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We consider a generalization of the Thirring model in 2þ 1 dimensions at finite density. We employ

stochastic quantization and check for the applicability in the finite density case to circumvent the sign

problem. To this end we derive analytical results in the heavy dense limit and compare with numerical

ones obtained from a complex Langevin evolution. Furthermore, we make use of indirect indicators to

check for incorrect convergence of the underlying complex Langevin evolution. The method allows the

numerical evaluation of observables at arbitrary values of the chemical potential. We evaluate the results

and compare to the (0þ 1)-dimensional case.
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I. INTRODUCTION

The sign problem remains one of the biggest challenges
of lattice field theory until this day. It is caused by a highly
oscillatory and complex path integral measure after intro-
ducing a chemical potential�. This renders many theories,
like four-dimensional quantum chromodynamics (QCD),
inaccessible by common simulation algorithms in wide
regions of the phase diagram. Many solutions have been
proposed, see e.g., Refs. [1–8]. However, reliable numeri-
cal calculations in theories with a severe sign problem
remain extremely challenging.

One of the approaches to the sign problem is stochastic
quantization [9], i.e., a complex Langevin evolution [10].
For a review of stochastic quantization see e.g., Ref. [11],
and for its application to the finite density case refer to
Ref. [3]. It has been applied to many theories suffering
from a severe sign problem, often successfully [12–18]. It
was also applied outside the context of finite density
calculations, e.g., quantum fields in nonequilibirum [19]
and in real time [20,21]. However, there are cases known
where the complex Langevin evolution converges towards
unphysical fixed points [22,23]. Starting from early stud-
ies of complex Langevin evolutions [24–26] until this
day, the convergence properties of Langevin equations
generalized to the complex case are not well understood.
In this work we focus on the stochastic quantization of
the Thirring model at finite density in 2þ 1 dimensions,
cf. Ref. [27]. This serves as a toy model for the matter
sector of QCD. Furthermore, the (2þ 1)-dimensional
model appears in effective theories of high-temperature
superconductors and graphene, see e.g., references given
in Ref. [28].

Here we extend the (0þ 1)-dimensional studies carried
out in Ref. [29]. In 2þ 1 dimensions we lose the analytic
benchmarks which facilitated the interpretation of the
numerical results with stochastic quantization in 0þ 1
dimensions. Still, we can exploit the similarities to the
lower-dimensional case. Further benchmarks of our numeri-
cal results are given by those in the heavy dense limit, as
introduced in Ref. [30]. This limit describes the regime of
large fermion masses and large chemical potentials. In addi-
tion, we evaluate indirect indicators, namely the consistency
requirements presented in Refs. [31–33] and the analyticity
of the fermion condensate at �2 ¼ 0, cf. Ref. [13].
The paper is organized as follows: In Sec. II we intro-

duce a generalized Thirring model in the continuum and on
the lattice. We also formulate the associated Langevin
equation. In Sec. III we employ the heavy dense limit
to derive numerous analytical results. At the end of the
section we introduce indirect indicators of correct conver-
gence, namely analyticity of observables at �2 ¼ 0 and
a set of consistency conditions. In Sec. IV we discuss
numerical results and use the analytical results among
other indicators as a benchmark to evaluate the complex
Langevin evolution. Finally, in Sec. V we discuss and
summarize our findings.

II. THE GENERALIZED THIRRING MODEL

A. Continuum formulation

We begin with a short recapitulation of the model, which
we introduced in Ref. [29]. It is a generalization of the
historical (1þ 1)-dimensional Thirring model [34], but
formulated in d dimensions with Nf fermion flavors at

finite density. The Euclidean Lagrangian reads

L�¼XNf

i¼1

��ið6@þmiþ�i�0Þ�iþ g2

2Nf

 XNf

i¼1

��i���i

!
2

: (1)*Permanent address: Division of Mathematical Sciences,
Nanyang Technological University, 637371, Singapore.
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Here i ¼ 1; . . . ; Nf is a flavor index,mi and�i are the bare

mass and bare chemical potential of the respective flavor
and g2 is the bare coupling strength. The �matrices satisfy
f��; ��g ¼ 2���1.

