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We investigate chiral and conformal properties of the lattice QCD with eight flavors (Nf ¼ 8) through

meson spectrum using the highly improved staggered quark (HISQ) action. We also compare our results

with those of Nf ¼ 12 and Nf ¼ 4 which we study on the same systematics. We find that the decay

constant F� of the pseudoscalar meson ‘‘pion’’ � is nonzero, with its mass M� consistent with zero, both

in the chiral limit extrapolation of the chiral perturbation theory. We also measure other quantities which

we find are in accord with the � data results: The � meson mass is consistent with nonzero in the chiral

limit, and so is the chiral condensate, with its value neatly coinciding with that from the Gell-Mann-

Oakes-Renner relation in the chiral limit. Thus, our data for the Nf ¼ 8 QCD are consistent with the

spontaneously broken chiral symmetry. Remarkably enough, while the Nf ¼ 8 data near the chiral limit

are well described by the chiral perturbation theory, those for the relatively large fermion bare mass mf

away from the chiral limit actually exhibit a finite-size hyperscaling relation, suggesting a large anomalous

dimension �m � 1. This implies that there exists a remnant of the infrared conformality, and suggests that a

typical technicolor (‘‘one-family model’’) as modeled by the Nf ¼ 8 QCD can be a walking technicolor

theory having an approximate scale invariance with large anomalous dimension �m � 1.
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I. INTRODUCTION

The origin of mass is the most urgent issue of the particle
physics today. Although the LHC has discovered a
125 GeV boson roughly consistent with the standard model
(SM) Higgs boson, there still remain many unsolved prob-
lems with the SM, which would require physics beyond the
SM. One of the candidates for the theory beyond the SM
towards that problem is the walking technicolor (WTC) [1]
having a large anomalous dimension �m ’ 1 and approxi-
mate scale invariance due to the almost nonrunning
(‘‘walking’’) coupling [2], which is based on the scale-
invariant gauge dynamics [ladder Schwinger-Dyson (SD)
equation [3,4]]. Actually, WTC predicts [1,5] a light scalar
Higgs-like composite, technidilaton, a pseudo-Nambu-
Goldstone boson of the spontaneously broken approximate
scale symmetry, which may be identified with the 125 GeV
boson [6].

The walking behavior can in fact be realized in the
‘‘large Nf QCD,’’ QCD with large number of (massless)

flavors Nf, which possesses the Caswell-Banks-Zaks

(CBZ) infrared fixed point (IRFP) [7], �� ¼ ��ðNc; NfÞ�
ð<1Þ of the two-loop beta function, for N�

fð’ 8Þ<Nf <

NðAFÞ
f ¼ 11Nc=2ð¼ 16:5Þ in such a way that �� ! 0 as

Nf ! NðAFÞ
f , where NðAFÞ

f is the maximum number to

keep the asymptotic freedom. Because of the CBZ IRFP
there exists an approximate scale invariance �ð�Þ ’ �� in

the infrared region 0<�<�QCD (‘‘infrared conformal-

ity’’), while such a scale symmetry is lost for the ultraviolet
region �>�QCD where the coupling runs as in a usual

asymptotically free theory.1 When Nf is near N
�
f so that ��

is strong enough to trigger the spontaneous chiral symme-
try breaking (S�SB), the exact IRFP would actually be
washed out by the dynamical generation of a quark mass
mD � 0 through a continuous phase transition (‘‘confor-
mal phase transition’’ [9]), mD ¼ 0 ð�� <�cr, or Nf >

Ncr
f ð>N�

fÞÞ to mD � 0 (�� >�cr, or ðN�
f<ÞNf < Ncr

f ), in

such a way (‘‘Miransky scaling’’ [4]) that mD ��QCD �
exp ð��=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� � �cr

p Þ � �QCD for �� ’ �cr (Nf ’ Ncr
f ),

where �cr is the critical coupling for the S�SB and Ncr
f

the critical number of flavors such that ��ðNc; N
cr
f Þ ¼ �cr.

The critical number Ncr
f was estimated as Ncr

f ’ 4Nc ’ 12

[8] by comparing the two-loop value of the CBZ IRFP with
the critical coupling of the ladder SD equation analysis [3]:
��ðNc;N

cr
f Þ¼�crð¼�=ð3C2Þ¼�=4Þ. Now, for Nfð<Ncr

f Þ
very close to Ncr

f , the dynamical mass mDð� 0Þ could be

much smaller than the intrinsic scale mD � �QCD, in

1The intrinsic scale �QCD at two-loop level is defined as usual

by a renormalization-group-invariant scale parameter �QCD ¼
� � exp ð�R

�ð�Þ d�
�ð�ÞÞ such that

d�QCD

d� ¼ 0, where �ð�Þ �
@�=@ðln�Þ is the two-loop beta function instead of the one-
loop one [8].
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sharp contrast to the usual QCD wheremD ¼ Oð�QCDÞ, so
that the approximate conformality �ð�Þ ’ �� still remains
in the wide infrared region mD <�<�QCD as an impact

of the would-be IRFP. Such a ‘‘remnant of conformality’’
should appear in low energy quantities. This is the case for
the WTC, with the intrinsic scale �QCD being identified

with the ‘‘ultraviolet’’ cutoff � of the WTC usually taken
as the extended technicolor (ETC) scale �ETC, and will be
the focus of our interest in this paper.

Although the above results from the two-loop perturba-
tion combined with the ladder approximation are very
suggestive, the relevant dynamics is obviously of nonper-
turbative nature, we would need fully nonperturbative
studies. Among others the lattice simulations developed
in the lattice QCD would be the most powerful tool to
investigate the walking behavior of the large Nf QCD.

Actually, there were some pioneering works on the large
Nf QCD in somewhat different contexts [10–13], and more

recently there have been many lattice studies towards the
above problem [14]. The immediate issues are: What is the
critical number Ncr

f ? What is the signature of the walking

theory on the lattice? In particular, the above two-loop/
ladder studies would suggest that the walking theory if
existed might be in between Nf ¼ 8 and Nf ¼ 12. As to

Nf ¼ 12 there have been many analyses including those of

ourselves which are consistent with the theory being inside
the conformal window [10,11,15–24], although some
works prefer the S�SB phase [25,26]. There were also
simulations on Nf ¼ 10 [27] consistent with the infrared

conformality. We thus are interested in Nf ¼ 8 as a can-

didate for the walking theory.
Actually, the Nf ¼ 8 is particularly interesting from

the model-building point of view [28]: A typical techni-
color model is the so-called one-family model (Farhi-
Susskind model [29]) which has a one-family of colored
and uncolored weak-doublet technifermions (techniquarks
and technileptons) corresponding to each family of the SM
quarks and leptons. It can embed the technicolor gauge and
the gauged three generations of the SM fermions into
a single gauge group (ETC) and thus is the most straight-
forward way to accommodate the technifermions and
the SM fermions into a simple scheme to give mass to
the SM fermions. Thus, if the Nf ¼ 8 turns out to be a

walking theory, it would be a great message for the phe-
nomenology, which is to be tested by the on-going LHC.
Actually, the technidilaton [1,5] in the WTC for the one-
family model is consistent with the present LHC data for
125 GeV boson in a ladder analysis [6] and in holographic
estimate [6].2

If Nf ¼ 8 is a walking theory desired for the WTC, it

should be inside the S�SB phase Nf ¼ 8<Ncr
f (mD � 0)

and at the same time be close to the phase boundary with
the conformal window Nf > Ncr

f (mD ¼ 0) such that

mD � �QCD. Now the lattice simulations we are making

contain several scale-symmetry breaking parameters, the
fermion bare mass mf as well as a finite box L

3 and lattice

spacing a, which do not exist in the continuum theory we
are interested in. Among others the fermion bare mass mf

obviously distorts the ideal behavior of the breaking of the
scale symmetry in a way similar to the continuum theory.
Then, disregarding the effects of the lattice parameters L
and a for the moment,3 we may imagine possible effects of
the fermion bare mass on the walking coupling of our
target of study as in Fig. 1, which is suggested by the
two-loop/ladder analysis.
Case 1. mf � mD � �QCD (red dotted line in

Fig. 1): The chiral perturbation theory should
hold in a way similar to the real-life QCDwith
light quarks.

Case 2. mD � mf � �QCD (blue dotted line in

Fig. 1): The conformal hyperscaling relation
should hold approximately with a large
anomalous dimension �m ’ 1.

Actually, the S�SB order parameter to be measured on the
lattice is not mD but would be the decay constant F� of the
Nambu-Goldstone boson� extrapolated to the chiral limit:
F ¼ F�ðmf ¼ 0Þ which would be expected roughly the
same as mD: mD ¼ OðFÞ.
There is a caveat about the approximate hyperscaling

relation to be expected in case 2 (mD � mf � �QCD):

QCDf

α(µ)

µ

α*

mf mD Λm

FIG. 1 (color online). Schematic two-loop/ladder picture of
the gauge coupling of the massless large Nf QCD as a walking

gauge theory in the S�SB phase near the conformal window. mD

is the dynamical mass of the fermion generated by the S�SB.
The effects of the bare mass of the fermion mf would be

qualitatively different depending on the cases: Case 1: mf �
mD (red dotted line) well described by ChPT, and case 2: mf �
mD (blue dotted line) well described by the hyper scaling.

