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A determination of the excited energy eigenstates of the nucleon, s ¼ 1
2 , I ¼ 1

2 , N
�, is presented in full

QCD using 2þ 1 flavor PACS-CS gauge configurations. The correlation-matrix method is used and is

built using standard nucleon interpolators employing smearings at the fermion sources and sinks. We

develop and demonstrate a new technique that allows the eigenvectors obtained to be utilized to track the

propagation of the intrinsic nature of energy states from one quark mass to the next. This approach is

particularly useful for larger dimension correlation matrices where more near-degenerate energy states

can appear in the spectrum.
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I. INTRODUCTION

Resonances represent some of the rich dynamics of one
of the fundamental interactions of Nature, the strong inter-
action of quarks and gluons. Lattice QCD is the only ab
initio first principles approach to the fundamental quantum
field theory governing the properties of hadrons and ulti-
mately we wish to test our theoretical understanding of
resonances against their experimentally determined
properties.

From lattice QCD, the ground-state hadron spectrum is
now relatively well understood [1]. However, gaining
knowledge of the excited-state spectrum on the lattice
presents additional challenges, as the excited energy states
are extracted from the sub-leading exponentials of the
correlation functions. A determination of the excited state
energy spectrum, including multiparticle states, requires
significant effort and some progress is now being made. We
can expect the interplay between lattice QCD predictions
and experimental measurement to be very productive in the
coming years.

In the case of nucleon resonances, the first positive

parity excitation of the nucleon, the N 1
2

þ ð1440ÞP11 or

Roper resonance, has been a subject of considerable inter-
est since its discovery in 1964 through a partial-wave
analysis of pion-nucleon scattering data [2]. This state
has a surprisingly low mass, which is well below the first
negative parity excitation. In constituent quark models
with a harmonic oscillator potential this P11 state (with
principal quantum number N ¼ 2) appears above the
lowest-lying odd-parity S11 (1535) state [3,4], whereas in
Nature the Roper resonance is almost 100 MeV below
the S11 state. This presents a phenomenological challenge
to our understanding of level ordering. Similar difficulties

occur with the JP ¼ 3
2

þ
��ð1600Þ and 1

2

þ
��ð1690Þ reso-

nances. Due to its surprisingly low mass, the P11 state has
lead to enormous curiosity and much speculation about its
nature. For example, the Roper resonance has been de-
scribed as a hybrid baryon with explicitly excited gluon

field configurations [5,6], or as a breathing mode of the
ground state [7] or as a five quark (meson-baryon) state [8].
Significant resources have been devoted in the past from
the lattice QCD perspective to find the elusive low-lying
Roper state, in both quenched [9–25] and in full [26–30]
QCD.
The ‘Variational method’ [31,32] is the state-of-the-art

approach for determining the excited state hadron spec-
trum. It is based on the creation of a matrix of correlation
functions in which different superpositions of excited-state
contributions are linearly combined to isolate the energy
eigenstates. A low-lying Roper state was identified with
this method using a variety of source and sink smearings in
constructing correlation matrices [22,24] in quenched
QCD. Recent developments of algorithms and computa-
tional power have enabled the extension to full QCD. Some
full QCD analyzes using the variational method can be
found in Refs. [26–29,33–39]. Here we consider the tech-
niques of Refs. [22,24] to explore the low-lying even- and
odd- parity states of the nucleon using 2þ 1-flavor
dynamical QCD gauge-field configurations from the
PACS-CS collaboration [40]. A small subset of the results
presented here have appeared in Refs. [29,41].
The number of energy states revealed in the correlation

matrix method depends on the number of unique operators
chosen which have the quantum numbers of the desired
states. Hence, a clear identification of these states is nec-
essary to observe changes in these energy states as a
function of quark mass, in principle to the physical quark
mass. This allows the quark mass dependence and structure
of the extracted energy eigenstates to be explored system-
atically. The new technique that we develop here can be
used when any parameter of the theory is varied to explore
how the nature of the states and energies change with that
parameter.
The principal focus of this paper is to present the details

of our eigenvector analysis to track the states from the
heavy to the light quark mass region. In doing so, we
consider the N� states to illustrate the utility of the
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method. The operator basis is increased with the use of
fermion source and sink smearings as in Ref. [29]. Then,
the propagation of the energy states are presented after
analyzing the state of eigenvectors at adjacent quarks
masses. Results are presented for both the nonsymmetric
and symmetric eigenvalue equations, and these are com-
pared and related to each other.

In this analysis, we haven’t been able to isolate the
multiparticle thresholds at our three light quark masses.
We proceed under the assumption that the couplings to
these 5þ quark states have relatively small overlap with
our 3-quark interpolators and that the effective mass func-
tions are largely unaffected by multiparticle states with
small couplings to our interpolators. To monitor this we
use the full covariance-matrix based �2=dof in order to
accurately assess the extent to which our effective mass
function plateau is associated with a single state.
Ultimately, in addition to the 3-quark operators, one needs
to include 5- or 7- or more- quark operators [35,42,43] in
the correlation matrix to extract all the states in the
spectrum.

If we denote the dimensionality of the Hilbert space of
the lattice Hamiltonian to be N, then in an ideal world we
would select N linearly independent operators to construct
our N � N correlation matrix with sufficient statistical
accuracy and then diagonalize this to obtain the exact N
energy eigenstates for this lattice Hamiltonian. Obviously
and unfortunately, this is not computationally feasible on
any realistic lattice, and the best that we can do is choose a
relatively small number of operators,M, whereM � N. If
we choose these M operator interpolating fields wisely,
then the subspace they span will have good overlap with
the subspace spanned by the M lowest eigenstates of the
Hamiltonian. If this is the case, with sufficient statistics we
can hope to extract good estimates of the M lowest energy
states. If we observe, for example, that adding additional
operators to increaseM toM0 reveals new low-lying states,
then clearly we had not chosen our M operators wisely
enough. The test of whether or not we have revealed all of
the lowest states of the lattice Hamiltonian is that the
process of adding additional and new operators does not
reveal new low-lying excited states. We present a clearer
and more complete discussion of these issues in the
Appendix.

The linear independence of additional operators can be
judged by monitoring the condition number of the corre-
lation matrix. If the condition number does not increase
significantly when an operator is added then the additional
operator enhances the basis in a sufficiently independent
manner.

The paper is arranged as follows: Section II contains a
standard description of the mass extraction from a two-
point correlation function with a brief introduction of
Gaussian smearings at the fermion sources. The variational
method is presented in Sec. III, followed by simulation

details in Sec. IV. Section V contains a discussion of the
energy eigenstates identification. Results for the flow of
eigenvectors are presented in Sec. VI, followed by con-
cluding remarks in Sec. VII. Finally, a pedagogical dis-
cussion of the correlation matrix is presented in Appendix
in terms of the lattice Hamiltonian.

II. ENERGY STATES FROM TWO-POINT
CORRELATION FUNCTIONS

A two point correlation function can be written as

Gijðt; ~pÞ ¼
X
~x

e�i ~p: ~xh�jTf�iðxÞ ��jð0Þgj�i; (1)

where the Dirac spin indices are implicit. The operator
��jð0Þ creates states from the vacuum at space-time point 0

and, following the evolution of the states in Euclidean time
t, the states are destroyed by the operator �iðxÞ at the point
ð ~x; tÞ. T indicates the time ordering of the operators.
The energy eigenstates of hadrons are extracted using

operators suitably chosen to have overlap with the desired
states of interest. If we consider a baryon state B, then a
complete set of momentum eigenstates provides,X

B; ~p0;s
jB; ~p0; sihB; ~p0; sj ¼ I; (2)

where B can also include multiparticle states that the
operator � couples with. The substitution of Eq. (2) into
Eq. (1) yields

Gijðt; ~pÞ ¼
X
~x

X
B; ~p0;s

e�i ~p: ~xh�j�iðxÞjB; ~p0; si

� hB; ~p0; sj ��jð0Þj�i: (3)

Using the translational operator, the operator �iðxÞ can be
expressed as

�iðxÞ ¼ eHte�i ~P� ~x�ið0Þei ~P� ~xe�Ht; (4)

whereH is the lattice Hamiltonian and ~P is the momentum
operator whose eigenvalue is the total momentum ~p of the
system. Inserting this into Eq. (3) we obtain