In d ¼ 2þ 1 dimensions, �� and � denote four-
component spinors. While it is possible to use an irreduc-
ible two-dimensional representation of the Dirac algebra,
this representation does not allow for a chiral symmetry
in the massless case. See Ref. [28] for details and a
discussion of symmetries. It is noted that the model also
shows breaking of chiral symmetry at vanishing chemical
potential [35].

We reformulate the generalized Thirring model using an
auxillary field and integrate out the fermionic degrees of
freedom. We find for the partition function

Z ¼
Z

DA

�Y
i

detKi

�
e�SA ¼

Z
DAe�Seff ;

SA ¼ Nf�
Z 1=T

0
dt
Z

dd�1xA2
�;

(2)

with temperature T, fermionic term Ki ¼ 6@þ i 6Aþmi þ
�i�0 and Seff ¼ SA �P

iTr logKi. The fermion determi-
nant obeys

detKið�Þ ¼ ½detKið��?Þ�?; (3)

yielding in general a complex action. The sign problem can
be avoided by taking the absolute value of the fermion
determinant. This corresponds to an isospin chemical
potential and is also referred to as the phase-quenched
case. We also note that observables shall become indepen-
dent of the chemical potential� up to some threshold�c in
the zero-temperature limit. This goes under the name of the
Silver Blaze problem [36].

B. Lattice formulation

We consider the generalized Thirring model in 2þ 1
dimensions on a space-time lattice with Nt time slices and
Ns slices in spatial direction. Furthermore, we require that
Nt be even [29]. The spatial volume and the space-time
volume are denoted by

V ¼ N2
s ; � ¼ NtN

2
s : (4)

We use staggered fermions [37–40], where the number of
staggered fermion fields—denoted also as lattice flavors—
is given by N . The introduction of a chemical potential
follows the prescription by Hasenfratz and Karsch [41]. In
the following, all dimensionful quantities are measured in
appropriate powers of a, so that we only deal with dimen-
sionless parameters.

In three dimensions, N staggered fermion flavors
correspond to Nf ¼ 2N continuum flavors [27], as each

staggered fermion field encodes two tastes. In principle
the partition function for a single continuum flavor can
be obtained by taking the square root of the fermion

determinant, but it is still under debate if this rooting
prescription is consistent [42].
In d ¼ 2þ 1 dimensions (where generalizations to

arbitrary d are evident), the lattice action we employ reads

S ¼ X
x;y;i

��iðxÞKiðx; yÞ�iðyÞ þN �

2

X
x;�

A2
�ðxÞ: (5)

Here ��i and �i denote staggered fermion fields with flavor
index i ¼ 1; . . . ;N , and the sums extend over x, y ¼
1; . . . ;� and � ¼ 0; . . . ; d� 1. The fermion matrix reads

Kiðx; yÞ ¼ 1

2

Xd�1

�¼0

"�ðxÞ½ð1þ iA�ðxÞÞe�i��0�xþ�̂;y

� ð1� iA�ðyÞÞe��i��0�x��̂;y� þmi�xy; (6)

with staggered phase factor

"�ðxÞ ¼ ð�1Þ
P

��1
i¼0

xi (7)

and �̂ denoting a unit vector in � direction,
cf. Refs. [27,43]. We impose periodic boundary conditions
in spatial and antiperiodic boundary conditions in temporal
direction. The lattice partition function is, like in the con-
tinuum in Eq. (2), given by

Z ¼
Z 1

�1

Y
x;v

dAvðxÞ
�Y

i

detKi

�
e�SA ; (8)

where SA ¼ 1
2N �

P
x;�A

2
�ðxÞ. The central observables in

our analysis are the fermion density, the fermion conden-
sate, the energy density and the phase factor of the fermion
determinant. In the following, sums over flavor indices are
not implied. The fermion density of flavor i is given by

hnii ¼ 1

�

�
@ logZ

@�i

�
V;T

¼ 1

�

�
Tr

�
@Ki

@�i

K�1
i

��
: (9)