2As to the immediate questions about the problem with the S,
T parameters, see, for example, discussions in Ref. [30].

3In our simulation we use the parameter region where the
effect of the system size is subdominant compared to the mass
effect. This strategy is different from the one which is advocated
by the authors of Refs. [23,24].
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There are two infrared mass parameters mD and mf

which violate the infrared conformality and hence the
possible hyperscaling relations for the physical mass
quantities measured from the spectrum should not be
universal but do depend on both of them in nonuniversal
ways, in sharp contrast to the hyperscaling relation in
the conformal window where all the mass parameters
from the spectra reflect the deformation by the unique
infrared scale-violating parameter mf in a universal way.

In particular, when mf is getting close to the region in

case 1, where � mass M� and the other quantities such
as � mass M� and F� behave qualitatively different

towards the chiral limit: M� ! 0 while the others re-
main nonzero.

To date, some groups carried out lattice studies
on 8-flavors, with Wilson fermions [10,11,23,24]
and with staggered fermions [12,15,25,26,31–34].
References [10,11,23,24] concluded the Nf ¼ 8 is in the

conformal window, but Refs. [12,15,25,26,31,32] con-
cluded that the Nf ¼ 8 resides on the chiral broken phase.

Even ifNf ¼ 8 is in the chiral broken phase, it has not been

investigated whether the behavior of this system is
QCD-like or the walking with the large anomalous mass
dimension.

In this paper we study the meson spectrum by simu-
lating the Nf ¼ 8 QCD, based on yet another lattice

fermion, the highly improved staggered quark (HISQ)
[35], applied to Nf ¼ 8 for the first time. Preliminary

reports were given in Ref. [36]. HISQ action improves
the behavior towards the continuum limit through the
improvement of the flavor symmetry. The salient feature
of our collaboration is that we have been investigating
Nf ¼ 4, 8, 12, 16 on the setting of HISQ action with the

same systematics in order to study the Nf dependence of

the physics systematically [21,36]. Thus, our analyses for
Nf ¼ 8 are made in comparison with those for other

flavors of our group.
We first show the data of the meson spectrum, M� and

F�, as well as M� and the chiral condensate h �c c i for

�ð� 6=g2Þ ¼ 3:8 on the L3 � T lattice with L ¼ 12–36
and T ¼ 16–48, and mf ¼ 0:015–0:16. We find the two

regions of mf having qualitatively different properties:

mf ¼ 0:015–0:04 and mf ¼ 0:05–0:16. We analyze the

data based on the chiral perturbation theory (ChPT) [37],
for small mf: mf ¼ 0:015–0:04 (roughly corresponding to

case 1 in Fig. 1 in the above). We find that the ChPT
analysis is self-consistent and find a result consistent
with the nonzero value of F and M� and vanishing of

M� in the chiral limit extrapolation based on the ChPT
(we also estimate the effects of the chiral logarithm). The
chiral condensate is also a nonzero value in the chiral limit
extrapolation, which neatly coincides with the Gell-Mann-
Oakes-Renner (GMOR) relation obtained from the � data
in the chiral limit extrapolation.

As to the large mf (mf ¼ 0:05–0:16) (roughly corre-

sponding to case 2 in Fig. 1), we find the finite-size hyper-
scaling (FSHS) [38–41] holds in this region, when we take
into account mass corrections to the FSHS. Note that such
corrections were sizable [21] in the large mass region even
for Nf ¼ 12, which are consistent to be in the conformal

window. From the hyperscaling analysis for such a large
mf, we find a large anomalous mass dimension �m � 1

consistent with that desired by the WTC. This implies that
there exists a remnant of the infrared conformality where
the spontaneous chiral symmetry breaking (S�SB) effects
are negligible compared with the mass deformation mf.

It is the first time that the hyperscaling relation is observed
in a theory with S�SB.
The S�SB feature of Nf ¼ 8 data near the chiral limit is

found to be qualitatively similar to those of the Nf ¼ 4

case: We actually find Nf ¼ 4 data indicate robust signals

of the S�SB phase. On the other hand, our Nf ¼ 4 data

indicate no trace of the hyperscaling relation for the large
mf region in sharp contrast to Nf ¼ 8 data. The Nf ¼ 8

result is also contrasted with the Nf ¼ 12 where our

previous study concluded that the ChPT analysis with our
data was not self-consistent, while the FSHS relation held
consistently with the infrared conformality.
This suggests that a typical technicolor (‘‘one-family

model’’) as modeled by the Nf ¼ 8 QCD can be a walking

technicolor theory having an approximate scale invariance
with large anomalous dimension.
This article is organized as follows: Sec. II presents our

lattice simulation setup, calculation of observables, analy-
sis method, and the results of the crude analysis of our data.
Section III shows the analysis based on the ChPT to show
that Nf ¼ 8 is actually in the S�SB phase. Section IV is to

study the remnants of conformality. Section V is devoted to
the summary and discussion. Appendices A and B sum-
marize detailed numerical results for Nf ¼ 8 and 4,

respectively. In Appendix C we estimate chiral log correc-
tions in Nf ¼ 8. We analyze FSHS in an alternative

method in Appendix D.

II. LATTICE SIMULATION AND THE RESULTS

A. Lattice setup

In our simulation, we use the tree-level Symanzik gauge
action and HISQ action [35] without the tadpole improve-
ment and the mass correction in the Naik term [42]. It is
expected that the flavor symmetry in the staggered fermion
and the behavior towards the continuum limit are improved
by HISQ improvement. We carry out the simulation by
using the standard hybrid Monte-Carlo (HMC) algorithm
using MILC code version 7 [43] with some modifications
to suit our needs. One of the modifications is the
Hasenbush mass preconditioning [44] to reduce the large
computational cost of the configuration generation at the
smallermf. We measure the mass of the pionM�, �-meson
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M� and the decay constant of the pion F� and the chiral

condensate h �c c i as the basic observable to explore the
large-Nf QCD.

The simulation in the preliminary report [36], which
includes the study of the anomalous dimension, for
Nf ¼ 8 is carried out at �ð¼ 6=g2Þ ¼ 3:6, 3.7, 3.8, 3.9,

4.0 for various quark masses and on various lattices,
L3 � T, where L is the spatial size and T the temporal
size. We need to choose as small value of � as possible to
obtain a large enough physical volume to minimize the
finite-volume effect. From the global survey mentioned
above, we found that �< 3:8 is too strong to carry out
the HMC simulation with HISQ. Therefore, we choose
� ¼ 3:8 in this article.

Note that the aspect ratio is kept fixed as T=L ¼ 4=3, in
which L ¼ 12, 18, 24, 30, and 36. The boundary condition
in the spatial direction is the periodic and the one in the
temporal direction is the antiperiodic for fermions. We take
more than 700 trajectories for the ensemble with 4–5 steps
for saving the configuration. The error analysis is per-
formed with the standard jackknife analysis having the
suitable bin size, 40 trajectories. In the following analyses
the error of the fit result is estimated from the standard
deviation of least squares coefficients. See the details
of the simulation parameter in Tables XII, XIII, XIV, XV,
and XVI.

We also generate gauge configurations for Nf ¼ 4. From

� ¼ 3:6, 3.7, 3.8 which were investigated in the prelimi-
nary study [36], here we focus on � ¼ 3:7, which is ap-
propriate for our purpose, with high accuracy on 123 � 18,
163 � 24, and 203 � 30. See Appendix B for details.

B. Calculation of observables

We measure the two-point correlation functions of the
staggered bilinear pseudoscalar operator which corre-
sponds to the Nambu-Goldstone (NG) mode associated
with the chiral symmetry of the staggered fermions. The
corresponding spin-flavor structure is (�5 	 �5), denoted
by ‘‘PS’’ in Ref. [45]. The random wall source is used for
the quark operator for the bilinear, which becomes a noisy
estimator of the point bilinear operator with spatial sum at
a given time slice t0. We combine quark propagators solved
with periodic and antiperiodic boundary conditions in the
temporal direction (see, e.g., Ref. [46]), which is denoted
by ‘‘Pþ AP’’ in this article. In this well-known technique,
the temporal size is effectively doubled, which enables us
to have sufficient range for the fitting. Denoting such a �
correlator as CPSðtÞ, this behaves as the following expres-
sion in the staggered fermion with Pþ AP prescription:

CPSðtÞ ¼ Cðe�M�t þ e�M�ð2T�tÞÞ þ Bð�1Þt; (1)

where B is the constant term in the oscillation mode and
M� is the mass of NG-pion mode, and C is the amplitude
relating to the decay. Here we use

~CPSð2tÞ ¼ CPSð2tÞ=2þ CPSð2t� 1Þ=4þ CPSð2tþ 1Þ=4:
(2)

This linear combination kills the constant oscillation mode,
which could originate from the single quark line wrapping
around the antiperiodic temporal boundary. The mass of
NG pion is obtained by the fit of the two-point correlators

of ~CPS from a random source with double period by a fit
function with the fit range ½tmin ; T
,

~CPSð2tÞ ¼ ~Cðe�M�2t þ e�M�ð2T�2tÞÞ; (3)

where 2 ~C ¼ Cð1þ cosh ðM�ÞÞ.
The pseudoscalar decay constant, F�, is obtained

through the matrix element of the pseudoscalar operator,

F� ¼ mf

M2
�

h0jPað0Þj�a; ~pi; (4)

by using the partially conserved axial current (PCAC)
relation.4

We measure M� from the staggered vector meson

operator (�i�4 	 �i�4, denoted by PV in Ref. [45]. The
asymptotic form of the PV correlator at large t may be
written as

