
For the up/down quark mass we also see a substantial
improvement in the chiral and finite-volume systematics,
resulting from the lowering of the pion mass cut in the fit
and the inclusion of the 32ID data. For the strange quark
mass, the 32ID data does not have the same effect because
the Iwasaki data were already (after reweighting) at the
physical mass, and the light-quark mass dependence of the
kaon is small. The larger chiral and finite-volume system-
atics on this quantity likely arise from allowing the scaling
parameter Zh, and also to a lesser extent Zl, to differ

between the fit ansätze rather than remaining fixed; this
allows the larger changes in the quality of the fit for the
other fitted quantities to influence the kaon fit. A similar
effect was observed for the lattice spacings and was dis-
cussed in Sec. VC.
For comparison with the above, the FLAG working

group give mudðMS; 2 GeVÞ ¼ 3:43ð11Þ MeV and

msðMS; 2 GeVÞ ¼ 94ð3Þ MeV [25]. These values were
obtained by combining results from the MILC [27,43]
and HPQCD [44] collaborations, as well as our 2010
analysis results. Converting to the RGI scheme using the
conversion factor given above, these become m̂ud ¼
8:92ð29Þ MeV and m̂ud ¼ 245ð8Þ MeV, which both agree
very well with our results.
Finally, for completeness we also calculate the ratios of

the strange and up/down quark masses:

ms

mud
¼ 27:36ð39Þð31Þð22Þð0Þ; (78)

where the errors are again as above.

VII. CHIRAL/CONTINUUM FITS AND
PHYSICAL RESULTS FOR BK

In this section we present our results for the neutral kaon
mixing parameter BK. Continuum results are obtained by
performing chiral/continuum fits over our three ensemble
sets following the strategy outlined in Sec. IV. This analy-
sis extends that in Ref. [2] through the inclusion of the
32ID ensemble set.
As BK is a scheme-dependent quantity we must perform

our fits to renormalized data. We determine the renormal-
ization factors again using variants of the RI/MOM scheme
with symmetric kinematics. We first outline this calcula-
tion, then discuss the application of our chiral fitting tech-
niques to this quantity. Finally we present the continuum

results in the MS scheme at 3 GeV.

A. Nonperturbative renormalization factors

Unlike in the case of the quark mass renormalization, we
require renormalization factors for BK on both the Iwasaki
and Iwasakiþ DSDR ensemble sets. In this case, the
option of calculating our lattice renormalization factors
directly at 3 GeV is not an option since we cannot simulate
within the perturbative regime without incurring large
lattice artifacts. (We remind the reader that perturbation
theory is required to match the renormalization factors
computed on the lattice to a continuum scheme, typically

MS in which the Wilson coefficients are computed). As
discussed in Sec. VI, our analysis [7] of the�I ¼ 3=2K !
�� amplitudes had a similar issue, which was solved by
computing the renormalization factors at a low energy
scale, �0 ¼ 1:1 GeV, at which finite-volume effects and
lattice artifacts are small [i.e., satisfying Eq. (40)], and
using the continuum step-scaling factors to evolve this to
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the perturbative matching scale. For this analysis we adopt
a similar procedure.

1. Determining the NPR factors

We follow Ref. [2] in calculating the renormalization
factors in four different lattice schemes. First we consider
the process

dðp1Þ �sð�p2Þ ! �dð�p1Þuðp2Þ; (79)

with a variety of momenta satisfying the symmetric mo-
mentum configuration p2

1 ¼ p2
2 ¼ ðp1 � p2Þ2 ¼ �2. We

write the corresponding amputated Green’s function eval-

uated on Landau gauge-fixed configurations as�ij;kl
	�;�
 (the

color indices i; j; . . . and Dirac indices 	;�; . . . correspond
to the external states). We have to project these Green’s
functions onto their Dirac-color structure, where, as before
we, define two projectors using both the �-matrices and q̂
(where NC is the number of colors and q̂� ¼ sin ðq�Þ):

Pð��Þij;kl
	�;�
 ¼ 1

128NcðNc þ 1Þ ½ð�
L
�Þ�	ð�L

�Þ
��
ij
kl; (80)

Pð6qÞij;kl
	�;�
 ¼ 1

32q̂2NcðNc þ 1Þ ½ðq̂
LÞ�	ðq̂LÞ
��
ij
kl: (81)

These act on � in the following way:

M 
 Pf�g 
 Pij;kl
	�;�
�

ij;kl
	�;�
: (82)

As before we can renormalize the quark field, and hence
obtain Zq, in both the RI/SMOM and RI=SMOM��

schemes; we therefore have four independent renormaliza-
tion schemes for ZBK

:

ZðA;BÞ
ð27;1Þ ¼ ðZðBÞ

q Þ2½PðAÞf�g��1; (83)

where A and B can be either �� or 6q. Here the label (27, 1)
refers to the SUð3ÞL � SUð3ÞR transformation properties
of the VV þ AA four-quark operator that forms the
numerator of Eq. (18). Motivated by [2], we focus only
on two schemes: the ðA; BÞ ¼ ð��; ��Þ and ð6q; 6qÞ
combinations.

The renormalization factor for BK is then

ZðA;BÞ
BK

¼ ZðA;BÞ
ð27;1Þ
Z2
A

: (84)

We obtain Z2
q=Z

2
A from the renormalization conditions on

the vector and axial-vector vertices:

Zq

ZA

¼ 1

2
ð�A þ�VÞ: (85)

As discussed in Sec. VI, the difference between these
vertices in the SMOM schemes is tiny and can be ignored;
we used their average only such that the same procedure
can be applied for the exceptional schemes.

2. Perturbative conversion factors

The one-loop perturbative conversion factors for con-

verting to the MS-scheme from the SMOM schemes are
obtained using the expressions in Ref. [2], resulting in the
following:

Cð6q;6qÞ
BK

¼ 1� 0:45465

�
	s

4�

�
¼ 0:99112 and

Cð��;��Þ
BK

¼ 1þ 0:21197

�
	s

4�

�
¼ 1:00414;

(86)

where

	sð3 GeVÞ ¼ 0:24544: (87)

As discussed in the following section, we do not use the
SMOMð6q; ��Þ or SMOMð��; 6qÞ schemes for our final
predictions, hence we have not listed the corresponding
conversion factors above.

3. Renormalization scales

As the 3 GeV matching scale lies within the Rome-
Southampton windows for the two Iwasaki lattices, we
need only compute the 32ID renormalization factors at
the low energy scale and subsequently use the continuum
step-scaling factors to run these up to the same scale as the
Iwasaki coefficients. However in practice we found that the
statistical errors on the step-scaling factors were quite
large, which resulted in considerably larger errors on the
3 GeV renormalization factors than their Iwasaki counter-
parts. Note that contrary to the case of the mass renormal-
ization, no cancellation occurs between the statistical
fluctuations on ZBK

ð�0Þ and �ð3 GeV; �0Þ as the data

sets from which they were determined are entirely
independent.
The disparity in the statistical errors between the renor-

malization factors has the effect of weakening the con-
straints that the 32ID data imposes on the simultaneous
chiral/continuum fit under the global �2 minimization. As
a naı̈ve test of the impact of this disparity, we repeated our
fits with the errors on the 32ID renormalization factors
artificially reduced to match those on the Iwasaki lattices.
We found that the central value of the continuum predic-
tion for BK shifted by an amount comparable to the chiral
and finite-volume systematics; an effect too large to be
ignored. As we pointed out in Sec. V when discussing the
number of reweighting samples to use on each lattice, it is
important to treat each ensemble set uniformly such that
the weight of each of the ensemble sets in the fit depends
only on the statistics of the data. We therefore calculate the
renormalization factors for all three lattices at the same
scale, chosen within the regime in which the discretization
effects are under control. The 1.1 GeV scale used in
Ref. [7] meets this criteria, although we found a noticable
reduction in the statistical errors by raising this to 1.4 GeV
(actually 1.426 GeV, the nearest scale at which we had a
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simulated point). Of course, using a larger scale increases
the size of the discretization effects on the 32ID lattice,
however, as we ultimately perform a universality-
constrained continuum extrapolation, only the O½ðapÞ4�
terms and higher remain in the final result for BK. Only
after performing the continuum limit do we apply the step-
scaling factor to evolve the continuum prediction to 3 GeV,

at which the matching to MS is performed.