The fermion condensate follows from

h ��i�ii ¼ 1

�

�
@ logZ

@mi

�
V;T;�i

¼ 1

�
hTrK�1

i i; (10)

and the energy density reads

h"ii ¼ �
�
@ logZ

@Nt

�
V;�i

þ�ihnii: (11)

Usually we normalize the latter one to h"iið� ¼ 0Þ ¼ 0.
The phase factor of the fermion determinant is defined

by exp ði�Þ ¼ detK=j detKj with phase �. ForN degen-
erated staggered fermion flavors we set Ki ¼ K. The
expectation value of exp ðiN�Þ [44,45] follows in the
N flavor phase-quenched theory from

heiN�ipqN ¼ ZN

Zpq
N

2 ½0; 1�; (12)

where ZN is given by Eq. (8) and Z
pq
N denotes the phase-

quenched partition function. The expectation value of the

JAN M. PAWLOWSKI AND CHRISTIAN ZIELINSKI PHYSICAL REVIEW D 87, 094509 (2013)

094509-2



fermion phase factor is a measure of the sign problem,
where smaller values indicate a more severe problem.

C. Complex Langevin equation

To deal with the associated sign problem we apply
stochastic quantization [9], namely a complex Langevin
evolution [10], to the Thirring model at finite density. To
this end we determine the stationary solution of the corre-
sponding Langevin equation, which reads

@

@�
A�ðx;�Þ ¼ � �Seff½A�

�A�ðx;�Þ þ
ffiffiffi
2

p
��ðx;�Þ: (13)

Here � denotes fictitious time, and ��ðx;�Þ is a Gaussian
noise with

h��ðx;�Þi ¼ 0;

h��ðx;�Þ�	ðx0;�0Þi ¼ ��	�ðx� x0Þ�ð���0Þ:
(14)

We use an adaptive first-order stepsize integration scheme
[27,46,47], where the stepsize 
L is adjusted with respect
to the modulus of the drift term.

For the numerical treatment of the Langevin equation we
use a first-order integration scheme. Our discretization of
Eq. (13) reads

A�ðx;�þ 
LÞ ¼ A�ðx;�Þ þ 
LD�ðx;�Þ
þ ffiffiffiffiffiffiffiffi

2
L
p

��ðx;�Þ; (15)

where D�ðx;�Þ ¼ �dSeff=dA�ðx;�Þ is the drift term and

L the (adaptive) integration stepsize. The drift term takes
the explicit form

D�ðx;�Þ¼�N �A�ðx;�Þþ i

2
"�ðxÞ

X
i

K�1
i ðxþ �̂;xÞe�i�v0

þ i

2
"�ðxþ �̂ÞX

i

K�1
i ðx;xþ �̂Þe��i�v0 ; (16)

cf. Ref. [27]. The stepsize is updated after each integration
step according to


L � 
Lð�Þ ¼ �

max x;�jD�ðx;�Þj : (17)

Typically we use � ¼ 10�2, see also Ref. [29].
For a correctly converging complex Langevin evolution

we can generalize the real noise to an imaginary noise in
Eq. (13) while keeping expectation values unchanged [27].
We parametrize the complex noise using the replacement

��ðx;�Þ ! ffiffiffiffiffiffiffiffiffiffiffiffiffi
I þ 1

p
Re��ðx;�Þ þ i

ffiffiffiffi
I

p
Im��ðx;�Þ; (18)

with I � 0. Furthermore, we require that

hRe��ðx;�ÞRe�	ðx0;�0Þi ¼ hIm��ðx;�ÞIm�	ðx0;�0Þi
¼ ��	�ðx� x0Þ�ð���0Þ

(19)
and

hRe��ðx;�ÞIm�	ðx0;�0Þi ¼ 0: (20)

While maintaining numerical stability, we check if observ-
ables turn out to be independent of I .

