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We make simulations with 2 flavor Wilson fermions to investigate the nature of the end points of

Roberge-Weiss (RW) first order phase transition lines. The simulations are carried out at 9 values of the

hopping parameter � ranging from 0.155 to 0.198 on different lattice spatial volume. The Binder

cumulants, susceptibilities, and reweighted distributions of the imaginary part of the Polyakov loop are

employed to determine the nature of the end points of RW transition lines. The simulations show that the

RW end points are of first order at the values of � in our simulations.
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I. INTRODUCTION

A full understanding of the QCD phase diagram is of
great importance theoretically and phenomenologically.
The QCD phase diagram addresses which forms of nuclear
matter exist at different finite temperatures and baryon
densities, and whether there are bona fide phase transitions
separating them, thus it is essential for relativistic heavy
ion collision experiments and astrophysics. QCD is a
strongly interacting theory on the scales of a baryon mass
and below, so nonperturbative calculations from the first
principle are preferable. Despite that substantial progress
has been made with Monte Carlo simulations of lattice
QCD at zero baryon density, the studies at nonzero baryon
density are haunted by the ‘‘sign’’ problem; for example,
see Ref. [1]. To date many indirect methods have been
proposed to circumvent the sign problem; overviews with
references to these methods can be found in Refs. [1,2].
One of these methods consists of simulating QCD with the
imaginary chemical potential for which the fermion deter-
minant is positive [3–11]. Full information can be obtained
by using the imaginary chemical potential which allows for
analytic continuation via truncated polynomials.

The phase structure of QCD with imaginary chemical
potential not only deserves detailed investigations in
its own right theoretically, but also has significant rele-
vance to physics at zero or small real chemical potential
[3–6,12–16]. QCDwith imaginary chemical potential has a
rich phase diagram as a function of imaginary chemical
potential and quark masses.

In this paper, we present a study of phase structure of
QCD at fixed imaginary chemical potential �¼�I=T¼�
for Nf ¼ 2 QCD with Wilson quarks. The partition func-

tion including the imaginary chemical potential is

ZðT;�IÞ ¼ Trðe�1
TðH�i�INÞÞ; (1)

Roberge-Weiss (RW) made the essential work with the
imaginary chemical potential [17]. They found that the
partition function of QCD with imaginary chemical poten-
tial has two important symmetries: reflection symmetry
in � ¼ �R þ i�I and periodicity in imaginary chemical
potential,

ZðT;�Þ ¼ ZðT;��Þ; (2)

Zð�=TÞ ¼ Zð�=T þ i2�n=3Þ: (3)

The periodicity is smoothly realized in the low tempera-
ture, strong-coupling regime, whereas in the high tempera-
ture, weak-coupling regime, it is realized in a nonanalytic
way. At high temperature, the system undergoes a first
order transition (RW transition) at critical values of
the imaginary chemical potential �I=T ¼ ðnþ 1

2Þ2�=3
[17–19] between adjacent Zð3Þ sectors and these Zð3Þ
sectors are characterized by the Polyakov loop. Thus, the
picture for the T � � phase diagram is that it repeats with a
periodicity the first order transition line in the high tem-
perature regime which necessarily ends at an end point at
some temperature TRW when the temperature is decreased
sufficiently.
At these end points, there is evidence that the analytic

continuation of deconfinement/chiral transition line from
real chemical potential to imaginary chemical one meets
the RW transition line. Recent numerical studies show that
the RW transition line end points are triple points for small
and heavy quark mass, and second order end points for
intermediate quark masses. So, there exist two tricritical
points which separate the first order regime from the
second one [3–5]. Moreover, it is pointed out [3,15,16]
that the scaling behavior at the tricritical points may shape
the critical line for real chemical potential, and subse-
quently, the line for real chemical potential is qualitatively
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consistent with the scenario suggested in Refs. [9,10]
which show that the first order region shrinks with the
increasing real chemical potential.

Most of studies of finite temperature QCD have been
performed using staggered fermion action or the improved
versions [20–26]; the staggered fermion approach and
Wilson fermion approach have their own advantages and
disadvantages (for example, see Ref. [27]). The staggered
fermion formalism preserves the U(1) chiral symmetry,
whereas it needs a fourth root trick for one flavor which
might lead to a locality problem [28] and phase ambigu-
ities [29]. On the contrary, Wilson fermions completely
solve the species doubling problem, whereas it suffers
from an explicit chiral symmetry breaking. The lattice
simulation with Wilson fermions is more time consuming
than staggered fermions; it can provide complementary
information and crosscheck to simulations with other
actions and establish a better understanding of QCD phase
diagram.