4. Results

Following the above strategy we calculated ZBK
at�0 ¼

1:426 GeV on each of the three ensemble sets. In addition,
we recalculated the Iwasaki renormalization factors at
3 GeV such that we could obtain the continuum step-
scaling functions. The quark momenta used in these mea-
surements are listed in Table XVI, and we present the
values at both renormalization scales in Table XIX. We
used the central values of the lattice spacings given in
Sec. VC to set the physical scales in these determinations.

In order to correctly propagate errors on the lattice
spacings, we formed superjackknife distributions for the
renormalization factors that include the fluctuations on the
lattice spacings, following the procedure in Sec. VIA 4. As
before, separate distributions were obtained for each of the

three chiral ansätze, with the central values shifted
appropriately, allowing us to later separate the chiral and
finite-volume systematic errors. The formation of the
superjackknife distributions requires the derivatives of
ZBK

with respect to the lattice spacings, which we again

determined by measuring the differences in the central
values as the lattice spacings are varied by their total error.
We use the full superjackknife distributions to renormalize
BK in the following sections.
We determined the step-scaling factors by taking the

continuum limit of the ratio of ZBK
at 3 and 1.4 GeV in

each of the four schemes. The results are given in
Table XX.

B. Chiral/continuum fits

The determination of BK on the 32ID ensemble set
was discussed in Sec. III and the values listed in
Tables VIII and IX. These data and those on the Iwasaki
ensemble sets were renormalized into the RI/SMOM in-
termediate schemes at � ¼ 1:426 GeV using the results of
the previous section. Anticipating the discussion in the
following section, we present only the results of fitting to
data renormalized in the SMOMð��; ��Þ and SMOMð6q; 6qÞ
intermediate schemes.
As before, we obtain our chiral/continuum fit forms by

performing an expansion in the quark masses and a2 to
NLO, with the light-quark mass expanded about both the
chiral limit—using chiral perturbation theory—and about a
fixed mass via a Taylor expansion. For example, for the
analytic ansatz we obtain the following:

B1
xy ¼ CBK

0 ð1þ CBK;Að1Þ
a ½a1�2Þ þ CBK

1 ~m1
x þ CBK

2 ~m1
l

þ CBK

3 ð ~m1
y �mh0Þ þ CBK

4 ð ~m1
h �mh0Þ; (88)

and for the ChPT ansatz:

TABLE XIX. BK renormalization factors in the four intermediate RI/SMOM schemes at the
scales �. Here the quoted error contains only the statistical contributions from the amputated
vertices, not the fluctuations from the uncertainties on the lattice spacings. Note that we did not
calculate the 32ID renormalization factors at 3 GeV as this point lies beyond the Rome-
Southampton window on this lattice.

Value

Quantity Projector P Scale � 32I 24I 32ID

ZBK

ð6q; 6qÞ
1.426 GeV

1.0608(12) 1.0320(11) 0.9992(11)

ð��; ��Þ 0.9788(9) 0.9527(3) 0.9210(8)

ð6q; ��Þ 0.8758(25) 0.8554(17) 0.8187(13)

ð��; 6qÞ 1.1865(38) 1.1496(32) 1.1241(24)

ZBK

ð6q; 6qÞ
3 GeV

0.9765(1) 0.9549(1) � � �
ð��; ��Þ 0.9396(2) 0.9153(1) � � �
ð6q; ��Þ 0.8795(4) 0.8537(2) � � �
ð��; 6qÞ 1.0432(4) 1.0238(2) � � �

TABLE XX. Nonperturbative step-scaling factors for each
intermediate scheme SMOM(P), used a posteriori to run ZBK

from 1.426 to 3 GeV. A different value is obtained for each
determination of the lattice spacings.

Chiral ansatz

Projector P ChPTFV ChPT Analytic

ð6q; 6qÞ 0.9140(34) 0.9145(33) 0.9150(34)

ð��; ��Þ 0.9589(21) 0.9591(21) 0.9593(21)

ð6q; ��Þ 1.0127(74) 1.0127(75) 1.0128(75)

ð��; 6qÞ 0.8641(80) 0.8647(80) 0.8654(81)
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B1
xy ¼ B0

K

	
1þ cAð1ÞBK;a

½a1�2 þ cBK;ml
�1
l

f2
þ cBK;mx

�1
x

f2

� �1
l

32�2f2
log

�
�1
x

�2
�

��
þ cBK;my

ð ~m1
y �mh0Þ

þ cBK;mh
ð ~m1

h �mh0Þ; (89)

where �q ¼ 2B ~mq and the chiral scale �� is set to 1 GeV.

These fit forms apply specifically to the primary lattice 1;
the forms for any other ensemble set e can be obtained by
inserting factors of Ze

l and Ze
h and selecting the a2 coeffi-

cient appropriate to the lattice action. The finite-volume
correction terms for the ChPT fit form can be found by
applying the rules given in Appendix C of Ref. [15].

Following the 2010 analysis strategy, we fixed the lead-
ing order LECs B and f in the ChPT fits to those obtained
in Sec. V, reducing the number of free parameters. We also
fix the scaling factors Zl, Zh and Ra, as well as the physical
quark masses and the overall scale to those obtained using
the corresponding ansatz in Sec. V.

We once again performed cuts to the data set used in the
ChPT and ChPTFV fits, reducing the largest pion mass to
350 MeV. In the main analysis we performed our analytic
fits with a lower pion mass cut of 260 MeV in order to
obtain a better fit to the data. When using this cut for the
analyic fits to BK, we found that we lost almost all statis-
tical precision on our continuum prediction because the
statistical errors on the 32ID ensembles become very large
in the light-mass regime (cf. Fig. 20), hence the effective
number of points contributing to the fit after the cut is
smaller than in the case of mK or fK. Raising the cut to
350 MeV produced much more reliable results, hence we
adopt this higher cut for the analytic fits in this section.
This is justified by the fact that we observed no statistically
significant deviations of the fit functions from the data over

this expanded range, hence we have no reason to believe
that this will lead to an incorrect estimate for the chiral
systematic error. This was not the case for the fits to m�,
where we observed significant deviations.
The analytic fits were again performed to data corrected

to the infinite-volume using the ChPTFV fit form.
The parameters and uncorrelated �2=dof obtained by

fitting to data renormalized in the SMOMð6q; 6qÞ are listed in
Table XXI and we give histograms showing the deviation
of the data from the fits in Fig. 19. We list the continuum
predictions in both the SMOMð6q; 6qÞ and SMOMð��; ��Þ
schemes in Table XXII.
In Fig. 20 we overlay the data with the fit curves on the

32ID ensembles, and in Fig. 21 we show the chiral extrapo-
lation overlaying data corrected to the continuum and
infinite-volume limits as well as the physical strange quark
mass via the ChPTFV and analytic parametrizations. In the
latterwe also plot the data at finite lattice spacing (adjusted to
the infinite-volume limit and physical strange quark mass as
before) and the corresponding finite-a fit curves. The sepa-
ration of the points at the physical up/down quarkmass in the
former is used as a measure of the error on the chiral
extrapolation. In these figureswe see that the statistical errors
increase substantially as we approach the chiral limit. The
central values also appear to trend upwards, although this
apparent curvature is in the opposite direction to that sug-
gested by chiral perturbation theory and is therefore likely to
be simply due to the low resolution on these data points.

C. Final results for BK

Applying the step-scaling factors given in Table XX to
the continuum predictions in Table XXII, we obtained BK

in the SMOMð6q; 6qÞ and SMOMð��; ��Þ schemes at a
3 GeV renormalization scale. Once again we see some
cancellation between the statistical fluctuations on the
step-scaling factor and the 1.4 GeV quantity. These results
are listed in Table XXIII.