III. ANALYTICAL RESULTS

In the following we derive approximate expressions for
some observables in the lattice Thirring model in d dimen-
sions. We begin with a hopping parameter expansion and
then take the so-called heavy dense limit in Sec. III B. This
renders the model effectively one-dimensional and allows
us to obtain a simple expression for the fermion determi-
nant. Later we discuss an extended version in Sec. III F.

A. Hopping parameter expansion

Applying a hopping parameter expansion to the fermion
determinant in Eq. (8) yields

detK

m�
¼ Y

‘

Y
fC‘g

ð1� �‘�C‘
PC‘

Þ: (21)

Here � ¼ 1=ð2mÞ is the hopping parameter, fC‘g are closed
contours of perimeter ‘, n is the number of times a given
contour is traced out and PC‘

is the product of hopping

terms Mðx; yÞ at � ¼ 0 along the given contour C‘. The
matrix elements Mðx; yÞ read

Mðx; yÞ ¼ �Xd�1

�¼0

"�ðxÞ½ð1þ iA�ðxÞÞ�xþ�̂;y

� ð1� iA�ðyÞÞ�x��̂;y�; (22)

compare with the fermion matrix in Eq. (6). Furthermore,
we represent the dependence on the chemical potential
explicitly via

�C‘
¼ ½� exp ð�NtÞ�uC‘ ; (23)

where

uC‘ 2 Z (24)

denotes the temporal winding number of the path C‘

counted in positive direction. The minus sign in Eq. (23)
stems from antiperiodic temporal boundary conditions.

B. Heavy dense limit

The heavy dense limit projects out the leading contribu-
tions of the hopping parameter expansion in the limit
of a large mass m and large chemical potential �. This
limit was introduced in Ref. [30] and employed e.g., in
Refs. [15,48–53]. It is defined by

� ! 0; � ! 1; �e� fixed: (25)

In this regime the fermion determinant is dominated by
contributions from Polyakov loops in positive time direc-
tion with uC ¼ 1, see Eq. (24). Due to the absence of
spatial paths, the model is effectively one dimensional.
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The fermionic contribution detK in this limit reads

detK

m�
¼ Y

C2P

ð1þ �PCÞ; (26)

where P denotes the set of Polyakov loops and

� � Nt ;  � �e�: (27)

Let P x denote a Polyakov loop

P x ¼ YNt

t¼1

ð1þ iA0ðt;xÞÞ (28)

starting and ending in the space point x. We can then
express the fermion determinant in the regime of m and
� being large by

detK ¼ m�
Y
x

ð1þ �P xÞ; (29)

where � is the space-time volume defined in Eq. (4).
Note that in this limit the relation in Eq. (3) is violated.
Due to this approximation we will find hni�¼0 ! 0 only

for m ! 1. In Sec. III F we introduce a modified version
of this limit, which preserves this relation.

C. The case of one flavor

By replacing the full fermion determinants in Eq. (8)
with the simpler expression in Eq. (29), we can derive
analytical expressions for several observables of interest.
We begin with one flavor and later generalize to more
flavors. In the heavy dense limit the partition function
can be integrated exactly, and we find

Z1 ¼
Z 1

�1

Y
x;v

dAvðxÞ detKe�SA ¼ ð1þ �ÞV
ð2�Þ�

�
2�

�

��d
2
:

(30)

Using Eqs. (9) and (10), the fermion density and conden-
sate read

hni ¼ 1

1þ 1
�

; h ���i ¼ 2�

1þ �
: (31)

We point out that the exact (0þ 1)-dimensional results
derived in Ref. [29] reproduce the above results in the
corresponding limit. Applying Eq. (11), the normalized
energy density reads

h"i ¼ ð�� �1=TÞ log��1

ð1þ �1=TÞð1þ �Þ ; (32)

where we identify the temperature with T ¼ N�1
t .

