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A matrix Hamiltonian model is developed to address the finite-volume effects appearing in studies of

baryon resonances in lattice QCD. The Hamiltonian model includes interaction terms in a transparent way

and can be readily generalized to address multichannel problems. The eigenvalue equation of the model is

exactly solvable and can be matched onto chiral effective field theory. The model is investigated in the

case of � ! N� scattering. A robust method for determining the resonance parameters from lattice QCD

is developed. It involves constraining the free parameters of the model based on the lattice spectrum in

question. The method is tested in the context of a set of pseudodata, and a picture of the model dependence

is obtained by examining a variety of regularization schemes in the model. A comparison is made with the

Lüscher method, and it is found that the matrix Hamiltonian method is equally robust. Both methods are

tested in a more realistic scenario, where a background interaction corresponding to direct N� $ N�

scattering is incorporated into the pseudodata. The resulting extraction of the resonance parameters

associated with the � baryon resonance provides evidence that an effective field theory style of approach

yields a successful realization of finite-volume effects in the context of baryon resonances.
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I. INTRODUCTION

The behavior of the excited states of baryons represents
an important research topic in nuclear and particle physics.
The extraction of resonance parameters (e.g., masses and
widths) provides insight into the scattering behavior of
hadronic interactions. Lattice QCD constitutes a principal
tool for the analysis of nonperturbative physics; however,
observables must be computed in a finite volume. Finite-
volume models of hadronic interactions represent a valu-
able avenue for investigating the intrinsic features of lattice
QCD. They assist in the interpretation of discrete eigen-
states in relation to the asymptotic behavior of the Smatrix
measured in experiments. Recent advances in lattice QCD
have enabled the extraction of the lowest-lying excitation
energies [1–5]. However, the extraction of resonance
parameters from multihadron interactions presents an on-
going challenge for current research [6–16].

In this article, a finite-volume matrix Hamiltonian model
is introduced, which is exactly solvable. A matrix is con-
structed, and its entries are populated with energies corre-
sponding to different momentum states of the interaction
channel(s). The solution of the eigenvalue equation takes
the form of a one-loop renormalization formula for a bare
resonance energy, reminiscent of finite-volume chiral ef-
fective field theory (�EFT). The Hamiltonian can then be
matched onto the corresponding �EFT formula by choos-
ing the form of the interaction in the model. A property of
the formalism is the ability to reproduce the ‘‘avoided level
crossing’’ observed in lattice QCD calculations, while also
being able to reproduce the appropriate continuum limit of
�EFT. Thus the physical behavior of the energy eigenvalues

near a resonance due to the mixing of the particle states can
be estimated. Furthermore, the Hamiltonian method lends
itself to an intuitive generalization in addressing multi-
channel problems, with the inclusion of additional degrees
of freedom, corresponding to the new interactions.
The matrix Hamiltonian formalism is applied to � !

N� decay, and its energy spectrum is generated for a range
of finite box sizes, L. A method for extracting the reso-
nance parameters from a lattice QCD spectrum is then
postulated, which involves fitting the free parameters of
the model. The method is tested by generating a set of
pseudodata from the model itself. The pseudodata are
analyzed with an alternative version of the model and a
selection of different regularization parameters. This pro-
vides an indication of the model dependence in correctly
obtaining the resonance position. The success of the iden-
tification of the phase shift is compared to that of the
Lüscher method [17]. This serves to establish a benchmark
for the Hamiltonian model in obtaining the resonance
position. It is found that the matrix Hamiltonian model,
as applied to � ! N� decay, is of comparable accuracy to
the Lüscher method.

II. SCATTERING THEORY FROM
EFFECTIVE FIELD THEORY

In continuum scattering theory, below inelastic thresh-
olds, amplitudes of the partial-wave decomposition of the
wave function, which are complex valued, may be con-
verted into a real-valued number called the phase shift,
�lðkÞ, by exploiting the conservation of angular momen-
tum. The phase shift, which depends on the orbital angular
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momentum l and external momentum k, is related to the
total cross section of a scattering process, via

�ðkÞ ¼
Z

d�jfðk; �Þj2; (1)

where fðk; �Þ ¼ X
l

ð2lþ 1ÞPlðcos�Þ e
i�lðkÞ sin�lðkÞ

k
;

(2)

where Pl is the lth Legendre polynomial. The external
momentum of a particle with mass m is related to the

external energy by k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 �m2

p
. In the case of P-wave

scattering (l ¼ 1), the total cross section simplifies to the
form

�ðkÞ ¼ 4�
3sin 2�ðkÞ

k2
; (3)

where �ðkÞ � �1ðkÞ. The energy at which the phase shift
passes through 90� is the resonance energy, Eres.