Gijðt; ~pÞ ¼
X
~x

X
B; ~p0;s

e�EBte�i ~x:ð ~p� ~p0Þh�j�ið0ÞjB; ~p0; si

� hB; ~p0; sj ��jð0Þj�i
¼ X

B; ~p0;s
e�EBt� ~p; ~p0 h�j�ið0ÞjB; ~p0; si

� hB; ~p0; sj ��jð0Þj�i
¼ X

B

X
s

e�EBth�j�ið0ÞjB; ~p; sihB; ~p; sj ��jð0Þj�i:

(5)

The overlap of the interpolating fields �ð0Þ and ��ð0Þ with
positive and negative parity baryon states jB�i can be
parametrized by a complex quantity called the coupling
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strength, �B� , which can be defined for positive parity
states by

h�j�ð0ÞjBþ; ~p; si ¼ �Bþ

ffiffiffiffiffiffiffiffiffiffi
MBþ

EBþ

s
uBþð ~p; sÞ; (6)

hBþ; ~p; sj ��ð0Þj�i ¼ ��Bþ

ffiffiffiffiffiffiffiffiffiffi
MBþ

EBþ

s
�uBþð ~p; sÞ: (7)

For the negative parity states one requires

h�j�ð0ÞjB�; ~p; si ¼ �B�

ffiffiffiffiffiffiffiffiffiffi
MB�

EB�

s
�5uB�ð ~p; sÞ; (8)

hB�; ~p; sj ��ð0Þj�i ¼ � ��B�

ffiffiffiffiffiffiffiffiffiffi
MB�

EB�

s
�uB�ð ~p; sÞ�5: (9)

Here, �B� and ��B� are the couplings of the interpolating
functions at the sink and the source, respectively, andMB�

is the mass of the state B�. EB� is the energy of the state

B�, where EB� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

B� þ ~p2
q

. Therefore, mass of a en-

ergy state is obtained with the momentum projection of
the correlation function at ~p ¼ 0.

The standard spin sums may now be performed. For the
positive parity hadron states, this can be expressed as

X
s

u�
Bþð ~p; sÞ �u�Bþð ~p; sÞ ¼ �:pþMBþ

2MBþ
; (10)

and for the negative parity states, one encounters

� �5

�X
s

u�B�ð ~p; sÞ �u�B�ð ~p; sÞ
�
�5 ¼ þ�:p�MB�

2MB�
: (11)

By substituting the above Eqs. for the positive and negative
parity states in Eq. (5) we obtain,

G ijðt; ~pÞ ¼
X
Bþ

�Bþ ��Bþe�EBþ t �:pBþ þMBþ

2EBþ

þX
B�

�B� ��B�e�EB� t þ�:pB� �MB�

2EB�
: (12)

At momentum ~p ¼ ~0, EB� ¼ MB� , and a parity projection
operator �� can be introduced,

�� ¼ 1

2
ð�0 � 1Þ: (13)

We can isolate the masses of the even and odd parity
energy states by taking the trace of G with the operators
�þ and ��. The positive parity states propagate through
the (1, 1) and (2, 2) elements of the Dirac matrix, whereas,
negative parity states propagate through the (3, 3) and
(4, 4) elements. The correlation function for positive and
negative parity states can then be written as

G�
ij ðt; ~0Þ ¼ Trsp½��Gijðt; ~0Þ� ¼

X
B�

��
i
���
j e

�MB� t: (14)

The correlation function contains a superposition of energy
states, i.e., both ground and excited energy states. The mass
of the lowest energy state, M0� can be extracted at large t
where the contributions from all other excited states are
suppressed,

G�
ij ðt; ~0Þ ¼t!1

��
i0
���
j0e

�M0� t; (15)

where, ��
i0 and

���
j0 are now couplings of interpolators to the

lowest energy state.

A. Source smearing

The spatial fermion source-smearing [44] technique is
applied to increase the overlap of the interpolators with the
lower lying states. We employ a fixed boundary condition
in the time direction for the fermions by setting
Utð ~x; NtÞ ¼ 0 8 ~x in the hopping terms of the fermion
action with periodic boundary conditions imposed in the
spatial directions. Gauge invariant Gaussian smearing [44]
in the spatial dimensions is applied through an iterative
process. The smearing procedure is:

c ið ~x; tÞ ¼
X
x0
Fð ~x; ~x0Þc i�1ð ~x0; tÞ; (16)

where,

Fð ~x; ~x0Þ ¼ ð1� �Þ�x;x0

þ �

6

X3
�¼1

½U�ðxÞ�x0;xþ�̂ þUy
�ðx� �̂Þ�x0;x��̂�;

(17)

where the parameter � ¼ 0:7 is used in our calculation.
After repeating the procedures Nsm times on a point source
the resulting smeared fermion field is,

c Nsm
ð ~x; tÞ ¼ X

x0
FNsmð ~x; ~x0Þc 0ð ~x0; tÞ: (18)

III. VARIATIONAL METHOD

The extraction of the ground state mass can be done
straightforwardly using Eq. (15). However access to the
excited state masses requires additional effort due to
the presence of these energy states at the subleading of
the exponential. Here we consider the variational
method [31,32], which allows for a variety of super-
positions of excited-states in its cross correlation dis-
cussed below.
The variational method requires the cross correlation of

operators so that the operator space can be diagonalized
and the excited state masses extracted from the exponential
nature of the diagonalized basis. To access N states of the
spectrum, one requires a minimum ofN interpolators. With
the assumption that onlyN states contribute significantly to
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Gij at time t, the parity projected two point correlation

function matrix for ~p ¼ 0 can be written as

G�
ij ðtÞ � G�

ij ðt; ~0Þ ¼
�X

~x

Trspf��h�j�iðxÞ ��jð0Þj�ig
�

¼ XN�1

�¼0

��
i
���
j e

�m�t; (19)

where Dirac indices are implicit. Here, ��
i and ���

j are the

couplings of interpolators �i and ��j at the sink and source,

respectively, to eigenstates � ¼ 0; . . . ; ðN � 1Þ and m� is
the mass of the energy state �. The use of identical source
and sink interpolators provides ���

j ¼ ð��
j Þ� and then in the

ensemble average G�
ij ðtÞ is a Hermitian matrix, i.e.,

G�
ij ðtÞ ¼ ½G�

ji ðtÞ��. Moreover, considering both fUg and

fU�g configurations makes G�
ij ðtÞ a real symmetric matrix.

The N interpolators have the same quantum numbers and
provide anN-dimensional basis upon which to describe the
states. Using this basis we aim to construct N independent
interpolating source and sink fields which isolate N baryon
states jB�i, i.e.,

��� ¼ XN
i¼1

u�i ��i; (20)

�� ¼ XN
i¼1

v�
i �i; (21)

such that,

hB�; p; sj ���j�i ¼ ��� �z
� �uð�; p; sÞ; (22)

h�j��jB�; p; si ¼ ���z
�uð�; p; sÞ; (23)

where z� and �z� are the coupling strengths of�� and ��� to
the state jB�i. Consider a real eigenvector u�j which oper-

ates on the correlation matrixGijðtÞ from the right, one can

obtain

GijðtÞu�j ¼
�X

~x

Trspf��h�j�i ��jj�ig
�
u�j ¼ ��

i �z
�e�m�t:

(24)

For notational convenience, in the remainder of the dis-
cussion the repeated indices i, j, k are to be understood as
being summed over, whereas, �, which stands for a par-
ticular state, is not.

In the ensemble average, GijðtÞ ¼ GjiðtÞ. Therefore,

considering 1
2 ½GijðtÞ þGjiðtÞ� provides an improved un-

biased estimator and enables the use a symmetric eigen-
value equation as discussed below. To ensure that the
matrix elements are all 	Oð1Þ, each element of GijðtÞ
is normalized by 1ffiffiffiffiffiffiffiffiffi

Giið0Þ
p GijðtÞ 1ffiffiffiffiffiffiffiffiffiffi

Gjjð0Þ
p (discussed in the

Appendix).