Furthermore, we find

cV ¼ 1

VT2

�
@2 logZ1

@N2
t

�
V;�

¼ �log 2

T2ð1þ �Þ2 > 0 (33)

for the heat capacity. The corresponding mechanical equa-
tion of state PV ¼ T logZ1 takes the form

P ¼ log

�ð1þ �Þ1=T
2�

�
2�

�

�
d=2
�
; (34)

with P denoting pressure.
Figure 1 shows the phase structure in the heavy dense

limit. Note that � dropped out in most considered observ-
ables. For large Nt we find two well-separated phases,
where the system is in a condensed phase for large �.
In the limit of vanishing temperature we find

hniT¼0 ¼ �ð���cÞ;
h ���iT¼0 ¼ 2��ð�c ��Þ;
h"iT¼0 ¼ �c�ð���cÞ;

(35)

FIG. 1. The phase structure in the heavy dense limit for one
flavor. (a) Plot of the fermion density hni. (b) Plot of the fermion
condensate h ���i.
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where � is the Heaviside step function and the critical
chemical potential onset is found to be �c ¼ log ð2mÞ.
Note that �c > 0 in the heavy dense regime. The model
clearly exhibits Silver Blaze behavior as mentioned
in Sec. I.

D. The case of two flavors

We continue with determining the partition function for
two flavors in the heavy dense limit. For nondegenerated
flavors we label the parameters �, � and � with a flavor
index i 2 f1; 2g and find after an exact integration

Z2 ¼
Z 1

�1

Y
x;v

dAvðxÞ detK1 detK2e
�SA

¼ ð1þ �1 þ �2 þ �1�2�ÞV
ð4�1�2Þ�

�
�

�

��d
2
; (36)

where we introduce

� ¼
�
1� 1

2�

�
Nt

(37)

for brevity. For simplicity, we quote the observables only in
the case of degenerated flavors and a common chemical
potential, i.e., �i ¼ �, �i ¼ � and �i ¼ �. The general-
ization to nondegenerated flavors is straightforward. The
total fermion density is given by

hni ¼ 2�ð1þ ��Þ
1þ 2�þ �2�

; (38)

with hni ! 2 for � ! 1 (if � � 1=2), while the fermion
condensate reads

h ���i ¼ 4�ð1þ �Þ
1þ 2�þ �2�

: (39)

The mechanical equation of state takes the form

P ¼ log

�ð1þ 2�þ �2�Þ1=T
4�2

�
�

�

�
d=2
�
: (40)

Like in 0þ 1 dimensions [29], we find a plateau in the
density, condensate and energy density for N ¼ 2. They
become visible for couplings of the order � � 1=2,
see Fig. 7. For the special case of � ¼ 1=2 (i.e., � ¼ 0),
the density never goes into full saturation for � ! 1,
but is stuck on the plateau. These structures can be under-
stood in the (0þ 1)-dimensional continuum case [29], see
also Ref. [54].

Phase-quenched case.—We also consider the partition
function with a phase-quenched fermion determinant as
mentioned in Sec. II B. Then in the case of two degenerated
flavors, the partition function reads

Zpq
2 ¼

Z 1

�1

Y
x;v

dAvðxÞj detKj2e�SA

¼ 1

ð2�Þ2�
�
ð1þ 2�þ �2�pqÞ

�
�

�

�
Ntd=2

�
V

(41)

with

�pq ¼
�
1þ 1

2�

�
Nt

: (42)

The observables are of the same form as in the full theory
with � replaced by �pq.

Phase factor.—The previous results allow us to derive an
analytical expression for the expectation value of the phase
factor of the fermion determinant in the two-flavor theory.
It serves as a measure for the severity of the sign problem.
We find

he2i�ipqN¼2 ¼
Z2

Zpq
2

¼ e�V=V0 ; (43)

where we define

V0 ¼ log

�
1þ 2�þ �2�pq

1þ 2�þ �2�

�
: (44)

As expected, the sign problem gets more severe for larger
lattices. In the limit of large chemical potentials the expec-
tation value approaches

lim
�!1he

2i�ipqN¼2 ¼
�
2�� 1

2�þ 1

�
�
: (45)

We see that the choice of � has a significant impact on the
severity of the sign problem. In the heavy dense limit we
find that it is most severe for � ¼ 1=2.