The investigation of � ! N� decay is of particular
interest. It provides insight into the � resonance of N�
scattering: an archetypal example of a baryon resonance.
The on-shell tmatrix associated with N� scattering from a
� baryon, T � tðk; k;EþÞ, can be obtained by solving the
Lippmann-Schwinger equation, and the phase shift is di-
rectly related to the t matrix, via

T ¼ g2�NðkÞ
E� �0 � ��NðkÞ (4)

¼ � 1

�kE
ei�ðkÞ sin�ðkÞ: (5)

The quantity �0 represents the bare value of the resonance
energy, which becomes renormalized by the one-pion loop
integral,��NðkÞ (shown in Fig. 1), and may be chosen such

that Eres matches the phenomenological value, Ephys
res ¼

292 MeV. By working in the heavy-baryon approximation,
the kinetic energy of the nucleon is neglected in this simple
model, and calculations may be performed relative to the
nucleon mass. Thus, the external energy may be expressed
in terms of the pion energy, E ¼ !�ðkÞ.

The coupling g�NðkÞ takes the following form, as ob-
tained from �EFT,

g2�NðkÞ ¼ ��

2

�

k2u2ðkÞ
!�ðkÞ ; (6)

where the coefficient �� is defined in terms of known
phenomenological parameters: f� ¼ 92:4 MeV and C ¼
�1:52, as derived from the SU(6) flavor-symmetry relation

�� ¼ 3

32�f2�

2

9
C2: (7)

The parameters f� and C occur in the first-order interaction
Lagrangian of chiral perturbation theory (�PT) describing
the � ! N� interaction [18–23]

L �PT ¼ � C
2f�

�NTa�����@��
a þ H:c:; (8)

where Ta are the relevant 2� 4 isospin transition
matrices [24].
Note that a finite-range regulator uðkÞ has been intro-

duced into the coupling term of Eq. (6). This serves to
control the otherwise ultraviolet divergent loop integral
and, in addition, will be used in Sec. III to establish a finite
interaction range in the Hamiltonian model. For more
detailed discussions of finite-range regularization, see
Refs. [25–29].
The leading-order pion loop integral shown in Fig. 1

takes the form

��NðkÞ ¼
Z 1

0
dk0

k02g2�Nðk0Þ
!�ðkÞ �!�ðk0Þ � i	

(9)

¼ ��

2

�

Z 1

0
dk0

k04u2ðk0Þ
!�ðk0Þ½!�ðkÞ �!�ðk0Þ � i	� ;

(10)

where P indicates that a principal value integral must be
performed. By using Eq. (5), it is straightforward to solve
for �ðkÞ. A plot of the phase shift against external energy,
E ¼ !�ðkÞ, is shown in Fig. 2, which takes the form of a
Breit-Wigner-like curve.

III. FINITE-VOLUME HAMILTONIAN MODEL

In the following finite-volume heavy-baryon model, a
matrix Hamiltonian is defined to include the interaction
between the � baryon and the pion-nucleon system. The
rows and columns of H represent the total three-
momentum values available to the pion (k1 ¼ 2�=L; k2 ¼
4�=L . . . ). In the simplest version of the model, the N�
states only couple to the � baryon.
The Hamiltonian may be written as the sum of free

and interaction Hamiltonians, H ¼ H0 þHI. The free
Hamiltonian H0 takes the form

FIG. 1. The leading-order one-pion loop contribution to the
resonance energy E associated with � ! N� decay. All charge
conserving transitions are implicit.
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H0 ¼
�0 0 0 � � �
0 !�ðk1Þ 0 � � �
0 0 !�ðk2Þ
..
. ..

. . .
.

0
BBBB@

1
CCCCA; (11)

where !�ðknÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þm2

�

p
is the pion energy, and the

pion momenta at finite volume take only the discrete values
available in a box of length L, obeying the condition k2n ¼
ð2�L Þ2n for a squared integer n � n2x þ n2y þ n2z . H0 has

nonzero diagonal entries representing the noninteracting
energy of a pion at certain values of momentum. The
nucleon recoil energy vanishes in the heavy-baryon limit.
The first element of H0 represents the bare resonance mass
relative to the nucleon mass, �0. The value of �0 is chosen
so that the resonance position takes the phenomenological
value 292 MeV, in the infinite-volume case in Eq. (4).