CPVðtÞ ¼ C1ðe�M�t þ e�M�ð2T�tÞÞ
þ C2ð�1Þtðe�Ma1

t þ e�Ma1
ð2T�tÞÞ; (5)

where Ma1 corresponds to the mass of the axial vector

meson which is the parity partner mode of PV mode in
the staggered fermion. Since there exists a constant mode
due to the wrapping-around effect, we use

~CPVð2tÞ ¼ CPVð2tÞ=2þ CPVð2t� 1Þ=4þ CPVð2tþ 1Þ=4:
(6)

Therefore,

~CPVð2tÞ ¼ ~C1ðe�M�2t þ e�M�ð2T�2tÞÞ
þ ~C2ðe�Ma1

2t þ e�Ma1
ð2T�2tÞÞ; (7)

where 2 ~C1 ¼ C1ð1þ cosh ðM�ÞÞ and 2 ~C2 ¼ C2ð1�
cosh ðMa1ÞÞ. Even in the case of M� ’ Ma1 and C1 ’ C2,

we have ~C1 � ~C2 for our typical value ofM�. Then Eq. (7)

can be approximated to the simple cosh function of the

two-point correlators of ~CPV:

~CPVð2tÞ ¼ ~C1ðe�M�2t þ e�M�ð2T�2tÞÞ; (8)

and we obtain M�.

Besides these main channels, we study the masses of
mesons interpolated from local operators, a non-NG chan-
nel (�5�4 	 �5�4) denoted by ‘‘SC,’’ and a vector meson
(�i 	 �i) denoted by ‘‘VT’’ in Ref. [45], by which we will

4We use the convention as F� ¼ ffiffiffi
2

p
f�, where f� ¼

93 ½MeV
 in the real-life QCD.
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show that the flavor-symmetry breaking is small in HISQ.
These masses are obtained from the corner wall source
correlator.

The effective masses are calculated through ~CPSð2tÞ
defined in Eq. (2). Figure 2 shows typical examples of
PS channel for the largest volume. The horizontal lines

show the results of fitting ~CPSð2tÞ with Eq. (3) with 32 �
2t � 48, where a plateau is observed. All the fit results are
summarized in Tables XII, XIII, XIV, XV, and XVI.

We also calculate the chiral condensate h �c c i normal-
ized for a single Dirac flavor which can be obtained
through

h �c ðxÞc ðxÞi ¼ 1

4
Tr½D�1

HISQðx; xÞ
; (9)

where DHISQðx; yÞ is the single species (four flavor)

staggered Dirac operator for HISQ. Here an average
over the space-time x is calculated through a stochastic
method.

C. Analysis methods

We performed the analysis based on the chiral perturba-
tion theory (ChPT) and the (finite-size) hyperscaling, as
explained in the following: If the system is in the sponta-
neous chiral symmetry broken (S�SB) phase, physical
quantities in the spectroscopy, MH for H ¼ �;�; . . . and
F�, are described by the ChPT. The mass and decay
constant of � depend on mf up to chiral log as

M2
� ¼ C�

1mf þ C�
2m

2
f þ � � � ;

F� ¼ Fþ CF
1mf þ CF

2m
2
f þ � � � ; (10)

where F is the value in the chiral limit.
On the other hand, if the theory is in the conformal

window,MH and F� obey the conformal hyperscaling [47]

MH / m
1

1þ��
f ; F� / m

1
1þ��
f ; (11)

where �� denotes the mass anomalous dimension �m at the
infrared fixed point and its value is universal for all chan-
nels. On the finite volumeMH and F� are described by the
finite size hyperscaling (FSHS) [38–41] on dimension-less
quantities

�p � LMp forp ¼ � or �; (12)

or

�F � LF�; (13)

given as

�H ¼ F H

�
Lm

1
1þ��
f

�
; (14)

where H ¼ �, � or F. The function, F H, is a function

(unknown a priori) of the scaling variable X ¼ Lm
1

1þ��
f .

D. Results

Spectral quantities, such as M�, M�, F�, h �c c i, are
calculated on the gauge field ensembles for the Nf ¼ 8

QCD at � ¼ 3:8, as described in Sec. II. The mf depen-

dence of the results is shown in Fig. 3. Large finite size
effect is observed for the smaller mf region on L ¼ 12.

The expected good flavor symmetry in HISQ action is
actually observed in near degeneracy of PS and SC, and of
PV and VT. See Fig. 4.
Before giving the in-depth analyses in the following

sections, let us perform some crude analysis here.
Spontaneous chiral symmetry breaking leads to nonzero
F� and M� while vanishing M� in the chiral limit. Thus,

the ratios F�=M� andM�=M� should diverge in the chiral

limit. On the other hand, in the conformal phase the ratios
should take a constant value near the chiral limit as implied
by the hyperscaling relation in Eq. (11).
Now look at Figs. 5 and 6 which show that the ratio

increases monotonically towards the chiral limit, if one
takes the largest volume data at each M�. This resembles
the Nf ¼ 4 case where S�SB is clearly observed and

shows clear contrast against the same plot for Nf ¼ 12

which are consistent with conformality. This strongly sug-
gests that Nf ¼ 8 QCD is in S�SB phase. In order to

further study the chiral property of Nf ¼ 8, we carry out

ChPT analysis in the next section.

III. CHIRAL PERTURBATION THEORYANALYSIS

In order to carry out the ChPTanalysis, the finite volume
effect has to be taken into account. Figure 7 shows the
spatial size L dependence of F�,M�, andM� plotted from

the data in Tables XII, XIII, XIV, XV, and XVI. We find
that the data on the largest two volumes, at least in this mf

0 5 10 15 20 25 30 35 40 45
t

0.15

0.2

0.25

0.3
M

πef
f

m
f
=0.03

m
f
=0.02

m
f
=0.015

FIG. 2 (color online). Effective masses of PS meson, Meff
� , at

L ¼ 36. Triangles and other symbols denote results from point
sink correlators with random wall source and corner wall source,
respectively. Fit results with error band obtained from random
wall source correlator are also plotted by solid lines.
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range, are consistent with each other. For the lightest mf,

since there is only one volume data, we cannot study the
finite size effect. We, however, find that the LM� in the
lightest mf is bigger than the one of mf ¼ 0:02 at L ¼ 30

(see, Table XV) where the finite size effect is negligible. In
the following analysis we understand that there is no finite

size effect in the lightestmf. Therefore, we use the data on

the largest lattice at each mf and perform the infinite

volume ChPT analysis.

A. Quadratic fit of F�

Let us analyze the behavior of F�, towards the chiral
limit. Figure 8 shows the result of F� at each mf. We

perform the quadratic fit for F� by varying the fit range of
mf. (We will estimate the effect of the chiral log correc-

tions later.) The quadratic fit result of F� is written in
Table I. As seen in Fig. 8 and Table I, F is nonzero
(� 0:03). Particularly for the small region, 0:015 � mf �
0:04, the polynomial fit gives the good �2=dofð¼ 0:46Þ.
When we include the data atmf ¼ 0:05, �2=dof jumps up.

Although this jump might be caused by the instability due
to small dof ¼ 2, the large �2=dof persists for the range
with larger masses, thus, with the value of �2=dof being
more reliable. This suggests that there is a bound, beyond
which the ChPT does not describe the data well, and that
bound is around mf & 0:05. With this consideration and

the good chiral behavior observed for other quantities for
mf ¼ 0:015–0:04, which we will see below, we chose

mf ¼ 0:015–0:04 for the fitting range of all quantities.

For the consistency of the ChPT particularly for the
large Nf QCD, the expansion parameter [48] for the given

M� is defined as
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X ¼ Nf

�
M�

4�F=
ffiffiffi
2

p
�
2
; (15)

and this quantity is required to satisfy the conditionX < 1,
which, however, could become easily violated when the
simulation is made for heavy M� compared to F. We have
X ¼ Oð1Þ in our smallest mf. Thus, the ChPT is barely

self-consistent in contrast to the case of Nf ¼ 12 where

X ’ 40 [21].
The above analysis suggests that our result in Nf ¼ 8 is

consistent with S�SB phase with

F ¼ 0:0310ð13Þ (16)

up to chiral log. Effects of the chiral log will be discussed
later.

B. Quadratic fits of M� and M2
�

Here, we attempt the quadratic fit of M� and M2
� to see

whether M� � 0 and M2
� ¼ 0 in the chiral limit.

Figure 9 and Table II are the quadratic fit result of M�.

The chiral limit value of M� (¼ C
�
0 ) is estimated using the

fitting range 0:015 � mf � 0:04,
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M� ¼ 0:168ð32Þ: (17)

The left panel of Fig. 10 shows M2
� and the right panel

M2
�=mf as a function of mf. The M

2
�=mf goes to constant

towards the chiral limit, which is consistent with the lead-
ing ChPT behavior. However, the visible slope is observed,
indicating that there are higher order corrections. This is in
contrast toNf ¼ 4 shown in Fig. 20. We analyzeM2

� by the

quadratic fit with the constant term to see whether this
constant term becomes zero or not. The result is shown in
Fig. 11. In the fitting region 0:015 � mf � 0:04 the con-

stant term is consistent with zero as presented in Table III.
Therefore the chiral property of M� and M� is also con-

sistent with that of S�SB.