E. The case of N flavors

Finally, we generalize Eq. (30) to an arbitrary number of
N degenerated flavors by raising the fermion determinant
to the power of N in the partition function. We obtain

ZN ¼ 1

ð2�ÞN�

�
2�

N �

��d
2

�
"XN
k¼0

N

k

 !
�k�

kUNt

�
1� k

2
;
3

2
;
N �

2

�#V

(46)

in the heavy dense limit, where we introduce

�k ¼
�

2

N �

�Ntðk�1Þ
2

: (47)

Here �ðzÞ denotes Euler’s gamma function, and Uða; b; zÞ
is the confluent hypergeometric function of the second kind
[55], also known as Kummer’s function. We do not want
to quote the observables here explicitly, but as required
they reproduce previous results for N ¼ 1, 2. From the
expressions for the density and condensate we obtain the
relation
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h ���i
N

¼ 2�

�
1� hni

N

�
: (48)

In this general case we find up to N � 1 intermediate
plateaus in the observables.

F. Symmetric heavy dense limit

The heavy dense limit given by Eq. (25) violates the
relation in Eq. (3). In the following, we consider a model
which restores the determinant symmetry but is not a strict
limit of the generalized Thirring model. Besides the
Polyakov loops in positive time direction with their char-
acteristic exp ð�Þ dependence, we will also consider the
ones in negative Polyakov direction with an exp ð��Þ
dependence. In this sense we speak of a symmetrized
version of the heavy dense limit.

In this model the fermion determinant detK has the form

detK ¼ Y
x

 
1þ �f

YNt

t¼1

ð1þ iA0ðx; tÞÞ
!

�Y
x

 
1þ �b

YNt

t¼1

ð1� iA0ðx; tÞÞ
!
; (49)

where we introduce �f � ð�e�ÞNt and �b � ð�e��ÞNt ,

compare with Eq. (29). The respective partition function
reads

Zsym
1 ¼

Z 1

�1

Y
x;v

dAvðxÞ detKe�SA

¼ 1

ð2�Þ�
�
2�

�

��d
2 ð1þ �f þ �b þ �symÞV; (50)

with shorthand notation

�sym ¼ �2Nt

�
1þ 1

�

�
Nt

: (51)

For small � the observables now receive additional con-
tributions. The density reads

hni ¼ �b � �f

1þ �f þ �b þ �sym

(52)

and vanishes exactly at � ¼ 0. The fermion condensate is
given by

h ���i ¼ 2�ð1� �symÞ
1þ �f þ �b þ�sym

; (53)

and the equation of state takes the form

P ¼ log

�ð1þ �f þ �b þ �symÞ1=T
2�

�
2�

�

�
d=2
�
: (54)

The quantitative differences between the ordinary and the
symmetric heavy dense limits are small in the regime of
large fermion masses and large chemical potentials due to
the exponential suppression of the additional contributions.

For small m they alter the behavior of observables
massively, see Fig. 2. However, for very smallm the results
again remain unphysical. Spatial contributions to the fer-
mion determinant become important, thus rendering the
model invalid.

G. Analyticity in �2

For observables which are even in � we can consider
the analytic continuation to �2 < 0, corresponding to an
imaginary chemical potential. An example for such an
observable is the fermion condensate h ���i. Due to the
relation in Eq. (3) the theory is free of a sign problem in
this case, andwe canmake use of a real Langevin evolution.
For �2 > 0 we employ a complex Langevin evolution.
Assuming that the complex Langevin evolution is cor-

rect, h ���i should be analytic in�2. Then any nonanalytical
behavior at �2 ¼ 0 has to be caused by incorrect conver-
gence. We will check this criterion in Sec. IV F, compare
also with Ref. [13].