The interacting Hamiltonian HI contains couplings g�N
in the top row and left-most column,

HI ¼

0 gfin�Nðk1Þ gfin�Nðk2Þ � � �
gfin�Nðk1Þ 0 0 � � �
gfin�Nðk2Þ 0 0 � � �

..

. ..
. ..

. . .
.

0
BBBBBBB@

1
CCCCCCCA: (12)

This represents the interaction between the bare � baryon
and the N� system over a range of momentum values. The
couplings are chosen to take a similar form to that of
Eq. (6) but contain additional factors relevant to the nor-
malization of the discrete momenta in a finite-volume box,

gfin�NðknÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C3ðnÞ
4�

s �
2�

L

�
3=2

g�NðknÞ: (13)

Note that the cubic symmetry of the system means that
each nonzero n need occur only once in the rows and

columns of H, so long as the finite-volume couplings
gfin�NðknÞ contain the appropriate normalization factorffiffiffiffiffiffiffiffiffiffiffiffi
C3ðnÞ

p
, where C3ðnÞ represents the number of ways of

summing the squares of three integers to equal n.
For the purposes of this model, uðknÞ is chosen to take

the form of a dipole regulator, with a regularization scale of
� ¼ 0:8 GeV,

uðknÞ ¼
�
1þ k2n

�2

��2
: (14)

However, in Sec. V, the associated model dependence of
the choice of regulator on the extraction of the resonance
parameters from the model is investigated and a variety of
regularization schemes are examined.
The eigenvalues of the Hamiltonian matrix correspond

to the different energy levels in a finite volume and may be
calculated for a range of L values. The ten lowest energy
levels as a function of L are shown in Fig. 3, with the
noninteracting energies shown as dotted lines.
The Hamiltonian model, by construction, matches onto

the �EFT formula for the renormalization of the resonance
mass in a finite volume. The eigenvalue equation of the
Hamiltonian, det ðH � 
IÞ ¼ 0, can be solved exactly and
takes the form


 ¼ �0 �
X1
n¼1

ðgfin�NðknÞÞ2
!�ðknÞ � 


(15)

¼ �0 � ��

2�2

�
2�

L

�
3 X1
n¼1

C3ðnÞ k2nu
2ðknÞ

!�ðknÞ½!�ðknÞ � 
� :

(16)

A comparison with Eq. (10) shows that the sum term takes
the same form as the loop integral, upon the restoration of
the continuum integral

FIG. 3 (color online). The lowest-lying energy levels from the
�N� model, described in Eqs. (11)–(14) (solid lines), and the
corresponding noninteracting energies (dotted lines).

FIG. 2 (color online). The infinite-volume phase shift � asso-
ciated with elastic N� scattering via a � baryon intermediate
state, plotted against the external pion energy E (where Etot ¼
MN þ E), as calculated from the on-shell t matrix of Eq. (5).
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�
2�

L

�
3 X1
n¼1

C3ðnÞ !
Z

d3k: (17)

This correspondence is a consequence of the judicious
choice of the form of the coupling in the finite-volume
Hamiltonian gfin�N .

The subtle, yet important difference between Eqs. (10)
and (16) is that the energy eigenvalue 
 appears on both
sides of the equation derived from the Hamiltonian. The
presence of 
 in the denominator, whose solution must be
finite, results in the avoided level crossing observed in
lattice QCD, where the resonance energy corresponds to
maximal mixing of the single-particle and multiparticle
states. That is, the correct quantum mechanical behavior
of the multiparticle system is directly built into the
Hamiltonian model. This is the finite-volume analogue of
the principal value integral in the continuum theory.

The Hamiltonian model may be extended to include a
direct N� $ N� interaction, which could be viewed as an
approximation to the Chew-Low interaction. For example,
one can add additional terms in the interaction matrix, HI:

gCLðki; kjÞ ¼ �gN�ðkiÞgN�ðkjÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!�ðkiÞ!�ðkjÞ

q : (18)

In the cloudy bag model [30,31], the couplings gN� and
gfin�N are related by the equation gN�ðkiÞ ¼ �gfin�NðkiÞ with a
ratio � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

25=18
p

estimated from SU(6) symmetry. In the
case of the t matrix, the Lippmann-Schwinger equation
with a rank-2 separable potential can be solved as per
Mongan [32].