In Eq. (24), since the only t dependence comes from the
exponential term, we can write a recurrence relation at time
(t0 þ �t) as

Gijðt0 þ4tÞu�j ¼ e�m�4tGijðt0Þu�j (25)

for sufficiently large t0 and t0 þ �t [21,45].
Multiplying the above equation by ½Gijðt0Þ��1 from the

left we get,

½ðGðt0ÞÞ�1Gðt0 þ �tÞ�u� ¼ e�m��tu� ¼ c�u�: (26)

This is an eigenvalue equation for eigenvector u� with
eigenvalue c� ¼ e�m��t. We can also solve the left eigen-
value equation to recover the v� eigenvector,

v�
i Gijðt0 þ4tÞ ¼ e�m��tv�

i Gijðt0Þ: (27)

Similarly,

v�½Gðt0 þ �tÞðGðt0ÞÞ�1� ¼ e�m��tv�: (28)

Since GijðtÞ is a real symmetric matrix v ¼ u. The

vectors u�j and v�
i diagonalize the correlation matrix at

time t0 and t0 þ �t making the projected correlation
matrix,

v�
i GijðtÞu�j ¼ ���z� �z�e�m�t: (29)

The parity-projected, eigenstate-projected correlator,

v�
i G

�
ij ðtÞu�j � G��; (30)

is then used to obtain masses of different states. We con-
struct the effective mass function

M�
effðtÞ ¼ ln

�
G��ðt; ~0Þ

G��ðtþ 1; ~0Þ
�
¼ M�� (31)

and apply standard analysis techniques as described in
Ref. [21].

Since Gðt0Þ�1=2Gðt0Þ1=2 ¼ I, we can rewrite Eq. (26) as

Gðt0Þ�1Gðt0 þ�tÞGðt0Þ�1=2Gðt0Þ1=2u� ¼ c�u�:

Multiplying from the left by Gðt0Þ1=2 provides
Gðt0Þ�1=2Gðt0 þ �tÞGðt0Þ�1=2Gðt0Þ1=2u� ¼ c�Gðt0Þ1=2u�
and defining,

w� ¼ Gðt0Þ1=2u� (32)

we find

Gðt0Þ�1=2Gðt0 þ �tÞGðt0Þ�1=2w� ¼ c�w� (33)

(also shown in Eq. (A8)). We note the matrix

½Gðt0Þ�1=2Gðt0 þ4tÞGðt0Þ�1=2� (34)

is real symmetric, with the same eigenvalue c� and
with the ~w� orthogonal to each other. If we had not
used the ½UþU�� sum then the matrix in Eq. (34)
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would be Hermitian and hence would still have real
eigenvalues and orthogonal eigenvectors. The coeffi-
cients of interpolators creating an energy eigenstate is
recovered by

u� ¼ Gðt0Þ�1=2w�: (35)

IV. SIMULATION PARAMETERS

PACS-CS 2þ 1 flavor dynamical-fermion configura-
tions [40] made available through the ILDG [46] are
used. These configurations use the nonperturbatively
OðaÞ-improved Wilson fermion action and the Iwasaki-
gauge action [47]. The lattice volume is 323 � 64, with
� ¼ 1:90 providing a lattice spacing a ¼ 0:0907 fm and
lattice volume of 
 ð2:90 fmÞ3.

The degenerate up and down quark masses are consid-
ered, with the hopping parameter values of 	ud ¼ 0:13700,
0.13727, 0.13754, 0.13770 and 0.13781 corresponding to
pion masses of m
 ¼ 0:702, 0.572, 0.413, 0.293,
0.156 GeV [40]; for the strange quark 	s ¼ 0:13640. We
consider an ensemble of 350 configurations each for the
four heavier quarks mass and 198 configurations for the
lightest quark. An ensemble of 750 samples for the lightest
quark mass is created by using well separated multiple
fermion sources on each configuration. We use the jack-
knife method to calculate the error, where the �2=dof for
projected correlator fits is obtained via a covariance matrix
analysis.

The complete set of local interpolating fields for the
spin- 12 nucleon are considered herein. Three different

spin-flavor combinations of nucleon interpolators are
considered,

�1ðxÞ ¼ �abcðuTaðxÞC�5d
bðxÞÞucðxÞ; (36)

�2ðxÞ ¼ �abcðuTaðxÞCdbðxÞÞ�5u
cðxÞ; (37)

�4ðxÞ ¼ �abcðuTaðxÞC�5�4d
bðxÞÞucðxÞ: (38)

The �1 and �2 interpolators are used in Refs. [12,48,49].
The interpolator �4 is the time component of the local
spin- 32 isospin-

1
2 interpolator which also couples to spin- 12

states used, for instance, in Refs. [16,21,50].
The local scalar-diquark nucleon interpolator, �1, is well

known to have a good overlap with the ground state of the
nucleon. Also, this �1 interpolator is able to extract a low-
lying Roper state in quenched QCD [24]. On the other
hand, the �2 interpolator has pseudoscalar-diquark struc-
ture in the nucleon, which vanishes in the nonrelativistic
limit, couples strongly to higher energy states. Each inter-
polator has a unique Dirac structure giving rise to different
spin-flavor combinations. Moreover, as each spinor has
upper and lower components, with the lower components
containing an implicit derivative, different combinations of
zero, one, two and three derivative interpolators are
provided.

The correlation matrices are constructed using different
levels of gauge-invariant Gaussian smearing [44] at the
fermion sources and sinks [29]. A basis of smearing-sweep
counts of 16, 35, 100 and 200 is selected following the
extensive analysis of Ref. [29].
It is important to consider the condition number for these

matrices in order to examine the quality of our operator
basis. We consider the normalized correlation matrix,

GijðtÞ=ðGiiðtÞGjjðtÞÞ�1=2, with GijðtÞ made Hermitian as

discussed in Sec. III.
The condition numbers for our correlation matrices are

illustrated in Fig. 1. We examine the change in the condi-
tion number for matrices composed of �1 and �2 as addi-
tional source smearings are introduced. We consider two
levels of smearing in the 4� 4 matrix, three levels of
smearing in the 6� 6 matrix and all four levels of smear-
ing in the 8� 8 matrix.
Results for the five quark masses under consideration are

provided. The tight clustering of the condition number for
the wide range of quark masses considered indicates that
the basis selected is appropriate for all these masses.
The condition numbers are displayed as a function of

Euclidean time following the fermion source at ts ¼ 16. At
early times, the different superposition of large excited
state contributions gives rise to a relatively small condition
number. However as these states become exponentially
suppressed at larger Euclidean times, the condition number
increases. If one waits to very large Euclidean times, all
excitations are suppressed and all operators produce the
same ground state rendering the condition number infinite.
This will be realized for any basis set having overlap with
the ground state. Thus it is important to conduct the corre-
lation matrix analysis at times where excited states are

FIG. 1 (color online). The condition numbers, CN, of 4� 4,
6� 6 and 8� 8 correlation matrices using �1 and �2 operators,
are illustrated as a function of Euclidean time, t. The 4� 4
matrix includes 200 and 100 sweeps, 6� 6 contains 200, 100
and 35 sweeps and 8� 8 incorporates all four sources, 200, 100,
35 and 16 sweeps. Each cluster of points contains five values
corresponding to the five quark masses considered.
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present and the number of significant state contributions
matches the size of the basis.

While the condition number increases as the smearing
basis is enhanced, the condition number is the order of 103

for our preferred variational analysis time of t0 ¼ 18. This
value is small relative to 1012 associated with standard
double precision calculations.

Thus, the utilization of different fermion smearings at
the source and the sink is an effective approach to enlarg-
ing the basis of operators. Our selection of smearing levels
was based on the excited-state contributions observed in
smeared-source to point-sink correlators [29]. By selecting
smearing levels that provided well separated effective
masses at early Euclidean times, we ensured that each
operator was sufficiently independent, thus giving rise to
an acceptable condition number for the correlation matrix.