Finally, we apply the MS conversion factors given in

Sec. VII A 2 to convert our results into the MS scheme for
the convenience of the reader. Before quoting our final
results, we first discuss the various contributions to the
systematic error.

1. Systematic errors

For our central values and statistical errors of our final

MS prediction, we follow the 2010 analysis in taking the
results obtained using the SMOMð6q; 6qÞ intermediate
scheme, which is best described by one-loop perturbation
theory. Following Sec. V we estimate the finite-volume and
chiral extrapolation systematics on this quantity from the
differences between the ChPTFV result (which we take as
our central value) and the ChPT and analytic results re-
spectively, taking for our estimate the larger of the super-
jackknife error on the difference or the difference in central
values. As we propagated the differences between the
lattice spacings through our analysis in Sec. VII A 4, the

TABLE XXI. The �2=dof and parameters for each of our chiral
fit ansatzë for BK, with the fits performed to data renormalized in
the SMOMð6q; 6qÞ scheme with a cut on data with corresponding
pion masses m� > 350 MeV. The parameters are given in physi-
cal units and with the heavy quark mass expansion point adjusted
to the physical strange quark mass. For the ChPT and ChPTFV
ansatzë the chiral scale �� has been adjusted to 1 GeV.

Parameter ChPT ChPTFV Parameter Analytic

�2=dof 0.71(45) 0.56(40) 0.49(33)

B 4.144(89) 4.110(93)

f 0.1221(29) 0.1259(28)

B0
K 0.580(10) 0.584(10) CBK

0 0.597(11)

cIBK;a
0.073(44) 0.072(44) CBK;I

a 0.059(46)

cIDBK;a
0.099(23) 0.095(23) CBK;ID

a 0.086(23)

cBK;mx
0.00458(72) 0.00398(76) CBK

1 0.33(24)

cBK;ml
�0:0079ð16Þ �0:0079ð17Þ CBK

2 �0:07ð54Þ
cBK;my

1.440(39) 1.450(40) CBK

3 1.450(40)

cBK;mh
�0:08ð13Þ �0:06ð13Þ CBK

4 �0:04ð13Þ
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aforementioned systematics on the renormalization factors
are automatically included in the differences above.

The remaining systematic errors are associated with

the perturbative conversion into theMS scheme. The largest
of these is the perturbative truncation error. To determine
this we again follow the 2010 analysis strategy of taking

the difference between the values of BK in theMS-scheme
at 3 GeV obtained using the SMOMð6q; 6qÞ and
SMOMð��; ��Þ intermediate schemes, the latter of which
is also well-described by perturbation theory. As discussed
in Sec. VIA 5 and above, there are nonperturbative effects
associated with the spontaneous chiral symmetry breaking

FIG. 19 (color online). Histograms of the deviation of the fit from the data for BK on each of the three ensemble sets (32I top, 24I
middle and 32ID bottom) with the analytic (left) and ChPTFV (right) ansätze.

TABLE XXII. Predictions for BK in the continuum limit in the
SMOMð6q; 6qÞ and SMOMð��; ��Þ schemes at � ¼ 1:426 GeV
for each global fit ansatz. These results were obtained using
simultaneous/chiral continuum fits to renormalized data with a
pion mass cut of 350 MeV.

Scheme

Ansatz SMOMð6q; 6qÞ SMOMð��; ��Þ
Analytic 0.5978(87) 0.5506(77)

ChPT 0.5871(84) 0.5410(75)

ChPTFV 0.5904(85) 0.5436(75)

DOMAIN WALL QCD WITH NEAR-PHYSICAL PIONS PHYSICAL REVIEW D 87, 094514 (2013)

094514-39



and the presence of additional energy-scales (�QCD, ms,

etc.), that contribute to the perturbative systematic. In
Ref. [2] we found that in the nonexceptional schemes these
effects are tiny compared to the truncation systematic,
therefore we do not include these effects in our systematic
error budget.

2. Final results

Using the ChPTFV result in the SMOMð6q; 6qÞ for the
central value and statistical error, and obtaining the chiral
and finite-volume systematic errors as above, we find

BKðSMOMð6q; 6qÞ; 3 GeVÞ ¼ 0:540ð8Þð7Þð3Þ; (90)

where the errors are associated with the statistical, chiral,
and finite-volume respectively. Converting this to the

MS-scheme at 3 GeV using one-loop perturbation theory
we obtain

BKðMS; 3 GeVÞ ¼ 0:535ð8Þð7Þð3Þð11Þ; (91)

where the first three errors are as before, and the final error
is that associated with the truncation of the perturbative
series. Converting to the Renormalization-Group invariant
(RGI) scheme, we find

B̂ K ¼ 0:758ð11Þð10Þð4Þð16Þ: (92)

In the 2010 analysis we obtained

BKðMS; 3 GeVÞ ¼ 0:529ð5Þð15Þð2Þð11Þ: (93)

FIG. 20 (color online). The analytic (left) and ChPTFV (right) fit curves overlaying the partially-quenched data on the 32ID
ensembles at the simulated strange quark mass. The fits were performed to the data set with corresponding pion masses m� <
350 MeV, with the data renormalized in the SMOMð6q; 6qÞ intermediate scheme.

FIG. 21 (color online). The left figure shows the chiral extrapolation of BK in the continuum limit, renormalized in the SMOMð6q; 6qÞ
scheme at a scale of 1.4 GeV. The circular and diamond-shaped data points in darker shades show the data corrected to the continuum
limit using the ChPTFV fit form, and those in lighter shades via the analytic form. The circular points indicate those data included in
the fits, and the diamond points those that were not. The upper and lower curves show the analytic and ChPTFV chiral fit forms and the
corresponding square data points the extrapolated values at the physical up/down quark mass. All data and curves are shown at the
physical strange quark mass. The right figure shows the data at finite-a, adjusted to the infinite volume limit and the physical strange
quark mass, overlaid by the ChPTFV fit curves at finite-a and the continuum curve shown in the previous plot (shown without error
bands for clarity).
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This is highly consistent with the result of the present
analysis. In our new result we see a large improvement in
the chiral extrapolation systematic, which results from
lowering the pion mass cut to 350 from the 420 MeV
used in the previous analysis.

For comparison, the FLAG working group give B̂K ¼
0:738ð20Þ [25] for BK in the RGI scheme with 2þ 1 quark
flavors, which was determined by combining our 2010
analysis result [2] with the value calculated by Aubin
et al. [45], which used domain wall valence quarks on
the 2þ 1 flavor staggered fermion lattices produced by

the MILC collaboration. The result of B̂K ¼ 0:758ð22Þ
obtained in the current analysis is consistent with this
value. Other calculations performed since the publication
of the FLAG 2010 paper include Refs. [46–48].

VIII. CHIRAL/CONTINUUM FITS AND PHYSICAL
RESULTS FOR THE SOMMER SCALES

In this section we present the results of applying our
global fit technique to the Sommer scales, r0 and r1. In
Ref. [1] we determined continuum values for these
parameters using global fits to our Iwasaki ensemble sets.
In this paper we extend these fits to include the 32ID
ensemble set and observe the effect of lowering the pion
mass cut. The values of r0 and r1 measured on the 32ID
ensemble sets can be found in Sec. III.

Assuming a linear dependence on the quark masses and
on a2, we performed our chiral/continuum fits using the
following form:

r1i ¼ cri;0ð1þ cAð1Þri;a ½a1�2Þ þ cri;ml
~m1
l þ cri;mh

ð ~m1
h �mh0Þ

(94)

on the primary lattice 1. As always the fit form describing
another ensemble set, e, is obtained by inserting factors of
Ze
l and Ze

h to convert the simulated quark masses on

ensemble e into the matching scheme, and selecting the
a2 coefficient for the lattice action of the ensemble set.