C. Chiral condensate

In this subsection, we analyze the chiral condensate,
which is an order parameter of S�SB. We perform a
direct measurement of the chiral condensate h �c c i ¼
Tr½D�1

HISQðx; xÞ
=4 and compare it with the quantity

� � F2
�M

2
�

4mf

; (18)

which, in the chiral limit, should coincide with the
chiral condensate through the Gell-Mann-Oakes-Renner

(GMOR) relation. Figure 12 shows the h �c c i and � for
each mf. We carry out the quadratic fits for each quantity,

whose results are summarized in Table IV and shown in
Fig. 13. The chiral extrapolations for h �c c i and � give
good values of �2=dof only in the small mf region

0:015 � mf � 0:04, though the dof is too small. Both

results in the chiral limit are nonzero, and are consistent
with each other, see Fig. 14:

h �c c ijmf!0 ¼ 0:00052ð5Þ; �jmf!0 ¼ 0:00059ð13Þ:
(19)

We also estimate the chiral condensate in the chiral limit
by multiplying F in Eq. (16) with the value of M2

�=mf in

the chiral limit obtained from the linear fit in Table IV:

F2 �
�
M2

�

4mf

���������mf!0
¼ 0:00050ð3Þ; (20)

which is consistent with those from the direct and indirect
measurements.
From the analyses up to chiral log of all the observables,

F�, M�, M� and the chiral condensate, we find that the

chiral property of Nf ¼ 8 QCD is consistent with that of

S�SB.
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FIG. 8 (color online). Results of quadratic fit of F� for various
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TABLE I. Results of chiral fit of F� with F� ¼ Fþ C1mf þ C2m
2
f for various fit ranges.

Fit range (mf) F Xðmmin
f ¼ 0:015Þ Xðmf ¼ mmax Þ �2=dof dof

0.015–0.04 0.0310(13) 3.74 11.80 0.46 1

0.015–0.05 0.0278(8) 4.64 19.28 5.56 2

0.015–0.06 0.0284(6) 4.44 23.2 4.09 3

0.015–0.07 0.0293(5) 4.18 26.5 4.46 4

0.015–0.08 0.0296(4) 4.10 30.6 4.06 5

0.015–0.10 0.0311(3) 3.70 37.0 7.85 6

0.015–0.16 0.0349(2) 2.94 54.0 34.2 9
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FIG. 9 (color online). Results of quadratic fit ofM� for various
fit ranges.
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D. Chiral log corrections

So far we have not included the logarithmic correction in
the chiral fits. Here we estimate such effects as systematic
errors on our previous results.

The logarithmic mf dependence is predicted by the next

leading order (NLO) ChPT for both the M2
�=mf and F�

[37], whose formulas are given by

M2
�

mf

¼ 2B

�
1þ x

Nf

log ðxÞ þ c3x

�
(21)

F� ¼ F

�
1� Nfx

2
log ðxÞ þ c4x

�
; (22)

where the expansion parameter is denoted by x ¼
4Bmf=ð4�FÞ2, and B, F, c3, and c4 are the low energy

constants. Our data do not have such logarithmic depen-
dence even in the lightest mf region as shown in the

previous subsections. Actually, such a fit leads to a large
�2. This is due to the fact that our mf is much heavier than

the region where the NLO ChPT is applicable. The log
correction of the F�, however, is enhanced by the Nf

[Eq. (22)], so that the F might be largely affected by this
correction, especially in this large Nf theory. Thus, we

attempt to estimate the size of the correction by matching
our polynomial fit results to the NLO ChPT atmf such that

X ¼ 1, with X defined in Eq. (15) where F should read
the reestimated one in this analysis. The details of the
analysis are explained in Appendix C. A reasonable value
of the X & 1 is realized only in the region, mf & 0:002,

much lighter than the mf used in our simulation. From the

analysis we find that the log correction reduces the value of
F by about 30% from the result with quadratic fit.
The other low energy constants including B are obtained

simultaneously. The log correction of the chiral condensate
is estimated from the GMOR relation, h �c c ijmf!0 ¼
BF2=2, where the values of F and B estimated in this
analysis are used. We find that the chiral condensate is
reduced by roughly half from the result with quadratic fit
by the log correction.
Apart from the log correction, we also estimate the

systematic error from other sources. While we adopted
the quadratic chiral fits for F and h �c c ijmf!0, linear fits

work with reasonable �2 with the same fitting range. The
differences are counted as systematic errors. For the chiral
condensate, the largest difference from the result with the
direct measurement to one of the indirect measurements
is counted as a systematic error.

TABLE II. Chiral fit of M� with M� ¼ C
�
0 þ C

�
1mf þ C

�
2m

2
f

for various fit ranges.

Fit range (mf) C
�
0 �2=dof dof

0.015–0.04 0.168(32) 0.0017 1

0.015–0.05 0.149(33) 0.098 2

0.015–0.06 0.145(25) 0.084 3

0.015–0.07 0.144(20) 0.063 4

0.015–0.08 0.146(16) 0.052 5

0.015–0.10 0.164(12) 0.57 6

0.015–0.16 0.189(7) 1.48 9
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�=mf (right) as functions of mf.
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The results for the decay constant and the chiral con-
densate at the chiral limit in this work are

F ¼ 0:031ð1Þ þ2

�10

 !
; (23)

h �c c ijmf!0 ¼ 0:00052ð5Þ þ8

�29

 !
; (24)

where the first and second errors are statistical and system-
atic ones, respectively. The lower systematic errors are
coming from the log corrections, while the upper ones
from the others.

It would be useful to estimate physical quantities in units
of the F, because in the technicolor model the F is related
to the weak scale, ffiffiffiffiffiffi

Nd

p
F=

ffiffiffi
2

p ¼ 246 GeV; (25)

where Nd is the number of the fermion weak doublets as
1 � Nd � Nf=2. From our result, the ratio M�=F in the

chiral limit is given as

M�

F=
ffiffiffi
2

p ¼ 7:7ð1:5Þ þ3:8

�0:4

 !
; (26)

where the M� in the chiral limit is the result of the qua-

dratic fit in Eq. (17).
In this analysis we observe the large corrections of the

chiral log term in ChPT. In order to reduce the systematic
error of the chiral extrapolation and to obtain more accu-
rate predictions in this theory, we will need simulations at
the smaller mf region on larger volumes.

IV. STUDY OF REMNANTS OF CONFORMALITY

In the previous section we showed that the Nf ¼ 8

theory is in the S�SB phase. However, if this theory is
near the conformal phase boundary, it is expected that
some remnants of the conformal symmetry appear in
physical quantities.
Here we start with an analysis of F� from a different

point of view. In the conformal phase the F� obeys the
hyperscaling relation in the infinite volume, Eq. (11). We

perform the power fit F� ¼ C1m
1=ð1þ�Þ
f with various mf

ranges, where C1 and � are free parameters. The numerical
results of the power fit are summarized in Table V.
The power fit does not work in the lightest mf region,

0:015 � mf � 0:04, in which the F� is consistent with

ChPT analysis and the F is nonzero as presented in the
previous section. On the other hand, it is remarkable that
the fit results in the mass range, mf * 0:05, are consistent

with the power behavior, the same way as the hyperscaling
relation. Furthermore the estimated � is stable in the larger
mass region (see the bottom part of Table V), the property
expected from hyperscaling. This suggests that, although
Nf ¼ 8 QCD is in the S�SB phase, there exists a remnant

of the conformality. Therefore, in this section, we will
carry out further in depth analysis, which employs the
hyperscaling test on the finite volume for F� as well as
M� and M�, to investigate whether the remnant of the

conformality really persists.

A. Finite size hyperscaling test

If the system is in the conformal window, the data on a
finite volume is in good agreement with the finite size
hyperscaling (FSHS) having a universal value of � ¼ ��
at IRFP for observables as given in Eq. (14). In general our
data ofNf ¼ 8 cannot satisfy the FSHS with universal � in

the whole range of mf, because we showed that the theory

is in the S�SB phase as analyzed in Sec. III. However,
because of the power behavior in the middle range of the
fermion mass as mentioned in the above, we carry out the
FSHS test in our data to find a remnant of the conformality.
For this test, we plot the observables, �F [Eq. (13)], ��,

and �� [Eq. (12)], as functions of X ¼ Lm1=ð1þ�Þ
f with

changing the value of �. Figures 15–17 are the results of
the FSHS test of �F, ��, and �� for various �’s: The data

are aligned (collapsing) at around � ¼ 1:0, 0.6, and 0.8,
respectively. The optimal values of � for the observables

TABLE III. Chiral fit results for M2
� with M2

� ¼ C�
0 þ

C�
1mf þ C�

2m
2
f for various fit ranges.

Fit range (mf) C�
0 �2=dof dof

0.015–0.04 0.0016(13) 1.21 1

0.015–0.05 �0:0017ð9Þ 5.90 2

0.015–0.06 �0:0022ð6Þ 4.18 3

0.015–0.07 �0:0032ð5Þ 5.00 4

0.015–0.08 �0:0037ð5Þ 5.44 5

0.015–0.10 �0:0049ð4Þ 7.28 6

0.015–0.16 �0:0071ð3Þ 14.8 9
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FIG. 12 (color online). h �c c i [Eq. (9)] and � [Eq. (18)] as a
function of mf. The open symbol represents h �c c i and the filled

symbol is �.