V. EIGENSTATES IDENTIFICATION

Let us considerM interpolating fields making anM�M
parity-projected correlation matrix GðtÞ. In solving the
generalized eigenvalue equations of Eqs. (26) and (28)
we encounter the real and approximately symmetric ma-
trices ½ðGðt0ÞÞ�1Gðt0 þ�tÞ� and ½Gðt0 þ �tÞðGðt0ÞÞ�1�,
with the left and right eigenvectors ~u� and ~v�, respectively.
Thus the eigenvectors of these matrices are expected to be
approximately orthogonal (left table in Table I). As ex-
plained in the Appendix, the reason we have only approxi-
mate symmetry is thatGðtÞ does not commute with itself at
different times. This results because M<N. The more

closely the subspace spanned by our M operators aligns
with the subspace of the lowestM energy eigenstates ofH,
the less violation of symmetry there will be. If we do not
use the ½UþU�� sum, then all of the same arguments hold
but with Hermitian matrices.
This feature enables the use of the generalized measure

U ��ðmq;mq0 Þ ¼ ~u�ðmqÞ � ~u�ðmq0 Þ (39)

for the eigenvector ~u�, for example. This correlates eigen-
vectors at different quark masses and may be useful in
tracking states.
In contrast, as already discussed, the matrix in Eq. (34) is

symmetric, hence the eigenvectors ~w�ðmqÞ are exactly

orthogonal, i.e., ~w�ðmqÞ � ~w�ðmqÞ ¼ ��� (right table in

Table I).
Therefore, as in Eq. (39), a generalized measure

W ��ðmq;mq0 Þ ¼ ~w�ðmqÞ � ~w�ðmq0 Þ (40)

for the ~w� can be constructed to identify the states more
reliably as we move from quark mass mq to the adjacent

quark mass mq0 .

In Table II, the generalized measuresU��ðmq;mq0 Þ and
W ��ðmq;mq0 Þ are presented for the heaviest and the sec-

ond heaviest quark masses. It is evident that the off-
diagonal elements of W ��ðmq;mq0 Þ are smaller than the

U��ðmq;mq0 Þ and hence will be more reliable for identi-

fication and tracking of the energy eigenstates. Therefore
we useW ��ðmq;mq0 Þ for this purpose. For each value of�

TABLE I. The scalar product ~u�ðmqÞ � ~u�ðmqÞ (left) and ~w�ðmqÞ � ~w�ðmqÞ (right), for the same quark mass, with four different
levels of smearings. States are ordered from left to right and top to bottom in order of increasing excited-state mass. � and �
correspond to row and column, respectively.

1:00 �0:18 0.02 �0:07 0.65 0.10 �0:32 �0:09 1:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

�0:18 1:00 0.02 0.36 �0:10 �0:49 0.06 0.39 0.00 1:00 0.00 0.00 0.00 0.00 0.00 0.00

0.02 0.02 1:00 0.15 0.07 0.06 0.42 0.03 0.00 0.00 1:00 0.00 0.00 0.00 0.00 0.00

�0:07 0.36 0.15 1:00 �0:03 0.23 0.09 0.30 0.00 0.00 0.00 1:00 0.00 0.00 0.00 0.00

0.65 �0:10 0.07 �0:03 1:00 0.15 �0:57 �0:13 0.00 0.00 0.00 0.00 1:00 0.00 0.00 0.00

0.10 �0:49 0.06 0.23 0.15 1:00 �0:06 �0:61 0.00 0.00 0.00 0.00 0.00 1:00 0.00 0.00

�0:32 0.06 0.42 0.09 �0:57 �0:06 1:00 0.17 0.00 0.00 0.00 0.00 0.00 0.00 1:00 0.00

�0:09 0.39 0.03 0.30 �0:13 �0:61 0.17 1:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1:00

TABLE II. The scalàr product ~u�ðmqÞ � ~u�ðmq0 Þ (left) and ~w�ðmqÞ � ~w�ðmq0 Þ (right), for 	 ¼ 0:13700 and 	0 ¼ 0:13727, with four
different levels of smearings. States are ordered from left to right for mq0 and top to bottom for mq in order of increasing excited-state

mass. � and � correspond to row and column, respectively.

0:98 �0:29 �0:14 0.63 �0:07 0.10 �0:32 �0:08 1:00 �0:09 0.00 0.00 0.01 0.00 0.01 0.00

�0:19 �0:92 0.08 �0:03 0.14 0.06 0.42 0.05 0.09 0:99 �0:07 0.13 �0:01 0.00 0.01 0.00

�0:16 0.07 0:99 �0:09 �0:04 �0:53 0.09 0.36 0.01 0.07 1:00 �0:01 0.00 �0:01 0.00 0.00

0.63 �0:44 �0:02 0:99 �0:05 0.13 �0:55 �0:12 �0:01 �0:13 0.02 0:98 �0:09 0.02 0.07 0.00

�0:12 �0:11 0.40 0.00 0:75 0.00 0.08 0.36 0.01 0.01 0.00 �0:09 �0.97 0.21 �0:01 0.03

0.05 �0:11 �0:42 0.17 0.76 0:95 �0:12 �0:53 0.00 0.00 0.01 0.00 0.20 0:95 �0:07 �0:23
�0:45 �0:17 0.03 �0:67 0.08 �0:05 1:00 0.18 �0:01 0.00 0.00 �0:07 0.01 0.07 0:99 �0:01
�0:09 0.00 0.34 �0:14 �0:34 �0:82 0.21 1:00 0.00 0.00 0.00 �0:01 �0:08 �0:21 0.01 �0.97
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there is only one value for�where the entry is within a few
percent of 1. Thus this measure provides a clear identifi-
cation of how eigenvectors in the hadron spectrum at quark
mass mq are associated with eigenvectors at the next value

of quark mass, mq0 .

Now we explain how we track the energy eigenstates
from one quark mass to the next. Firstly, we label the
extracted energy states at the heaviest quark mass with a
chosen set of symbols (most right column in Fig. 2), where
each symbol is assigned by the corresponding eigenvectors
associated with it. These symbols are carried on to the
lightest quark mass by looking at W ��ðmq;mq0 Þ for ad-
jacent quark masses going from the heaviest to the lightest.
After the energy eigenstates are labeled at the heaviest
quark, we look at the scalar product ~w�ðmqÞ � ~w�ðmq0 Þ
for the heaviest and the second heaviest quark mass (top
left of Table III). The scalar product shows that in this case
all the diagonal elements are larger than the off-diagonal,
meaning there is no eigenvector crossing at these two
heavier quark masses. A similar scalar product for the
second heaviest to the third heaviest mass (top right of
Table III) shows that the fourth and fifth eigenvectors are
crossed with the fifth and fourth at the third quark mass,
and a similar situation for the sixth and the seventh. To
illustrate our analysis in our figures we track the eigenvec-
tors from one quark mass to the next by connecting these
similar eigenvectors by lines. In Fig. 2, two lines (eigen-
vectors) cross at the second and the third quark mass. We
then follow the above procedures for the third, fourth and
fourth and fifth (the lightest) quark masses.

It is well known in quantum mechanics the energies
avoid level crossings as illustrated in Fig. 3. However,
when two energy levels experience an avoided level

crossing, the nature of the two eigenvectors is inter-
changed, as shown by the dotted lines in Fig. 3. In Fig. 2,
the first and second excited energy eigenstates do not
experience an avoided level crossing at pion mass of
413 MeV, whereas avoided level crossings are present for
the third-fourth and the fifth-sixth excited energy states.
However, note that the avoided level crossings lie within

FIG. 2 (color online). N 1
2

þ
energy states from 8� 8 correla-

tion matrix of �1, �2 interpolators from 	 ¼ 0:13700 (m
 ¼
702 MeV, right-most column) to 	 ¼ 0:13781 (m
 ¼
156 MeV, left-most column). The symbols follow the eigenvec-
tor as determined by considering the scalar product ~w� � ~w�, as
presented in Table III. Note that the dotted lines in the figure
connect similar eigenvectors. Where these lines cross, of course
the energy levels would not cross, but we would see an avoided
level crossing as in Fig. 3 if we had data for every quark or pion
mass.