For convenience, we simultaneously fit both r0 and r1,
even though they do not share any common parameters
other than the scaling factors, Zl and Zh. The lattice spac-
ings and scaling factors were fixed to those obtained in the
main analysis, with the fits repeated for each of the three

chiral ansätze. For each fit we applied the same cuts as
were performed to the data in Sec. V; this corresponds to
removing the data points on the 32I, ml ¼ 0:008 and 24I,
ml ¼ 0:01 ensembles, and also in the analytic fit, the data
point on the 32I, ml ¼ 0:006 ensemble (cf. Table XI). For
later comparison we also quote the results of fitting to the
full data set in this section, although as previously dis-
cussed these results are flawed due to the poor fit to several
of the pion mass data points on the 32ID ensembles. In
Table XXIV we give the uncorrelated �2=dof of our fits
and in Fig. 22 we show histograms of the deviations of the
data from unity for the fits. We list the fit parameters in
Table XXV and the continuum predictions for r1, r0 and
their ratio in Table XXVI.
In the 2010 analysis we remarked on a tension between

the fit and the value of r1 on the heaviest 24I ensemble,
which led to us inflating the error on the prediction for this
quantity. In Figs. 23 and 24 we plot the chiral extrapolation
in the continuum limit and at finite lattice spacing respec-
tively. In these figures we see the large apparent difference
in the slopes of r1 with respect to ml between the two
Iwasaki ensemble sets that was responsible for this tension.
It appears however that the slopes of r1 agree very well
between the 32I and 32ID ensemble sets, which has led to a
substantially better fit to r1 upon including the 32ID data.
Restricting the fits to lighter data markedly improves our
fits, reducing the �2=dof by at least a factor of three. The
chiral behavior of the data, as illustrated in the right-hand
plots in Fig. 23, is now very linear. As a result of these
observations, we decided that inflating the error on r1 is no
longer necessary.
We obtain continuum predictions for r1, r0 and their

ratio from the cut fit results using the strategy detailed in
Sec. VB. We find

r1¼1:637ð39Þð20Þð8ÞGeV�1¼0:3230ð77Þð39Þð16Þfm;

r0¼2:433ð50Þð18Þð13ÞGeV�1¼0:4795ð99Þð35Þð26Þ fm;

r1=r0¼0:6729ð109Þð30Þð2Þ; (95)

where the errors are statistical, chiral and finite-volume
respectively. The values determined in Ref. [1] were

TABLE XXIII. Predictions for BK in the continuum limit in
the SMOMð6q; 6qÞ and SMOMð��; ��Þ schemes at � ¼ 3 GeV
for each global fit ansatz. These results were obtained by apply-
ing the continuum step-scaling factors to the values in
Table XXII.

Scheme

Ansatz SMOMð6q; 6qÞ SMOMð��; ��Þ
Analytic 0.5213(72) 0.5397(76)

ChPT 0.5188(72) 0.5369(76)

ChPTFV 0.5282(73) 0.5470(78)

TABLE XXIV. Fit ansatze and the associated uncorrelated
�2=dof obtained by fitting to r0 and r1 over the full data set
(second column) and to the cut data set (third column). The
upper bounds on the pion mass in the cut data sets are m� ¼
350 MeV for the ChPT and ChPTFV fits andm� < 260 MeV for
the analytic fit.

�2=dof �2=dof
Ansatz Uncut Cut

Analytic 1.45(66) 0.141(71)

ChPT 1.47(67) 0.41(40)

ChPTFV 1.47(67) 0.42(40)
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r1 ¼ 0:3333ð93Þð2Þð1Þ fm, r0 ¼ 0:4870ð89Þð2Þð2Þ fm and
r1=r0 ¼ 0:6844ð97Þð1Þð0Þ. By comparing the results in
Table XXVI with those obtained in the 2010 analysis we
find that, as with the Omega mass, the use of the generic
scaling procedure for determining the scaling factors leads
to considerably larger chiral and finite-volume systematic
errors than the fixed trajectory approach. In the case of r1,
we see a reduced systematic error in the continuum

prediction due to the improved control over the chiral
extrapolation. However for r0—which formerly did not
display any tensions with the linear ansatz requiring error
inflation—this is offset by the reduction in the amount of
data. For comparison, the MILC collaboration recently
obtained r1 ¼ 0:3106ð17Þ fm [26] and in an earlier work
r0 ¼ 0:462ð12Þ fm [49], both of which appear to be con-
sistent with our results.

FIG. 22 (color online). Histograms of the deviation of the fit from the data for r0 and r1 over all three ensemble sets, fitting with the
analytic (left) and ChPTFV (right) ansätze to the uncut (top) and cut (bottom) data sets.

TABLE XXV. The a2 and mass dependences of r0 and r1 obtained by fitting to the full and cut data sets. We repeat the fits for each
choice of chiral ansatz used for the determination of the scaling parameters. The upper bounds on the pion mass in the cut data sets are
m� ¼ 350 MeV for the ChPT and ChPTFV fits and m� < 260 MeV for the analytic fit. The parameters are given in physical units and
with the heavy quark mass expansion point adjusted to the physical strange quark mass.

Uncut Cut

Parameter Analytic ChPT ChPTFV Analytic ChPT ChPTFV

cr0 ;0 (GeV�1) 2.479(34) 2.445(36) 2.438(38) 2.462(49) 2.453(51) 2.441(52)

cIr0 ;a (GeV2) �0:065ð53Þ �0:013ð46Þ �0:008ð47Þ �0:008ð85Þ �0:018ð64Þ �0:010ð65Þ
cIDr0 ;a (GeV2) �0:055ð24Þ �0:028ð26Þ �0:023ð28Þ �0:032ð35Þ �0:030ð33Þ �0:021ð34Þ
cr0 ;ml

(GeV�2) �1:67ð87Þ �1:65ð88Þ �1:64ð87Þ �5:0ð1:7Þ �3:6ð1:4Þ �3:6ð1:4Þ
cr0 ;mh

(GeV�2) �0:83ð42Þ �0:83ð42Þ �0:83ð42Þ �0:27ð64Þ �0:56ð52Þ �0:56ð51Þ
cr1 ;0 (GeV�1) 1.697(24) 1.675(26) 1.671(27) 1.662(41) 1.650(40) 1.642(40)

cIr1 ;a (GeV2) �0:099ð64Þ �0:050ð58Þ �0:045ð58Þ 0.00(11) 0.014(91) 0.023(92)

cIDr1 ;a (GeV2) �0:148ð25Þ �0:123ð26Þ �0:118ð28Þ �0:110ð38Þ �0:097ð38Þ �0:088ð39Þ
cr1 ;ml

(GeV�2) �1:84ð60Þ �1:82ð59Þ �1:81ð59Þ �2:6ð2:4Þ �2:2ð1:1Þ �2:2ð1:1Þ
cr1 ;mh

(GeV�2) �1:02ð20Þ �1:02ð20Þ �1:01ð20Þ �0:88ð37Þ �0:73ð24Þ �0:73ð24Þ
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IX. CONCLUSIONS

Using the Iwasaki gauge action with the addition of the
DSDR term we were able to simulate with domain wall
fermions (DWF) at a relatively strong coupling (� ¼ 1:75,
a�1 ¼ 1:37ð1Þ GeV) while retaining good chiral symme-
try and topological tunneling; this enabled us to work with
a large enough physical volume (½4:61 fm�3) to accomo-
date pions as light as 143(1) MeV without suffering from
large finite-volume effects (m�L � 3:2 for the lightest

partially-quenched point and m�L � 4 for the lightest

unitary point) and without having to simulate with a large

number of lattice sites; the dimensionless lattice volume is

323 � 64� 32, where the final number is the length of the

fifth dimension Ls that governs the size of the chiral

symmetry breaking in the domain wall formulation.
The aim of this paper was to combine these data in a

simultaneous chiral/continuum fit with our 243 � 64� 16
and 323 � 64� 16 DWF ensembles with the Iwasaki

TABLE XXVI. Continuum predictions for r0 and r1 in GeV
�1 as well as their ratio, using scaling parameters obtained from each of

the three global fit ansatzë. The first set of columns contain the values obtained by fitting to the full data set, and the second set those
obtained by fitting to the cut data set. The upper bounds on the pion mass in the cut data sets are m� ¼ 350 MeV for the ChPT and
ChPTFV fits and m� < 260 MeV for the analytic fit.