YASUMICHI AOKI et al. PHYSICAL REVIEW D 87, 094511 (2013)

094511-10



are not universal in this estimate, in contrast to Nf ¼ 12,

where the alignments was observed with almost universal
� [21]. It is also noted the existence of alignment for each
observable is in contrast to Nf ¼ 4, where no alignment is

observed (see Appendix B).
Since Figs. 15–17 show the good linear behavior, we

carry out a linear fit as the leading approximation of FSHS,

�H ¼ CH
0 þ CH

1 X; (27)

for each observable. This formula becomes the hyperscal-
ing, Eq. (11) in the infinite volume limit. In Sec. III we saw
the ChPT fit worked well for the smallest mass region
mf � 0:04 for all the observables. On the other hand, we

already showed the powerlike behavior of the F� for larger
masses mf � 0:05. Thus, we restrict ourselves to fit the

data in mf � 0:05 in this analysis. To have good linearity

we restrict the data in the larger �� region, �� � 8.
Panels in Fig. 18 are the fit result of FSHS for ��, �F,

and �� from the left to the right. The fitting result is given

in Table VI, which is consistent with the Pð�Þ analysis that
does not assume the functional form of fitting given in
Appendix D. In Fig. 18 data included in the fit are shown as
filled symbols, while those with open symbols are not

included. The figures show the linear fit works well for
�� (�2=dof ¼ 0:66) and �F (�2=dof ¼ 0:73), while the fit

for �� has �2=dof ¼ 2:52.
The larger �2=dof of the �� fit might be caused by

corrections which are not explained by the simple fit
form in Eq. (27). To check the existence of the correction,
we fit the data of �� only on two volumes, and slide the
range of the volumes to investigate the fit range depen-
dence of the �. The resulting �2=dof, tabulated in
Table VII, is better than the above fit. The results seem to
have a tendency to decease the � as the volume decreased.
The maximum and minimum results deviate from each
other by more than 2 standard deviations, and they also
differ from the result using the four volumes tabulated in
Table VI. This tendency would suggest that there are
corrections to the leading behavior of the FSHS in
Eq. (27), but it is not clear that this tendency comes from
only a finite volume effect, because the range of the mf is

also changed as the volume. On the other hand, the results
for the �F and �� in Table VII are consistent with each

result tabulated in Table VI, so that we do not expect that
there are significant corrections in these data.
Wewill discuss the types of the corrections of Eq. (27) in

the next subsection.

TABLE IV. Chiral condensate in the chiral limit: The quadratic fit result of h �c c i and � in various fit ranges. h �c c i ¼ Ch �c c i
0 þ

Ch �c c imf þ Ch �c c i
2 m2

f. � ¼ C�
0 þ C�

1 mf þ C�
2 m

2
f. The linear fit of M2

�=mf ¼ C
ðM2

�=mfÞ
0 þ C1mf yields the combination

F2M2
�=ð4mfÞ ! F2C

ðM2
�=mfÞ

0 =4 in the chiral limit.

Fit range Ch �c c i
0 C�

0 C
ðM2

�=mfÞ
0

F2C
ðM2

�=mfÞ
0 =4(mf) Value �2=dof dof Value �2=dof dof Value �2=dof dof

0.015–0.04 0.00052(5) 2.65 1 0.00059(13) 1.11 1 2.087(18) 1.34 2 0.00050(3)

0.015–0.05 0.00037(3) 11.5 2 0.00015(9) 11.5 2 2.126(14) 5.22 3 0.00041(17)

0.015–0.06 0.00037(2) 7.70 3 0.00007(7) 8.12 3 2.151(11) 6.07 4 0.00043(13)

0.015–0.07 0.00039(2) 6.51 4 0.00002(6) 6.56 4 2.186(10) 11.4 5 0.00047(11)

0.015–0.08 0.00041(2) 6.23 5 �0:00003 6ð Þ 6.22 5 2.204(9) 14.2 6 0.00048(9)

0.015–0.10 0.00041(2) 5.19 6 �0:00013ð4Þ 6.75 6

0.015–0.16 0.00056(1) 18.9 9 �0:00026ð3Þ 7.19 9
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FIG. 13 (color online). Quadratic fits of h �c c i (left) and � (right).
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B. FSHS fits with the correction term

Since Nf ¼ 8 theory is in S�SB phase, FSHS cannot

become accurate by approaching to the chiral limit, which
is in contrast to the Nf ¼ 12 where FSHS does [21].

Therefore FSHS is only expected for the larger mass
region, where mass corrections may not be negligible. In
fact, in the last subsection the decreasing tendency of the
�ðM�Þ depending on the fit range is seen, which might
suggest that there are corrections in the simple FSHS form
in Eq. (27), To include mass corrections we assume the
same fitting forms as in the Nf ¼ 12 case [21] as

�H ¼ CH
0 þ CH

1 Xþ CH
2 Lm

�
f : (28)

Since it is hard to determine the exponent � of the correc-
tion term when the fit is performed for each observable
individually, we fix it in our analysis. Among various
choices of the �, we take two values: � ¼ 1 and 2. The
first choice � ¼ 1 is regarded as an mf correction in the

heavy region, and the second one � ¼ 2 may be identified
as a Oða2Þ discretization effect.
Using the fit assumptions we fit each observable with the

same data region as in the last subsection, mf � 0:05 and

�� � 8. The results are tabulated in Table VIII. The fit
results with both� ¼ 1 and 2 of the �� show the correction
term actually takes effect (C�

2 � 0), with reasonable

�2=dof. Because of the large correction, the � of the ��

is largely changed from the one without the correction term
in Table VI, especially in the � ¼ 1 case, and the value
becomes closer to the ones from the other observables. On
the other hand, for the �F and �� fits, it is found that the

correction is negligible, and the resulting �’s are consistent
with the ones without the correction, presented in Table VI,
as expected in the analyses in the last subsection. While in
the � ¼ 1 case, we obtain reasonable consistency of the �
from the three observables within less than 2 standard
deviations, we cannot exclude the � ¼ 2 fit. Thus, the
above analyses would suggest � ¼ 0:62–0:97 depending
on the observables and also the form of the correction
term.
Since we observed that the values of � with Eq. (28) for

all the observables become closer to each other than those
without the correction terms, it might be possible to obtain
a common value of the � from all the observables using the
fit including the correction. Thus, we perform a simulta-
neous fit using all the observables M�, F�, and M� with a

common �. For simplicity, we assume the absence of the
statistical correlations between each data of M�, F�, and
M�. In the fit we do not fix the value of the �, and treat it as

a free parameter. It is expected that the corrections are
small in the �F and ��, so that we first carry out a fit
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FIG. 14 (color online). � and h �c c i (left panel) as a function ofmf. The small region, 0 � mf � 0:045 and 0 � �, h �c c i � 0:0006,
in the left panel is enlarged to the right panel. The quadratic fit curves by using the data in 0:015 � mf � 0:04 are shown. The green

symbol is the value in Eq. (20).

TABLE V. Power fit results of F� for various fit ranges, using

F� ¼ C1m
1=ð1þ�Þ
f . The top part of the table shows the results for

the ranges with minimum mass set to the lightest, mf ¼ 0:015,

while the bottom does those with maximum mass being the
heaviest mf ¼ 0:16.

Fit range (mf) C1 � �2=dof

0.015–0.04 0.415(7) 0.988(19) 14.8

0.015–0.05 0.414(5) 0.991(15) 9.84

0.015–0.06 0.418(4) 0.979(12) 7.88

0.015–0.07 0.424(3) 0.963(9) 7.35

0.015–0.08 0.425(3) 0.961(8) 6.15

0.015–0.10 0.426(2) 0.958(7) 5.31

0.015–0.16 0.428(1) 0.952(4) 3.98

0.02–0.16 0.429(1) 0.947(4) 2.22

0.03–0.16 0.431(1) 0.942(5) 1.94

0.04–0.16 0.429(2) 0.950(10) 1.23

0.05–0.16 0.431(2) 0.941(7) 0.66

0.06–0.16 0.429(2) 0.948(9) 0.44

0.07–0.16 0.429(3) 0.950(10) 0.52

0.08–0.16 0.431(3) 0.939(14) 0.20

0.10–0.16 0.432(4) 0.934(19) 0.23
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FIG. 15 (color online). �F plotted as functions of X with � ¼ 0:6 (left), 1.0 (center), and 1.4 (right) for the FSHS test.
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FIG. 17 (color online). �� plotted as functions of X with � ¼ 0:4 (left), 0.8 (center), and 1.2 (right) for the FSHS test.
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FIG. 16 (color online). �� plotted as functions of X with � ¼ 0:2 (left), 0.6 (center), and 1.0 (right) for the FSHS test.
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FIG. 18 (color online). Linear fits for the FSHS of M� (left), F� (center), and M� (right). The filled symbols are included in the fit,
but the open symbols are omitted. The fitted region is mf � 0:05 and �� � 8.
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omitting the correction term in the �F. The result is sum-
marized in Table IX. This fit works well, and gives a
reasonable value of the �2=dof. The resulting � is close
to unity. A similar value of � is also obtained from a fit
without the correction term in the �� as shown in Table X.