TABLE III. The scalar product ~w�ðmqÞ � ~w�ðmq0 Þ, for 	 ¼ 0:13700 (m
 ¼ 702 MeV) and 	0 ¼ 0:13727 (m
 ¼ 572 MeV) (top
left), 	 ¼ 0:13727 (m
 ¼ 572 MeV) and 	0 ¼ 0:13754 (m
 ¼ 402 MeV) (top right), 	 ¼ 0:13754 (m
 ¼ 402 MeV) and 	0 ¼
0:13770 (m
 ¼ 293 MeV) (bottom left), 	 ¼ 0:13770 (m
 ¼ 293 MeV) and 	0 ¼ 0:13781 (m
 ¼ 156 MeV) (bottom right), for an
8� 8 correlation matrix of �1 and �2, with four different levels of smearings. States are ordered from left to right for mq0 and top to

bottom for mq in order of increasing excited-state mass. � and � correspond to row and column, respectively.

1:00 �0:09 0.00 0.00 0.01 0.00 0.01 0.00 1:00 �0:08 0.01 �0:01 0.01 0.01 0.00 0.00

0.09 0:99 �0:07 0.13 �0:01 0.00 0.01 0.00 0.08 0:98 0.12 �0:03 0.09 0.01 0.00 0.00

0.01 0.07 1:00 �0:01 0.00 �0:01 0.00 0.00 �0:02 �0:12 0:99 �0:08 0.00 0.00 0.00 �0:01
�0:01 �0:13 0.02 0:98 �0:09 0.02 0.07 0.00 �0:01 �0:09 �0:01 0.03 0:99 �0:10 0.00 0.00

0.01 0.01 0.00 �0:09 �0.97 0.21 �0:01 0.03 0.01 0.02 0.08 0:99 �0:02 0.01 0.07 0.05

0.00 0.00 0.01 0.00 0.20 0:95 �0:07 �0:23 0.00 0.00 �0:01 �0:08 0.00 �0:08 0:99 0.07

�0:01 0.00 0.00 �0:07 0.01 0.07 0:99 �0:01 0.01 0.02 0.00 0.01 �0:10 �0.99 �0:08 0.03

0.00 0.00 0.00 �0:01 �0:08 �0:21 0.01 �0:97 0.00 0.00 0.00 �0:04 0.00 0.03 �0:08 1:00

1:00 �0:04 �0:02 0.04 0.01 0.00 0.00 0.00 1:00 �0:04 0.03 �0:02 0.01 0.00 0.01 0.00

0.03 0:98 �0:21 0.04 �0:01 0.00 �0:03 0.00 0.03 0:97 0.25 0.06 �0:02 �0:01 �0:01 �0:01
0.02 0.21 0:97 0.01 0.14 0.04 �0:02 �0:04 �0:03 �0:24 0:94 �0:07 �0:21 0.00 �0:03 �0:02
0.01 �0:01 �0:13 �0:37 0:92 0.08 �0:03 �0:03 0.02 �0:06 �0:03 0:93 �0:36 �0:06 0.02 0.00

�0:04 �0:04 �0:05 0:93 0.36 0.02 0.00 �0:01 �0:01 �0:05 0.20 0.35 0:89 �0:03 �0:21 �0:01
0.00 �0:03 �0:01 0.01 �0:01 �0:25 �0.97 �0:03 �0:01 �0:01 0.06 0.04 0.18 �0:23 0:93 �0:20
0.00 �0:01 �0:04 0.01 �0:10 0:95 �0:24 �0:16 0.01 0.00 �0:02 �0:08 �0:04 �0:97 �0:22 0.05

0.00 �0:01 �0:02 0.00 �0:02 �0:15 0.07 �0.99 0.01 0.00 �0:04 �0:02 �0:04 0.00 �0:20 �0.98
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the error bars. Results are presented as a function of quark
mass ðmqÞ, with mq0 ¼ �mq þmq where �mq is small. In

principle, as noted earlier a similar analysis can be per-
formed for other lattice parameters in addition to the quark
mass, such as the lattice spacing ðaÞ, volume ðVÞ, the lattice
action etc.

The eigenvectors are also tracked for the correlation
matrix analysis with the �1 and �4 interpolators and pre-
sented in Fig. 4, which can be compared with Fig. 2.

VI. QUARK-MASS FLOW OF EIGENSTATES

A. Positive parity

A key feature of large correlation matrices is the ability
to identify and isolate energy eigenstates which are nearly
degenerate in energy. However, this approximate degener-
acy makes it difficult to trace the flow of states from one

quark mass to the next. Thus a clear identification of these
near-degenerate states through the features of the eigen-
vectors w� isolating the states is necessary in order to trace
the propagation of the states from the heavy to the light
quark-mass region. At this point it is useful to clarify our
use of language. Where we say eigenvector we are refer-
ring to the orthogonal eigenvectors, w�, of our symmetric
(or Hermitian) M�M correlation matrix GðtÞ. Where we
speak of energy eigenvalues and energy eigenstates, we are
referring to the eigenvalues and eigenstates of the lattice
Hamiltonian, H. Our goal in calculations is always to
choose the M interpolators well so that the few ð<MÞ
lowest eigenvalues extracted are a good approximation to
the few lowest energy eigenvalues of H and so that M
eigenvectors of ourM�M correlation matrixGðtÞ capture
the dominant characteristics of the corresponding eigen-
state of H.
The anticipated and relatively smooth flow of the eigen-

vectors as a function of the quark mass is presented in
Fig. 5. It appears that each eigenvector corresponds to an
energy eigenstate of H with the eigenvector w� capturing
some of the core properties of the corresponding full
energy eigenstate of H. While the quark-mass dependent
trends can be significant, our approach reliably allows the
identification of energy eigenstates at adjacent quark
masses.
As the �1 and �4 spin-flavor interpolators are very

similar for the N 1
2

þ
channel, the overall flow of the eigen-

vectors ~w� obtained from the �1, �2 and �2, �4 correlation
matrices are very similar in Fig. 5. Also, the overall
strength of the eigenvector components creating and anni-

hilating N 1
2

þ
energy states in the QCD vacuum remains

approximately the same for the �1, �2 and �2, �4 cases
(Fig. 6), which implies that the eigenstate-energies isolated
by the �1, �2 and �2, �4 analysis are the same. As the first
excited state is purely �1-spin-flavour dominated, this state
is revealed in all the three different 8� 8 correlation
matrix analyzes.
There are a few general trends apparent in Figs. 6(a)

and 6(b) which are worthy of note. Focusing on Fig. 6(a)
for specific reference, we see that there is often competi-
tion between different smearing levels in creating the
states. A good example is in state two, where the 200
sweep �1 interpolator is complemented by the 35 sweep
�1 interpolator at heavy quark masses, but the 35 sweep
interpolator strength is phased out as one approaches light
quark masses with strength transitioning to the 100 sweep
�1 interpolator. Even in the ground state one can see the
importance of the 200 sweep interpolator increasing as
one approaches the lighter masses. This effect is even
stronger in Fig. 6(b) for the �4�2 analysis where the 100
sweep �4 operator is phased out in favour of the 200
sweep �4.
One can also observe the superposition of Gaussian

smearings of different sizes being superimposed with

FIG. 3 (color online). Illustration of an avoided level crossing.
The solid lines illustrate how the energy levels avoid crossing,
while the two dotted lines illustrate how the nature of the
associated eigenvectors flow. In the region where the energy
states are closest each is an equal but orthogonal admixture of
the two eigenvectors.

FIG. 4 (color online). As in Fig. 2, but with �1, �4 interpola-
tors. The dotted lines in the figure connect similar eigenvectors.
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FIG. 5 (color online). ~w� is presented for the five different
quark masses for the N 1

2
þ channel after identifying eigenvectors

via ~w�ðmqÞ � ~w�ðmq0 Þ. For each eigenvector shown in the hori-

zontal axis, the eigenvector components are plotted in order of
increasing quark mass from left to right. Note that Evect 1 to
Evect 8 correspond to eigenvectors w1 to w8. In the legend,
subscripts (1, 2), (3, 4), (5, 6) and (7, 8) correspond to the
smearing-sweep levels of 16, 35, 100 and 200, respectively.
(a) Eigenvector components for an 8� 8 correlation matrix
with �1, �2 interpolators. Odd and even numbers in the legend
correspond to the �1 and �2, respectively. (b) As in Fig. 5(a), but
for the �2 and �4 interpolators. Odd and even numbers in the
legend correspond to the �4 and �2, respectively. (c) As in
Fig. 5(a), but for the �1 and �4 interpolators. Odd and even
numbers in the legend correspond to the �1 and �4, respectively.