Uncut Cut

Analytic ChPT ChPTFV Analytic ChPT ChPTFV

rcontinuum0 2.475(33) 2.441(35) 2.435(37) 2.451(48) 2.445(49) 2.433(50)

rcontinuum1 1.693(23) 1.671(24) 1.666(25) 1.657(38) 1.645(38) 1.637(39)

ðr1=r0Þcontinuum 0.684(8) 0.684(8) 0.684(8) 0.676(11) 0.673(11) 0.673(11)

FIG. 23 (color online). The chiral extrapolation of r0 (top) and r1 (bottom) using the analytic and ChPTFVansätze. The plots on the
left show the fits to the full data set and those on the right to the cut data sets. We have overlayed the fit curves with the data points
corrected to the continuum limit and physical strange quark mass using each of the aforementioned fit functions; those points shown in
bold colors were corrected using the ChPTFV fits and those in pastel colors using the analytic fits. The circular data points are those
included in the fits and the diamond points those that were not. The square points show the predicted value at the physical point.
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gauge action at � ¼ 2:13 (a�1 ¼ 1:75ð4Þ GeV) and � ¼
2:25 (a�1 ¼ 2:31ð4Þ GeV) respectively, and under the con-
straint of universality obtain continuum predictions for
various quantities. In this we broadly followed the strategy
of our 2010 analysis [1,2].

The fits were performed assuming three forms for the
mass dependence: the ChPTFV and ChPT forms were
obtained from NLO SU(2) chiral perturbation theory
with and without finite-volume corrections respectively,
and the analytic ansatz from a linear Taylor expansion
about an unphysical mass point.

The largest change from our 2010 analysis strategy was
the use of the ‘‘generic scaling’’ method to obtain the
scaling parameters Zl and Zh that relate the physical quark
masses between our ensemble sets, and Ra that relates the
lattice scales. In this approach (which was discussed in
Ref. [1] but not used in the final analysis) the scaling
parameters are left as free parameters in our fits and the
results are those that, along with the mass dependences and
a2 dependence, minimize the global �2. In the 2010 analy-
sis we used the ‘‘fixed trajectory’’ approach in which the
ensemble sets were matched at an unphysical mass point
prior to performing the fits. Changing to the generic scaling
approach allows for differences between the scaling pa-
rameters Zl, Zh and Ra, which relate the physical quark
masses and lattice spacings between the ensemble sets, as
we go between the three chiral ansätze. We associated
these with chiral and finite-volume systematic errors; in
the fixed trajectory approach these differences would have
been absorbed by other parameters in the fits. These
differences gave rise to larger systematic errors on the
lattice spacing predictions due to their influence on the fit
form for the Omega baryon mass, which we used to set the
overall scale.

In these fits we were able to determine the a2 depen-
dence of the 32ID ensembles even without a second lattice

spacing using this action. This is because, within our power
counting, the choice of action affects only the coefficient of
the a2 term. As all other parameters are shared with the
Iwasaki ensemble sets, this only introduces one additional
parameter per quantity. This parameter could in principle
be determined by comparing a single data point to the
continuum value predicted using the Iwasaki ensemble
sets alone; however we choose to maximize the use of
our data by including it in the global fit.
We investigated removing data associated with the heav-

ier pions, constraining our fits to a smaller range. For the
ChPT and ChPTFV fits, we lowered the pion mass cut to
350 MeV, down from the 420 MeV used in the 2010
analysis. For the analytic fits, we found large deviations
of our fits from the data when fitting to this range, neces-
sitating a further reduction in the largest pion mass to
260 MeV. With this cut the analytic fit produced results
with errors only slightly larger than the ChPT determina-
tions. The necessity of lowering the cut for the analytic fits
hints at the presence of nonlinearity in our combined data
set, which appears to be consistent with NLO SU(2) ChPT,
although we cannot rule out other higher-order terms such
as m2 with our present statistics.
We presented the results of simultaneously fitting m�,

mK, f�, fK and m� in Sec. V. As in the 2010 analysis, the
pion, kaon and Omega baryon masses were used to set the
up/down quark mass, strange quark mass and lattice scale
respectively. We were then able to make predictions for the
other physical quantities. For the pseudoscalar decay con-
stants, we obtained f� ¼ 127:1ð3:8Þ MeV and fK ¼
152:4ð3:4Þ MeV. These agree very well with the known
continuum values of [50] f�� ¼ 130:4ð2Þ and fK� ¼
156:1ð8Þ, which is a marked improvement from the 2010
analysis, in which the predictions for these quantities were
considerably lower. The improvement stems mainly from
our removal of data associated with the heavier pions.

FIG. 24 (color online). The chiral extrapolation of r0 (left) and r1 (right) using the ChPTFV ansatz applied to the cut data set. Here
we have overlayed the fit curves at finite lattice spacing (dashed lines) with the raw data points corrected to the physical strange quark
mass. We also show the continuum fit curve (solid line) and the physical point (square). As before the circular data points are those
included in the fits and the diamond points those that were not.
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Combining our ChPT and ChPTFV fit results, we ob-
tained values for the effective chiral couplings �l3 ¼
2:91ð24Þ and �l4 ¼ 3:99ð18Þ, which we found to be highly
consistent with our 2010 analysis results and with other
lattice calculations.

In Sec. VI we discussed the renormalization of the

physical quark masses into the MS scheme. We used
variants of the Rome-Southampton RI/MOM scheme
with symmetric kinematics as intermediate nonperturba-
tive schemes, which were applied at 1.4 GeV and the
results run to 3 GeV using continuum step-scaling factors.

These were then converted into MS using perturbation
theory. This analysis improved on the 2010 result in
the use of twisted-boundary conditions to remove
O(4)-breaking lattice artifacts in our measurements.
We also increased the renormalization scale from 2 GeV
to 3 GeV, as this considerably reduces the systematic
error arising from the truncation of the perturbative

series. We obtained mudðMS; 3 GeVÞ ¼ 3:05ð10Þ MeV

and msðMS; 3 GeVÞ ¼ 83:5ð2:0Þ MeV for the average
up/down quark mass and strange-quark mass respectively.

In Sec. VII we applied our chiral/continuum fits to the
neutral kaon mixing parameter. This analysis improved on
the 2010 result through the inclusion of the Iwasakiþ
DSDR ensembles. We found a marked improvement
in the chiral extrapolation systematic due to the inclusion
of these data. For our final result we obtained

BKðMS; 3 GeVÞ ¼ 0:535ð16Þ.
Finally, in Sec. VIII we performed chiral/continuum fits

to the Sommer scales r0 and r1, for which we obtained
r0 ¼ 0:480ð11Þ fm and r1 ¼ 0:323ð9Þ fm. Here the inclu-
sion of the 32ID ensembles provided considerably greater
stability to the fits than in the 2010 analysis, resulting in
much reduced errors, particularly for r1, for which wewere
formerly forced to inflate the errors due to the poor �2=dof
on the fits.