This means that the exponent of the correction term is close

to unity in our data, while �’s from the two fits are different
from each other. The difference is regarded as the ambi-
guity in this estimate. It is also possible to carry out a
simultaneous fit without the corrections in both the �F and
��, and fits with the correction terms for all the observables

using the fixed � ¼ 1 and � ¼ ð3� 2�Þ=ð1þ �Þ, because
our data prefer �� 1 in the above fits. Note that the last
one is inspired by the analytic expression of the solution of
the Schwinger-Dyson equation [49]. Figure 19 shows the
fit result with � ¼ 1 as a typical result of the simultaneous
fit. These results are shown in Table XI and their �’s agree

TABLE VI. The � fitted by the linear ansatz. The fitted region
is mf � 0:05 and �� � 8.

� CH
0 CH

1 �2=dof

�� 0.5668(26) 0.049(22) 2.57766(99) 2.52

�F 0.9279(79) �0:17ð10Þ 0.4372(38) 0.73

�� 0.798(20) 0.04(19) 2.779(69) 0.66

TABLE VII. The � fitted by the linear ansatz using the data on
two volumes.

�� �F ��

L � �2=dof � �2=dof � �2=dof

(30,24) 0.5864(61) 1.09 0.948(18) 1.19 0.84(11) 0.62

(24,18) 0.5720(88) 0.66 0.934(23) 0.88 0.765(58) 1.25

(18,12) 0.5509(54) 0.49 0.924(12) 0.15 0.809(28) 1.00

TABLE VIII. FSHS fit with a correction term. The fit function:
� ¼ CH

0 þ CH
1 X þ CH

2 Lm
�
f . The fitted region is mf � 0:05 and

�� � 8.

� ¼ 1 � CH
0 CH

1 CH
2 �2=dof

�� 0.791(57) �0:004ð25Þ 1.74(14) 1.12(20) 0.66

�F 0.965(91) �0:016ð11Þ 0.419(44) 0.026(65) 0.74

�� 0.80(25) 0.003(190) 2.78(99) �0:01ð1:30Þ 0.73

� ¼ 2 � CH
0 CH

1 CH
2 �2=dof

�� 0.620(12) �0:001ð25Þ 2.421(35) 0.98(21) 0.74

�F 0.941(30) �0:016ð10Þ 0.432(11) 0.030(72) 0.74

�� 0.792(83) 0.001(190) 2.80(23) �0:1ð1:2Þ 0.73

TABLE IX. Simultaneous FSHS fit with a correction term,
� ¼ CH

0 þ CH
1 X þ CH

2 Lm
�
f , where � is free parameter, but

CF
2 ¼ 0. The fitted region is mf � 0:05 and �� � 8. Degrees

of freedom are equal to 32.

� � �2=dof

0.9292(82) 0.879(53) 0.67

CH
0 CH

1 CH
2

�� �0:004ð25Þ 1.290(98) 1.538(39)

�F �0:015ð10Þ 0.4366(38) � � �
�� 0.01(19) 2.280(64) 0.61(10)

TABLE X. Simultaneous FSHS fit with a correction term, � ¼
CH
0 þ CH

1 X þ CH
2 Lm

�
f , where � is free parameter, but C

�
2 ¼ 0.

The fitted region is mf � 0:05 and �� � 8. Degrees of freedom

are equal to 32.

� � �2=dof

0.807(18) 0.949(74) 0.77

CH
0 CH

1 CH
2

�� �0:001ð25Þ 1.65(11) 1.174(66)

�F �0:011ð10Þ 0.516(15) �0:107ð19Þ
�� 0.04(18) 2.754(63) � � �
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FIG. 19 (color online). Simultaneous FSHS fit in �� (left), �F (center), and �� (right) with � ¼ 1. The filled symbols are included in
the fit, but the open symbols are omitted. The fitted region is mf � 0:05 and �� � 8. The solid curve is the fit result. For a comparison,

the simultaneous fit result without correction terms is also plotted by the dashed curve, whose �2=dof ¼ 83.
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within the above ambiguity. Under the assumption that
all the observables give a universal �, we estimate
� ¼ 0:78–0:93.

It is noted that a simultaneous fit including the lighter
mass with mf � 0:015 in �� � 6:8 fails with a large

�2=dof ¼ 3:5 even if the mass correction is included.
This is because the chiral property is dictated by S�SB
and should not be consistent with universal hyperscaling
near the chiral limit.

To summarize, using the fits with the correction term, we
estimated the value of � from the three observables, and
obtain � ¼ 0:62–0:97 which depends on the observables
and the correction term in the fit form. Furthermore, we
carry out simultaneous FSHS fits with the correction term,
since a universal � would be expected if the theory is very
close to the conformal phase boundary even in the S�SB
phase. The resulting � in the simultaneous fits reads
0.78–0.93. These estimated �’s would be identified as the
mass anomalous dimension in the walking regime.

V. SUMMARYAND DISCUSSION

In search for a candidate for the walking technicolor, we
have investigated meson spectrum of Nf ¼ 8 QCD by the

lattice simulations based on the HISQ action for � ¼
6=g2 ¼ 3:8, and for the fermion bare mass range mf ¼
0:015–0:16 depending on the volume size L3 � T with
ðL; TÞ ¼ ð12; 16Þ, (18, 24), (24, 32), (30, 40), (36, 48).

We found that the data of F�,M� are consistent with the
S�SB well described by the ChPT, suggesting that F �
F�ðmf ! 0Þ � 0, and M�ðmf ! 0Þ ¼ 0, and M� is also

nonvanishingM�ðmf ! 0Þ � 0 in the chiral limit extrapo-

lation. the � mass in units of the � decay constant was

determined and shown in Eq. (26). We further found that
the chiral condensate h �c c i also has a nonzero value in the
chiral limit, which nicely coincides with those from the
GMOR relation in that limit. In these analysis we used
0:015 � mf � 0:04.

The salient feature of our collaboration is that we have
been investigatingNf ¼ 4, 8, 12, 16 on the setting of HISQ

action with the same systematics in order to study the Nf

dependence of the physics systematically [21,36]. Thus,
our analyses for Nf ¼ 8 are made in comparison with

those for Nf ¼ 4 and 12 of our group. The qualitative

features of Nf ¼ 8 near the chiral limit were found to be

similar to those of the Nf ¼ 4 case: The Nf ¼ 4 data

indicated robust signals of the S�SB phase. The result
was contrasted with that of the Nf ¼ 12 where in the

previous study the ChPT analysis was not self-consistent,
while the finite-size hyperscaling (FSHS) relation held
consistently with the conformal window.
We then checked whether this S�SB phase is close to the

conformal window, having some remnant of the infrared
conformality. Remarkably enough, in contrast to the data
near the chiral limit (mf � 0:04) indicating the S�SB,

those for the relatively large fermion bare mass mf �
0:05 away from the chiral limit actually exhibited a
FSHS with the scaling exponent �ðM�Þ ’ 0:57 (�2=dof ¼
2:5), �ðF�Þ ’ 0:93 (�2=dof ¼ 0:7), �ðM�Þ ’ 0:80

(�2=dof ¼ 0:7). The value of � is nonuniversal depending
on the observable, with �2=dof for M� being large com-
pared to the others. The existence of FSHS is in contrast to
our Nf ¼ 4 data where we showed no trace of the hyper-

scaling even for large mf region and hence no sign of the

conformality as in the ordinary QCD. This implies that

TABLE XI. Simultaneous FSHS fit with a correction term, � ¼ CH
0 þ CH

1 X þ CH
2 Lm

�
f using

several choices of �. The fitted region is mf � 0:05 and �� � 8.

� ¼ 0:889ð55Þ CH
0 CH

1 CH
2

�� �0:005ð25Þ 1.338(96) 1.494(37)

�F �0:0275ð98Þ 0.4435(36) � � �
�� 0.53(16) 2.476(39) � � �

� ¼ 0:9130ð76Þ, �2=dof ¼ 1:73, dof ¼ 33

� ¼ 1 fixed CH
0 CH

1 CH
2

�� �0:014ð24Þ 1.61(10) 1.31(15)

�F �0:012ð10Þ 0.484(30) �0:068ð44Þ
�� 0.01(19) 2.60(17) 0.25(24)

� ¼ 0:874ð25Þ, �2=dof ¼ 0:75, dof ¼ 32

� ¼ 3�2�
1þ� fixed CH

0 CH
1 CH

2

�� 0.020(24) 1.52(39) 1.17(35)

�F �0:011ð10Þ 0.572(34) �0:158ð52Þ
�� 0.03(19) 2.91(30) �0:15ð36Þ

� ¼ 0:775ð56Þ, �2=dof ¼ 0:93, dof ¼ 32
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there exists a remnant of the infrared conformality where
the S�SB effects are negligible (for a schematic view, see
case 2 in Fig. 1).

These hyperscaling relations were obtained for rela-
tively large mf, mf � 0:05, in contrast to the FSHS in

the conformal window, where FSHS becomes arbitrarily
accurate in the chiral limit. Therefore, there could
exist large mass corrections on the hyperscaling relation.
If we include possible mass corrections on FSHS for
each observable, we obtained �, 0:62 & � & 0:97.
Here the �2=dof for M� was improved to the level of the
others.