FIG. 6 (color online). ~u� is presented for the five different

quark masses for the N 1
2

þ
channel. For each eigenvector shown

in the horizontal axis, the eigenvector components are plotted

in order of increasing quark mass from left to right.

Note that Evect 1 to Evect 8 correspond to eigenvectors u1 to

u8. In the legend, subscripts (1, 2), (3, 4), (5, 6) and (7, 8)

correspond to the smearing-sweep levels of 16, 35, 100 and 200,

respectively. (a) Eigenvector components for an 8� 8 correla-

tion matrix with �1, �2 interpolators. Odd and even numbers in

the legend correspond to the �1 and �2, respectively. (b) As in

Fig. 6(a), but for the �2 and �4 interpolators. Odd and even

numbers in the legend correspond to the �4 and �2, respectively.

(c) As in Fig. 6(a), but for the �1 and �4 interpolators. Odd and

even numbers in the legend correspond to the �1 and �4,

respectively.
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relative minus signs in a manner that will create nodes in
the radial wave function of the interpolator of Eq. (20).
Focusing again on Fig. 6(a) to provide a specific example,
consider state 2. Here the widest Gaussian of 200 sweeps is
complemented by a smaller Gaussian with the opposite
sign. Moreover, as the quark masses become light, the
smaller Gaussian grows in size. The result is that the radial
node position of the wave function increases in distance as
the quarks become lighter.

Similarly, state 4 involves the superposition of three
Gaussian smearings with alternating signs. Here the 200
sweep interpolator is complemented with the 100 sweep

interpolator with opposite sign which is complemented
further by the 35 sweep operator, again with the opposite
sign. Such a linear combination can create two nodes in the
radial wave function.
Finally, state 7 combines the 200, 100, 35 and 16 sweep

interpolators with alternating signs such that a state with
three nodes could be accessed.
Turning our attention to the �1�4 analysis, we see the

flow of eigenvector components is not as smooth.
Figures 5(c) and 6(c) present the flow of the eigenvectors
for this analysis. A careful comparison of the eigenstate
spectrum with that from the �1�2 analysis at each quark
mass and consideration of the eigenvector flow of the states
reveals that the states dominated by �1 in the �1�2 analysis
are reproduced in the �1�4 analysis. However, the remain-
ing four states display a flow different from those revealed
in the �1�2 analysis. Thus, a superposition of the �1, �2

and �1, �4 analysis provides 12 unique energy states.
In Fig. 7, a superposition of the two 8� 8 analysis

(8� 8� 2) of �1, �2 and �1, �4 is presented. Scattering
p-wave 
N and s-wave 

N energy levels are also shown.
For the two large quark masses, as seen in Fig. 7, the

extracted lattice results sit close to the scattering two
particle p-wave N
 threshold (EN þ E
) with back-to-
back momenta, ~p ¼ ð2
=Lx; 0; 0Þ and s-wave N


threshold (MN þM
 þM
), whereas the masses for the
lighter three quarks sit much higher. There is no evidence
of these scattering states at light quark masses. Our con-
clusion is that our 3-quark operators have very little cou-
pling to the multihadron states relative to the states we do
observe at the light quark masses.
It is noted that the couplings to the multiparticle meson-

baryon states are suppressed by 1=
ffiffiffiffi
V

p
relative to states

FIG. 7 (color online). N 1
2

þ
energy states from 8� 8� 2

correlation matrices of �1, �2, �4 [29]. The p-wave N
 scat-
tering threshold (with one unit of lattice momentum) and the
s-wave N

 threshold are presented by dashed and dotted lines,
respectively.

TABLE IV. The scalar product ~w�ðmqÞ � ~w�ðmq0 Þ, for 	 ¼ 0:13700 (m
 ¼ 702 MeV) and 	0 ¼ 0:13727 (m
 ¼ 572 MeV) (top
left), 	 ¼ 0:13727 (m
 ¼ 572 MeV) and 	0 ¼ 0:13754 (m
 ¼ 402 MeV) (top right), 	 ¼ 0:13754 (m
 ¼ 402 MeV) and 	0 ¼
0:13770 (m
 ¼ 293 MeV) (bottom left), 	 ¼ 0:13770 (m
 ¼ 293 MeV) and 	0 ¼ 0:13781 (m
 ¼ 156 MeV) (bottom right), for an
8� 8 correlation matrix of �1 and �2, with four different levels of smearings, for the N 1

2
� states. States are ordered from left to right

for mq0 and top to bottom for mq in order of increasing excited-state mass. � and � correspond to row and column, respectively.

�0:03 0:99 �0:08 �0:04 0.05 �0:01 0.00 0.01 �0:22 0:97 0.04 �0:10 �0:01 0.04 0.01 �0:02
1:00 0.02 0.01 �0:08 �0:02 �0:01 0.00 0.01 0:97 0.22 �0:07 �0:07 0.01 0.02 �0:02 �0:01
0.00 0.07 0:97 0.05 0.22 �0:03 �0:04 0.00 0.07 �0:03 0:99 �0:04 0.07 0.00 �0:02 �0:01
0.07 0.03 �0:07 0:96 0.01 �0:27 0.00 �0:02 0.05 0.11 0.04 0:99 �0:01 0.05 0.01 �0:04

�0:02 0.06 0.20 0.02 �0.95 �0:01 �0:23 �0:01 �0:01 0.02 �0:07 0.02 0:99 �0:09 0.04 0.03

0.03 0.02 0.01 0.26 0.00 0:94 �0:01 �0:21 0.02 0.04 0.01 0.04 �0:09 �0.99 �0:02 �0:02
�0:01 0.02 0.08 0.01 �0:22 0.01 0:97 0.01 0.02 �0:01 0.01 �0:01 �0:04 �0:01 0:99 �0:13
0.00 0.00 0.00 0.08 0.00 0.20 �0:02 0:98 0.01 0.02 0.02 0.03 �0:03 �0:02 0.12 0:99

0:91 0.40 0.02 0.02 0.01 �0:05 0.00 0.00 0:98 0.17 �0:06 �0:01 0.01 0.01 0.00 0.00

0.40 �0.91 0.00 0.01 �0:02 0.01 �0:01 0.00 �0:17 0:99 �0:01 �0:03 0.01 0.01 �0:01 0.00

�0:01 �0:01 0:96 �0:27 0.01 �0:01 0.00 0.02 0.05 0.03 0:77 0.64 �0:01 0.00 0.00 0.02

�0:03 0.00 0.27 0:96 0.01 0.01 0.02 0.00 0.04 �0:01 0.64 �0.77 �0:04 0.00 0.01 0.00

0.04 0.03 0.01 �0:01 �0:22 0:97 0.02 0.01 0.00 0.00 0.02 �0:01 0.66 �0.75 �0:04 �0:01
0.01 �0:01 �0:01 �0:01 0:98 0.22 0.04 0.00 �0:01 �0:01 0.03 �0:02 0:75 0.66 �0:04 �0:02
0.00 0.00 �0:02 0.01 0.01 �0:01 �0:12 0:99 0.00 0.01 0.00 0.01 0.05 �0:01 0:96 �0:26
0.01 �0:01 0.00 �0:02 �0:04 �0:03 0:99 0.12 0.00 0.00 �0:01 �0:01 0.04 0.01 0.26 0:96
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dominated by a single-particle state. Due to the large
volume of our lattice, it is likely that multiparticle states
will be suppressed and missed in our spectrum, particularly
at lighter quark masses where the quark-mass effect also
acts to suppress the spectral strength. Further analysis of
finite volume effects [51] on the spectrum is highly desir-
able. Future calculations should also investigate the use of
five-quark operators to ensure better overlap with the mul-
tiparticle states and to better resolve and probe the excited
state spectrum [35,42,43].

B. Negative parity

Now we can repeat our analysis for the identification of
the N 1

2

�
states. In Table IV, the scalar product W �� ¼

~w�ðmqÞ � ~w�ðmq0 Þ for all the quark masses is presented.