This additional interaction will be used to test the model
independence in the procedure of extracting the phase shift
in Sec. V. The comparison of two models, one with extra
background interactions of the form of Eq. (18) and one
without the extra interactions, will provide insight into the
robustness of the identification of resonance parameters
from an effective model.

IV. PHASE SHIFT EXTRACTION
FROM THE LATTICE

The identification of resonance parameters in a finite
volume is important for interpreting lattice QCD results in
the light of experiment. The connection between the en-
ergy spectra of lattice QCD simulations and the asymptotic
states of the S matrix represents a current challenge for
research in finite-volume hadron spectroscopy [6,33–36].

The features of the Hamiltonian model are ideally suited
to the extraction of resonance parameters from lattice QCD
energy spectra. Not only is the construction of the
Hamiltonian transparent and intuitive in terms of the po-
tentials one chooses to include, but the formalism may be
easily generalized to include multiple channels. By gen-
erating energy eigenvalues from a Hamiltonian model,
such as those shown in Fig. 3 for the � ! N� interaction,

the free parameters of the model may be tuned to fit the
energy spectrum of a lattice QCD calculation. In the case
of the � ! N� model, this entails minimizing the chi-
square for the parameters �� and �0. The resonance
energy and phase shift may then be extracted by using
the fitted values of the parameters, input into Eq. (5). An
infinite-volume phase shift, much like that of Fig. 2, is thus
obtained, except that the underlying parameters have been
extracted directly from lattice QCD results.

V. COMPARISON WITH THE LÜSCHER METHOD

In order to demonstrate the success of the Hamiltonian
method in reproducing accurate phase shifts from the
finite-volume energy spectrum of the model, a comparison
is made with the well-known Lüscher method [17].
Lüscher’s formula describes a fixed relationship between
the scattering phase shift � and the momentum correspond-
ing to the jth energy level in a finite volume

�ðkj;LÞ ¼ j���

�
kjL

2�

�
: (19)

The kinematic function �ðqÞ takes the form of a three-
dimensional Zeta-like function (which must be regularized
in an appropriate fashion), defined in terms of dimension-
less lattice momenta, q � kL=ð2�Þ,

�ðqÞ ¼ � arctan

�
�3=2q

Z00ð1; q2Þ
�
; (20)

Z 00ð1; q2Þ ¼ 1ffiffiffiffiffiffiffi
4�

p X
~n2Z3

1

~n2 � q2
: (21)

The momenta corresponding to a lattice energy spectrum
may be input into Lüscher’s formula to obtain volume-
dependent ‘‘phase shifts’’ �ðkj;LÞ.
As an example, consider the application of the Lüscher

method to the energy spectrum of the � ! N� model,
treating the spectrum as pseudodata. By taking the mo-
menta associated with the energy eigenvalues, shown in
Fig. 3, as inputs, and choosing a particular box size L, the
finite-volume estimates of the phase shifts may be com-
pared with the known infinite-volume phase shifts, as
shown in Fig. 2. The result is plotted on the same axes,
in Fig. 4, for a range of box sizes. Both the infinite-volume
phase shift and the Hamiltonian energy spectrum are gen-
erated using a dipole regulator with � ¼ 0:8 GeV.
Figure 4 shows that the finite-volume corrections associ-
ated with applying the Lüscher method to a finite-volume
effective Hamiltonian model are insignificant for L �
3 fm at the physical pion mass. It will be demonstrated
that the matrix Hamiltonian method of obtaining a phase
shift from finite-volume energy levels is comparable with
the Lüscher method.
Note that, in using Lüscher’s method, an interpolation

function must be chosen in order to obtain the pole position
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from the phase shift. The Breit-Wigner curve represents a
suitable functional form,

ei�ðkÞ sin�ðkÞ ¼
~�ðkÞ=2

E� Eres � i~�ðkÞ=2 ; (22)

where the width contains a cubic momentum factor, which
yields the correct phase-space dependence for l ¼ 1 [37],

~�ðkÞ ¼ k3

k3res
�: (23)

To illustrate the comparison between Lüscher’s method
and the matrix Hamiltonian method, the pseudodata ob-
tained from the � ! N� model will again be used. A
modified version of the � ! N� model is constructed by
replacing the regulator function uðknÞ with a different form
of regularization. First, a Gaussian regulator with a variety
of values for the regularization scale � will be considered.
Using the � ! N� model, the closest two energy eigen-
values to the value of Eres, as estimated by Lüscher’s
formula, are chosen in order to constrain �� and �0.