We then performed a simultaneous fit over all the
observables based on certain model fitting functions
including the mass corrections to see if the universality
of � can be improved by the corrections. To our surprise we
found that certain model fitting functions in fact yield a
universal value of �, 0:78 & � & 0:93, with the variations
depending on the model fitting function. Since this result is
obtained at a single value of �, it is important to see this
feature holds in the continuum limit, which will be studied
by carrying out simulations with multiple values of �. The
possibility of such a large scaling exponent � was dis-
cussed using Dirac eigenmodes in Ref. [34].

The anomalous dimension discussed in the walking
technicolor is of course the value in the chiral limit. The
lesson from the SD equation analysis in the conformal
window tells us [49] that the value of � obtained by the
hyperscaling relation without corrections is an ‘‘effective’’
one which is distorted by the mass corrections. On the
other hand, the value determined by the fit explicitly in-
corporating the mass corrections just corresponds to the ��
(�m at the infrared fixed point) in the chiral limit and hence
is of direct relevance to the walking technicolor. Although
the �m so determined is the value at infrared scale, it
coincides with the one discussed in the walking technicolor
evaluated at the ultraviolet scale, as far as the infrared
conformality for the wide scale hierarchy exists.

Finally, we should comment on the possible light flavor-
singlet scalar meson in Nf ¼ 8 QCD. The walking techni-

color predicts [1,5] a light composite Higgs-like scalar
boson, the technidilaton, as a pseudo-NG boson of the
approximate scale invariance inherent to the walking dy-
namics. Actually, it was shown [6] that the technidilaton is
consistent with all the current data of the 125 GeV boson
discovered at LHC. Then, if the Nf ¼ 8 QCD behaves as a

walking theory with approximate scale invariance, it would
be expected that a light flavor-singlet scalar composite
does exist. These studies are currently under way and
details will be reported elsewhere. Since the quantum
number of such an object is the same as that of the scalar
glueballs which may also be light, the lattice analyses near
infrared conformality should be done with great care about
the possible mixing with each other. As such we made
preliminary studies of both flavor-singlet scalar and scalar

glueballs for Nf ¼ 12. We found a hint of a flavor-singlet

scalar bound state lighter than � for Nf ¼ 12 [50].

Summarizing all our analyses we may infer that a typical
technicolor (‘‘one-family model’’) as modeled by the
Nf ¼ 8 QCD can be a walking technicolor theory having

an approximate scale invariance with large anomalous
dimension �m � 1.

ACKNOWLEDGMENTS

We would like to thank Anna Hasenfratz, Yoichi
Iwasaki, and Julius Kuti for fruitful discussions, and ac-
knowledge Katsuya Hasebe for encouragements. We also
thank Enrico Rinaldi for helpful discussions. Numerical
simulation has been carried out on the supercomputer
system ’ at KMI, Nagoya University, and on the computer
facilities of the Research Institute for Information
Technology at Kyushu University. This work is supported
by the JSPS Grant-in-Aid for Scientific Research (S)
No. 22224003, (C) No. 23540300 (K.Y.), and (C)
No. 21540289 (Y.A.), and also by Grants-in-Aid of the
Japanese Ministry for Scientific Research on Innovative
Areas No. 23105708 (T. Y.).

APPENDIX A: DATATABLES IN THE Nf ¼ 8 CASE

The Nf ¼ 8 simulations are done at � ¼ 3:8 with the

fixed aspect ratio L=T ¼ 3=4: ðL; TÞ ¼ ð12; 16Þ, (18, 24),
(30, 40), and (36, 48) and with various fermion massesmf.

Resultant values of F�, M�, MSC, M�ðPVÞ, M�ðVTÞ, and
h �c c i for each parameter, together with the number
of trajectories Ntrj used for the measurements after ther-

malzation are summarized in Tables XII, XIII, XIV, XV,
and XVI.

APPENDIX B: SIMULATIONS OF Nf ¼ 4 QCD

In this Appendix, we show the results of simulations for
Nf ¼ 4 QCD. We take � ¼ 3:7, and ðL; TÞ ¼ ð12; 18Þ,
(16, 24), and (20, 30). For each lattice size, we carry out
simulations for various input mf, and resultant values of

F�,M�,MSC, and h �c c i for each parameter, together with
the number of trajectories Ntrj used for the measurements

after thermalization, are summarized in Tables XVII,
XVIII, and XIX.
In Fig. 20, we plotM2

� (left panel) and F� as functions of
mf. Curves in each figure are obtained by fitting c1mf þ
c2m

2
f and c3 þ c4mf þ c5m

2
f to the largest-volume (i.e.,

L ¼ 20, T ¼ 30) data of M2
� and F�, respectively. Fit

results are c1 ¼ 4:36ð3Þ, c2 ¼ 4:3ð1:0Þ, c3 ¼ 0:0873ð10Þ,
c4 ¼ 1:846ð87Þ, and c5 ¼ �12:3ð1:6Þ. These plots show
typical behavior of a theory which is in the S�SB phase,
namely, M2

� is well fitted by a linear function (plus small
quadratic correction) of mf, and F� clearly has a nonzero

value in the chiral limit. As further confirmation, we also
plot data of h �c c i obtained from the largest-volume
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TABLE XIV. Results of the spectra on V ¼ 243 � 32 with tmin ¼ 22.

mf Ntrj F� M� MSC M�ðPVÞ M�ðVTÞ h �c c i
0.02 744 0.0566(8) 0.2330(25) 0.2367(37) 0.3508(117) 0.3461(111) 0.01188(3)

0.03 728 0.0715(4) 0.2832(14) 0.2851(14) 0.4044(96) 0.4018(101) 0.01746(2)

0.04 864 0.0823(2) 0.3353(7) 0.3382(7) 0.4678(57) 0.4693(57) 0.02290(1)

0.05 752 0.0918(5) 0.3826(10) 0.3851(11) 0.5274(54) 0.5228(53) 0.02825(2)

0.06 1848 0.1012(3) 0.4295(6) 0.4327(6) 0.5742(58) 0.5826(55) 0.03345(2)

0.07 864 0.1088(3) 0.4731(6) 0.4767(7) 0.6288(74) 0.6345(75) 0.03853(1)

0.08 816 0.1173(3) 0.5145(8) 0.5187(8) 0.6783(81) 0.6795(71) 0.04357(2)

0.10 948 0.1315(3) 0.5940(5) 0.5987(6) 0.7790(65) 0.7760(68) 0.05334(1)

TABLE XVI. Results of the spectra on V ¼ 363 � 48 with tmin ¼ 32.

mf Ntrj F� M� MSC M�ðPVÞ M�ðVTÞ h �c c i
0.015 1004 0.0512(3) 0.1883(5) 0.1900(7) 0.2825(107) 0.2904(71) 0.00906(1)

0.02 808 0.0579(2) 0.2216(7) 0.2229(8) 0.3202(60) 0.3232(61) 0.01189(1)

0.03 996 0.0704(2) 0.2801(5) 0.2818(6) 0.3964(86) 0.3935(71) 0.01745(1)

TABLE XV. Results of the spectra on V ¼ 303 � 40 with tmin ¼ 28.

mf Ntrj F� M� MSC M�ðPVÞ M�ðVTÞ h �c c i
0.02 996 0.0578(2) 0.2227(9) 0.2245(10) 0.3225(75) 0.3221(65) 0.01189(1)

0.03 1044 0.0709(3) 0.2801(7) 0.2818(8) 0.3967(87) 0.3940(69) 0.01744(1)

0.04 1060 0.0826(2) 0.3354(4) 0.3377(4) 0.4718(110) 0.4730(99) 0.02294(1)

0.05 1108 0.0918(2) 0.3834(5) 0.3859(5) 0.5317(92) 0.5302(80) 0.02822(1)

0.06 788 0.1012(3) 0.4304(4) 0.4332(4) 0.5853(132) 0.5887(123) 0.03344(1)

0.07 732 0.1098(2) 0.4735(4) 0.4769(4) 0.6349(141) 0.6329(120) 0.03855(1)

TABLE XII. Results of the spectra on V ¼ 123 � 16, with tmin ¼ 10.

mf Ntrj F� M� MSC M�ðPVÞ M�ðVTÞ h �c c i
0.04 1224 0.0622(15) 0.4181(110) 0.4397(113) 0.5574(370) 0.5389(360) 0.02167(4)

0.05 1284 0.0735(12) 0.4844(65) 0.4987(72) 0.6108(81) 0.6157(71) 0.02704(5)

0.06 1224 0.0904(15) 0.4681(79) 0.4664(120) 0.6372(237) 0.6343(218) 0.03269(6)

0.07 1264 0.1030(9) 0.5091(38) 0.5168(64) 0.6910(102) 0.6882(87) 0.03802(7)

0.08 1264 0.1144(6) 0.5352(23) 0.5439(26) 0.7093(69) 0.7031(53) 0.04328(6)

0.09 1300 0.1222(7) 0.5686(17) 0.5774(24) 0.7478(54) 0.7449(54) 0.04826(7)

0.10 1300 0.1302(6) 0.6033(19) 0.6116(23) 0.7886(65) 0.7866(61) 0.05319(6)

0.12 2500 0.1442(4) 0.6694(12) 0.6760(13) 0.8556(43) 0.8517(43) 0.06265(4)

0.14 2600 0.1565(3) 0.7384(11) 0.7460(13) 0.9321(38) 0.9317(39) 0.07181(4)