Although the inclusion of the 32ID ensembles resulted
in considerable improvements in the chiral extrapolation
systematic error in most cases, there is still room for
improvement. Our collaboration has recently gained access
to IBM Blue Gene/Q computers, which have performances
in the region of several hundred Teraflops per rack.
Particularly when used with the improved techniques that
we and others have developed (some of which are dis-
cussed in Sec. II and Appendix A), these computers have
the capability of generating domain wall fermion ensem-
bles with physical quark masses and large enough Ls and
physical volumes to maintain small chiral symmetry break-
ing and finite-volume corrections. With such ensembles the
necessity of extrapolating to the physical point will be
removed and only the continuum extrapolation will re-
main. However, in the meantime the results of this analysis,
particularly the physical quark masses and lattice spacings,
will be essential for any physics measurements performed
on the Iwasaki and Iwasakiþ DSDR ensembles.
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APPENDIX A: NUMERICAL
INTEGRATION SCHEME

Integrators used in lattice simulation must be both re-
versible and symplectic. Consider a general Hamiltonian
with both a kinetic (T) and potential (S) term:

H ¼ TðpÞ þ SðUÞ: (A1)

In general this Hamiltonian cannot be integrated exactly, as
the corresponding time evolution operator,

exp ð�ĤÞ ¼ exp ð�ðT̂ þ ŜÞÞ; (A2)

involves noncommuting operators T̂ and Ŝ. However, by
making use of the Baker-Campbell-Hausdorff (BCH) for-

mula one can separate T̂ and Ŝ and integrate them at
different steps.
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One of the simplest integrators that can be constructed in
this way is the leapfrog integrator,

UQPQð�Þ ¼ exp

�
1

2
�T̂

�
exp ð�ŜÞ exp

�
1

2
�T̂

�
: (A3)

Using the BCH formula it can be shown that

UQPQð�Þ ¼ exp ð�ðT̂ þ ŜÞ þOð�3ÞÞ: (A4)

The Oð�3Þ error is accumulated over the integration such
that the total error isOð�2Þ, hence the leapfrog integrator is
a second-order integrator. Another popular second-order
integrator is the Omelyan integrator,

UQPQPQð�Þ ¼ exp ð	�T̂Þ exp
�
1

2
�Ŝ

�
exp ðð1� 2	Þ�T̂Þ

� exp

�
1

2
�Ŝ

�
exp ð	�T̂Þ; (A5)

where 	 is a tunable parameter.
Recent development on integrators has introduced the

force gradient integrator (FGI) [18] as a fourth order
integrator. The force gradient integrator is constructed by
introducing the ‘‘force gradient term’’ into the integration
steps. This extra force evaluation helps to eliminate the
second order errors and makes the force gradient integrator
a fourth order integrator. One choice of the force gradient
integrator is

UFGIð�Þ¼ exp

�
3� ffiffiffi
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�
: (A6)

1. Sexton-Weingarten integration

In practice the action contain contributions from both
the gauge fields and the fermions,

H ¼ TðpÞ þ SGðUÞ þ SFðUÞ: (A7)

It is usually the case that the gauge force is larger than the
fermion force by a factor of 10 or more. If both the gauge
action and the fermion action are integrated in the same
step then the step size � has to be chosen to accommodate
the larger gauge force. This approach incurs an extra cost
on the fermion part, which usually dominates the comput-
ing time.

The Sexton-Weingarten integration scheme can be used
to mitigate the issue. Define

H ¼ T0 þ SFðUÞ; (A8)

T0 ¼ TðpÞ þ SGðUÞ; (A9)

then T0 and SFðUÞ can be fit into one integrator. When
integrating T0, its 2 parts TðpÞ and SGðUÞ can be fit into
another integrator. For example, when using the leapfrog
QPQ integrator for both levels one has the following:

exp ð�ĤÞ � exp

�
1

2
� bT0

�
exp ð�cSFÞ exp �12 � bT0

�
; (A10)

exp

�
1

2
� bT0

�
�

�
exp

�
1

4n
�T̂

�
exp

�
1

2n
�cSG�

� exp

�
1

4n
�T̂

��
n
; (A11)

where n can be chosen as any positive integer. In this way
different time steps are assigned to SGðUÞ and SFðUÞ,
which can be tuned to minimize the cost.

2. Hasenbusch mass splitting

Hasenbusch mass splitting breaks a single fermion ac-
tion into a few parts and offers a fine control on distributing
fermion forces among them.
The fermion action is derived from the following fer-

mion determinant

det

�
MyðmÞMðmÞ
Myð1ÞMð1Þ

�
¼

Z
D
yD
 exp

�
�
yMð1Þ 1

MyðmÞMðmÞM
yð1Þ


�
:

(A12)

The Hasenbusch factorization [17] rewrites the above quo-
tient action as a product of quotient actions by introducing
intermediate masses

det

�
MyðmÞMðmÞ
Myð1ÞMð1Þ

�
¼ Ykþ1

i¼1

det

�
Myðmi�1ÞMðmi�1Þ
MyðmiÞMðmiÞ

�
(A13)

¼ Ykþ1

i¼1

Z
D
y

i D
i exp

�
�
y

i MðmiÞ

� 1

Myðmi�1ÞMðmi�1Þ
MyðmiÞ
i

�
; (A14)

where m ¼ m0 <m1 < � � �<mkþ1 ¼ 1.
This method offers fine grained control on the sizes

of the fermion forces since all intermediate masses
miði ¼ 1; 2; . . . ; kÞ can be tuned continuously. In what
follows the symbol SQðma;mbÞ will be used to represent

the quotient fermion action
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SQðma;mbÞ ¼ 
yMðmbÞ 1

MyðmaÞMðmaÞ
MyðmbÞ
:

(A15)

The Q in SQ means ‘‘quotient.’’ Note that each quotient

action has a different pseudofermion field 
. This fact is
not represented in the above symbol.

3. Final scheme

The quotient action discussed above accounts for 2 types
of fermions. This is used to simulate the 2 light quarks in
our simulation. For simulating strange quark, the rational
approximation needs to be used:

det

�
MyðmÞMðmÞ
Myð1ÞMð1Þ

�
1=2

¼
Z

D
yD
 exp

�
�
yðMyð1ÞMð1ÞÞ1=4

� 1

ðMyðmÞMðmÞÞ1=2 ðM
yð1ÞMð1ÞÞ1=4


�
; (A16)

where rational approximations of function x1=4 and x�1=2

are used to evaluate the noninteger powers of matrices. In
what follows we will use the symbol SRðm1; m2Þ to repre-
sent this rational action

SRðm1; m2Þ ¼ 
yðMyðm2ÞMðm2ÞÞ1=4 1

ðMyðm1ÞMðm1ÞÞ1=2
� ðMyðm2ÞMðm2ÞÞ1=4
; (A17)

where power functions such as x1=4 and x�1=2 are under-
stood to be shorthand notations of their corresponding
rational approximations, the ‘‘R’’ in SR means ‘‘rational.’’

The final action used in the evolution contains the fol-
lowing components:

H ¼ TðpÞ þ SG þX
i

SQðmi�1; miÞ þ SRðms; 1Þ þ SDSDR;

(A18)

where m0 ¼ ml, mkþ1 ¼ 1, ml and ms represents the light
quark mass and strange quark mass respectively. It is also
possible to replace the quotient action SQðm; 1Þ with two

copies of the same rational action SRðm; 1Þ.
When evolving the above action, we use multiple

levels of nested integrators to separate the different parts
of the action. A general multilevel Sexton-Weingarten
Integration scheme can be written as follows:

H ¼ T0
0 ¼ T0

1 þ S1 (A19)

T0
i ¼ T0

iþ1 þ Siþ1 i ¼ 1; 2; . . . ; k� 1; (A20)

where T0
k ¼ TðpÞ. The above equations separate the entire

action into k levels.
The details of the evolution schemes for the 2 ensembles

are listed in Tables XXVII and XXVIII. The second col-
umn specifies which component of the action is used in Si.
The value given in the fourth column, ni, denotes the
number of integration steps for T0

i . This quantity is equiva-
lent to n in Eq. (A11).

APPENDIX B: ERROR PROPAGATION IN THE
QUARK MASS RENORMALIZATION

In Sec. VIA 4 we performed the continuum extrapola-
tion of the ratios of quark mass renormalization factors,
Zml and Zmh, which we defined in Eq. (73). These ratios
combine the scaling parameters Zl and Zh that represent

TABLE XXVII. ml ¼ 0:0042, ms ¼ 0:045 ensemble evolution details, with total 4 levels of nested integrators. Also note that 2
copies of rational action SRð0:045; 1Þ are used to replace a single quotient action SQð0:045; 1Þ. We use 	 ¼ 0:22 for the Omelyan

integrators.