In this paper, we attempt to investigate the RW transition
line end points by lattice QCD with two degenerate
flavors of Wilson fermions. In Sec. II, we define the lattice
action with imaginary chemical potential and the physical
observables we calculate. Our simulation results are pre-
sented in Sec. III followed by discussions in Sec. IV.

II. LATTICE FORMULATION WITH IMAGINARY
CHEMICAL POTENTIAL

We consider the partition function of system with
Nf ¼ 2 degenerate flavors of Wilson quarks with chemical

potential on the lattice

Z ¼
Z
½dU�½d �c �½dc �e�Sg�Sf

¼
Z
½dU�ðDetM½U; ��ÞNfe�Sg ; (4)

where Sg is the gauge action, and Sf is the quark action

with the quark imaginary chemical potential �I ¼ �T. For
Sg, we use the standard one-plaquette action

Sg ¼ �
X
p

�
1� 1

N
ReTrUp

�
; (5)

where � ¼ 6=g2, and the plaquette variable Up is the

ordered product of link variables U around an elementary
plaquette. For Sf, we use the standard Wilson action

Sf ¼
XNf

f¼1

X
x;y

�c fðxÞMx;yðU; �;�Þc fðyÞ; (6)

where � is the hopping parameter, related to the bare quark
mass m and lattice spacing a by � ¼ 1=ð2amþ 8Þ. The
fermion matrix is

Mx;yðU; �;�Þ ¼ �x;y � �
X3
j¼1

½ð1� �jÞUjðxÞ�x;y�ĵ

þ ð1þ �jÞUy
j ðx� ĵÞ�x;yþĵ�

� �½ð1� �4Þea�U4ðxÞ�x;y�4̂

þ ð1þ �4Þe�a�Uy
4 ðx� 4̂Þ�x;yþ4̂�: (7)

We carry out simulations at � ¼ �. As it is pointed out
that the system is invariant under the charge conjugation at
� ¼ 0,�, when � is fixed [14]. But the �-odd quantityOð�Þ
is not invariant at � ¼ � under charge conjugation. When
T < TRW, Oð�Þ is a smooth function of �, so it is zero at
� ¼ �. Whereas, when T > TRW, the two charge violating
solutions cross each other at � ¼ �. Thus, the charge
symmetry is spontaneously broken there and the �-odd
quantity Oð�Þ can be taken as order parameter. In this
paper, we take the imaginary part of Polyakov loop as
the order parameter.
The Polyakov loop L is defined as the following:

hLi ¼
*
1

V

X
x

Tr

"YNt

t¼1

U4ðx; tÞ
#+

: (8)

Here and in the following, V is the spatial lattice volume.
To simplify the notations, we use X to represent the imagi-
nary part of Polyakov loop L, X ¼ ImðLÞ.
The susceptibility of imaginary part of Polyakov loop �

is defined as

� ¼ VhðX � hXiÞ2i; (9)

which is expected to scale as [4,5]

� ¼ L�=	
s 
ð�L1=	

s Þ; (10)

where � is the reduced temperature � ¼ ðT � TRWÞ=TRW,

V ¼ L3
s . This means that the curves �=L�=	

s at different
lattice volume should collapse with the same curve when

plotted against �L1=	
s . In the following, we employ ��

�RW in place of � ¼ ðT � TRWÞ=TRW. The critical expo-
nents relevant to our study are collected in Table I [5,30].
We also consider the Binder cumulant of the imaginary

part of Polyakov loop which is defined as the following:

B4 ¼ hðX � hXiÞ4i=hðX � hXiÞ2i2; (11)

with hXi ¼ 0. In the thermodynamic limit, B4ð�Þ takes on
the values 3, 1.5, 1.604, 2 for crossover, first order triple

TABLE I. Critical exponents relevant to our study.