In Figs. 8 and 9, the N 1
2

�
spectrum from the 8� 8

analysis involving �1, �2 and �1, �4 is presented, respec-
tively. While the �1, �4 analysis is able to extract a

FIG. 8 (color online). Masses of N 1
2
� energy states from an

8� 8 correlation matrix of �1, �2 in Table IV. The dotted lines
in the figure illustrates the eigenvector flow.

FIG. 9 (color online). As in Fig. 8, but with �1, �4 interpola-
tors. The dotted lines in the figure illustrates the eigenvector
flow.

FIG. 10 (color online). ~w� for the five different quark masses
are presented for the N 1

2
� channel after identifying eigenvectors

via ~w�ðmqÞ � ~w�ðmq0 Þ. For each eigenvector shown in horizontal

axis, the eigenvector components are plotted in order of increas-
ing quark mass from left to right. Note that Evect 1 to Evect 8
correspond to eigenvectos w1 to w8. In the legend, subscripts
(1, 2), (3, 4), (5, 6) and (7, 8) correspond to the smearing-sweep
levels of 16, 35, 100, and 200, respectively. (a) Eigenvector
components for an 8� 8 correlation matrix with �1, �2 inter-
polators. Odd and even numbers in the legend correspond to the
�1 and �2, respectively. (b) As in Fig. 10(a), but for �2 and �4

interpolators. Odd and even numbers in the legend correspond
to the �4 and �2, respectively. (c) As in Fig. 10(a), but for �1 and
�4 interpolators. Odd and even numbers in the legend corre-
spond to the �1 and �4, respectively.
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low-lying energy state, it misses the near-degenerate sec-
ond energy state in this channel. This second energy state is
revealed in the �1, �2 spin-flavor combination presenting
two nearly-degenerate low-lying states, which is in accord
with the quark model based on SUð6Þ spin-flavor symme-
try. Recall that three spin- 12 quarks may provide a total spin

of s ¼ 1
2 or

3
2 , the L ¼ 1 state can couple two different ways

to provide a J ¼ 1
2 state, hence providing two orthogonal

spin- 12 states in the L ¼ 1, 70 plet representation of SUð6Þ.
Both of these states have a width of 
 150 MeV.
As in Fig. 5, the eigenvector components for different

quark masses are presented in Figs. 10 and 11 for the N 1
2

�

channel. It is interesting to note that the scalar-diquark
interpolator �1 dominates the lowest two N� states
(Fig. 11) when available. The �2 interpolator makes an
important contribution in creating the second energy state
in this channel.
In Fig. 12, a superposition of the two 8� 8 analysis

(8� 8� 2) of �1, �2 and �1, �4 is presented. Scattering
p-wave 
N and s-wave 

N states are also shown.
The results for the lowest energy state at the two heavier
pionmasses sit close to the scattering s-waveN þ 
 (M
 þ
MN) threshold indicating that these results may be scatter-
ing states at these pion masses. However, they disappear
from our spectrum at the light pion masses. A similar
situation also prevails the second energy state, where the
state sits close to the p-wave EN þ E
 þM
 and E
 þ
E
 þMN scattering threshold with back-to-back momenta
of one lattice unit, ~p ¼ ð2
=Lx; 0; 0Þ. Again the use of 5- or
7- etc. quark meson-baryon operators will be required to
explore these scattering states [35,42,43].

VII. CONCLUSIONS

In this paper, a comprehensive analysis for the nucleon
spectrum with I ¼ 1=2, s ¼ 1=2, is presented using the
correlation matrix approach. In particular, a method for
energy-eigenstate identification and flow is presented and

FIG. 11 (color online). ~u� for the five different
quark masses are presented for the N 1

2
� channel. For each

eigenvector shown in horizontal axis, the eigenvector compo-
nents are plotted in order of increasing quark mass from left to
right. Note that Evect 1 to Evect 8 correspond to eigenvectos u1

to u8. In the legend, subscripts (1, 2), (3, 4), (5, 6) and (7, 8)
correspond to the smearing-sweep levels of 16, 35, 100 and 200,
respectively. (a) Eigenvector components for an 8� 8 correla-
tion matrix with �1, �2 interpolators. Odd and even numbers in
the legend correspond to the �1 and �2, respectively. (b) As in
Fig. 11(a), but for �2 and �4 interpolators. Odd and even
numbers in the legend correspond to the �4 and �2, respectively.
(c) As in Fig. 11(a), but for �1 and �4 interpolators. Odd
and even numbers in the legend correspond to the �1 and �4,
respectively.

FIG. 12 (color online). Masses of N 1
2
� energy states from

8� 8� 2 correlation matrices of �1, �2, �4.
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demonstrated for the positive and negative parity channel.
Details of the method developed for an identification and
the propagation of the energy states from heavy to light
quark mass region are provided. In particular, the new
technique is useful in identifying the flow of the near-
degenerate energy eigenstates from one quark mass to
the next. The eigenvectors obtained from the eigenvalue
equations for several 8� 8 correlation matrices are
utilized in tracking the eigen-energy states.

In presenting the results, both nonsymmetric left and
right eigenvalue equations and a symmetric eigenvalue
equation are considered. While the masses are the same
in the two different approaches, the eigenvectors obtained
from the symmetric matrix are orthogonal. Thus the gen-
eralized measure W �� is used to track the flow of eigen-
vectors with quark mass. The scalar product of the
eigenvectors shows its robustness in tracking the flow of
the energy eigenstates even when the energies are nearly
degenerate.

The coefficients of the interpolators creating and anni-
hilating a state in the QCD vacuum are also presented. The
flow of the eigenvectors reveals a smooth pattern and
presents important insights into baryon structure and its
evolution with quark mass.

Another interesting result of this paper is that, the cor-
relation matrix method can be used to track the energy
states that are involved in an avoided level crossing. It is
noted that the avoided level crossings lie within the error
bars, but the demonstration of the robustness of the ap-
proach remains.

Future steps include the introduction of five-quark
meson-baryon operators in the correlation matrices, to
ensure the clear isolation of states and ultimately
extract the resonance parameters from the first principles
of QCD.
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APPENDIX: PEDAGOGICAL DISCUSSION OF THE
CORRELATION MATRIX

1. For M ¼ N

Let us consider an N-dimensional Hilbert space with a

Hamiltonian, Ĥ, and let j�1i; j�2i; . . . ; j�Ni be N linearly
independent states. Similarly, let jE1i; jE2i; . . . ; jENi be a
complete orthonormal basis of energy eigenstates, then the
state j�ii can be written as

j�ii ¼
XN
j¼1

jEjihEjj�ii ¼
XN
j¼1

CijjEji; (A1)

where, Cij � hEjj�ii, which is analogous to Eq. (7). In

matrix form Eq. (A1) can be written as

j�1i
..
.

j�Ni

2
6664

3
7775 ¼ ½C�

jE1i
..
.

jENi

2
6664

3
7775: (A2)

Since j�ii is linearly independent, then C must be non-
singular and so there must exist ðC�1Þij such that

jE1i
..
.

jENi

2
6664

3
7775 ¼ ½C�1�

j�1i
..
.

j�Ni

2
6664

3
7775: (A3)

Similarly, h�ij can be expressed as h�ij¼P
N
j¼1h�ijEji�

hEjj¼
P

N
j¼1C

�
ijhEjj.

Let us now define j�ii � �̂y
i j�i for N linearly indepen-

dent field operators ð�̂y
i Þ, where the dagger denotes the

adjoint. Then we may write

GijðtÞ � h�j�̂iðtÞ�̂y
j ð0Þj�i ¼ h�j�̂ie

�iĤt�̂y
j j�i

¼ h�ije�iĤtj�ji ¼
XN
k;l¼1

C�
ikhEkje�iĤtjEliCjl

¼ XN
k¼1

C�
ike

�EktCjk ¼
XN
k¼1

C�
ike

�EktðC�yÞkj

or,

½GðtÞ� ¼ ½C��
e�E1t 0 0
0 e�E2t 0

0 0 . .
.