The behavior of the resonance energy Eres may be
plotted as a function of 1=L, as shown in Fig. 5. A key
observation is that the periodic deviations in the extraction
of Eres arise from the fact that, at certain volumes, an
energy level may or may not lie near the resonance position
(where � ¼ 90�). That is, they are simply artefacts asso-
ciated with the choice of interpolation. For box sizes where
a discrete energy eigenvalue does lie near Eres, the experi-
mental value is attained within a few MeV. This can
provide a guide in choosing suitable box sizes for reliably
reproducing the position of the � resonance.

It is also worth noting that the use of a Gaussian regu-
lator, with � ’ 0:6 GeV, provides a much more reliable
reconstruction of the resonance position from the pseudo-
data than a low or high value of�. This is a consequence of

a close match between the underlying regulator of the
pseudodata and the Gaussian regulator at this value of �.
It provides evidence that a choice of regulator that cor-
rectly reflects the underlying phenomenology leads to a
more stable identification of the resonance position.
Nevertheless, even in the case of � ! 1, which essen-
tially corresponds to a dimensional regularization-like
result [26], the matrix Hamiltonian method is just as suc-
cessful as the Lüscher method.
Note that in Fig. 4 use of the Lüscher method results in

an excellent agreement with the infinite-volume phase
shift. However, at small volumes, the sparse distribution
of energy eigenvalues leads to a difficulty in extracting the
behavior at � ¼ 90�. This accounts for the model depen-
dence apparent in Fig. 5.
Onemight argue that the analysis of the pseudodata using

a similarmodel that includes only the� ! N� couplings is
ideally suited to the reconstructionmethod proposed above.
In a more realistic scenario, a new pseudodata set is gen-
erated from a Hamiltonian model that now includes the
effective contact interaction, introduced in Eq. (18).
Again, a dipole regulator with � ¼ 0:8 GeV is used. The
energy levels of the new pseudodata are fitted to the more
basic model using a Gaussian regulator, and the regulariza-
tion scale � is treated as an additional fit parameter. The
behavior of the resonance energy versus 1=L is displayed in
Fig. 6. The fitted values of � in Fig. 5 are recalculated at
each value of L, but they are typically close to 0.6 GeV,
whereas in Fig. 6 the values are closer to 0.5 GeV. The
tendency for slightly smaller fitted values of � in Fig. 6
simply reflects the compensation of the regulator for the
missing background interaction. For all regularization
methods tested, the presence of a background interaction

FIG. 4 (color online). Estimates of the phase shift obtained
from Lüscher’s formula applied to the � ! N� model for a
range of L values. The infinite-volume phase shift is also shown
as a solid line.

FIG. 5 (color online). The resonance energy Eres plotted
against 1=L. The experimental value is marked with a square.
The results from fitting pseudodata with a different regulator, a
Gaussian with � ¼ 0:5, 0.6 and 0.8 GeV, or treating � as a fit
parameter, are plotted. The result of effectively removing the
regulator (i.e., � ! 1) is also shown. For comparison, the
approach using Lüscher’s method is marked with a solid line.
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also causes an exaggeration in the periodic deviations of
Eres from interpolation. In all cases, the deviations aremuch
larger due to the effect of the nonresonant background
interaction. Nevertheless, a fairly reliable extraction of
Eres is possible, if the energy eigenvalues lie close enough
to the resonance energy. Most notably, there is significant
improvement in the identification of Eres using the matrix
Hamiltonianmethod if� is treated as a fit parameter. This is
remarkable, as it shows that the bare resonance mass, the
coefficient of the interaction and the finite-range scale� are
collectively able to compensate for the missing N� $ N�
interactions; the underlying interactions are simply incor-
porated into the fit degrees of freedom.

VI. ANALYSIS OF THE EIGENVECTORS

An analysis of the eigenvectors serves to emphasize a
key feature of the Hamiltonian model. While only a single
local operator describing the� resonance is included in the
model, the interactions drive a significant coupling to all
nearby lattice eigenstates. That is, one observes the gen-
eration of quantum mechanical admixtures of states from
the interactions.