	 � �=	

3D Ising 0.6301(4) 1.2372(5) 1.963

Tricritical 1=2 1 2

First order 1=3 1 3
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point, 3D Ising, and tricritical transitions, respectively.
However, on finite spatial volumes, the steps are smeared
out to continuous functions. In the vicinity of the

RW transition line end points, B4 is a function of x ¼ ð��
�RWÞL1=	

s and can be expanded as a series [3,15,16],

B4 ¼ B4ð�c;1Þ þ a1xþ a2x
2 þ � � � (12)

III. MC SIMULATION RESULTS

In this section, we will present our results for simulating
QCD with two degenerate flavors of Wilson fermions at
finite temperature T and imaginary chemical potential i�I.
Both the 
 algorithm with a Metropolis accept/reject step
and the R algorithm are used [31]. The simulations are
performed on lattice with different spatial volume with
temporal extent Nt ¼ 4 at � ¼ 0:155, 0.160, 0.165,
0.168, 0.170, 0.175, 0.180, 0.190, 0.198. For each � value,
we carry out simulations on lattice of size Ls ¼ 8, 12, 16,
and for some � values, lattice of size Ls ¼ 10 or/and Ls ¼
20 are also used. Simulations are carried out with 

algorithm with a Metropolis accept/reject step with
the acceptance rate ranging from 42%–93%. The other

simulations are carried out in terms of R algorithm
with the molecular dynamics time step �� ¼ 0:01.
Reference [31] pointed out that R algorithm has errors of
order Oð��2Þ, so the correct results of this algorithm con-
sists of extrapolation to zero step size. However, in practice
a shortcut without extrapolation is used. Recently, the exact
rational hybrid Monte Carlo algorithm is invented which
also allows many improvements [32]. In our simulation,
�� ¼ 0:01 is sufficiently smaller compared with the sta-
tistical errors of our simulations. There are 20 molecular
steps for each trajectory. We generate 20,000 trajectories
after 10,000 trajectories as warmup. Ten trajectories are
carried out between measurements. We use the conjugate
gradient method to evaluate the fermion matrix inversion.
On each lattice size, we make simulations at typically

4–6 different � values. For fixed i�I ¼ i�T, there is
transition in T between the low temperature phase and
the high temperature phase. In order to determine the
RW transition line end point �RW from the peak of sus-
ceptibilities, we use the data obtained through simulations
at the 4–6 different � values, and calculate susceptibilities
at additional � values, by employing the Ferrenberg-
Swendsen reweighting method [33].

TABLE II. Results of critical couplings �RW on different spatial volume at different �, we also
make simulations on lattice 83 � 4 at � ¼ 0:185, 0.195. The critical couplings �RW are
4.8810(20), 4.6610(20), respectively.

� 8 10 12 16 20

0.155 5.4319(40) 5.3887(40) 5.427(10) 5.4289(50)

0.160 5.361(50) 5.365(30) 5.347(10) 5.3499(60)

0.165 5.2566(90) 5.262(13) 5.2493(20) 5.2412(10) 5.2581(10)

0.168 5.206(15) 5.2103(22) 5.2167(6) 5.2181(10)

0.170 5.1645(50) 5.1722(10) 5.1770(5) 5.1785(2)

0.175 5.0781(30) 5.0838(50) 5.0882(40) 5.1095(30)

0.180 4.9802(20) 5.0388(60) 5.0391(40)

0.190 4.7800(20) 4.7658(10) 4.7883(3)

0.198 4.5910(20) 4.5955(10) 4.5980(2)

FIG. 1. Scaling behavior of susceptibilities of the imaginary part of the Polyakov loop according to the first order critical indexes
(left panel), and to the 3D Ising critical indexes (right panel) at � ¼ 0:155.
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Let us first present the critical couplings �RW on differ-
ent spatial volume at different � in Table II.
The presence of a first order phase transition at the end

point of Roberge-Weiss transition line at � ¼ 0:155 can be

FIG. 2. Reweighted distributions of the imaginary part of the
Polyakov loop ImðLÞ at the corresponding end point �RW,
and �>�RW and �<�RW on each lattice spatial volume at
� ¼ 0:155.

FIG. 3. Scaling behavior of susceptibilities, and Binder cumulants of the imaginary part of the Polyakov loop according to the first
order critical indexes (left panels), and to the 3D Ising critical indexes (right panels) at � ¼ 0:198.