LevelðiÞ Si Integrator type ni Step size

1 SQð0:0042; 0:015Þ þ SQð0:015; 0:045Þ Omelyan QPQPQ 1 1=8
2 SRð0:045; 1Þ þ SRð0:045; 1Þ þ SRð0:045; 1Þ Omelyan QPQPQ 2 � � �
3 SDSDR Omelyan QPQPQ 4 � � �
4 SG Omelyan QPQPQ 1 � � �

TABLE XXVIII. ml ¼ 0:001, ms ¼ 0:045 ensemble evolution details, with total 3 levels of
nested integrators.

LevelðiÞ Si Integrator type ni Step size

1 SQð0:001; 0:01Þ þ SQð0:01; 0:04Þ þ SQð0:04; 0:12Þ
þ SQð0:12; 0:31Þ þ SQð0:31; 0:62Þ

þ SQð0:62; 1Þ þ SRð0:045; 1Þ

FGI QPQPQ 3 1=9

2 SDSDR FGI QPQPQ 1 � � �
3 SG FGI QPQPQ 1 � � �
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the renormalization factors in the intermediate mass-
independent ‘‘matching scheme’’ used during the fits and
the nonperturbative renormalization factor Zm in the
SMOM schemes calculated using the Rome-Southampton
method. In this calculation, the propagation of statistical
and systematic errors through the extrapolation and the
subsequent application of the step-scaling factors is non-
trivial. First, we note that the 32I and 24I lattice spacings
are very strongly correlated through Ra (recall that a24I is
obtained as a32I=R24I

a ). As the errors on these quantities
give rise to uncertainties on both the renormalization scale
and on the coordinates used in the continuum extrapola-
tion, naively treating them as independent between the
lattices could potentially give rise to unrealistically large
errors on the final renormalized quark masses. In the earlier
parts of this analysis, the propagation of finite-volume and
chiral extrapolation effects was performed by repeating the
global fit with each of the three chiral/continuum fit ansä-
tze (analytic, ChPT and ChPTFV) separately, taking the
difference between these only at the final stage to estimate
the corresponding systematic errors. All correlations were
taken into account through the use of the superjackknife
method to propagate the statistical errors. However, the
determination of the nonperturbative renormalization co-
efficients was performed using bootstrap resampling for
the error propagation. Therefore, in order to propagate the
effects of the statistical and systematic errors on the lattice
spacings in a fashion consistent with the main analysis, we
created ‘‘superjackknife’’ distributions from the bootstrap
distributions via the following procedure:

(1) On each Iwasaki lattice, we calculated ZS
m in each of

the RI/SMOM schemes S at 1.4 GeV and 3 GeV
using bootstrap resampling to propagate the statis-
tical errors. The results of these calculations were
given in the previous section. We used only the
central values of ZV and the lattice spacings during
this procedure such that the statistical error contains
only the fluctuations from the measurements of the
amputated vertex functions. For the lattice spacings
we used the central values from the ChPTFV deter-
mination, which we previously chose as our ‘‘best’’
ansatz.

(2) We repeated the previous step once again, only this
time we shifted the lattice spacings by their total
error. From the change in ZS

m we obtained its slope
with respect to a. (The slopes are negative for all of
our schemes, as can be seen in Fig. 17).

(3) Using dZS
m=da we shifted ZS

m to the values we
would have obtained if we had repeated step 1 using
the lattice spacings obtained with the ChPT and
analytic ansätze. Along with the original measure-
ment we then had values of Zm with the physical
scales set using the results of each of the three global
fit ansätze. We henceforth refer to these with an
additional superscript A denoting the chiral ansatz.

(4) For each fit ansatz we placed the corresponding
bootstrap distribution on a fictitious ‘‘superjack-
knife’’ ensemble, ensuring that the statistical fluctu-
ations remain independent from others in the
analysis. (Our code is able to include both bootstrap
and jackknife distributions within the same frame-
work). The remaining superjackknife samples were
modified to account for the statistical fluctuations in
the lattice spacings by setting each sample i to the
following:

ðZS;A
m Þi ¼ hZS;A

m i þ dZS
m

da
ðai � haiÞ:

Here h. . .i denotes the central value of the
distribution.

(5) For the final step we take into account the fluctua-
tions on ZV by dividing the ‘‘superjackknife’’ dis-

tributions for ZS;A
m by ZV=hZVi, where the quantity

in the numerator is the superjackknife distribution
used to normalise f� in the main analysis.

These superjackknife distributions were used for the
analysis documented in Sec. VIA 4.

APPENDIX C: OðaÞ ERRORS AND CHIRAL
SYMMETRY BREAKING

In the Symanzik effective theory, explicit chiral symme-
try breaking manifests as a dimension-3 term correspond-
ing to the residual mass as well as a dimension-5 clover
term. The clover term introduces OðaÞ discretization errors
that make it difficult to perform continuum extrapolations
with traditional Wilson fermions. For domain wall fermi-
ons however, both terms are suppressed due to the separa-
tion of the left- and right-handed chiral modes in the fifth
dimension. As we discussed in Sec. II, dislocations in the
gauge fields, that manifest more frequently at stronger
coupling, can allow fermion modes to tunnel between the
walls, breaking the usual exponential suppression; it is
these that the DSDR factor was designed to suppress. For
the ensembles used in this paper, the DSDR parameters
were tuned to minimize the residual mass while retaining
sufficient levels of topological tunneling. In this appendix
we present evidence that this procedure has also heavily
suppressed the clover term contributions, and hence that it
is not necessary to consider OðaÞ discretization errors in
our continuum extrapolations.
Both the residual mass and the clover term are expected

to be enhanced by dislocations in the gauge fields corre-
sponding to zero modes of the four-dimensional (4D)
Wilson-Dirac operator. In Fig. 25 we reproduce plots
from Ref. [6] that show the effect of the DSDR factor on
the 12 lowest eigenmodes of the 4D Wilson-Dirac matrix
as a function of the 4D mass, �M5 (for positive M5),
measured on a single representative configuration of each
of three 163 � 8� 32 domain wall ensembles, including
one with a different gauge coupling. At the massM5 ¼ 1:8
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that we used in our simulation we can clearly see that the
DSDR factor provides a strong suppression of the lowest
modes. Due to the common origin of both the clover term
and the residual mass term, we expect both to be similarly
suppressed by the reduction in the number of dislocations
such that the observed reduction inmres in our simulation is
accompanied by a corresponding reduction in size of the
clover term.

Additional evidence for the absence of large clover term
contributions can be obtained by measuring the size of the
explicit chiral symmetry breaking in our simulation beyond
the effects of mres. One place where this should be apparent
is in a larger than expected difference between the local
vector and axial-vector vertex functions, �V and �A re-
spectively, and similarly between those of the scalar and
pseudoscalar operators, �S and �P, evaluated at the chiral
limit (includingmres) in large-momentum Green’s functions

which might be expected to have a greater sensitivity to a
dimension-5 operator. In the infinite-Ls limit these quanti-
ties differ only through the dynamical chiral symmetry
breaking at low energies, an effect that diminishes as
1=ðapÞ6 as the momentum-scale p is increased. These are
obtained with very high precision using the nonperturbative
renormalization techniques discussed in Sec. VI of this
paper. In Fig. 26 we plot the fractional differences as a
function of the square of the momentum in lattice units.
We see that the difference �V ��A is consistent with zero
at high energies, and �S ��P, while falling more slowly,
demonstrates the expected 1=ðapÞ6 dependence and at the
largest measured momentum is only a fraction of a percent.
Note also that the behavior of the latter is very similar to that
observed on our two finer DWFþ Iwasaki lattices in
Ref. [1] (p. 90) which do not use the DSDR factor. We
have also published the results [7] (p. 42) of a similar

FIG. 25 (color online). The 12 lowest eigenmodes of the 4D Wilson-Dirac operator as a function of the domain wall mass �M5 for
positiveM5, measured on a single representative configuration of each of three 163 � 8� 32 ensembles; the upper plot on a � ¼ 1:95
ensemble with the Iwasaki gauge action, the lower-left on a � ¼ 1:95 ensemble with the Iwasakiþ DSDR gauge action, and the
lower-right on a � ¼ 1:75 ensemble with the Iwasakiþ DSDR gauge action.
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analysis, performed on our Iwasakiþ DSDR ensembles, of
the off-diagonal components of the operator mixing matrix
between the 4-quark operators used in our K ! �� calcu-
lation, where we reached the same conclusion regarding the
size of the explicit chiral symmetry breaking.