Consider the square of the overlap of each eigenvector
with the bare state j�0i, with a volume-dependent coeffi-
cient calculated from the following Jacobian:

dk2 ¼
�
2�

L

�
2
dn (24)

¼ dE2 ¼ 2EdE; (25)

)
Z

dnjh�0jEnij2 ¼
Z

dE2E

�
L

2�

�
2jh�0jEij2: (26)

The result may be plotted as a function of external energy
E. The peak of the resulting curve should lie at the value of
the renormalized mass of the � baryon relative to the
nucleon, 292 MeV. The result for the matrix Hamiltonian
model, using a dipole regulator with � ¼ 0:8 GeV, and
including the Chew-Low-like background interactions
from Eq. (18), is shown in Fig. 7. The magnitude of the
contribution from the eigenvector spectrum to �0,
jh�0jvij2, is shown for box sizes of 4, 8 and 16 fm. Over
a broad range of energies, which dominate across the width
of the resonance, it is evident that no single eigenstate, by
itself, can be identified as either a local or a multihadron
state. That is, the local, noninteracting�0 state couples to a
range of low-lying states. This illustrates how early ideas
from the heavier quark-mass domain, in distinguishing
single-particle and multiparticle states, are no longer ap-
plicable in the light-quark regime of modern lattice
simulations.

VII. CONCLUSION

Finite-volume models provide key insights into the in-
trinsic attributes of lattice QCD. By examining the behav-
ior of resonances and multiparticle states, one is able to
identify more precisely the impact on a calculation asso-
ciated with finite-volume effects.
By introducing a matrix Hamiltonian method, the finite-

volume behavior near a resonance is reproducible. The
avoided level crossings that indicate nontrivial mixing
between single-particle and multiparticle states are also
present in the model. Because the Hamiltonian is exactly
solvable, the eigenvalue equation may be matched onto
chiral effective field theory simply by a choice of coupling
parameter for the potential. The Hamiltonian model can
also be easily generalized to include multiple channels, in
order to address more difficult scattering problems.

FIG. 6 (color online). The resonance energy Eres plotted
against 1=L, resulting from fitting pseudodata containing the
nonresonant background interaction of Eq. (18). The experimen-
tal value is marked with a square. The result from fitting
pseudodata with a Gaussian regulator is plotted, treating � as
a fit parameter. The result corresponding to � ! 1 is also
shown. Lüscher’s approach is marked with a solid line.

FIG. 7 (color online). The contribution of the eigenvectors to
the bare � state in a finite volume, for a range of box sizes. The
finite-volume Hamiltonian used includes the N� $ N� inter-
action terms.
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As a simple, introductory example, the � baryon reso-
nance of N� scattering was considered, and a method for
extracting the phase shift from lattice QCD was devel-
oped. By matching the energy eigenstates of the model to
those of a lattice calculation, the free parameters of the
model were constrained, and their values were input into a
scattering t-matrix equation, which uses chiral effective
field theory. Initially, only the leading-order one-pion
loop integral contribution to the resonance energy was
included.

The method was tested in the context of a set of pseu-
dodata generated by the � ! N� model. By considering a
variety of different regularization scales, an indication of
the model dependence in the calculation was found.
A comparison was made with the well-known
Lüscher method, and it was discovered that the matrix
Hamiltonian method was at least comparable in reliability,
with improvement when the regulator is a good approxi-
mation of the underlying phenomenology.

The extraction of the resonance parameters was inves-
tigated in a more realistic context, where nonresonant
background interaction terms (corresponding to direct
N� $ N� scattering) were incorporated into the pseudo-
data. It was found that the � ! N� model was able to
improve upon the Lüscher method, if the regularization
scale was treated as an additional fit parameter. This in-
dicates the ability of a bare resonance mass, a coupling

scale, and regulator to compensate for underlying interac-

tions that do not appear directly in the model. It also

indicates that more complicated interactions may be effec-

tively incorporated into the degrees of freedom of the

model.
Thus the matrix Hamiltonian model, which uses an

effective field theory style of approach, may indeed act as

a guide to lattice QCD calculations in identifying the

salient features derived from finite-volume effects, and

the impact of the leading-order chiral contributions near

a resonance. Though lattice QCD calculations are typi-

cally performed at pion masses heavier than the physical

value, the avoided level crossing feature is expected to

occur on the lattice when the pion-nucleon threshold

appears below the � resonance. After considering some

ideal pseudodata, the matrix Hamiltonian approach is

well equipped to describe the behavior of actual lattice

QCD results.
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