FIG. 4. Reweighted distributions of the imaginary part of the
Polyakov loop at � ¼ 0:198 at the corresponding end points
�RW.
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found from the scaling behavior of the susceptibilities of
the imaginary part of Polyakov loop � presented in Fig. 1.
From Fig. 1 we can find that the rescaling quantities

�=L�=	
s plotted against ð�� �RWÞL1=	

s do not fall on the
same curve completely, whereas peaks of the rescaling

quantities �=L�=	
s obviously exhibit scaling behavior

which conforms to the first order transition. From
Eq. (10), we can find that the index �=	 regulates the
height of peaks while the index 	 regulates the width of

peaks. As a comparison, we also present the behavior

according to the 3D Ising transition index in the right panel

of Fig. 1 from which we can find that large deviation

from the 3D Ising scaling behavior manifest clearly. At

� ¼ 0:160, similar observations of susceptibilities as those

at � ¼ 0:155 can be found.
In Fig. 2, we present reweighted distributions of the

imaginary part of Polyakov loop ImðLÞ at the correspond-
ing �RW and two � values on lattice size Ls ¼ 8, 16, 20.

FIG. 5. Scaling behavior of susceptibilities of the imaginary part of the Polyakov loop according to first order critical indexes (left
panels) and to the 3D Ising critical indexes (right panels).
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On each lattice size, at �RW, reweighted distribution of
ImðLÞ exhibits two-state signal, while at �>�RW and
�< �RW, reweighted distributions of ImðLÞ do not exhibit
a two-state signal. At other � values, reweighted distribu-
tions of the imaginary part of Polyakov loop ImðLÞ at the
corresponding �RW, �> �RW and �<�RW on each lat-
tice size have the same observations as those at � ¼ 0:155.
For clarity, we only present the result at � ¼ 0:168 in the
following.

We also make simulations at � ¼ 0:190, 0.198, the
results of simulations at � ¼ 0:198 are presented in
Figs. 3 and 4. From the two upper panels of Fig. 3, we
can find that the first order transition indexes are more
suitable to describe the behavior than the 3D Ising ones.
This situation can be made clearer when we look at the B4

behavior depicted in the bottom panels of Fig. 3 from
which we can find that the quantities of Binder cumulant
plotted against rescaling � fall on the same curve com-
pletely. Note that from Eq. (11), the scaling behavior of
Binder cumulants is governed by the critical index 	which
also determines the width of peaks of the rescaling quan-

tities �=L�=	
s . The fact that the value of 	 for first order

transition accounts for the width of peaks of �=L�=	
s better

than the second order transition show that the transition
is first order, and this situation is confirmed by the
scaling behavior of Binder cumulant B4. We also present
reweighted distribution of the imaginary part of Polyakov
loop at �RW at � ¼ 0:198 in Fig. 4 which exhibits two-
state signal. At � ¼ 0:190, similar observations as those at
� ¼ 0:198 can be observed.
The results of simulations at � ¼ 0:170, 0.175, 0.180 are

shown in Fig. 5. In view of the fact that large finite-size
corrections are observed in simple spin models even when
the transition is first order [3,34], we can find that the first
order transition indexes perform much better than the
second order transition ones. This observation can be
enhanced from the reweighted distribution of the imagi-
nary part of Polyakov loop presented in Fig. 6.
Comparing to the above results, it is difficult to

determine the nature of RW transition line end points at
� ¼ 0:165, 0.168 results of which are presented in Fig. 7.
However, when we look at the behavior at large lattice size
presented in Fig. 7, it is a reasonable conclusion that the
behavior of RW transition line end points at � ¼ 0:165,
0.168 are of first order. This conclusion can be enhanced
when we look at the reweighted distributions of ImðLÞ at

FIG. 6. Reweighted distributions of the imaginary part of the Polyakov loop at � ¼ 0:170, 0.175, 0.180 at the corresponding end
points �RW.
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the end point �RW at � ¼ 0:165 presented in Fig. 8. and
reweighted distributions of ImðLÞ at the corresponding
�RW, �>�RW and �<�RW on lattice size LS ¼ 12,
16, 20 at � ¼ 0:168 presented in Fig. 9.

FIG. 8. Reweighted distributions of the imaginary part of the
Polyakov loop at � ¼ 0:165 at the corresponding end points�RW.

FIG. 7. Scaling behavior of susceptibilities of the imaginary part of the Polyakov loop according to the first order critical indexes
(left panels) and to the 3D Ising critical indexes (right panels).