H. Consistency conditions

In Refs. [31–33] the authors derived an infinite tower of
identities able to indicate the correctness of complex
Langevin evolutions. They could show that for all entire
holomorphic observables O the relation hL�ðxÞOi ¼ 0
holds if and only if the evolution is converging correctly.
Here

L�ðxÞ ¼
�

d

dA�ðxÞ þD�ðxÞ
�

d

dA�ðxÞ (55)

is the Langevin operator (summation over � is not implied
in this subsection). A simple finite set of observables is
defined byO�ðx; kÞ ¼ exp ðikA�ðxÞÞwith k 2 Z, yielding a
necessary condition for correctness. In Sec. IV F we will
check if

hL�O�i ¼ hik½ikþD�ðxÞ�eikA�ðxÞi ¼ 0 (56)

holds for a wide range of parameters.
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FIG. 2 (color online). The density in the strict and in the
symmetric heavy dense limit.
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IV. NUMERICAL RESULTS

A. Implementation

We solve the Langevin equation numerically using the
adaptive stepsize algorithm described in Sec. II C. The
implementation uses the GNU Scientific Library [56].
The code allows the calculation of the density, the conden-
sate, the phase factor of the fermion determinant, and the
consistency conditions of Sec. IV F for the full generalized
Thirring model. Furthermore, there is the option to carry
out calculations at purely imaginary chemical potential and
in the phase-quenched case.

To numerically determine observables we begin with a
hot start, i.e., we randomly initialize the auxiliary field.
This is followed by 5000 thermalization steps. To evaluate
the observables we sample the field configuration typically
Oð104Þ times. Like in the (0þ 1)-dimensional case [29],
we estimate the error with a bootstrap analysis [57], as the
resulting error bounds generally prove to be more reliable.
However, in some cases we observe that the actual error is
underestimated.

B. Comparison to phase-quenched case

In Fig. 3 we find a typical example for numerical results
of the density and the condensate in the full as well as the

phase-quenched case. The error bars are included, but are
often too small to be spotted with the naked eye. Although
we only have Nt ¼ 8 time slices, we can already find hints
for Silver Blaze behavior. The onset to the condensed
phase for the full theory generally lies higher than in the
phase-quenched case.
The phase factor of the fermion determinant can serve

as a measure for the severity of the sign problem and
can be found in Fig. 4. We see that for large � it is
less pronounced, but still quickly approaches zero for
increasing �.

C. Evaluation in the heavy dense limit

In the analytical heavy dense limit in Sec. III C, the
coupling factorizes, thus rendering the density and the
condensate independent of �. However, in Fig. 5 we can
see that the numerical results for the full theory show a
dependence on � even for extremely large masses.
Furthermore, the gap between numerics and the analytical
heavy dense limit results seem to persist even when in-
creasing m by several magnitudes. For smaller � this
deviation is more pronounced, while for increasing � we
can see how the curves are approaching each other asymp-
totically, similar to the (0þ 1)-dimensional case [29].
It is difficult to separate the different contributions

to this gap, as we are comparing an approximate analytical
result with an algorithm for the full generalized
Thirring model, whose correctness we aim to check. In
the (0þ 1)-dimensional case we already found a real
deviation to theoretical results for small �, and something
comparable can potentially also happen in the
(2þ 1)-dimensional case.

D. Coupling parameter dependence

In Fig. 6 we plotted the numerically evaluated observ-
ables as functions of �. For small � it is more difficult
to obtain reliable results due to spikes caused by numeri-
cal instabilities. For very large � the results from the
full theory approach the phase-quenched calculations.
As the heavy dense limit makes no prediction about
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the � dependence, the interpretation of the findings is
difficult.