APPENDIX D: HIGHER ORDER CORRECTIONS
TO SYMANZIK COEFFICIENTS

The standard treatment of the continuum limit is based
on the usual Symanzik analysis and assumes that the
dominant discretization errors can be described by an
effective theory given by continuum QCD with extra,
dimension-six operators whose coefficients are propor-
tional to a2. Higher order corrections arise from dimension
eight operators with a4 coefficients. (Here we are exploit-
ing the chiral symmetry of the DWF formalism and con-
sidering correction terms with only even dimensions.)

Using our two Iwasaki ensembles with 1=a ¼ 1:73 and
2.28 GeV, we extrapolate linearly in a2, assuming the a2

term dominates, to obtain continuum limit results. Since
the results on the 1=a ¼ 1:73 ensemble differ from the
continuum limit values by typically� 3%, we estimate the
systematic errors resulting from the a4 terms as ð0:03Þ2 �
0:1%, much smaller than the systematic errors from other
sources.
While this is presently the standard approach to evaluat-

ing the continuum limit in a lattice QCD calculation, we
should recognize that in the Symanzik theory the coeffi-
cients of the Oða2Þ operators are actually not constant but
will themselves contain logarithms of the lattice spacing,
having the form:

cðaÞ ¼ c0 þ c1	sðaÞ lnða�QCDÞ þ � � � ; (D1)

where ‘‘. . .’’ represents terms with higher powers of the
QCD coupling	sðaÞ evaluated at the lattice scale and more

FIG. 26. The fractional difference between the local vector and axial-vector operators, �V and �A (top), and also between the scalar
and pseudoscalar operators, �S and �P (bottom), as a function of the square of the momentum in lattice units. These values were
obtained by measuring amputated bilinear vertex functions at a scale defined by the momentum of the incoming quark propagators.
The lower-right figure is plotting with logarithmic axes and is overlayed by a line with the expected 1=ðapÞ6 dependence.
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powers of the logarithm lnða�QCDÞ. The logarithms in cðaÞ
result from loop corrections and appear both explicitly and
implicitly through the dependence of 	s on a. Let us
examine how such a-dependence of cðaÞ affects the deter-
mination of the continuum limit.

Consider a physical quantity AðaÞ whose lattice
spacing dependence is determined by the Symanzik
coefficient cðaÞ:

AðaÞ ¼ A0 þ a2cðaÞA1: (D2)

Here A0 is the matrix element of the operator which gives
the continuum value of A while A1 is the associated matrix
element of the dimension-6 Symanzik correction operator.
We must determine numerically AðaÞ in a range of acces-
sible lattice spacings and then remove the unphysical
a2cðaÞA1 term. To the extent that the logarithms appearing
in Symanzik coefficient cðaÞ are constant over the range of
a explored in the lattice calculation, they have no effect
and a simple linear extrapolation will remove the entire
a2cðaÞA1 term. Note this procedure will give the correct
continuum limit [assuming that cðaÞ is constant in the
region in which the calculation is performed] even if cðaÞ
has a strong dependence on a as a ! 0 [51] provided the
Symanzik expansion is valid and the product a2cðaÞ van-
ishes as a ! 0.

However, if cðaÞ does depend on a in the region where a
continuum extrapolation is attempted then an error will
result which we can estimate. For example, since cðaÞ is
likely slowly varying, we might assume that it can be
approximated by a low-order polynomial that could be
obtained by a simple Taylor expansion about an appropri-
ately chosen point a0 within the range of the calculation.
Since we are expanding around a nonzero value of a we
can choose to expand in either a or a2. We find the latter
more convenient since it permits an easy comparison be-
tween this and the usual a4 corrections expected in the
DWF theory. Approximating the Symanzik coefficient
cðaÞ as

cðaÞ ¼ c0 þ c2a
2 (D3)

and using values of AðaÞ obtained at two lattice spacings a1
and a2 to perform the usual subtraction to remove the
Oða2Þ term gives our approximation to the continuum
limit:

Alin
approx ¼ Aða1Þ � Aða2Þ � Aða1Þ

a22 � a21
a21 (D4)

¼ A0 � c2a
2
2a

2
1A1: (D5)

The second term represents the systematic error in our
evaluation of the continuum limit. If instead we assume
the logarithmic behavior of cðaÞ present at one loop and
given in Eq. (D1) and ignore the a dependence of 	s, we
find a similar systematic error:

A
log
approx ¼ A0 � c1	s

lnða2=a1Þ
a22 � a21

a22a
2
1A1: (D6)

Of course, Eq. (D6) reduces to Eq. (D5) if we assume
lnða2=a1Þ � ða22 � a21Þ=ða21 þ a22Þ and use

c2 ¼ c1
	s

a21 þ a22
: (D7)

We can compare the size of this systematic error in the
evaluation of the continuum limit with the error that results
from the neglect of the conventional ða�QCDÞ4 corrections.
Equation (D5) can also be used to estimate the systematic
error introduced by the omission of ða�QCDÞ4 corrections:

Err ða�QCDÞ4 ¼ ða21a22�QCDÞ4 � 0:05%; (D8)

where we assume c2 ¼ �4
QCD and �QCD ¼ 300 MeV and

use our two Iwasaki lattice spacings 1=a ¼ 1:73 and
2.28 GeV. We can make a similar estimate of the system-
atic error which arises from the neglect of a possible
logarithm in the Symanzik coefficient cðaÞ by using
Eq. (D6) and assuming c1 ¼ �2

QCD=� and 	s ¼ 0:3:

Err a
2 lnðaÞ ¼ a21a

2
2�

2
QCD

	s

�

lnða2=a1Þ
a22 � a21

� 0:1%: (D9)

Both of these estimates are much smaller than the other
systematic errors present in the calculations described in
this paper. However, it is important to recognize that the
error arising from the neglected logarithms of a in
the Symanzik coefficients may be as large or larger than
the more familiar a4 errors and that these errors will be-
come increasingly dominant as a is reduced. This suggests
a future strategy that uses additional lattice spacings to
allow a more accurate polynomial description of cðaÞ and
a more accurate subtraction of this Oða2Þ Symanzik term.
We emphasize that it is our use of the Symanzik descrip-

tion of lattice artifacts which permits this approach to
determining the continuum limit. Instead of attempting to
literally evaluate the limit a2 ! 0, we can adopt a proce-
dure to identify (through their a2 dependence) and to
subtract specific terms in the Symanzik expansion. This
approach may be viewed as complementary to the alter-
native effort to reach as small a value of a as possible. (Of
course, smaller a will always be required if sufficiently
massive quarks are present in the calculation that the
Symanzik expansion cannot be relied upon).
In this approach we need not be concerned with possible

singular behavior as a2 ! 0 such as found, for example, by
Balog et al. [51]. They examine cðaÞ as a2 varies over
many orders of magnitude in two dimensional field theo-
ries. For such a large range of values of a2 a sum of leading
logarithms must be performed and a simple linear or
logarithmic description of cðaÞ is inadequate. Of course,
for a calculation in four dimensions such a large range of
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lattice spacings is not available and the description of
the variation of cðaÞ by a low order polynomial should be
very accurate.

It should be emphasized that the effect of such a2lnnða2Þ
terms on the evaluation of the continuum limit is very
different from the effect of the m2

�ln
nðm2

�Þ terms that
appear in chiral perturbation theory. In the case of a chiral

extrapolation we are interested in extrapolating these
logarithmic terms to a nonzero value of m�, outside the
region in which calculations have been performed. In
the case of the continuum limit we need only subtract the
unphysical a2cðaÞ term and need not be interested in its
behavior outside the region in which lattice results have
been obtained.
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