0.16 3524 0.1676(2) 0.8056(8) 0.8142(9) 1.0032(29) 1.0029(26) 0.08059(3)

TABLE XIII. Results of the spectra on V ¼ 183 � 24 with tmin ¼ 16.

mf Ntrj F� M� MSC M�ðPVÞ M�ðVTÞ h �c c i
0.04 712 0.0823(5) 0.3421(29) 0.3445(33) 0.4901(96) 0.4842(107) 0.02295(3)

0.05 752 0.0910(6) 0.3886(15) 0.3908(19) 0.5323(84) 0.5248(79) 0.02818(3)

0.06 904 0.0999(5) 0.4317(15) 0.4351(17) 0.5900(63) 0.5943(52) 0.03334(2)

0.07 1064 0.1090(5) 0.4734(10) 0.4777(13) 0.6436(63) 0.6398(64) 0.03849(3)

0.08 844 0.1170(5) 0.5144(10) 0.5181(12) 0.6782(49) 0.6776(56) 0.04354(4)

0.10 876 0.1315(4) 0.5948(11) 0.5993(12) 0.7729(65) 0.7698(56) 0.05334(3)
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simulation as a function of mf in Fig. 21. In the figure, we

also plotted F2
�M

2
�=ð4mfÞ (� �) which are calculated

from the data of M� and F� at each mf. Curves in the

figure are the results of quadratic fits, and resultant values
in the chiral limit are 0.00845(14) and 0.00832(21) for
h �c c i and �, respectively.

To estimate the amount of systematic error of chiral
extrapolation, we did the same analysis that was done
in Sec. III D. In Fig. 22, we show the result of ChPT

extrapolation which is matched to the quadratic fit result
at mf ¼ 0:01, the smallest mass we simulate. The value of

F� in the chiral limit (F) obtained by this procedure is F ¼
0:0730, while the quadratic fit gives F ¼ 0:0873ð10Þ. We
should note here that there is no visible chiral-log behavior
in our data in the range of 0:01 � mf � 0:04, therefore the

estimate of the amount of chiral-log effect in the chiral
limit given here should be understood as the maximum
possible. We should also mention here the values of chiral

TABLE XVIII. Results of the spectra for Nf ¼ 4 on V ¼ 163 � 24.

mf Ntrj F� M� MSC h �c c i
0.005 500 0.08195(76) 0.16356(87) 0.2235(65) 0.01102(21)

0.01 500 0.10258(78) 0.21390(75) 0.2763(27) 0.016413(8)

0.02 500 0.11980(71) 0.2996(11) 0.3484(16) 0.02415(12)

0.03 500 0.13059(59) 0.36739(75) 0.4099(20) 0.03060(11)

0.04 500 0.14124(31) 0.42524(60) 0.4659(11) 0.03697(11)

TABLE XIX. Results of the spectra for Nf ¼ 4 on V ¼ 203 � 30.

mf Ntrj F� M� MSC h �c c i
0.01 180 0.10443(40) 0.20966(68) 0.2611(29) 0.01637(5)

0.02 380 0.11955(31) 0.29873(83) 0.3413(12) 0.02396(5)

0.03 350 0.13144(33) 0.36699(89) 0.4082(13) 0.030789(36)

0.04 200 0.14160(24) 0.42579(86) 0.4663(13) 0.037317(39)

0 0.01 0.02 0.03 0.04 0.05
mf

0

0.05

0.1

0.15

0.2

0.25

M
π

2

L12T18
L16T24
L20T30

Nf =4, β =3.7

0 0.01 0.02 0.03 0.04 0.05
mf

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

F π

L12T18
L16T24
L20T30

N
f
=4,β =3.7

FIG. 20 (color online). M2
� (left panel) and F� as functions of mf for Nf ¼ 4 QCD with � ¼ 3:7. Curves in each figure are obtained

by fitting c1mf þ c2m
2
f and c3 þ c4mf þ c5m

2
f to the largest-volume data of M2

� and F�, respectively.

TABLE XVII. Results of the spectra for Nf ¼ 4 on V ¼ 123 � 18.

mf Ntrj F� M� MSC h �c c i
0.01 500 0.0858(22) 0.2373(30) 0.3022(79) 0.01471(48)

0.02 500 0.1141(11) 0.3016(26) 0.3502(52) 0.02332(28)

0.03 500 0.12900(69) 0.3706(11) 0.4087(28) 0.03056(15)

0.04 500 0.13842(67) 0.4283(14) 0.4705(21) 0.03683(16)

0.05 500 0.14893(59) 0.4778(10) 0.5173(27) 0.04291(29)
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expansion parameter X. By using F ¼ 0:0873, the expan-
sion parameter at mmin

f ¼ 0:01 is estimated as X ’ 0:3

while the one at mmax
f ¼ 0:04 is X ’ 1:2. This confirms

the consistency of using ChPT analysis and thus, we con-
clude that Nf ¼ 4 QCD is in the S�SB phase.

In Fig. 23, we plot the values of M2
SC together with

values of M2
� for each mf. This comparison shows the

amount of flavor-symmetry-breaking effect in our simula-
tion for Nf ¼ 4 QCD with � ¼ 3:7.

Finally, we show the finite-size hyperscaling test for
Nf ¼ 4 QCD by using the data of F� obtained here. In

Fig. 24, we show the finite-size hyperscaling plot for input
values of � ¼ 0:0, 1.0, and 2.0. As we expect, the data
show no alignment in the range of 0 � � � 2. This should
be regarded as a typical property of QCD-like theory, and
contrasted to the case of Nf ¼ 8.

APPENDIX C: ESTIMATE OF CHIRAL
LOG CORRECTIONS

In this Appendix we estimate the effect of the chiral log
correction for the F and h �c c i in the chiral limit. Since
both the NLO ChPT formulas Eqs. (21) and (22) contain
the B and F, to match the polynomial fit to the NLO ChPT
formula at the matching point mc

f, we need to solve the

matching conditions using Eqs. (21) and (22), and their
derivatives at mc

f, simultaneously. The mc
f dependence for

the B and F are plotted in Fig. 25. For comparison the
polynomial fit results are shown by the dashed lines. The
value of theX in Eq. (15) evaluated using the obtained F at
each mc

f is presented in Fig. 26. A reasonable value of

X � 1 is obtained only in the much smallermf region than

themf used in our simulation. Atmc
f ¼ 0:00199, we obtain

X ¼ 1 and F ¼ 0:207.
To study the chiral log correction on the chiral conden-

sate, the value in the chiral limit is also estimated from
the B and F at each mc

f using the GMOR relation,

h �c c ijmf!0 ¼ BF2=2 presented in Fig. 27. When one

chooses the matching point where X ¼ 1, one obtains
roughly a half value of the polynomial fit result of the
direct measurement.
Similar results are obtained from different analyses,

such as using the expansion parameter 2M2
�=ð4�F�Þ2 in-

stead of x in the NLO formulas Eqs. (21) and (22), or using
h �c c i instead ofM2

�=mf or F� for matching. Therefore we

use only the result in the first case to estimate the chiral log
corrections in Sec. III D.

APPENDIX D: Pð�Þ ANALYSIS
In this Appendix in order to perform the analysis that

does not assume the functional form of fitting in FSHS, we
consider Pð�Þ defined in Ref. [21].
To quantify the ‘‘alignment’’ we introduce an evaluation

function Pð�Þ for an observable p as follows. Suppose �j is
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� are calculated through F2
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a data point of the measured observable p at xj ¼
Lj �m1=ð1þ�Þ

j and 	�j is the error of �j. j labels distinction

of parameters L and mf. Let K be a subset of data points

fðxk; �kÞg from which we construct a function fðKÞðxÞwhich
represents the subset of data. Then, the evaluation function
is defined as

Pð�Þ ¼ 1

N

X
L

X
j=2KL

j�j � fðKLÞðxjÞj2
j	�jj2 ; (D1)

where L runs through all the lattice sizes we have, the
sum over j is taken for a set of data points which do not
belong to KL which includes all the data obtained on the
lattice with size L. N denotes the total number of

summation. Here, we choose for the function fðKLÞ a linear

interpolation of the data points of the fixed lattice size L for
simplicity, which should be a good approximation of � for
large x.
This evaluation function takes a smaller value when the

data points are more closely collapsed to the line fðKLÞ and
thus provides a measure of the alignment. Pð�Þ varies as
the choice of parameter � and should show a minimum at a
certain value of � when the optimal alignment of data is
achieved. We take it as the optimal value of �.
We then estimate the uncertainty of the optimal � by

properly taking account of the statistical fluctuation of �i

as well as its effect to the line fðKLÞ. For this purpose, we
employ the parametric bootstrap method, in which the data
point is simulated by a random sample generated by
Gaussian distribution with the mean �j and the standard
deviation 	�j. The distribution of � is thus obtained for a
large number of these samples, from which the variance of
� is estimated. The systematic error associated with the
interpolation will be estimated by choosing different
functional form with linear or quadratic splines as will be
discussed subsequently.
We use the data as the overlapped region sandwiched

between mf ¼ 0:015 on L ¼ 36 and mf ¼ 0:03 on

L ¼ 36. Figure 28 is the result of Pð�Þ for all M�, F�,
and M� and there are minima of Pð�Þ. The � value at the

minimum of Pð�Þ is written on Table XX.
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