E. Several flavors

In Fig. 7 we can find the density and the condensate in
the case ofN ¼ 2 staggered fermion flavors at a coupling
of � ¼ 0:6. As we saw in Secs. III D and III E, in a certain
range of � these observables show up to N � 1 plateaus
in the analytical heavy dense results. However, we observe
that the numerical results for the full theory do not repro-
duce these plateau structures at any value of �. Only when
considering very large � is the theoretical curve free of
these structures, and the complex Langevin evolution ap-
proaches the correct result. This finding is in agreement
with Ref. [29].

F. Consistency conditions

The numerical check of the consistency conditions
of Sec. III H for the O�ðx; kÞ observable yields several
violated conditions. Without loss of generality we restrict
ourselves to the case of x ¼ ð1; 1; 1ÞT. For improved
statistics we consider a 63 lattice, where we sample
the field configuration 5� 104 times. As an example, we
quote here

RehL0ðxÞO0ðx; kÞi ¼ 0:2258� 0:0192; (57)

Re hL1ðxÞO1ðx; kÞi ¼ �0:0244� 0:0049 (58)

for I ¼ 0, N ¼ � ¼ m ¼ � ¼ k ¼ 1 for a violated
condition. On the other hand,

Re hL0ðxÞO0ðx; kÞi ¼ 0:0080� 0:0058; (59)

RehL1ðxÞO1ðx; kÞi ¼ �0:0004� 0:0059 (60)

for I ¼ 0, N ¼ m ¼ � ¼ k ¼ 1, � ¼ 10 is an example
for a condition which is compatible with a vanishing value.
As usual, N denotes the number of staggered fermion
flavors, I the imaginary noise, � the inverse coupling
constant, m the mass and � the chemical potential.
If we take the error bounds estimated from the bootstrap

analysis seriously, we observe several violations of the
consistency conditions in 2þ 1 dimensions. This is in
agreement with the (0þ 1)-dimensional case, where
many consistency conditions seem to be unfulfilled. We
take this as a hint that the complex Langevin evolution
in this canonical implementation might not converge
correctly.
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G. Imaginary noise

We discussed in Sec. II C how we can generalize from a
real to an imaginary noise term, assuming correct conver-
gence of the complex Langevin evolution. In this case
observables should turn out to be independent of the noise
term I . However, in Fig. 8 we can find clear evidence for a
dependence. Furthermore, we observe for almost all I > 0
a significantly larger deviation from analytical results.
Hence, it was also not possible to fine-tune I to a value

so that the complex Langevin evolution yields correct
results.

H. Analyticity in �2

In Fig. 9 we find the condensate h ���i as a function of
�2. While for �2 > 0 the numerical evaluation employs a
complex Langevin evolution, for�2 � 0we use a real one.
For small � the numerical evaluation tends to be unstable.
Like in the (0þ 1)-dimensional case, h ���i is analytic
within the numerical accuracy. This suggests that the
method can work sufficiently well for small �.

V. CONCLUSIONS

In this paper we have extended our (0þ 1)-dimensional
investigation of the generalized Thirring model in Ref. [29]
to the (2þ 1)-dimensional case. The numerical findings
are similar to those obtained in 0þ 1 dimensions. The
complex Langevin evolution allows us to evaluate observ-
ables in the full theory in a straightforward way, despite the
severe sign problem. However, our investigation suggests
that in some cases it does not converge towards the
physical theory. This was indicated by several violated
consistency conditions, a gap in analytical predictions in
the heavy dense limit and the absence of plateaus in the
observables for N > 1 flavors.
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Despite these observations, we found the condensate
h ���i to be analytical at �2 ¼ 0, suggesting that a com-
plex Langevin evolution seems to work for small �.
Also, for large � the heavy dense limit results could be
reproduced. In these regimes we then have an appealing
method to tackle the sign problem in the generalized
Thirring model.

Further investigations have to deal with the question of
how to address the aforementioned problems. In particular,
coordinate transformations as suggested in Ref. [58]
and gauge-cooling procedures like the one employed in

Ref. [59] might allow a stabilization of the complex
Langevin evolution.
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