FIG. 9. Reweighted distributions of the imaginary part of the
Polyakov loop ImðLÞ at the corresponding end point �RW,
and �>�RW and �<�RW on each lattice spatial volume at
� ¼ 0:168.
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IV. DISCUSSIONS

We have studied the nature of critical end points of
Roberge-Weiss transition of two flavor lattice QCD with
Wilson fermions. When � ¼ i�T, the imaginary part of
Polayakov loop is the order parameter for studying the
transition from low temperature phase to high temperature
one. Within the imaginary chemical potential formulation,
the partition function is periodic in imaginary chemical
potential. The different Zð3Þ sectors are characterized by
the phase of Polyakov loop. The Roberge-Weiss transition
which occurs at �I=T ¼ 2�ðkþ 1=2Þ=3 is of first order in
the high temperature phase, whereas it is of crossover in
the low temperature phase.

Our simulations are carried out at 9 values of � on
different 3–4 spatial volumes. Our lattice Nt ¼ 4 is coarse.
In Ref. [35], the lattice spacing with 2 flavor Wilson
fermions at � ¼ 5:3 is estimated to be 0.12–0.13 fm. In
Ref. [36], the lattice spacing with 2 flavor Wilson fermions
is estimated to be 0.246 fm which is found almost inde-
pendent of � in the range of � ¼ 3:0–4:7. In our simula-
tions, � varies roughly from 4.6 to 5.4, thus, the lattice
spacing a is estimated to be a� 0:12–0:25 fm.

In order to estimate the pseudoscalar meson mass m�,
the vector meson massm� and ratiosm�=m�, Tc=m� at our

simulation points, we use the data in Table II in Ref. [37].
By using the standard quark and gauge action, Bitar et al.
[37] studied hadron thermodynamics withWilson fermions
on lattice 83 � 4 and calculated the zero temperature
hadron mass on lattice 83 � 16 with dynamical fermions.
We compile their results and present in the following:
at � ¼ 0:16, � ¼ 5:28, m�=m� ¼ 0:943ð3Þ, Tc=m� ¼
0:19425ð7Þ, at � ¼ 0:17, � ¼ 5:12, m�=m� ¼ 0:899ð4Þ,
Tc=m� ¼ 0:2066ð8Þ, at � ¼ 0:18, � ¼ 4:94, m�=m� ¼
0:836ð5Þ, Tc=m� ¼ 0:224ð1Þ, and at � ¼ 0:19, � ¼ 4:76,

m�=m� ¼ 0:708ð7Þ, Tc=m� ¼ 0:245ð2Þ. Using the lattice

spacing estimated in the above, we find that at � ¼ 0:190,
� ¼ 4:76, m� ¼ 578ð2Þ MeV, at � ¼ 0:160, � ¼ 5:28,
m� ¼ 1991ð7Þ MeV. Comparing the values of �, �
at simulation points in Ref. [37] with ours. we can
roughly estimate the pseudoscalar meson mass m�.
Using the estimated lattice spacing, we can estimate that

Roberge-Weiss transition point temperature varies from
197–410 MeV in our simulations.
We consider the peak behavior, reweighted distribution,

and Binder cumulant of order parameter around the critical
end point�RW. At � ¼ 0:190, 0.198, the three observables’
behavior show that transition at the end point is of
first order which means the end point is a triple point. At
� ¼ 0:155, 0.160, the peak behavior at the end point are
more consistent with that of transition of a triple point than
that of 3D Ising transition behavior. Similar observations
can be observed at � ¼ 0:170, 0.175, 0.180.
At � ¼ 0:165, 0.168, it becomes difficult to discern the

peak behavior between 3D Ising transition class and triple
point, however, when we look at the peak behavior at large
lattice size, it is a reasonable conclusion that the behavior of
RWtransition line endpoints are of first order. This conclusion
is enhanced by the reweighted distribution of order parameter.
We also fit Eq. (12) to the calculated Binder cumulant

data to extract the value of critical index 	. At � ¼ 0:165,
0.168, 	 ¼ 0:3661, 0.3594, respectively, and these values
conform to first order transition.
In Ref. [13], the locations of triple points are deter-

mined. In Refs. [3–5], the simulations with staggered
fermions show that phase diagram of two flavor and three
flavor QCD at imaginary chemical potential � ¼ i�T are
characterized by two tricritical points, respectively. Our
simulations have no evidence that shows the existence of
tricritical points separating second order region from the
first order region. Considering these results, our investiga-
tion requires further extensive numerical simulations
which extend to a larger range of quark mass region.
This work is under progress.
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