0
B@

1
CA½C�y�

� ½C��½EðtÞ�½C�y�; (A4)

where, ½EðtÞ� is obviously diagonal. The Eq. (A4) is analo-
gous to Eq. (19). From this point on for notational conve-
nience we will no longer use square brackets to denote
matrices. We see that, GðtÞ ¼ GðtÞy for all t. From
Eq. (A4), we can also write

Gðt0Þ ¼ C�
ffiffiffiffiffiffiffiffiffiffiffi
Eðt0Þ

q ffiffiffiffiffiffiffiffiffiffiffi
Eðt0Þ

q
C�y ¼ C0�C0�y; (A5)

where, C0� � C� ffiffiffiffiffiffiffiffiffiffiffi
Eðt0Þ

p
and C0�y � ffiffiffiffiffiffiffiffiffiffiffi

Eðt0Þ
p

C�y. Similarly,
we can write

Gðt0 þ4tÞ ¼ C0�Eð4tÞC0�y: (A6)

Let us consider the polar decomposition of C0� as C0� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C0�C0�yp

U ¼ ffiffiffiffiffiffiffiffiffiffiffi
Gðt0Þ

p
U, where U is unitary

UUy ¼ UyU ¼ I:
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Similarly, C0�y ¼ Uy ffiffiffiffiffiffiffiffiffiffiffi
Gðt0Þ

p
. Then, Eq. (A6) can be writ-

ten as

Gðt0 þ4tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
Gðt0Þ

q
UEð4tÞUy

ffiffiffiffiffiffiffiffiffiffiffi
Gðt0Þ

q
(A7)

or equivalently

~Gð4tÞ �
ffiffiffiffiffiffiffiffiffiffiffi
Gðt0Þ

q �1
Gðt0 þ4tÞ

ffiffiffiffiffiffiffiffiffiffiffi
Gðt0Þ

q �1

¼ UEð4tÞUy; (A8)

where we are using the notation

Eð�tÞ ¼
e�E1�t 0 0

0 e�E2�t 0

0 0 . .
.

2
6664

3
7775: (A9)

Denoting the normalized eigenvectors of ~Gð�tÞ as ~wi

for i ¼ 1; . . . ; N, then U consists of columns U ¼
½ ~w1j ~w2j � � � j ~wN�. Hence we see that

~Gð�tÞ ~wi ¼ e�Ei�t ~wi: (A10)

Multiplying Eq. (A10) by Gðt0Þ�1=2 from left and defining

~u i � Gðt0Þ�1=2 ~wi; (A11)

gives

Gðt0Þ�1Gðt0 þ �tÞ ~ui ¼ e�Ei�t ~ui; (A12)

which is analogous to Eq. (26).

2. For M<N

Let �̂1; �̂2; . . . ; �̂N beM linearly independent interpolat-
ing field operators with M<N. Then we may consider
these M �̂i’s as a subset of a complete set of N interpolat-

ing operators. Then as before, we can define GðMÞðtÞ as an
M�M correlation matrix, then GMðtÞ can be written as
the upper left M�M block of GðtÞ such that

GðtÞ ¼ GMðtÞ GmðtÞ
GmðtÞy GðN�MÞðtÞ

" #
; (A13)

where the off-diagonal rectangular matrix GmðtÞ has ele-
ments Gm

ijðtÞ for i ¼ 1; . . . ;M and j ¼ Mþ 1; . . . ; N.

Clearly GmðtÞ mixes the upper and lower diagonal blocks.
In terms of the full N � N correlation matrix GðtÞ we

define ~Gð�tÞ as before and it has the form

~Gð�tÞ ¼
~GMð�tÞ ~Gmð�tÞ
~Gmð�tÞy ~GðN�MÞð�tÞ

" #
;

which is of course diagonalized by the full N � N unitary
matrix U as shown in Eq. (A8).

Let us now temporarily assume that the off-diagonal

elements of ~Gð�tÞ are zero, then

~Gð�tÞ ¼
~GMð�tÞ 0

0 ~GðN�MÞð�tÞ

" #
;

and then it follows that the time independent unitary matrix
can be written as

U ¼ UM 0

0 UðN�MÞ

" #
:

This will occur if and only if we have chosen our M
interpolating fields such that they span exactly the same
subspace as M of the exact energy eigenstates.
But we will certainly never exactly achieve this and so

mixing will occur through GmðtÞ � 0. In this case U will
not have this convenient block diagonal form. Let U0

diagonalize ~GMð�tÞ, i.e., U0 is an M�M unitary matrix
defined at this particular �t. Then if GmðtÞ � 0 we see that
U0 � UM and in general U0 will not be independent of �t.
Note thatM linearly independent interpolating field opera-
tors will operate on the vacuum and give rise toM linearly
independent states. The more closely these M linearly
independent states come to spanning the same subspace
as M exact energy eigenstates, then the smaller will be

GmðtÞ and the more block diagonal will be ~Gð�tÞ and U.

We can only ensure that ~GMð�tÞ commutes with itself at all
�t if U is block diagonal, i.e., if GmðtÞ ¼ 0 so that
U0 ¼ UM and is therefore time independent. Then the
smaller will be the off-diagonal elements and the smaller
will be the mixing and the excited state contamination.
In practiceM � N, since on a lattice the dimensionality

of Hilbert space is in the many millions. We would like to
choose the M interpolating fields such that they span an
M-dimensional subspace that has the greatest overlap pos-
sible with the subspace spanned by the M lowest energy
eigenstates jE1i; . . . ; jEMi. With the lowest energy eigen-
states our numerical errors will be minimized, since by
working at large Euclidean times we minimize the influ-
ence of the higher excited state contamination and so
optimize our extraction of the lowestM energy eigenstates.
Since the interpolating fields produced states j�ii that

were not normalized in any way, it is numerically conve-
nient to redefine

�̂ iðtÞ ! �̂0
iðtÞ �

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM

ii ð0Þ
q �̂iðtÞ;

where there is no sum over i. Therefore, we attempt to put
the strengths of our interpolating fields at a comparable
level by defining

G0M
ij ðtÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM

ii ð0Þ
q GM

ij ðtÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GM
jjð0Þ

q
to ensure that the matrix elements of G0MðtÞ are all 	Oð1Þ
to maximize numerical significance of all ‘‘ij’’ combina-
tions. This is completely legitimate as it is simply a change
to the normalization chosen for our interpolating fields,
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which we are free to do. The matrix G0MðtÞ is Hermitian
except for the effects of finite ensemble and round-off
errors. Let us define

Ĝ MðtÞ ¼ 1

2
ðG0MðtÞ þG0MyðtÞÞ; (A14)

as an improved unbiased estimator of the ensemble average

for G0MðtÞ. Then ĜMðtÞ is exactly Hermitian. Therefore, as
before, we may diagonalize

~̂GMð�tÞ � ½ĜMðt0Þ�1=2ĜMðt0 þ �tÞĜMðt0Þ�1=2�; (A15)

which is also Hermitian, as ĜMðt0Þ�1=2 and ĜMðt0 þ �tÞ
are obviously Hermitian. The eigenvectors ( ~w�) obtained
from diagonalizing the above matrix are therefore

orthonormal. It is noted that using the UþU� trick [13],
where these U’s are links here, the Hermitian correlation
matrix GMðtÞ is real symmetric and so the eigenvalues
remain real and the eigenvectors orthogonal. Again, it is
important to note that the more poorly we choose our M
interpolating fields, the bigger will be the off-diagonal

elements of
~̂GðtÞ. Hence, the more time dependent will

be the U0 and the less reliable our extracted energies and
eigenvectors.

Now we can consider ĜMðtÞ as a function of quark mass,

mq, to identify how a given state evolves with mq. If m
0
q ¼

mq þ�mq with�mq small, we expect ~wiðmqÞ: ~wjðm0
qÞ 	 1

if i ¼ j and ~wiðmqÞ: ~wjðm0
qÞ 	 0 if i � j.
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Regensburg), Phys. Rev. D 69, 094513 (2004).

[17] N. Mathur, Y. Chen, S. J. Dong, T. Draper, I. Horváth, F. X.
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[22] M. S. Mahbub, A. Ó Cais, W. Kamleh, B. G. Lasscock,
D. B. Leinweber, and A.G. Williams, Phys. Lett. B 679,
418 (2009).

[23] G. T. Fleming, S. D. Cohen, H.-W. Lin, and V. Pereyra,
Phys. Rev. D 80, 074506 (2009).
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